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ABSTRACT 
Load forecasting is an important component for energy management system. Precise load forecasting helps the 
electric utility to make unit commitment decisions including decisions on purchasing and generating electric 
power, load switching, and infrastructure development.  Besides playing a key role in reducing the generation 
cost, it is also essential to the reliability of power systems. Short-term load forecasting (STLF) can help to 
estimate load flows and to make decisions that can prevent overloading. Timely implementations of such 
decisions lead to the improvement of network reliability and to the reduced occurrences of equipment failures 
and blackouts. Load forecasting is also important for contract evaluations and evaluations of various 
sophisticated financial products on energy pricing offered by the market. In the deregulated economy, decisions 
on capital expenditures based on long-term forecasting are also more important than in a non-deregulated 
economy where a rate increase could be justified by capital expenditure projects. Data mining plays the key role 
to infer the information which is important to make the right decision. In this article we examine and analyze the 
use of genetic algorithm (GA) techniques for the determination of weights in a back propagation network (BPN) 
for short-term load forecasting. 
 

Keywords: Genetic algorithm based backpropagation network (GA-BPN), Short term load forecasting (STLF). 

1.  INTRODUCTION & BACKGROUND 
          Forecasting is a phenomenon of knowing 
what may happen to a system when certain trends 
or conditions continue or continue to change. In 
electrical power systems, there is a great need for 
accurately forecasting the load and energy 
requirements because electricity generations as 
well as distribution are a great financial liability to 
the state exchequer. Accurate load forecast 
provides system dispatchers with timely 
information to operate the system economically 
and reliably. It is also necessary because 
availability of electricity is one of the most 
important factors for industrial development, 
especially for a developing country like India. 
Over the years, the application of Artificial Neural 
Network (ANN) in power industries has been 
growing in acceptance. Given sufficient input-
output data, ANN is able to approximate any 
continuous function to arbitrary accuracy. Also, 
while the network must be sufficiently trained to  

 
extract a sufficient set of general features 
applicable to both seen and unseen instances, 
overtraining the network may lead to undesired 
effects. Several attempts have been proposed by 
various researchers to alleviate this training 
problem. 
 
These include imposing constraints on the search 
space, restarting training at many random points, 
adjusting training parameter and restructuring the 
ANN architecture [1]. However, some approaches 
are problem-specific and not well accepted and 
different researchers tend to prefer different 
methodologies. Among these, one of the more 
promising techniques is by introducing adaptation 
of network training using genetic algorithm (GA).  

 
     Unlike backpropagation, genetic algorithm is a 
global search algorithm based on the principle of 
“survival of fittest”. It simultaneously searches for 
solutions in several regions, thus increasing the 
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probability of global convergence. Furthermore, 
since it is impossible to formulate a priori exact 
model of the system, a more practical approach is 
off-line set up a rough model, followed by on-line 
update of the model using GA. In this way, the 
merging of GA and ANN will gain adaptability to 
dynamic environment and lead to significantly 
better intelligent systems than relying on ANN or 
GA alone.  

 
2.    RESEARCH OBJECTIVE & 

METHODOLOGY        
 
        In this research work, an attempt has been 
made to develop different GA based 
backpropagation network (GA-BPN) models and 
to analyze the results.  
    
The methodologies adopted in this research are 
explained below: 

• Construction of different ANN 
architectures having (i) three neurons in 
input layer, two neurons in  hidden layer 
and one neuron in output layer (3-2-1and 
3-2-2-1 ) and (ii) three neurons in input 
layer, three neurons in  hidden layer and 
one neuron in output layer (3-3-1 and 3-
3-3-1) . 

• Hybridization of backpropagation 
network (BPN) with GA. i.e extraction of 
weights for BPN by implementing 
genetic algorithm. 

• Training of the GA-BPN network with 
different values of population size.  

• Finding the best value of population size 
for GA-BPN forecasting. 

• Forecasting using the best value of 
population. 

 
3. THEORITICAL FRAMEWORK 
 
       Genetic algorithm (GA) is a computerized 
search and optimization algorithm based on the 
mechanics of natural genetics and natural 
selection. Genetic algorithm is very different from 
most of the traditional optimization methods. 
Genetic algorithm needs design space to be 
converted into genetic space. So, genetic 
algorithm works with a coding of variables. 
Similar to other evolutionary algorithms, GA is 
based on the principle of “survival of fittest”, as in 
the natural phenomena of genetic inheritance and 
Darwinian strife for survival. In other words, GA 
operates on a population of individuals which 

represent potential solutions to a given problem. 
Mimicking the biological principles in nature, a 
single individual of a population usually is 
affected by other individuals as well as the 
environment. Normally, the better an individual 
performs under these competitive conditions the 
greater is the change for the individual to survive 
and reproduce. This in turn inherits the good 
parental genetic information. Hence, after several 
generations, the bad individual will be eliminated 
and better individuals are produced. 
 
3.1 Genetic Terms and Operators 
 
• Genetic Terms: 
 
Chromosomes: Symbols from some finite 
alphabet in the form of strings. In case of binary 
alphabet (0, 1) the chromosomes are binary strings 
and in the case of real alphabet (0-9) the 
chromosomes are decimal strings. 
 
Genes: The symbols that form the chromosomes 
are known as genes. 
 
Population: A set of solutions represented by 
chromosomes. 
 
Fitness Function:  The criteria of goodness 
expressed in terms of an objective function to find 
the best alternative solution is called fitness 
function. 
 
Fitness Value: It is the figure of merit, which is to 
be either maximized or minimized. 

 
• Genetic Operators: 
 
Reproduction: Reproduction also known as 
selection operator is used to select the best 
chromosomes for parents from the population into 
the mating pool to cross over and produce 
offspring.  
 
Cross over: Cross over is a recombination 
operator applied to the mating pool, proceeds in 
three steps. First, the reproduction operator selects 
at random a pair of two individual strings for 
mating. Then a cross-site is selected at random 
along the string length and the position values are 
swapped between two strings following the cross 
site. 
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Mutation: Mutation operator involves flipping a 
bit in the string from 0 to 1 and vice versa. 
 
3.2 Genetic Algorithm Based Back 

Propagation Networks (GA-BPN) 
 
        GA Based BPN (GA-BPN) is a Neuro-
Genetic hybrid approach which makes use of GA 
to determine the weights of a multilayer feed-
forward network with back propagation learning.   
 
     The learning algorithm behind BPN is a kind of 
gradient descent technique with backward error 
(gradient) propagation called back propagation. 
Back propagation searches on the error surface by 
means of the gradient descent technique in order 
to minimize the error criterion. It is therefore 
likely to get stuck in a local minimum.  
 
E=1/2∑(Tj-Oj)2                                               (1) 
 
 Where E is the error, Tj is the target output and Oj

 

is the output calculated by the network.  
 

Conventionally, a BPN determines its weights 
based on a gradient search technique and there 
fore runs the risk of encountering the local 
minimum problem. GA on the other hand , though 
not guaranteed to find global optimum solution to 
problems, have been found to be good at finding 
“acceptably good” solutions to problems 
“acceptably quickly”. 
 
3.3 GA Based Weight Determination 
 
        Genetic algorithm which uses a direct 
analogy of natural behavior, work with a 
population of individual strings, each representing 
a possible solution to the problem considered. 
Each individual string is assigned a fitness value 
which is an assessment of how good a solution is, 
to a problem. The high-fit individuals participate 
in “reproduction” by cross-breeding with other 
individuals in the population. This yields new 
individuals strings as offspring which share some 
features with each parent. The least-fit individuals 
are kept out from reproduction and so “die out”. A 
whole new population of possible solutions to the 
problem is generated by selecting the best (high-
fit) individuals from the current generation. This 
new generation contains characteristics which are 
better than their ancestors. Processing in this way, 
after many generations, owing to mixing and 
exchange of good characteristics, the entire 
population inherits the best characteristics and 

therefore turns out to be fit solution to the 
problem.     
 
        The success of any neural network (NN) 
architecture depends on the search for the 
optimized weights for given training data set. GA 
has been shown in practice that it is very effective 
at function optimization and can perform efficient 
searching for the approximate global minima. 
Thus, GA can be effectively utilized for NN 
weight selection. The mathematical expression for 
extraction of weights using GA for BPN is as 
below: 
 
        xkd+210d-2+ xkd+310d-3+….. x(k+1)d 
wk= +         if 
5≤xkd+1≤9 (2) 
                                   10d-2 
and 
         xkd+210d-2+ xkd+210d-2+….. x(k+1)d 
wk= -         if 
0≤xkd+1≤5 (3) 
                                   10d-2 
where wk is the actual weight extracted from the 
chromosome, x1, x2…represents chromosomes and 
xkd+1, xkd+2… x(k+1)d represents the kth gene(k≥0) in 
the chromosome   [2]. 
 
3.4 Pseudo Code for implementation of GA-

BPN 

Algorithm FITGEN ( )   
 { 
Let (Ii,Ti), i = 1,2,. . . ,N where Ii = (I1i, I2i, . . . , Ili) 
and Ti = (T1I,T2I, . . . ,Tni) represent the input–
output pairs of the problem to be solved by BPN 
with a configuration  l - m -  n. (the architecture 
and l>0, m≥0, n>0 ) 
For each chromosome Ci, i = 1,2,. . . ,p belonging 
to the current population Pi whose size is ‘p’ 
  
  { 
Extract weights Wi from Ci  using equation 2 & 3. 
Keeping Wi as a fixed weight setting, train the 
BPN for the N input instances; 
Calculate error Ei for each of the input instances 
using the formula, 
 
Ei =∑ (Tji – Oji) 2     (4) 
 
Where Oji is the output vector calculated by BPN; 
Find the mean square E of the errors Ei, i = 1,2,. . . 
,N; 
 
E=    (5) 

N

∑Ei 
     i

j 
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Calculate the fitness value Fi for each of the 
individual string of the population as 
         
         1 
Fi =                                                   (6) 
          E                  
  
 } 
Output Fi for each Ci, i = 1, 2. . . p     } 
END FITGEN 
 

• GA based weight determination 
Algorithm GA-BPN-WEIGHT ()  
  
  { 
i ← 0; 
Generate the initial population Pi of real-coded 
chromosomes CJi each representing a weight set 
for the BPN; 
While the current population Pi has not converged 
  
 { 
Generate fitness values FI

J for for each CI
J Є Pi 

using the Algorithm FITGEN (); 
Get the mating pool ready by terminating worst fit 
individuals and duplicating high fit individuals; 
Using the cross over mechanism, reproduce 
offspring from the parent chromosomes; 
i← i + 1; 
Call the current population PI; 
Calculate fitness values FI

J for each CI
J Є Pi 

  

 } 
Extract weights from Pi to be used by the BPN
  
 } 
END GA-BPN-WEIGHT 
 
The methodology for computation of fitness value 
for the (initial) population is given in figure-1 
below. 
 
 
 

 
 
 
 
 
 
Figure-1: Methodology for computation of fitness 

value 
 
4.    SIMULATION DESIGN AND RESULTS  

 
        Here we design the models for electrical load 
forecasting. This section describes research data, 
Construction of Network Architecture, 
Requirement of minimum number of patterns and 
Selection of Input Variables etc. 
 
4.1 Research Data  
 
        The data used in this research is the daily 
load (un restricted demand) data for the state of 
Delhi (INDIA). The data (un-normalized) have 
been collected from State Load Despatch Centre 
(SLDC), Delhi (India) from their website 
“http://www.delhisldc.org/report/monthly-power- 
data/July-2008 (block year 2008-09) in the month 
of February, 2009. The first fifteen days data have 
been used in this research. For training, the first 
nine days data have been used and next six days 
data have been used for testing purposes. 
 
4.2 Construction of Network Architecture 
 
         Structure of the network affects the accuracy 
of the forecast. Network configuration mainly 
depends on the number of hidden layers, number 
of neurons in each hidden layer and the selection 
of activation function. No clear cut guide lines 
exist up to date for deciding the architecture of 
ANN. Mostly it is problem dependent. However, 
Gowri T. M et. al [3] suggest that for a three layer 
ANN, the number of hidden neurons can be 
selected by one of the following thumb rules:  
 
1. (i-1) hidden neurons, where ‘i’ is the number of 

input  neurons 
2. (i+1) hidden neurons, where ‘i’ is the number of 

input neurons.  
3. For every 5 input neurons, 8 hidden neurons 

can be taken. This is developed seeing the 
performance of network within 5 inputs, 8 
hidden neurons and 1 output.  

4. Number of input neurons / number of output 
neurons 

5. Half the sum of input and output neurons.  
6. P/i neurons, where ‘i’ is the input neurons and 

‘P’ represents number of training samples.  
 

In this research, we have used four different 
architectures. First one is the 3-2-1 architecture 
where there is one input layer having 3 input 
neurons, one hidden layer having 2 hidden 
neurons and the output layer having 1 neuron. The 
second one is the 3-3-1 architecture where there is 
one input layer having 3 input neurons, one 
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hidden layer having 3 hidden neurons and the 
output layer having 1 neuron. Others are 3-2-2-1 
and 3-3-31 architectures.  
 
4.3 Requirement of minimum number of 
patterns 
 
      Gowri T. M. and  Reddy V.V.C. also suggest 
that the minimum numbers of patterns required are 
half the number of input neurons and the 
maximum is equal to the product of number of 
input neurons and number of hidden neurons or 
five times the number of input neurons, which 
ever is less. However, no justifications can be 
given to such thumb rules. In this work, 
performance of configurations is studied with six 
numbers of training patterns and three numbers of 
test patterns. 
 
In this research work we have used a total number 
of 15 input data divided into two sets, training set 
consisting of first 9 days data and the second one 
is the test set consisting of last 6 days data. 
 
4.4 Selection of Input Variables 

 
      Papalexopoulos A.D. et. al [4] state that, there 
is no general rule for selecting number of input 
variables. It largely depends on engineering 
judgment, experience and is carried out almost 
entirely on trial and error basis.  

 
      The importance of the factors (in the input 
variables) may vary for different customers. 
According to Wang X. et al [5], for most 
customers historical data (such as weather data, 
weekend load, and previous load data) is most 
important for predicting demand in STLF. In 
practice, it is neither necessary nor useful to 
include all the historical data as input. 
Autocorrelation helps to identify the most 
important historical data. Wang describes the 
importance of recent daily loads in daily load 
prediction based on correlation analysis is 
described as below: 
 
Factors X1 X2 X3 X4 X5 X6 X7
Importanc 1 2 3 5 7 6 4

Table-1 Selection of input variables 
  

The first line shows the recent daily load 
history. Xi represents the load consumed and the 
subscripts show the time index, i.e., 1 means 
yesterday (one day ago), 2 means the day before 
yesterday (two days ago), and 7 means the same 

day of last week (7 days ago). In the second line 
the importance is described. 1 means the most 
important and 7 means the least important. These 
information and results help us to decide what 
factors should be included in input. According to 
table-1, when we perform daily load prediction, 
we should include X1, X2, X3, X7 as our inputs. 
 
4.5 GA-Based Back Propagation Algorithm  
      
       Our genetic algorithm here works with a fixed 
value of populations selected from a set of 
population size. Since sometimes it could happen 
for a single population scheme that though the 
neural network could theoretically solve a certain 
problem, the system may not return a correct 
solution. This is because of the random nature of 
the algorithm and its reliance on natural selection, 
mutation and cross-over. First, at the initialization 
stage, the neural network structure, including 
number of input nodes, hidden nodes, and output 
nodes are specified. Connection weights 
corresponding to this structure are encoded in 
GA’s chromosomes; each chromosome represents 
one structure with given connection weights 
contained in its genes. Second, at the GA-based 
weight connection training stage, these initialized 
chromosomes which may belong to different 
populations are evolved generation to generation 
by using GA according to the fitness and RMSE 
performance. 
 
4.6 GA-BPN Training Methodology 
 
     The training of present network has been 
accomplished using the back propagation 
algorithm (BP). Conventionally, A BPN 
determines its weights based on a gradient search 
technique and hence runs the risk of encountering 
the local minimum problem. GA on the other hand 
is found to be good at finding ‘‘acceptably good’’ 
solutions. The idea to hybridize the two networks 
has been successful to enhance the accuracy of 
forecasting. In the present work, the initial weights 
for the BPN have been obtained by using a GA.  
Genetic algorithm (GA) which uses a direct 
analogy of natural behavior, work with a 
population of individual strings, each representing 
a possible solution to the problem considered. 
Each individual string is assigned a fitness value, 
which is an assessment of how good a solution is 
to a problem. The high-fit individuals participate 
in ‘‘reproduction’’ by crossbreeding with other 
individuals in the population. This yields new 
individual strings as off-spring, which share some 
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features with each parent. The least-fit individuals 
are kept out from reproduction and so they ‘‘die 
out’’. A whole new population of possible 
solutions to the problem is generated by selecting 
the high-fit individuals from the current 
generation. This new generation contains 
characteristics, which are better than their 
ancestors. The parameters, which represent a 
potential solution to the problem, genes, are joined 
together to form a string of values referred as a 
chromosome. In this research, a real coding 
system has been adopted for coding the 
chromosomes. The network configuration of the 
BPN for the present work is 3-2-1. Therefore, the 
numbers of weights (genes) that are to be 
determined are 3 X 2 + 2 X 1 = 8. With each gene 
being a real number, and taking the gene length as 
5, the string representing the chromosomes of 
weights will have a length of 8 X 5 = 40. This 
string represents the weight matrices of the input-
hidden-output layers. An initial population of 
chromosomes is randomly generated. Weights 
from each chromosome have been extracted. For 
cross over, we have used a two-point cross over 
selected at random and the selection is made on 
the basis of fitness value (1/MSE) . Similar 
training process has also been used for other 
architectures. The strategy for implementation of 
GA-BPN algorithm is explained in figure-2 below. 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure-2 implementation strategy for GA-BPN 
4.7 Results from GA-BPN Method 
 
       The GA-BPN has been implemented by 
taking different architectures with different 
population size. For each value of population, the 
program has been executed 5 times and the root 
mean square error (RMSE) value has been 
calculated. The best result (the case having lowest 
RMSE value) among all these cases (indicated as 
bold italic letters) has been considered for 
forecasting.  
Various parameters used in this research are: 

Architecture: 3-2-1 and 3-3-1 
Number of hidden layers: 01 
Number of input neurons: 03  
Number output neurons: 01 
Selection: Based on fitness value 
Fitness function: 1/ (Mean Square Error) 
Crossover: Two point Crossover 
Stopping criteria: when fitness converged  

The training results are shown in table-2 and 
table-3.  

  Table-2 contains the RMSE and average RMSE 
values of GA-BPN 3-2-1 architecture with various 
population sizes. The GA-BPN program has been 
executed five times and the RMSE values are 
given in Run-1 to Run-5 column. Finally the 
average RMSE has been calculated. This table is 
used to find a suitable value of population size that 
produces the lowest error for experiment of GA-
BPN 3-2-1 architecture. It can be observed from 
the table that, our architecture GA-BPN-3-2-1 

P 
Run-1  
RMSE 

Run-2 
RMSE 

Run-3 
RMSE 

Run-4  
RMSE 

Run-5 
RMSE 

Average 
RMSE 

30 0.0669 0.0669 0.0669 0.0669 0.0669 0.0669 

40 0.0783 0.0783 0.0783 0.0783 0.0783 0.0783 

50 0.0794 0.0794 0.0794 0.0794 0.0794 0.0794 

60 0.0703 0.0703 0.0703 0.0703 0.0703 0.0703 

70 0.0604 0.0604 0.0604 0.0604 0.0604 0.0604 

80 0.0713 0.0713 0.0713 0.0713 0.0713 0.0713 

90 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 

100 0.0454 0.0454 0.0454 0.0454 0.0454 0.0454 
 

Table-2: Training Results of GA-BPN 3-2-1 architecture 
with different population size(P) 
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performs better with population size of 90 by 
producing lowest value of RMSE. 

 
Similarly the training results have been calculated 
for the architecture 3-3-1. Results are shown 
below. 
 

P 

Run
-1  

RM
SE 

Run-
2 

RMS
E 

Run-
3 

RMS
E 

Run-
4  

RMS
E 

Run-
5 

RMS
E 

Aver
age 

RMS
E 

30 0.03
38 

0.033
8 

0.033
8 

0.033
8 

0.033
8 

0.033
8 

40 0.04
39 

0.043
9 

0.043
9 

0.043
9 

0.043
9 

0.043
9 

50 0.04
76 

0.047
6 

0.047
6 

0.047
6 

0.047
6 

0.047
6 

60 0.02
37 

0.023
7 

0.023
7 

0.023
7 

0.023
7 

0.023
7 

70 0.04
40 

0.044
0 

0.044
0 

0.044
0 

0.044
0 

0.044
0 

80 0.03
77 

0.037
7 

0.037
7 

0.037
7 

0.037
7 

0.037
7 

90 0.02
49 

0.024
9 

0.024
9 

0.024
9 

0.024
9 

0.024
9 

10
0 

0.03
15 

0.031
5 

0.031
5 

0.031
5 

0.031
5 

0.031
5 

 
Table-3: Training Results of GA-BPN 3-3-1 

architecture with different population size (P) 
It can be observed from the table that, our 
architecture GA-BPN-3-3-1 performs better with 
population size of 60. 

0.02

0.025

0.03

0.035

0.04

0.045

0.05

20 30 40 50 60 70 80 90 100 110

Population size

RM
SE

 
 

Forecasted Values (GA-BPN) 
 
Once the training is over, the forecasted values for 
next days have been calculated. The values are 
given in table-4 below.  
 

Techniques Actual 
/Target 
V l

Forecasted  
Value 

Squared 
Error 

Error 
(RMSE) 

GA-BPN 3-2-1, 
Population 
size=90 

0.5876 0.585405 4.82E-06 0.02058
5 0.6672 0.687654 0.000418 

0.6892 0.718321 0.000848 
GA-BPN 3-3-1, 
Population 
size=60 

0.5876 0.574182 0.00018 0.02373
3 
 

0.6672 0.668198 9.96E-07 
0.6892 0.728043 0.001509 

Table-4 Forecasted values, GA-BPN 3-2-1 and 3-3-1 
architecture 

 
Similarly the results have been calculated for the 
architecture 3-2-2-1 and 3-3-3-1. The forecasted 
values are given in table-5 below. 
 

Techniques Actual 
/Targe
t V l

Forecaste
d  
V l

Squared 
Error 

Error 
(RMSE) 

GA-BPN 3-
2-2-1, 
Population 
size=60 

0.5876 0.605177 0.00030
9 0.01040

0 0.6672 0.666389 6.58E-07 
0.6892 0.693057 1.49E-05 

GA-BPN 3-
3-3-1, 
Population 
size=70 

0.5876 0.601256 0.00018
6 0.01199

6 0.6672 0.653031 0.00020
1 

0.6892 0.682530 4.45E-05 
 

Table-5 Forecasted values, GA-BPN 3-2-2-1 and 3-3-3-1 
architectures 

 
The Root Mean Square Error (RMSE) has been 
calculated as: 
RMSE=Square root of [(∑ (Target Value – 
Obtained Value) 2)/number of patterns] 
 
5. RESULTS ANALYSIS AND 

CONCLUSIONS 
 
From table-4 and table-5, it can be analyzed that, 
the RMSE obtained is approximately in between 
0.01 to 0.02, which is quite appreciable. In our 
case the architecture 3-2-1 produces a better result 
than the architecture 3-3-1 and the architecture 3-
2-2-1 produces a better result than the architecture 
3-3-3-1. Also from table-4 and table-5, it can be 
observed that the structure of the network, 
selection of other parameters affect the result. In 

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

20 30 40 50 60 70 80 90 100 110

Population size

R
M

S
E

Figure-3 population size versus error rate (GA-BPN 3-2-1) 
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our case the architecture performs better with two 
hidden layers having two neurons in each hidden 
layer than that of other architectures used in this 
research. 
 
This research also has some limitations. They are: 
 
• Training and Testing of all models are 

conducted offline. 
 

• All the results given in this research are 
experimental basis. These have been 
obtained only as the out put of the 
program developed for this purpose. No 
mathematical proof could be given for 
the results obtained.  

 
• We have considered only one input factor 

for forecasting i.e the previous three days 
load data. However other factors such as 
weather data and temperature could also 
be used as input parameters. 

 
• All these results given are only problem 

specific i.e they are applicable only to the 
specific data used in this research. It can 
not be generalized. Achievements of this 
research need to be verified in other 
fields of applications to make these 
models more generalized. 
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