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ABSTRACT 

We describe the use of the discrete wavelet transform (DWT) for system identification. Identification is 
achieved by using a test excitation to the system under test (SUT) that also acts as the analyzing function 
for the DWT of the SUT’s output, so as to recover the impulse response. The method uses as excitation any 
signal that gives an orthogonal inner product in the DWT at some step size (that cannot be 1).We favor 
wavelet scaling coefficients as excitations, with a step size of 2. However, the system impulse or frequency 
response can then only be estimated at half the available number of points of the sampled output sequence, 
introducing a multirate problem that means we have to ‘over sample’ the SUT output. The method has 
several advantages over existing techniques, e.g., it uses a simple, easy to generate excitation, and avoids 
the singularity problems and the (unbounded) accumulation of round-off errors that can occur with standard 
techniques. In extensive simulations, identification of a variety of finite and infinite impulse response 
systems is shown to be considerably better than with conventional system identification methods. The 
variation of error with frequency is simulated in identification methods. 
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1. INTRODUCTION 
 
Wavelet analysis [1–4] provides a unifying 
framework for time–frequency decomposition of 
signals. It has found important applications in 
compression [5], denoising [6], transient signal 
detection [7], adaptive filtering [8,9], channel 
equalization [10], identification of echo path 
impulse responses [11], and modeling 
mammalian auditory system function [12,13]. It 
has a direct correspondence to filter bank 
analysis [14]. Here, we consider wavelet 
approaches to analyze signals that are a (linearly) 
filtered version of some source signal with the 
purpose of identifying the characteristics of the 
filtering system. Such source-filter signals occur 
in many physical situations. A well-known 
example is the human speech production 
mechanism where air waves modulated as a 

sequence of (quasi-)periodic pulses at the larynx 
are filtered by the vocal tract. In this particular 
case of a biological system, the input to the 
system is not accessible to the investigator. For 
many engineering systems, however, we do have 
reasonable accessibility. In these circumstances, 
the source-filter model lends itself directly to the 
extremely important practical problem of finding 
the characteristics of a system under test (SUT). 
 
2. SYSTEM IDENTIFICATION 
 

                System identification methods can be 
classified as parametric and non-parametric 
approaches. By ‘parametric,’ we mean that the 
functional form of the system model is known 
but its parameters (e.g., specifying the location 
of poles and zeros in the complex plane) are not. 
By ‘non-parametric,’ we mean that this 
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functional form is unknown so that the SUT is 
alternatively described explicitly by its output for 
some given wideband input. In principle, we 
could use any wideband input for this purpose 
but, in practice, the approach is only useful if we 
standardize on one of a very few functions, such 
as unit step or impulse, to avoid a plethora of 
incommensurate measures and descriptions. In 
the discrete-time case, this description will be a 
set of sample values. Identification is further 
divided into time-domain and transformed-
domain techniques. In the (continuous) time 
domain, the most straightforward technique from 
a theoretical perspective is to excite the SUT 
with a Dirac impulse, whereupon the output is 
the impulse response function h( )—hence its 
name. Although theoretically attractive, this is an 
impractical idealization for a real, physical 
system.  The Dirac impulse (‘delta function’) is 
not truly a function at all, but a ‘unit mass’ 
abstraction. It has infinite amplitude at the point 
at which its argument is zero, is infinitely narrow 
and has unity integral over time. In the discrete-
time case, we can attempt to approximate this 
abstraction by an input that changes amplitude 
entirely within one sampling period, i.e., by a 
Kronecker delta appropriately scaled in 
amplitude.  In practice, however, this 
approximation is unlikely ever to be entirely 
satisfactory. Hence, other wideband input 
excitations (e.g., band limited white noise, 
frequency chirp) are sometimes used. To avoid 
such difficulties, assuming a causal system, the 
impulse response function of the SUT can be 
recovered from the (sampled) output signal 
{y(n)} for a (sampled) input signal {x(n)} of any 
general form by the following recursive equation 
[16], obtained directly from the convolution-sum 

 

However, round-off errors accumulate with 
larger time indices, making this approach 
impractical for slowly decaying (i.e., infinite) 
impulse response functions.  

The transformed-domain approach simply takes 
the z-transform of the output signal as Y(z) = 
H(z)X(z) and determines the SUT impulse 
response function by inverse filtering the output 
signal by the input signal as H(z) = Y(z)X −1(z). 
Unfortunately, the inverse of X(z) does not 
always exist, so that it is necessary to use the 
pseudo inverse. Even then, the inversion 

operation may lead to an unstable inverse filter 
with no unique realization. Two popular and 
inter-related frequency-domain methods for non-
parametric system identification are based on 
coherence analysis. For a linear system, the 
coherence function  is given as  

(1) 

Where Sxy(ωk) is the input-output cross-
spectrum (i.e., the power spectrum of the cross-
correlation between the input and output 
functions), and Sxx(ωk) and Syy(ωk) are the 
power spectra of the autocorrelations of the input 
and output, respectively.  

The function C2 xy(ωk) can be interpreted as the 
fraction of the mean square value of y(n) that can 
be attributed to the component of the input x(n) 
at frequency ωk . Usually, pseudorandom noise 
is used an input x(n). The two identification 
methods, direct and inverse, then estimate the 
system response as  

(2) 

where H1(ωk) tends to underestimate the true 
H(ωk) and H2(ωk) tends to overestimate it. 
Generally, H1(ωk) gives a good estimate of the 
system response near anti-resonances but H2(ωk) 
gives maximal error near anti-resonances. 
Conversely, H2(ωk) gives a good estimate of the 
system response near resonances whereas 
H1(ωk) gives maximal error near resonances. By 
contrast, the parametric approach assumes the 
functional form of the system response is known 
and finds the parameters of this function, usually 
expressed as poles and zeros. Identification is 
achieved by iteratively minimizing the output 
error of the system according to the parametric 
model. Output error can be measured in the 
(stochastic) mean square sense, or maximum 
likelihood sense. Although parametric 
descriptions are more parsimonious than their 
non-parametric counterparts, the order of the 
model description has to be predefined but its 
proper choice is uncertain. If errors are required 
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to be very small, large numbers of poles and 
zeros may be required. 

3. WAVELETS 

Wavelet transforms have been extensively 
applied to non-linear system identification, as 
well as to parametric and/or time-varying system 
identification. This is usually achieved by using 
a wavelet-based adaptive filter and by non-linear 
regression to perform a parametric identification, 
with a specified number of poles and zeros. For 
non-parametric identification, there has been 
little work, particularly for time-invariant 
signals, because discrete wavelet transforms 
(DWTs) are not time-invariant. Since time-
invariant systems and signals form a large well-
known class, DWTs have been modified to be 
time-invariant but there is no clear relation 
between time-invariant signals and discrete 
wavelet transforms in general. Here, we examine 
the non-parametric identification of linear time-
invariant (LTI) systems using the DWT. In 
particular, we show that the DWT of an output 
signal from an LTI system excited by the 
particular (mother) wavelet corresponding to the 
chosen transform is the impulse response of that 
system, and we use this result to develop a new 
method of system identification. 

3.1. WAVELET REPRESENTATION OF 
SIGNALS: 

A finite energy signal f (t) in the square integral 
sense, i.e., f (t)  L2( ), can be described 
(‘synthesized’) by wavelets as 

(3) 

where the set of two-dimensional coefficients 
ak,m is called the discrete parameter wavelet 
transform (DPWT) of f (t) and the (continuous 
time) ψk,m(t)’s are the analyzing functions, or 
wavelets, with scale index k 
compressing/dilating the basic function, or 
mother wavelet ψ0,0(t), and translation index m 
displacing it, to produce a family of wavelets. 
Although not strictly necessary from a 
theoretical perspective, in practical cases these 
wavelets are limited in time. They either have 
compact time support or rapidly decay to become 
close to zero, approximating compact time 
support. 

In the DPWT, a wavelet is scaled and translated 
relative to the mother wavelet by discrete values 
(k,m). This can be seen as a sampled counterpart 
to the continuous wavelet transform in which the 
scale and translation variables are continuous. 
Most often, compression/dilation in the DPWT is 
by a power of two—so-called dyadic sampling. 
That is, the wavelets are of the form ψ(2kt +m), 
with ψ0,0(t) = ψ(t). 

Each DPWT coefficient, ak,m in Eq. (3), is 
simply computed as an inner product of the 
signal and the corresponding wavelet via the 
‘analysis’ equation: 

(4) 

If the wavelets are orthogonal, then  

(5) 

Where C is a constant and δ ( ) is the Kronecker 
delta, equal to 1 when its argument is zero and 
equal to 0 otherwise. Hence, we obtain only a 
single non-zero inner product (for the case k = r 
and m = s) when the scale and translation indices 
range over all possible values. An interesting 
observation arises if the signal f (t) has the same 
functional form as the analyzing (mother) 
wavelet, i.e., f (t) = ψα,β (t). Then, by Eq. (4), the 
DPWT of f (t) has coefficients 

 

If the family of wavelets is orthogonal, then, by 
Eq. (5), ak,m will be non-zero only if α = k and β 
= m. The latter condition is easily achieved since 
both are indices relative to the same (sampled) 
underlying time scale (i.e., there exists some m = 
β). The former condition is slightly more 
problematic since there is no restriction on the 
scale of the signal f (t). Therefore, for orthogonal 
wavelets, the scale index α should be well 
chosen to coincide with k so that the coefficients 
do not vanish. 

Analysis of the signal as just described 
corresponds to a multiresolution decomposition 
of a particular form that under certain conditions 
allows perfect reconstruction of the signal. 
Specifically, the decomposition involves taking 
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an inner product of the signal f (t) with a 
‘scaling’ or ‘dilation’ function and sampling the 
result to produce a discrete time sequence f (n), 
followed by successive splitting of the signal 
into sub bands using non-overlapping high-pass 
and low-pass filters, h(n) and g(n) respectively, 
decimating each output sequence sample rate by 
2. The output from the high-pass filter then 
corresponds to the wavelet coefficients and the 
output from the low-pass filter is passed on to 
the next stage of sub band splitting. For perfect 
reconstruction, the synthesis filters g(n) and h(n) 
corresponding to the decomposition filters h(n) 
and g(n) must satisfy certain straightforward 
conditions. That is to say, they are so-called 
quadrature mirror filters  or QMFs. These 
conditions yield the two equations  

(6 & 
7) 

Which are the scaling and wavelet equations, 
respectively. The reader is cautioned not to 
confuse the h(n) in (7) with the impulse response 
of the SUT. (This notation for QMFs is so 
entrenched that it would potentially be even 
more confusing to change it. We attempt to 
minimize ambiguity in following sections by 
reserving h( ) to refer to the system under test 
except where explicitly stated.) 

In Eqs. (6) & (7), the factor of 2 is a scaling or 
normalizing term. Different normalizations are 
possible For example,. We now make some 
important observations on orthogonality, not 
only of wavelets but the coefficients of their 
associated scaling and wavelet equations too, if 
φ(t) is an L2 ∩L1 solution to the scaling equation 
(6) satisfying the QMF conditions, and φ(t) is 
orthogonal for integer translations k, so that 

Then 

(8) 

But (8) is the form of an inner product for the 
discrete-time case (i.e., a dot product of two 
sequences rather than an integral for the 

continuous-time case). Hence, the scaling 
coefficients have an orthogonal inner product, 
but only with a step size of 2 or multiples of 2, 
although the larger the step size, the greater the 
chance that there is no overlap with highly-
localized signals. For scaling/wavelet 
coefficients satisfying the QMF filter conditions, 
the wavelet is orthogonal to the scaling function 
at the same scale  and a similar condition to (8) is 
satisfied  by the h(n)’s. 

4. SOURCE-FILTER MODEL: 

In this section, we first derive the DPWT of the 
output of the source-filter model when its input 
is an orthogonal wavelet, before interpreting the 
result in terms of system identification. 

4.1. WAVELETS AS SOURCE SIGNALS 

For a source-filter model, the observed signal is 
the convolution of the source signal x(t) and the 
filter impulse response h(t) 

 

if the filter is time-invariant. The discrete 
parameter wavelet transform of y(t) is then 

 

 

Following Wavelet representation of signals  

 let us now choose the source (or ‘test’) signal to 
have the same functional form as ψk,m, i.e ., x(t) 
= ψα,β (t). Then the coefficients become 

 

where d(α,β, τ) is the function that relates the 
scale and translation indices of the wavelet to the 
time shift τ and h(τ ) is now the desired impulse 
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response of the SUT. Introduction of such a 
function is necessary to yield an integer index 
when there is a dependence on the continuous 
variable τ . Note that we must retain the scale 
index α as an argument in this function in case 
compression/dilation is related to the scale index 
(e.g., as in dyadic sampling).  

If the family of wavelets is orthogonal, then 

 

Here the reader is warned against interpreting 
both deltas as Kroneckers, as when Eq. (5) was 
obtained from Eq. (4). In fact, the first delta is a 
Kronecker by virtue of its arguments k and α, 
which are both discrete. However, the second 
delta involves the continuous time-shift variable 
τ . Since the integration is with respect to τ , this 
must be interpreted as a Dirac delta. 

Because α is well chosen to be equal to k (see 
above), we can make the Kronecker delta equal 
to one 

 

For dyadic sampling, ψk,m(t) is derived from the 
mother wavelet as 

 

where B is a constant. The wavelet coefficients 
ak,m become 

 

where A = BC. Since τ = (m −β)/2k yields a zero 
argument for the Dirac delta, then by the sifting 
property 

 (9) 

 

 

4.2. INTERPRETATION 

We can interpret the DPWT coefficients ak,m in 
Eq. (9) for fixed k as samples of the SUT 
impulse response, but scaled and re-sampled at 
2−k times some original sampling frequency. 
Without loss of generality, we can consider this 
original sampling frequency to be such that the 
corresponding Nyquist frequency is normalized 
to 1. In particular, the impulse response can be 
expressed in terms of wavelet coefficients as 

 

If k <0, then the impulse response is decimated 
by 2|k|. For example, if k =−1 and S coefficients 
are computed, the impulse response values are 
(setting β = 0 for simplicity) 

 

Thus, aliasing can occur if k is not well chosen. 
Alternatively, if k > 0, then it is the sequence of 
wavelet coefficient values (rather than the 
impulse response) that is decimated. For 
example, if k = 1, the impulse response values 
are (again with β = 0) 

 

where ζ = 2_S/2_. A minor concern here is that 
many wavelet coefficients are not used to 
determine the impulse response, wasting 
computation time and memory somewhat. In 
addition, since only the finite number S of 
wavelet coefficients were obtained in practice, to 
achieve a good estimate of the impulse response, 
the latter should decay to zero over 2−kS 
samples. This sequence is much shorter than the 
number of available samples S, again wasting 
resources. It seems that the best choice of k = α 
is zero. In some sense, this is intuitively evident 
since it corresponds to choice of the mother 
wavelet as the source signal. With k = 0, the 
impulse response is 
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 (10) 

Then, the frequency characteristic of the SUT is 
simply the discrete Fourier transform (DFT) of 
the DPWT coefficients for k = 0. 

 
(11) 

In summary, an attractive approach to system 
identification is to excite the SUT with some 
time-compact function satisfying the 
orthogonality condition (5), whereupon the 
system impulse (or frequency) response should 
be recoverable from the coefficients of the 
wavelet transform of the output, using the form 
of the input excitation as the wavelet transform 
analyzing function. 

 
5. SYSTEM IDENTIFICATION USING THE 
ORTHOGONALITY CONDITION 
 
Given the background above, system 
identification using the orthogonality of inner 
products computed by the DWT is relatively 
straightforward in principle. As depicted in Fig. 
1, the SUT is excited by some appropriate input 
(which we can think of as having k = 0) to 
produce output sequence y(n). We then take the 
DWT of the output signal using the input itself 
as the analyzing function. Then according to the 
discrete-time version of Eq. (9), the system 
impulse response (and hence the frequency 
response) can be estimated directly from the 
DWT coefficients, a0,m. 
 
Although straightforward in principle, some 
complication arises because the orthogonality 
condition required to find the DWT coefficients 
in discrete-time holds only for an even step size 
in the case of scaling and wavelet coefficients. 
So, the output sequence from the DWT has only 
half as many points as its input. In effect, then, 
we have a multirate problem meaning that 
considerable care must be taken with possible 
frequency aliasing. The problem is more severe 
for simulations, as here, than for practical system 
identification because simulation requires that 
we generate an appropriate h(n) for the SUT, and 
generating this h(n) correctly depends on 

understanding the multiple sampling rates 
involved. 
 
Hence, we must describe the SUT in a way that 
is appropriate for system identification after 
sample-rate decimation by the DWT has 
occurred. First, an h(n) for the SUT must be 
generated and, in principle, its system response 
H(n) could then be found using the DFT. We 
could then compute the output sequence y(n) by 
taking the inverse DFT and convolving with the 
input sequence x(n). But instead of using the 
baseband representation of H(n) over the range 0 
to fs for this purpose, we would need to use its 
image over the range 0 to 2fs . This corresponds 
to interpolating the h(n). 
 

 
Fig.1.Schematic diagram of proposed system 
identification method with a step size of 2 in the 
discrete wavelet transform. 
 
Sequence by placing zeros between every pair of 
original sample points , which is what we 
actually do. Now, after the decimation at the 
DWT stage, the SUT’s impulse response and 
corresponding system function are properly 
represented at a folding frequency of half of 2fs , 
i.e., at fs , as required. Note that no anti-alias 
filtering is required (as used in standard sample-
rate conversion) since the sample-rate 
interpolation is immediately followed by sample-
rate decimation by the DFT. In effect, the system 
identification is obtained at half the number of 
sample points. This simple scheme is effective 
for low-pass, band-pass, and high-pass SUTs. 
Regarding the time complexity of the new 
method, it requires just a single inner product 
computation of two vectors to compute ˆ h(2n) 
(Fig. 1). One vector stores the wavelet 
coefficients and the other stores the output signal 
of the SUT. If one vector has n elements and the 
other has m elements, then the time complexity 
of the inner product computation is O(mn) since 
there are m × n multiplications, m(n − 1) 
additions and m assignments. But since the 
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number of scaling coefficients is very low for the 
excitations used here ( just 4 for Daubechies D4), 
m can be considered to be a small constant, and 
the time complexity of the identification is 
effectively O(n). In practice, computation for our 
simulations using the new method is almost 
instantaneous. 
 
 6. SIMULATIONS  
 
We have carried out various simulations to verify 
the utility of the new method. 
Choice of excitation 
Using the new method, we attempted to identify 
the system response of a Chebyshev, IIR, and 
10th-order high-pass filter with 20 dB ripple 
using three different excitations. 
 
6.1. RESULTS FOR DIFFERENT SYSTEMS 
 
Although we have examined identification of a 
variety of frequency-response types, we 
concentrate here mainly on band-stop system 
responses, since these are harder to characterize 
than either low-pass or high-pass, with both 
finite and infinite impulse responses. In all cases, 
the stop band was between 0.4 and 0.8 in 
normalized frequency. 
 
Comparisons are made with conventional linear 
time-invariant system identification tools. In 
those instances where a band-stop filter does not 
highlight differences between techniques 
especially well, we will choose a harder problem 
to illustrate the advantages of our method. 
System identification by wavelet transform has 
been carried out for the following filter types: 
 
(1) FIR, 50 coefficients; 
(2) Butterworth IIR, 10th-order; 
(3) Chebyshev IIR, 10th-order with 20 dB ripple; 
(4) Elliptic IIR, 10th-order 
 
Using a range of different wavelets and scaling 
coefficients. We have deliberately chosen to 
present simulation results for a wide range of 
different filters to provide a stringent test of the 
new method. It is important to include IIR 
systems because their identification is generally 
more difficult than for the case of FIR systems. 
Chebyshev filters are more difficult to identify 
because they have a sharper cut-off than 
Butterworth filters. The elliptic filter has 
significant ripple in the pass and stop bands, 
which we expect to cause Difficulties not 
encountered with the other filters.  

7. CONCLUSION 
 
We have developed and described a new method 
for non-parametric linear time-invariant system 
identification based on the discrete wavelet 
transform (DWT). Identification is achieved 
using a test excitation to the system under test 
(SUT) that also acts as the analyzing function for 
the DWT of the SUT’s output. The new method 
can use as excitation any signal that gives an 
orthogonal inner product in the DWT at some 
step size. This step size must be even and so 
cannot be 1.We favor a step size of 2 used in 
conjunction with Daubechies D4 scaling 
coefficients as excitation, since the latter are 
compact in time. Since step size cannot be 1, we 
confront a multirate problem that means we have 
to oversample the SUT output. 
 
The new method has been compared with several 
standard techniques for non-parametric 
identification, namely chirp excitation, time-
domain recursion, inverse filtering (using 
singular value decomposition to invert the input 
matrix), and coherence analysis. Identification 
has been carried out for a variety of finite and 
infinite impulse response systems. The new 
wavelet-based method proved to be considerably 
better than the conventional methods in all cases. 
In a practical situation, we would obviously not 
know in advance what the correct identification 
should be. Hence, identification should ideally 
be carried out using a variety of differently-
motivated methods making different assumptions 
about the SUT and the test conditions to validate 
results. Apart from its intrinsic advantages, the 
new method described here is valuable in that it 
adds to the number of identification techniques 
available for this purpose.  
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