
 Journal of Theoretical and Applied Information Technology
15th May 2025. Vol.103. No.9

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3600

 THE STUDY OF OPTIMIZATION OF THE SEGMENTATION
PROCESS FOR BUILDING DISTRIBUTED GENERALIZED

SUFFIX TREES

IAN SADOVYI1, VOLODYMYR VOROTNIKOV2
1Postgraduate Student, Zhytomyr Polytechnic State University, Department of Software Engineering,

Ukraine

2Associate Professor, Zhytomyr Polytechnic State University, Department of Software Engineering,

Ukraine

E-mail: 1iansadovyi@gmail.com, 2vorotnikov_v@ztu.edu.ua

ABSTRACT

Suffix trees are important data structures used for substring search and analysis of large text sequences, but
building them on large data volumes remains a challenging task. Existing methods for constructing
distributed generalised suffix trees (GSTDs) have significant limitations in terms of segmentation efficiency
under resource constraints. Previous studies have focused on static memory allocation strategies that do not
provide an optimal balance between performance and resource consumption. Therefore, the aim of the
study was to develop new segmentation methods for efficient data distribution between nodes of distributed
systems. The methods with the following algorithms were compared for this purpose: hybrid division with
load balancing, fractal division and dynamic adaptive division, as well as their integration with the Master-
Worker architecture. The research employed the methods of modelling, experimental method, comparative
method, and statistical analysis. The results showed that Master-Worker integration significantly improved
performance, including reduced execution time, improved speedup and efficiency, and improved segment
merging accuracy. The highest indicators were achieved when applying dynamic adaptive division, which
turned out to be the most effective for data sets of different structures. Experimental results demonstrate a
30% reduction in computational costs compared to traditional methods. Thus, this study makes a significant
contribution to improving algorithms for building distributed suffix trees and their application in big data
analysis. Further research may focus on optimizing segmentation methods using machine learning (ML) to
automatically select a strategy based on the data type. Besides, it is promising to extend the proposed
algorithms to other types of data, such as multimedia streams and graphs.

Keywords: Optimization, Suffix Tree, Distributed Computing, Parallel Computing, Data, Algorithms,
Segmentation.

1. INTRODUCTION

Suffix trees are one of the most powerful data
structures used for analysing sequences and text
strings. They enable performing such operations as
searching for substrings, comparing strings,
determining repeated sequences, and other tasks
with linear or near-linear complexity [1]. They are
widely used in such fields as natural language
processing (NLP), genomics, information retrieval
(IR) systems, and security [2, 3].

The volume of data is constantly growing in the
modern information world. In genomics, for
example, DNA sequencing creates huge amounts of
data that must be processed quickly. Similarly, the

need for fast IR and text analysis is growing in
search engines. Standard algorithms for building
suffix trees, such as Ukkonen’s algorithm [4] or
DC3 [5], are not always able to work effectively
with such amounts of data. This necessitates
distributed processing techniques that enable
distributing work between multiple nodes or
processes to achieve better performance and
scalability.

One of the most important problems in the
distributed generalized suffix trees (DGST) is the
organization of the process of dividing data into
segments. Improper splitting can result in
information loss at segment boundaries when
suffixes starting at the boundaries are incorrectly

 Journal of Theoretical and Applied Information Technology
15th May 2025. Vol.103. No.9

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3601

processed or lost. This can significantly degrade the
accuracy and efficiency of calculations. In addition,
incorrect splitting can create a load on individual
nodes in the cluster, which will lead to an irrational
use of computing resources and a decrease in
system performance.

Optimization of the segmentation process
becomes an important task to ensure efficient and
reliable building of suffix trees in distributed
environments. The correct division of data enables
reducing the overheads associated with the transfer
of data between nodes and to ensure an even
loading of each of them, which improves the
performance of the system as a whole. It also
reduces the amount of overhead memory [6] and
ensure faster execution of operations.

The relevance of this issue is determined by the
constant growth of the data volume in various
fields, in particular in genomics [7], NLP, and
information systems (IS). Therefore, traditional
methods cannot effectively cope with such volumes
of information. Optimization of the segmentation
process for building DGST allows to significantly
increase the performance of data processing
systems. Improvements in segmentation methods
can open up new opportunities for the use of
distributed systems in many areas, in particular
those where speed of data processing and efficient
use of resources are crucial.

So, the aim of this research is to study existing
approaches to segmentation optimization and to
develop new methods that will ensure the efficient
building of DGST. The aim was achieved:

— Develop several variants of algorithms for
data segmentation;

— Conduct tests with different data sets;
— Analyse the obtained results and propose an

optimal distributed architecture.

2. LITERATURE REVIEW

Research on building suffix trees and their
applications covers a wide range of issues: from
parallel processing of large text data to secure
search in encrypted databases. Current studies are
focused on optimizing algorithms for building
suffix trees for use in distributed environments and
increasing their efficiency in terms of execution
time and memory consumption. One of the main
areas of research is the parallel construction of
suffix trees for processing large data volumes. The
researchers proposed [8] a method for building a
generalized suffix tree using parallel computing.

This approach is effective for processing the large
sequences typical of bioinformatics. Besides, [9]
described the DGST algorithm, which is based on
the new data structure LCP-Range and the multi-
way sorting algorithm LCP-Merge, which provides
efficient building on large data sets.

The PSA algorithm is proposed in [10], which is
intended for direct application to build an index
similar to an array of suffixes. The paper presents
the results of experiments that show that the new
indexing data structure is suitable for real
programmes. The group of researchers [11] presents
an approach to modelling the parallel construction
of a suffix tree using the MapReduce paradigm.
This solution enables to efficiently scale
calculations and work with storage capacity
limitations. Furthermore, [12] presented a solution
for providing confidential search in encrypted
genomic data based on a generalized suffix tree.

One of the most promising areas of research is
the improvement of existing algorithms to ensure
fast processing and low memory consumption. The
researchers [13] developed an algorithm for
building rare suffix trees and LCE indices, which
operates in optimal time and space. This approach
provides efficient storage and processing of
compressed data, which is important for large data
sets. In [14], a method for indexing stereoscopic
images using a hybrid grid structure of a suffix tree
is proposed, which significantly reduces the
building complexity. This solution demonstrates the
importance of using suffix trees for images and
videos.

Suffix trees are widely used in various
application fields, such as anomaly detection and
data clustering. The study [15] describes the use of
a suffix array for parallel processing of large text
data within high-performance computing platforms.
In turn, [16] proposed a solution for de novo
assembly of transcripts using a simplified suffix
tree, which provides better accuracy for small
datasets. Other studies, such as the work of [17],
show that clustering algorithms based on suffix
trees can be effectively used to improve document
retrieval systems.

Research in this field focuses on further
optimization of time and space. The work [18] is
one of those examples, where a new algorithm for
Lempel-Ziv factorization is proposed, which
provides efficient data compression using modern
representations of suffix trees. One of the key areas
of research is the creation of efficient algorithms for
building suffix trees that can be used for different

 Journal of Theoretical and Applied Information Technology
15th May 2025. Vol.103. No.9

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3602

types of data. In particular, the work [19] proposed
a coding technique based on hashing coded
suffixes. Its use improves data privacy and enables
performing several operations related to string
comparison without detection.

The work [20] presents a new data structure — a
suffix forest, which allows efficient three-way
clustering. Their algorithm has been applied to the
analysis of large volumes of data on Indian forests,
demonstrating the appropriateness of using such
algorithms in large computing environments. The
researchers [21] developed a method for detecting
anomalies in time series based on the weighted
probabilistic suffix tree (wPST). This made it
possible to efficiently analyse hydrological data and
find patterns in large data sets. This approach is
relevant for detecting anomalous patterns in time
series. The study [22] proposed a new algorithm for
building random sub-sequences for classifiers based
on the suffix tree calculation. This significantly
increased the speed of building classifiers and their
efficiency for the analysis of large data sets.

The study [23] improved the indexing of long
patterns through the development of a new type of
lc anchors, which optimize work with large data
sets. This improvement is important for working
efficiently with suffix trees in large data and
memory space environments. The work [24] dealt
with the problem of finding the longest common
substring and proposed a solution that outperforms
standard suffix tree building algorithms. Their
approach makes it possible to efficiently work with
large data sets.

The researchers [25] developed a new
palindrome detection algorithm using a lot of
suffixes. It demonstrates high data processing
efficiency and can be applied to analyse symmetric
sequences in large text data. The work [26] presents
a differential-private approach to the publication of
multilateral sequential data based on distributed
prediction of suffix trees. This maintains
confidentiality when analysing large volumes of
sequential data in distributed environments. In [27],
suffix trees were used to normalize symptoms in
traditional Chinese medicine, showing the
possibility of applying these algorithms in medicine
to improve symptom retrieval and their
characteristics. The work [28] suggests the use of
suffix trees for image analysis. A convolutional
neural network classifier was used for this purpose.
Building probabilistic suffix trees is also a popular
direction [29, 30].

In general, modern research in the field of
building and use of suffix trees is actively
developing and aimed at increasing the efficiency
of calculations, expanding their application in
various fields, and improving data security. A wide
range of applications in various fields, from textual
data and time series analysis to medical research,
has been demonstrated. Optimizing algorithms for
building and using distributed structures is key to
increasing the efficiency of working with big data
and ensuring fast and accurate information
processing. However, new studies need further
improvement, as many aspects, such as the
effectiveness of distributed structures in real
conditions and optimization for different types of
data remain poorly studied. In particular, previous
studies such as DC3, Prefix Doubling, and Divide
& Conquer focused on optimising the construction
of suffix trees, but most of them did not take into
account load balancing in distributed systems. For
example, the DC3 method works well with large
text arrays, but its memory usage limits its
effectiveness in large-scale distributed
environments.

In contrast to these approaches, this work focuses
on adaptive segmentation, which allows for more
efficient allocation of computing resources among
nodes. The main motivation of the study is to
reduce memory overhead without degrading
performance. The proposed approach allows for
adaptive resource allocation, reducing overheads
and increasing data processing performance. This
opens up new possibilities for using distributed
suffix trees in areas such as genomics, natural
language processing, and information systems,
where the speed and scalability of algorithms are
critical.

3. MATERIALS AND METHODS

3.1. Research design

This empirical study was conducted in several
stages (Figure 1).

3.2. Sampling
This study employs the Ukkonen’s Algorithm

[4], which is one of the most effective algorithms
for building suffix trees, to build a suffix tree. The
main idea of the Ukkonen’s algorithm is the
increment rule — after adding a new symbol, the
tree updates the structure for each suffix by adding
a new symbol to the corresponding branch.

Three algorithms for the optimization of the
segmentation process are applied to build DGST.
Namely: hybrid partitioning (HP), fractal

 Journal of Theoretical and Applied Information Technology
15th May 2025. Vol.103. No.9

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3603

,
min

T
C

W
S

avg
new 

,
T

W
L i

i 

,1  nn SkS

,
T

T
Speedup

2

1

partitioning (FP) and dynamic adaptive partitioning
(DAP). They provide a wide range of results for
analysing the effectiveness of suffix tree
construction methods for different types of data.

Figure 1: Research design
Source: created by the authors.

— Hybrid partitioning with load balancing.
Combines multiple segmentation methods to
optimize data distribution: data distribution using
fixed segments and dynamic load balancing to
adjust segments based on actual load. This is
realized by monitoring the load of working nodes.
The load balance is defined as follows:

 (1)

where Li — the load at node i, Wi — the data
processed by node і, T — the total amount of
processed data.

— Fractal partitioning. It is based on the idea that
data can be divided into parts that are miniatures of
the whole. This arranges data in a more structured
way, while preserving information about its
structure. The main features of this algorithm are
iterative partitioning and adaptability to different
data structures.

 (2)

where Sn — segment at the nth level, k — the
scaling factor, ε — the random error.

— Dynamic adaptive partitioning (DAP).
Enables resizing of data segments based on changes
in load. Continuously monitors node condition to
detect congestion or downtime and adapts sizing as
follows:

 (3)

where Snew — new segment size, Wavg — average
load, T — total data volume.

The analysis was carried out on five data sets of
different nature: Set 1 — genomic sequences, Set
2 — natural language texts, Set 3 — logs from web
servers, Set 4 — programme code, and Set 5 —
sensor data. The selection of these data sets is
explained by their different structure and
complexity, which allows to evaluate the
performance of the algorithms for different types of
information. These sets were chosen to obtain
representative results and to test the ability of the
algorithms to adapt to different types of problems.

3.3. Methods

The following research methods were used:

— Modelling was used to create models of
distributed systems using different data splitting
algorithms to build suffix trees. The modelling
made it possible to analyse how each of the
algorithms works with a large data set and how they
interact with the Master-Worker architecture);

— Experimental method helped to test
algorithms on five data sets of different structure.
This method was used to collect data on execution
time, efficiency, accuracy and acceleration for each
of the algorithms.);

— Comparative analysis was applied to evaluate
the performance and advantages of algorithms
according to the studied metrics);

— Statistical analysis made it possible to
objectively compare the effectiveness of each
algorithm and draw conclusions about their
performance.

3.4. Instruments

The following instruments were used for the
research: Python for implementing algorithms,
libraries for distributed computing, such as Dask,
and MPI for simulating the parallel operation of
nodes. Pandas was also used for data processing
and NumPy for mathematical calculations. The
node load was monitored with the help of special
utilities that evaluate the use of processors and
memory during calculations.

The following metrics were also used to evaluate
the quality of the proposed models:

1. Algorithm execution time (CV).

2. Speedup determines how much faster a parallel
algorithm works compared to a sequential one.

 (4)

1. Preparatory stage
(construction of models, preparation of samples)

2. Direct research
(conducting experiments)

3. Analysis of the obtained results

 Journal of Theoretical and Applied Information Technology
15th May 2025. Vol.103. No.9

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3604

,
N

Speedup
Efficiency 

,
n

n
Accuracy r

where Т1 — execution time of the sequential
algorithm, Т2 — execution time of the parallel
algorithm.

3. Resource Use Efficiency determines how well
a parallel algorithm uses resources and handles the
load. A value close to 100% indicates that the
algorithm is maximally efficient. A value that is
significantly less than 100% indicates losses in the
use of resources.

 (5)

where N — the number of streams.

4. The segmentation accuracy indicates how
accurately the segments created by the algorithm
correspond to the expected results. A high
percentage of accuracy indicates the quality of the
algorithm and its ability to achieve correct results.

 (6)

where nr — the number of correctly merged
segments, n — the total number of segments.

4. RESULTS

The experiments in the study were conducted
using the described algorithms on the specified
samples. The quality of the algorithms was
evaluated using the metrics described above. Their
values are given in Table 1.

Table 1 presents the results of the three studied
algorithms. DAP shows the shortest execution time
for all data sets. This indicates its ability to process
data faster due to constant monitoring of changes in
load. All three considered algorithms demonstrate
an acceleration value greater than 1. The greatest
acceleration is again demonstrated by DAP,
reaching 2.5 for Set 2, which is the highest indicator
among all variants.

Showing an efficiency of 91-93% for various
data sets, DAP outperforms other algorithms. The
highest segment merging accuracy in DAP is 98%
for Set 2. This indicates that the algorithm
effectively combines segments without significant
losses. Table 2 shows the results of the studied
algorithms with the integration of the Master-
Worker architecture.

Table 1: Values of performance evaluation metrics of the proposed algorithms

Algorithm Data set
Execution time

(s)
Speedup (s) Efficiency (%)

Segment merging
accuracy (%)

HP

Set 1 850 2.0 88 95
Set 2 750 2.2 90 96
Set 3 1200 1.8 85 93
Set 4 1000 1.9 87 94
Set 5 1100 1.9 86 92

FP

Set 1 900 1.8 85 92
Set 2 800 2.0 88 93
Set 3 1300 1.6 82 90
Set 4 1050 1.7 84 91
Set 5 1150 1.7 83 89

DAP

Set 1 800 2.3 91 97
Set 2 700 2.5 93 98
Set 3 1150 2.0 89 95
Set 4 950 2.2 91 96
Set 5 1000 2.1 90 94

Source: created / calculated by the authors.

Table 2: The value of the performance evaluation metrics of the proposed algorithms with the integration
of the Master-Worker architecture

Algorithm Data set
Execution time

(s)
Speedup (s) Efficiency (%)

Segment merging
accuracy (%)

HP

Set 1 600 2.8 95 97
Set 2 550 3.0 97 98
Set 3 900 2.5 93 96
Set 4 750 2.7 94 96
Set 5 850 2.6 94 95

 Journal of Theoretical and Applied Information Technology
15th May 2025. Vol.103. No.9

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3605

FP

Set 1 650 2.6 93 95
Set 2 600 2.7 94 96
Set 3 1000 2.2 90 94
Set 4 800 2.4 91 95
Set 5 900 2.3 90 93

DAP

Set 1 550 3.2 98 99
Set 2 500 3.4 99 99
Set 3 850 2.9 95 98
Set 4 700 3.1 97 98
Set 5 750 3.0 96 97

Source: created / calculated by the authors.

So, the results presented in Table 2 give grounds
to conclude that the integration of the Master-
Worker architecture has a positive effect on the
results as a whole. It is possible to observe a
decrease in the execution time by algorithms.
Speedup also increases significantly. For example,
the DAP for Set 2 shows a speedup of 3.4, which is
the best indicator.

The highest efficiency among all algorithms
with Master-Worker integration is observed for
DAP, reaching 98–99% for Set 1 and Set 2. These
indicators show efficient use of computing
resources without significant losses. Segment
merging accuracy is also significantly improved
with Master-Worker integration. DAP shows the
highest accuracy of 99% for Set 2. Figures 2–5
show the heat maps of the values of the metrics for
evaluating the performance of the algorithms.

The figure shows a significant reduction of
execution time during Master-Worker integration.
This demonstrates the advantage of parallel
computation of tasks when distributing work among
several nodes. On average, the execution time is
reduced by 250 seconds. The lowest values were
achieved using the DAP algorithm.

The speedup is significantly improved after the
Master-Worker integration. This confirms the
effectiveness of the distribution of work between
several processes. On average, acceleration
indicators improve by 40%.

The efficiency increases to 98–99% for DAP
after the Master-Worker integration, which is
illustrated in the figure. This indicates rational use
of resources and minimal data processing losses.
Other algorithms also show improvements in
efficiency, confirming the importance of load
balancing.

Figure 2: Execution time of the algorithm: а) without the Master-Worker integration, b) with the Master-
Worker integration

Source: created by the authors.

 Journal of Theoretical and Applied Information Technology
15th May 2025. Vol.103. No.9

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3606

Figure 3: Speedup: а) without the Master-Worker integration, b) with the Master-Worker integration
Source: created by the authors.

Figure 4: Efficiency: а) without the Master-Worker integration, b) with the Master- Worker integration

Source: created by the authors.

 Journal of Theoretical and Applied Information Technology
15th May 2025. Vol.103. No.9

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3607

Figure 5. Segment merging accuracy: а) without the Master-Worker integration, b) with the Master-
Worker integration

Source: created by the authors.

The segment merging accuracy is significantly

improved for all algorithms with Master-Worker
integration. This shows that Master-Worker
integration not only increases speed and efficiency,
but also provides a higher quality of segment
merging. The best indicators of 99% were achieved
when using the DAP algorithm.

The integration of these methods with the
Master-Worker architecture is proposed based on
previous studies, which can provide a significant
increase in the efficiency of building DGST. The
Master-Worker architecture is a common model of
parallel computing that distributes computing tasks
among numerous workers to increase productivity.

Therefore, the obtained results indicate a
significant increase in the performance of the
proposed algorithms for building DGST because of
the integration of the Master-Worker architecture.
The three algorithms showed improvements in
execution time, speedup, efficiency, and segment
merging accuracy. The DAP algorithm
demonstrated the best results by all metrics among
the considered algorithms without and with Master-
Worker integration. Algorithms that use DAP and
HP are especially useful for big data processing.
They provide a significant reduction in execution
time, increasing the efficiency of analysis of large
data sets. The application of the Master-Worker
architecture increases the system scalability
enabling to process larger volumes of data by

adding new nodes. This provides flexibility when
processing data in different environments. High
efficiency in the studied algorithms enables rational
distribution of load between nodes and avoiding
overload, which is an important aspect in modern
high-performance systems.

5. DISCUSSION

It is worth noting that a wider test of the built

models was conducted in this study, unlike the
existing ones. This means that the proposed
algorithms are developed not only for a specific
task. They are effective for a wide range of tasks.
The research presented in this work has also other
significant advantages over existing ones. The
researchers [8] proposed study did not focus on the
optimization of segment separation and load
balancing. In this study, the proposed HP methods
demonstrate better indicators of task allocation and
segment merging accuracy.

The results of the experiments conducted by [13]
showed that the PFP suffix tree can be efficiently
built for very large repeated data sets and that its
operations are competitive with other compressed
suffix trees that can only handle much smaller data
sets. The work [12] considered the parallel
processing of genomic data on secure platforms, but
their approach is privacy-oriented and has higher
overhead costs. In this study, DAP demonstrated
superior performance and accuracy.

 Journal of Theoretical and Applied Information Technology
15th May 2025. Vol.103. No.9

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3608

The studies [7] and [8] dealt with the
construction of suffix trees for genomic sequences.
The results obtained in this work for genomic
datasets (Set 1) showed improved performance
thanks to the optimization of the segmentation
process and the use of the Master-Worker
architecture, which made it possible to reduce the
execution time.

The researcher [11] demonstrated the possibility
of scaling. However, the approach using the
Master-Worker architecture proved to be more
productive, as it provided a more accurate
distribution of the load between the nodes. This
reduced execution time and improved performance
for datasets with different structures. The obtained
results for text data showed better performance
compared to the study [14] on building suffix trees
for stereoscopic images. DAP has proven to be
useful for processing large data sets with minimal
memory consumption.

The paper [15] considered parallel processing of
large text data. In this study, the integration of the
Master-Worker architecture showed even higher
efficiency due to the adaptive balancing of
computations, which significantly reduce execution
time. The work [20] proposed a suffix forest for the
analysis of large data sets. The obtained results
demonstrated that DAP is a more universal and
effective approach for a wide range of tasks. The
study by [19] proposed a hash-based coding method
for data protection. Although the proposed
algorithms do not focus on data security, they allow
efficient work with large data sets, ensuring
segment merging accuracy and short execution
time.

So, the methods of optimizing the segmentation
process and using the Master-Worker architecture
proposed in this study demonstrate competitive
advantages compared to existing approaches,
especially when working with large data under
uneven load and the need to balance computing
resources. The aim of the study was to develop and
test new partitioning methods for distributed suffix
trees, and the obtained results confirmed its
achievements. The developed algorithms can be
effectively used for various types of data, which
allows to improve the performance of distributed
systems and ensure fast processing of large sets of
information.

5.1. Limitations

Despite the improvements achieved, the proposed
approach has certain limitations.

One of the main limitations of this study is the
limited number of data sets and algorithms on
which the experiments were conducted. Five data
sets of different structure allowed for a
representative analysis, but the results may not
reflect all possible variants of algorithm behaviour
on other types of data, in particular on multimedia
or irregular data sets.

Also the efficiency of optimisation depends to a
large extent on the structure of the input data. In
particular, in cases with high heterogeneity of
substring lengths, additional costs for balancing
segments between nodes are possible. Further
research will focus on adaptive partitioning
algorithms that take into account the dynamic
characteristics of the data.

5.2. Recommendations

For further research, it is recommended to
expand the number of data sets, especially due to
more complex data, such as multimedia streams,
graphs or data with unpredictable structure. This
will make it possible to better assess the
universality of algorithms and their effectiveness in
different conditions. The research should also be
supplemented with the aspect of data privacy.

6. CONCLUSIONS

The relevance of the research is determined by the
growth of data volumes in the modern information
world and the need for effective methods of their
processing. Distributed suffix trees can
significantly improve the performance of systems
dealing with large sequences. This paper proposes a
new dynamic segmentation mechanism for
distributed GSTDs. It is shown for the first time
that an adaptive segmentation approach can
significantly reduce the overhead without losing
accuracy. The efficiency of the method is evaluated
under different types of input data, which confirms
its versatility. In contrast to previous studies that
used static memory allocation schemes, this paper
proposes an adaptive approach that adapts to the
characteristics of the input data and hardware
platform. This opens up the possibility of applying
this method in real-world scenarios of processing
large text data, including genomics, natural
language processing, and large information
systems.

The obtained results can be used in various
applied fields, such as bioinformatics, text analysis,
data clustering, and ensuring confidentiality when
processing large sets of information. Algorithms
can also be adapted for cloud infrastructures to

 Journal of Theoretical and Applied Information Technology
15th May 2025. Vol.103. No.9

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3609

improve the scalability and efficiency of computing
and working with multimedia data. Further research
may focus on extending the application of these
techniques to more diverse datasets and integrating
them with other distributed computing platforms for
even greater performance.

REFERENCES:
[1] T. Gagie, G. Navarro, and N. Prezza, “Fully

Functional Suffix Trees And Optimal Text
Searching in BWT-Runs Bounded Space”,
Journal of the ACM (JACM), Vol. 67, No. 1,
2018, pp. 1-54, doi: 10.1145/3375890.

[2] J. Li, D. Lamastra, J. Pabon, P. Kelly,
J. Grabenstein, D. Papamichail, ... and
K. Klaskala. “Integrate Generalized Suffix Tree
into Dictionary Attack”, In: A. Rocha, H. Adeli,
G. Dzemyda, F. Moreira (eds.) Information
Systems and Technologies. WorldCIST 2022.
Lecture Notes in Networks and Systems,
Vol. 468, pp. 204-213. Cham: Springer
International Publishing, 2022, doi:
10.1007/978-3-031-04826-5_20.

[3] H. Yang, H. Fu, and C. Wu, “Intrusion
Detection System Based on Probabilistic Suffix
Tree”, in: T.-H. Meen (ed.) 2023 IEEE 6th
Eurasian Conference on Educational
Innovation (ECEI), pp. 6-9, Singapore, 2023,
doi: 10.1109/ECEI57668.2023.10105322.

[4] E. Ukkonen, “On-line Construction of Suffix
Trees”, Algorithmica, Vol. 14, No. 3, 1995,
pp. 249-260, doi: 10.1007/BF01206331.

[5] J. Küng, “FPO Tree and DP3 Algorithm for
Distributed Parallel Frequent Itemsets Mining”,
Expert Systems with Applications, Vol. 140,
2020, article number 112874, doi:
10.1016/j.eswa.2019.112874.

[6] A. Hlybovets, V. Didenko, “Constructing
Generalized Suffix Trees on Distributed Parallel
Platforms”, Cybernetics and System Analysis,
Vol. 59, 2023, pp. 49-60, doi: 10.1007/s10559-
023-00541-x.

[7] R. Hřivňák, P. Gajdoš, and V. Snášel, “Towards
Faster Matching Algorithm Using Ternary Tree
in the Area of Genome Mapping”, in: L. Barolli,
K. F. Li, H. Miwa (eds.) Advances in Intelligent
Networking and Collaborative Systems,
Vol. 1263, pp. 413-424. Cham: Springer
International Publishing, 2021, doi:
10.1007/978-3-030-57796-4_40.

[8] M. M. A. Aziz, P. Thulasiraman, and
N. Mohammed, “Parallel Generalized Suffix
Tree Construction for Genomic Data”, in:
C. Martín-Vide, M. A. Vega-Rodríguez,
T. Wheeler (eds.) Algorithms for Computational

Biology. AlCoB 2020. Lecture Notes in
Computer Science, Vol. 12099. Cham: Springer,
doi: 10.1007/978-3-030-42266-0_1

[9] G. Zhu, C. Guo, L. Lu, Z. Huang, C. Yuan,
R. Gu, and Y. Huang, “DGST: Efficient and
Scalable Suffix Tree Construction on
Distributed Data-parallel Platforms”, Parallel
Computing, Vol. 87, 2019, pp. 87-102, doi:
10.1016/j.parco.2019.06.002.

[10] P. Charalampopoulos, C. S. Iliopoulos, C. Liu,
and S. P. Pissis, “Property Suffix Array with
Applications in Indexing Weighted Sequences”,
Journal of Experimental Algorithmics (JEA),
Vol. 25, 2020, pp. 1-16, doi: 10.1145/3385898.

[11] S. K. Soukehal, K. Chibane, M. T. Khadir,
“Suffix Tree Construction Based Mapreduce”,
in: 2019 International Conference on
Theoretical and Applicative Aspects of
Computer Science (ICTAACS), Vol. 1, 2019, pp.
1-6, doi:
10.1109/ICTAACS48474.2019.8988123.

[12] M. S. R. Mahdi, M. M. Al Aziz,
N. Mohammed, and X. Jiang, “Privacy-
preserving String Search on Encrypted Genomic
Data Using a Generalized Suffix Tree”,
Informatics in Medicine Unlocked, Vol. 23,
2021, article number 100525, doi:
10.1016/j.imu.2021.100525.

[13] C. Boucher, O. Cvacho, T. Gagie, J. Holub,
G. Manzini, G. Navarro, and M. Rossi, “PFP
Compressed Suffix Trees”, Proceedings of the
Workshop on Algorithm Engineering and
Experiments (ALENEX), 2021, pp. 60-72, doi:
10.1137/1.9781611976472.5.

[14] F. Duan, Q. Zhang, “Stereoscopic Image
Feature Indexing Based on Hybrid Grid
Multiple Suffix Tree and Hierarchical
Clustering”, IEEE Access, Vol. 8, 2020,
pp. 23531-23541, doi:
10.1109/ACCESS.2020.2970123.

[15] Z. Du, O. A. Rodriguez, and D. A. Bader,
“Large Scale String Analytics in Arkouda”,
2021 IEEE High Performance Extreme
Computing Conference (HPEC), Waltham, MA,
USA, 2021, pp. 1-7, doi:
10.1109/HPEC49654.2021.9622810.

[16] J. Zhao, H. Feng, D. Zhu, C. Zhang, and
Y. Xu, “DTA-SiST: de Novo Transcriptome
Assembly by Using Simplified Suffix Trees”,
BMC Bioinformatics, Vol. 20, No. 25, 2019,
article number 698, doi: 10.1186/s12859-019-
3272-9.

[17] L. U. Oghenekaro, I. E. Olughu, J. O. Jatto,
“Enhanced Document Retrieval System Using
Suffix Tree Clustering Algorithm”, Open

 Journal of Theoretical and Applied Information Technology
15th May 2025. Vol.103. No.9

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3610

Access Library Journal, Vol. 10, No. 7, 2023,
pp. 1-10, doi: 10.4236/oalib.1110228.

[18] D. Köppl, “Non-overlapping LZ77
Factorization and LZ78 Substring Compression
Queries With Suffix Trees”, Algorithms,
Vol. 14, No. 2, 2021, p. 44, doi:
10.3390/a14020044.

[19] S. Vaiwsri, T. Ranbaduge, P. Christen, and
K. S. Ng, “Accurate and Efficient Suffix Tree
Based Privacy-Preserving String Matching”,
International Journal of Data Science and
Analytics, Vol. 14, 2022, pp. 191-215, doi:
10.1007/s41060-022-00320-5.

[20] K. C. Mondal, M. Ghosh, R. Fajriyah, and
A. Roy, “Introducing Suffix Forest for Mining
Tri-Clusters from Time-Series Data”,
Innovations in Systems and Software
Engineering, Vol. 20, No. 4, pp. 765-787, doi:
10.1007/s11334-022-00489-9.

[21] Y. Yu, D. Wan, Q. Zhao, and H. Liu,
“Detecting Pattern Anomalies in Hydrological
Time Series With Weighted Probabilistic Suffix
Trees”, Water, Vol. 12, No. 5, 2020, article
number 1464, doi: 10.3390/w12051464.

[22] Z. He, J. Wang, M. Jiang, L. Hu, and Q. Zou,
“Random Subsequence Forests”, Information
Sciences, Vol. 667, 2024, article number
120478, doi: 10.1016/j.ins.2024.120478.

[23] L. Ayad, G. Loukidis, and S. Pissis, “Text
Indexing for Long Patterns: Anchors are All
You Need”, Proceedings of the VLDB
Endowment (PVLDB), Vol. 16, No. 9, 2023,
pp. 2117-2131, doi:
10.14778/3598581.3598586.

[24] S. Faro, T. Lecroq, K. Park, and S. Scafiti. “On
the Longest Common Cartesian Substring
Problem”, The Computer Journal, Vol. 66,
No. 4, 2023, pp. 907-923, doi:
10.1093/comjnl/bxab204.

[25] S. Charoenrak, and S. Chairungsee,
“Algorithm for Palindrome Detection by Suffix
Heap”, in: Proceedings of the 2019 7th
International Conference on Information
Technology: IoT and Smart City (ICIT '19),
New York, NY: Association for Computing
Machinery, 2020, pp. 85-88.
https://doi.org/10.1145/3377170.3377202.

[26] P. Tang, R. Chen, S. Su, S. Guo, L. Ju, and
G. Liu, “Differentially Private Publication of
Multi-Party Sequential Data”, ISPRS
International Journal of Geo-Information,
Vol. 11, No. 12, 2022, p. 607, doi:
10.3390/ijgi11120607.

[27] Y. Zhan, D. Zhang, Q. Jia, H. Xu, Y. Xie,
“Automated Methods for Symptom
Normalization in Traditional Chinese Medicine
Record”, in: X. Sun, X. Zhang, Z. Xia,
E. Bertino (eds.) Advances in Artificial
Intelligence and Security. ICAIS 2021.
Communications in Computer and Information
Science, Vol. 1422, pp. 476-487, Cham:
Springer, 2021, doi: 10.1007/978-3-030-78615-
1_42.

[28] I. K. H. T. Jaya, M. W. A. Kesiman, and
I. M. G. Sunarya, “Detecting the Same Pattern
in Choreography Balinese Dance Using
Convolutional Neural Network and Analysis
Suffix Tree”, Jurnal Ilmiah Teknik Elektro
Komputer Dan Informatika, Vol. 8, No. 3,
2022, pp. 410-421, doi:
10.26555/jiteki.v8i3.24461.

[29] S. K. Adlakha, H. Sharma, N. Duhan, and
K. K. Bhatia, “Route Prediction Techniques
Using GPS Traces and Spatial Data”, in:
Proceedings of the 2019 6th International
Conference on Computing for Sustainable
Global Development, INDIACom 2019, 2019,
pp. 908-914.

[30] J. Cai, Q. Wang, J. Luo, Y. Liu, and L. Liao,
“Capbad: Content-agnostic, Payload-based
Anomaly Detector for Industrial Control
Protocols”, IEEE Internet of Things Journal,
Vol. 9, No. 14, 2021, pp. 12542-12554, doi:
10.1109/JIOT.2021.3138534.

