
Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

109

SHORT TERM LOAD FORECASTING USING NEURO
GENETIC HYBRID APPROACH: RESULTS ANALYSIS WITH

DIFFERENT NETWORK ARCHITECTURES

1 PRADEEPTA KUMAR SARANGI, 2 NANHAY SINGH, 3 DEEPAK SWAIN,
4 DR. R. K. CHAUHAN, 5 DR. RAGHURAJ SINGH

1 Lecturer, School of Computer Science, Apeejay Institute of Technology, Greater Noida(India)

2 Lecturer, Department of Computer, Science & Engineering, HBTI ,Kanpur (India)
3 Lecturer, School of Computer Science, Apeejay Institute of Technology, Greater Noida(India)

4 Professor & Chairman, Department of Computer Science & Applications, Kurukshetra University (India)
5 Professor & Head, Department of Computer Science & Engineering, HBTI, Kanpur (India)

ABSTRACT
Load forecasting is an important component for energy management system. Precise load forecasting helps the
electric utility to make unit commitment decisions including decisions on purchasing and generating electric
power, load switching, and infrastructure development. Besides playing a key role in reducing the generation
cost, it is also essential to the reliability of power systems. Short-term load forecasting (STLF) can help to
estimate load flows and to make decisions that can prevent overloading. Timely implementations of such
decisions lead to the improvement of network reliability and to the reduced occurrences of equipment failures
and blackouts. Load forecasting is also important for contract evaluations and evaluations of various
sophisticated financial products on energy pricing offered by the market. In the deregulated economy, decisions
on capital expenditures based on long-term forecasting are also more important than in a non-deregulated
economy where a rate increase could be justified by capital expenditure projects. Data mining plays the key role
to infer the information which is important to make the right decision. In this article we examine and analyze the
use of genetic algorithm (GA) techniques for the determination of weights in a back propagation network (BPN)
for short-term load forecasting.

Keywords: Genetic algorithm based backpropagation network (GA-BPN), Short term load forecasting (STLF).

1. INTRODUCTION & BACKGROUND
 Forecasting is a phenomenon of knowing
what may happen to a system when certain trends
or conditions continue or continue to change. In
electrical power systems, there is a great need for
accurately forecasting the load and energy
requirements because electricity generations as
well as distribution are a great financial liability to
the state exchequer. Accurate load forecast
provides system dispatchers with timely
information to operate the system economically
and reliably. It is also necessary because
availability of electricity is one of the most
important factors for industrial development,
especially for a developing country like India.
Over the years, the application of Artificial Neural
Network (ANN) in power industries has been
growing in acceptance. Given sufficient input-
output data, ANN is able to approximate any
continuous function to arbitrary accuracy. Also,
while the network must be sufficiently trained to

extract a sufficient set of general features
applicable to both seen and unseen instances,
overtraining the network may lead to undesired
effects. Several attempts have been proposed by
various researchers to alleviate this training
problem.

These include imposing constraints on the search
space, restarting training at many random points,
adjusting training parameter and restructuring the
ANN architecture [1]. However, some approaches
are problem-specific and not well accepted and
different researchers tend to prefer different
methodologies. Among these, one of the more
promising techniques is by introducing adaptation
of network training using genetic algorithm (GA).

 Unlike backpropagation, genetic algorithm is a
global search algorithm based on the principle of
“survival of fittest”. It simultaneously searches for
solutions in several regions, thus increasing the

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

110

probability of global convergence. Furthermore,
since it is impossible to formulate a priori exact
model of the system, a more practical approach is
off-line set up a rough model, followed by on-line
update of the model using GA. In this way, the
merging of GA and ANN will gain adaptability to
dynamic environment and lead to significantly
better intelligent systems than relying on ANN or
GA alone.

2. RESEARCH OBJECTIVE &

METHODOLOGY

 In this research work, an attempt has been
made to develop different GA based
backpropagation network (GA-BPN) models and
to analyze the results.

The methodologies adopted in this research are
explained below:

• Construction of different ANN
architectures having (i) three neurons in
input layer, two neurons in hidden layer
and one neuron in output layer (3-2-1and
3-2-2-1) and (ii) three neurons in input
layer, three neurons in hidden layer and
one neuron in output layer (3-3-1 and 3-
3-3-1) .

• Hybridization of backpropagation
network (BPN) with GA. i.e extraction of
weights for BPN by implementing
genetic algorithm.

• Training of the GA-BPN network with
different values of population size.

• Finding the best value of population size
for GA-BPN forecasting.

• Forecasting using the best value of
population.

3. THEORITICAL FRAMEWORK

 Genetic algorithm (GA) is a computerized
search and optimization algorithm based on the
mechanics of natural genetics and natural
selection. Genetic algorithm is very different from
most of the traditional optimization methods.
Genetic algorithm needs design space to be
converted into genetic space. So, genetic
algorithm works with a coding of variables.
Similar to other evolutionary algorithms, GA is
based on the principle of “survival of fittest”, as in
the natural phenomena of genetic inheritance and
Darwinian strife for survival. In other words, GA
operates on a population of individuals which

represent potential solutions to a given problem.
Mimicking the biological principles in nature, a
single individual of a population usually is
affected by other individuals as well as the
environment. Normally, the better an individual
performs under these competitive conditions the
greater is the change for the individual to survive
and reproduce. This in turn inherits the good
parental genetic information. Hence, after several
generations, the bad individual will be eliminated
and better individuals are produced.

3.1 Genetic Terms and Operators

• Genetic Terms:

Chromosomes: Symbols from some finite
alphabet in the form of strings. In case of binary
alphabet (0, 1) the chromosomes are binary strings
and in the case of real alphabet (0-9) the
chromosomes are decimal strings.

Genes: The symbols that form the chromosomes
are known as genes.

Population: A set of solutions represented by
chromosomes.

Fitness Function: The criteria of goodness
expressed in terms of an objective function to find
the best alternative solution is called fitness
function.

Fitness Value: It is the figure of merit, which is to
be either maximized or minimized.

• Genetic Operators:

Reproduction: Reproduction also known as
selection operator is used to select the best
chromosomes for parents from the population into
the mating pool to cross over and produce
offspring.

Cross over: Cross over is a recombination
operator applied to the mating pool, proceeds in
three steps. First, the reproduction operator selects
at random a pair of two individual strings for
mating. Then a cross-site is selected at random
along the string length and the position values are
swapped between two strings following the cross
site.

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

111

Mutation: Mutation operator involves flipping a
bit in the string from 0 to 1 and vice versa.

3.2 Genetic Algorithm Based Back

Propagation Networks (GA-BPN)

 GA Based BPN (GA-BPN) is a Neuro-
Genetic hybrid approach which makes use of GA
to determine the weights of a multilayer feed-
forward network with back propagation learning.

 The learning algorithm behind BPN is a kind of
gradient descent technique with backward error
(gradient) propagation called back propagation.
Back propagation searches on the error surface by
means of the gradient descent technique in order
to minimize the error criterion. It is therefore
likely to get stuck in a local minimum.

E=1/2∑(Tj-Oj)2 (1)

 Where E is the error, Tj is the target output and Oj

is the output calculated by the network.

Conventionally, a BPN determines its weights
based on a gradient search technique and there
fore runs the risk of encountering the local
minimum problem. GA on the other hand , though
not guaranteed to find global optimum solution to
problems, have been found to be good at finding
“acceptably good” solutions to problems
“acceptably quickly”.

3.3 GA Based Weight Determination

 Genetic algorithm which uses a direct
analogy of natural behavior, work with a
population of individual strings, each representing
a possible solution to the problem considered.
Each individual string is assigned a fitness value
which is an assessment of how good a solution is,
to a problem. The high-fit individuals participate
in “reproduction” by cross-breeding with other
individuals in the population. This yields new
individuals strings as offspring which share some
features with each parent. The least-fit individuals
are kept out from reproduction and so “die out”. A
whole new population of possible solutions to the
problem is generated by selecting the best (high-
fit) individuals from the current generation. This
new generation contains characteristics which are
better than their ancestors. Processing in this way,
after many generations, owing to mixing and
exchange of good characteristics, the entire
population inherits the best characteristics and

therefore turns out to be fit solution to the
problem.

 The success of any neural network (NN)
architecture depends on the search for the
optimized weights for given training data set. GA
has been shown in practice that it is very effective
at function optimization and can perform efficient
searching for the approximate global minima.
Thus, GA can be effectively utilized for NN
weight selection. The mathematical expression for
extraction of weights using GA for BPN is as
below:

 xkd+210d-2+ xkd+310d-3+….. x(k+1)d
wk= + if
5≤xkd+1≤9 (2)
 10d-2
and
 xkd+210d-2+ xkd+210d-2+….. x(k+1)d
wk= - if
0≤xkd+1≤5 (3)
 10d-2
where wk is the actual weight extracted from the
chromosome, x1, x2…represents chromosomes and
xkd+1, xkd+2… x(k+1)d represents the kth gene(k≥0) in
the chromosome [2].

3.4 Pseudo Code for implementation of GA-

BPN

Algorithm FITGEN ()
 {
Let (Ii,Ti), i = 1,2,. . . ,N where Ii = (I1i, I2i, . . . , Ili)
and Ti = (T1I,T2I, . . . ,Tni) represent the input–
output pairs of the problem to be solved by BPN
with a configuration l - m - n. (the architecture
and l>0, m≥0, n>0)
For each chromosome Ci, i = 1,2,. . . ,p belonging
to the current population Pi whose size is ‘p’

 {
Extract weights Wi from Ci using equation 2 & 3.
Keeping Wi as a fixed weight setting, train the
BPN for the N input instances;
Calculate error Ei for each of the input instances
using the formula,

Ei =∑ (Tji – Oji) 2 (4)

Where Oji is the output vector calculated by BPN;
Find the mean square E of the errors Ei, i = 1,2,. . .
,N;

E= (5)

N

∑Ei
 i

j

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

112

Calculate the fitness value Fi for each of the
individual string of the population as

 1
Fi = (6)
 E

 }
Output Fi for each Ci, i = 1, 2. . . p }
END FITGEN

• GA based weight determination
Algorithm GA-BPN-WEIGHT ()

 {
i ← 0;
Generate the initial population Pi of real-coded
chromosomes CJi each representing a weight set
for the BPN;
While the current population Pi has not converged

 {
Generate fitness values FI

J for for each CI
J Є Pi

using the Algorithm FITGEN ();
Get the mating pool ready by terminating worst fit
individuals and duplicating high fit individuals;
Using the cross over mechanism, reproduce
offspring from the parent chromosomes;
i← i + 1;
Call the current population PI;
Calculate fitness values FI

J for each CI
J Є Pi

 }
Extract weights from Pi to be used by the BPN

 }
END GA-BPN-WEIGHT

The methodology for computation of fitness value
for the (initial) population is given in figure-1
below.

Figure-1: Methodology for computation of fitness

value

4. SIMULATION DESIGN AND RESULTS

 Here we design the models for electrical load
forecasting. This section describes research data,
Construction of Network Architecture,
Requirement of minimum number of patterns and
Selection of Input Variables etc.

4.1 Research Data

 The data used in this research is the daily
load (un restricted demand) data for the state of
Delhi (INDIA). The data (un-normalized) have
been collected from State Load Despatch Centre
(SLDC), Delhi (India) from their website
“http://www.delhisldc.org/report/monthly-power-
data/July-2008 (block year 2008-09) in the month
of February, 2009. The first fifteen days data have
been used in this research. For training, the first
nine days data have been used and next six days
data have been used for testing purposes.

4.2 Construction of Network Architecture

 Structure of the network affects the accuracy
of the forecast. Network configuration mainly
depends on the number of hidden layers, number
of neurons in each hidden layer and the selection
of activation function. No clear cut guide lines
exist up to date for deciding the architecture of
ANN. Mostly it is problem dependent. However,
Gowri T. M et. al [3] suggest that for a three layer
ANN, the number of hidden neurons can be
selected by one of the following thumb rules:

1. (i-1) hidden neurons, where ‘i’ is the number of

input neurons
2. (i+1) hidden neurons, where ‘i’ is the number of

input neurons.
3. For every 5 input neurons, 8 hidden neurons

can be taken. This is developed seeing the
performance of network within 5 inputs, 8
hidden neurons and 1 output.

4. Number of input neurons / number of output
neurons

5. Half the sum of input and output neurons.
6. P/i neurons, where ‘i’ is the input neurons and

‘P’ represents number of training samples.

In this research, we have used four different
architectures. First one is the 3-2-1 architecture
where there is one input layer having 3 input
neurons, one hidden layer having 2 hidden
neurons and the output layer having 1 neuron. The
second one is the 3-3-1 architecture where there is
one input layer having 3 input neurons, one

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

113

hidden layer having 3 hidden neurons and the
output layer having 1 neuron. Others are 3-2-2-1
and 3-3-31 architectures.

4.3 Requirement of minimum number of
patterns

 Gowri T. M. and Reddy V.V.C. also suggest
that the minimum numbers of patterns required are
half the number of input neurons and the
maximum is equal to the product of number of
input neurons and number of hidden neurons or
five times the number of input neurons, which
ever is less. However, no justifications can be
given to such thumb rules. In this work,
performance of configurations is studied with six
numbers of training patterns and three numbers of
test patterns.

In this research work we have used a total number
of 15 input data divided into two sets, training set
consisting of first 9 days data and the second one
is the test set consisting of last 6 days data.

4.4 Selection of Input Variables

 Papalexopoulos A.D. et. al [4] state that, there
is no general rule for selecting number of input
variables. It largely depends on engineering
judgment, experience and is carried out almost
entirely on trial and error basis.

 The importance of the factors (in the input
variables) may vary for different customers.
According to Wang X. et al [5], for most
customers historical data (such as weather data,
weekend load, and previous load data) is most
important for predicting demand in STLF. In
practice, it is neither necessary nor useful to
include all the historical data as input.
Autocorrelation helps to identify the most
important historical data. Wang describes the
importance of recent daily loads in daily load
prediction based on correlation analysis is
described as below:

Factors X1 X2 X3 X4 X5 X6 X7
Importanc 1 2 3 5 7 6 4

Table-1 Selection of input variables

The first line shows the recent daily load
history. Xi represents the load consumed and the
subscripts show the time index, i.e., 1 means
yesterday (one day ago), 2 means the day before
yesterday (two days ago), and 7 means the same

day of last week (7 days ago). In the second line
the importance is described. 1 means the most
important and 7 means the least important. These
information and results help us to decide what
factors should be included in input. According to
table-1, when we perform daily load prediction,
we should include X1, X2, X3, X7 as our inputs.

4.5 GA-Based Back Propagation Algorithm

 Our genetic algorithm here works with a fixed
value of populations selected from a set of
population size. Since sometimes it could happen
for a single population scheme that though the
neural network could theoretically solve a certain
problem, the system may not return a correct
solution. This is because of the random nature of
the algorithm and its reliance on natural selection,
mutation and cross-over. First, at the initialization
stage, the neural network structure, including
number of input nodes, hidden nodes, and output
nodes are specified. Connection weights
corresponding to this structure are encoded in
GA’s chromosomes; each chromosome represents
one structure with given connection weights
contained in its genes. Second, at the GA-based
weight connection training stage, these initialized
chromosomes which may belong to different
populations are evolved generation to generation
by using GA according to the fitness and RMSE
performance.

4.6 GA-BPN Training Methodology

 The training of present network has been
accomplished using the back propagation
algorithm (BP). Conventionally, A BPN
determines its weights based on a gradient search
technique and hence runs the risk of encountering
the local minimum problem. GA on the other hand
is found to be good at finding ‘‘acceptably good’’
solutions. The idea to hybridize the two networks
has been successful to enhance the accuracy of
forecasting. In the present work, the initial weights
for the BPN have been obtained by using a GA.
Genetic algorithm (GA) which uses a direct
analogy of natural behavior, work with a
population of individual strings, each representing
a possible solution to the problem considered.
Each individual string is assigned a fitness value,
which is an assessment of how good a solution is
to a problem. The high-fit individuals participate
in ‘‘reproduction’’ by crossbreeding with other
individuals in the population. This yields new
individual strings as off-spring, which share some

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

114

features with each parent. The least-fit individuals
are kept out from reproduction and so they ‘‘die
out’’. A whole new population of possible
solutions to the problem is generated by selecting
the high-fit individuals from the current
generation. This new generation contains
characteristics, which are better than their
ancestors. The parameters, which represent a
potential solution to the problem, genes, are joined
together to form a string of values referred as a
chromosome. In this research, a real coding
system has been adopted for coding the
chromosomes. The network configuration of the
BPN for the present work is 3-2-1. Therefore, the
numbers of weights (genes) that are to be
determined are 3 X 2 + 2 X 1 = 8. With each gene
being a real number, and taking the gene length as
5, the string representing the chromosomes of
weights will have a length of 8 X 5 = 40. This
string represents the weight matrices of the input-
hidden-output layers. An initial population of
chromosomes is randomly generated. Weights
from each chromosome have been extracted. For
cross over, we have used a two-point cross over
selected at random and the selection is made on
the basis of fitness value (1/MSE) . Similar
training process has also been used for other
architectures. The strategy for implementation of
GA-BPN algorithm is explained in figure-2 below.

Figure-2 implementation strategy for GA-BPN
4.7 Results from GA-BPN Method

 The GA-BPN has been implemented by
taking different architectures with different
population size. For each value of population, the
program has been executed 5 times and the root
mean square error (RMSE) value has been
calculated. The best result (the case having lowest
RMSE value) among all these cases (indicated as
bold italic letters) has been considered for
forecasting.
Various parameters used in this research are:

Architecture: 3-2-1 and 3-3-1
Number of hidden layers: 01
Number of input neurons: 03
Number output neurons: 01
Selection: Based on fitness value
Fitness function: 1/ (Mean Square Error)
Crossover: Two point Crossover
Stopping criteria: when fitness converged

The training results are shown in table-2 and
table-3.

 Table-2 contains the RMSE and average RMSE
values of GA-BPN 3-2-1 architecture with various
population sizes. The GA-BPN program has been
executed five times and the RMSE values are
given in Run-1 to Run-5 column. Finally the
average RMSE has been calculated. This table is
used to find a suitable value of population size that
produces the lowest error for experiment of GA-
BPN 3-2-1 architecture. It can be observed from
the table that, our architecture GA-BPN-3-2-1

P
Run-1
RMSE

Run-2
RMSE

Run-3
RMSE

Run-4
RMSE

Run-5
RMSE

Average
RMSE

30 0.0669 0.0669 0.0669 0.0669 0.0669 0.0669

40 0.0783 0.0783 0.0783 0.0783 0.0783 0.0783

50 0.0794 0.0794 0.0794 0.0794 0.0794 0.0794

60 0.0703 0.0703 0.0703 0.0703 0.0703 0.0703

70 0.0604 0.0604 0.0604 0.0604 0.0604 0.0604

80 0.0713 0.0713 0.0713 0.0713 0.0713 0.0713

90 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205

100 0.0454 0.0454 0.0454 0.0454 0.0454 0.0454

Table-2: Training Results of GA-BPN 3-2-1 architecture
with different population size(P)

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

115

performs better with population size of 90 by
producing lowest value of RMSE.

Similarly the training results have been calculated
for the architecture 3-3-1. Results are shown
below.

P

Run
-1

RM
SE

Run-
2

RMS
E

Run-
3

RMS
E

Run-
4

RMS
E

Run-
5

RMS
E

Aver
age

RMS
E

30 0.03
38

0.033
8

0.033
8

0.033
8

0.033
8

0.033
8

40 0.04
39

0.043
9

0.043
9

0.043
9

0.043
9

0.043
9

50 0.04
76

0.047
6

0.047
6

0.047
6

0.047
6

0.047
6

60 0.02
37

0.023
7

0.023
7

0.023
7

0.023
7

0.023
7

70 0.04
40

0.044
0

0.044
0

0.044
0

0.044
0

0.044
0

80 0.03
77

0.037
7

0.037
7

0.037
7

0.037
7

0.037
7

90 0.02
49

0.024
9

0.024
9

0.024
9

0.024
9

0.024
9

10
0

0.03
15

0.031
5

0.031
5

0.031
5

0.031
5

0.031
5

Table-3: Training Results of GA-BPN 3-3-1

architecture with different population size (P)
It can be observed from the table that, our
architecture GA-BPN-3-3-1 performs better with
population size of 60.

0.02

0.025

0.03

0.035

0.04

0.045

0.05

20 30 40 50 60 70 80 90 100 110

Population size

RM
SE

Forecasted Values (GA-BPN)

Once the training is over, the forecasted values for
next days have been calculated. The values are
given in table-4 below.

Techniques Actual
/Target
V l

Forecasted
Value

Squared
Error

Error
(RMSE)

GA-BPN 3-2-1,
Population
size=90

0.5876 0.585405 4.82E-06 0.02058
5 0.6672 0.687654 0.000418

0.6892 0.718321 0.000848
GA-BPN 3-3-1,
Population
size=60

0.5876 0.574182 0.00018 0.02373
3

0.6672 0.668198 9.96E-07
0.6892 0.728043 0.001509

Table-4 Forecasted values, GA-BPN 3-2-1 and 3-3-1
architecture

Similarly the results have been calculated for the
architecture 3-2-2-1 and 3-3-3-1. The forecasted
values are given in table-5 below.

Techniques Actual
/Targe
t V l

Forecaste
d
V l

Squared
Error

Error
(RMSE)

GA-BPN 3-
2-2-1,
Population
size=60

0.5876 0.605177 0.00030
9 0.01040

0 0.6672 0.666389 6.58E-07
0.6892 0.693057 1.49E-05

GA-BPN 3-
3-3-1,
Population
size=70

0.5876 0.601256 0.00018
6 0.01199

6 0.6672 0.653031 0.00020
1

0.6892 0.682530 4.45E-05

Table-5 Forecasted values, GA-BPN 3-2-2-1 and 3-3-3-1
architectures

The Root Mean Square Error (RMSE) has been
calculated as:
RMSE=Square root of [(∑ (Target Value –
Obtained Value) 2)/number of patterns]

5. RESULTS ANALYSIS AND

CONCLUSIONS

From table-4 and table-5, it can be analyzed that,
the RMSE obtained is approximately in between
0.01 to 0.02, which is quite appreciable. In our
case the architecture 3-2-1 produces a better result
than the architecture 3-3-1 and the architecture 3-
2-2-1 produces a better result than the architecture
3-3-3-1. Also from table-4 and table-5, it can be
observed that the structure of the network,
selection of other parameters affect the result. In

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

20 30 40 50 60 70 80 90 100 110

Population size

R
M

S
E

Figure-3 population size versus error rate (GA-BPN 3-2-1)

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

116

our case the architecture performs better with two
hidden layers having two neurons in each hidden
layer than that of other architectures used in this
research.

This research also has some limitations. They are:

• Training and Testing of all models are

conducted offline.

• All the results given in this research are
experimental basis. These have been
obtained only as the out put of the
program developed for this purpose. No
mathematical proof could be given for
the results obtained.

• We have considered only one input factor

for forecasting i.e the previous three days
load data. However other factors such as
weather data and temperature could also
be used as input parameters.

• All these results given are only problem

specific i.e they are applicable only to the
specific data used in this research. It can
not be generalized. Achievements of this
research need to be verified in other
fields of applications to make these
models more generalized.

REFERENCES:

[1] Sexton R.S., Dorsey R.E. and Sikander N.A.

(2002), ‘Simultaneous Optimization of Neural
Network Function and Architecture
Algorithm’, Decision Support Systems. 1034:
1-13.

 [2] Rajasekaran S. & Vijayalakshmi P. G.A.
(2007), “Neural Networks, Fuzzy Logic and
Genetic Algorithms – Synthesis and
Applications” , Prentice-Hall of India Private
Limited.

[3] Gowri T. M. and Reddy V.V.C.(2008), ‘Load
Forecasting by a Novel Technique Using
ANN’, ARPN Journal of Engineering and
Applied Sciences, Vol.3, No. 2.

[4] Papalexopoulos A.D., Hao S., and Peng
T.M.(1994), ‘An Implementation of a Neural
Network Based Load Forecasting Model for
the EMS’, IEEE Transactions on Power
Systems, 9:1956–1962.

[5] Wang X. and Tsoukalas L. H (2004),’Load
Analysis and Prediction for Unanticipated
Situations’, Bulk Power System Dynamics
and Control - VI, 2004, Cortina d’Ampezzo,
Italy.

[6] Khan A.U, Bandopadhyaya T.K and Sharma
S. (2008), ‘ Genetic Algorithm Based Back
Propagation Neural Network Performs better
than Back propagation Neural Network in
Stock Rates Prediction’, International Journal
of Computer Science and Network Security,
Vol. 8, No.7.

[7] Mishra S. (2008), ‘Short Term Load
Forecasting using Neural Network Trained
with Genetic Algorithm & Particle Swarm
Optimization’ ,First International Conference
on Emerging Trends in Engineering and
Technology, IEEE Computer Society,978-0-
7695-3267-7/08.

[8] Montana D. and Davis L. (1989), ‘Training
Feedforward Neural Networks Using Genetic
Algorithms’, Proceedings of Eleventh
International Joint Conference on Artificial
Intelligence. 762-767.

 [9] Peng M., Hubele N.F., and Karady
G.G.(1992), ‘Advancement in the Application
of Neural Networks for Short-Term Load
Forecasting’, IEEE Transactions on Power
Systems, 7:250–257.

[10] Asar A. and Syed E., Hassnain R. (2000),

‘Short term load forecasting from an artificial
neural network perspective’, INMIC Fourth
IEEE national Multi topic conference,
Islamabad, Pakistan.

[11] Jain A.K., Mao J. and Mohiuddin K.M.
(1996), ‘Artificial Neural Networks: A
Tutorial’, IEEE Computer Special Issue on
Neural Computing. 31-44.

