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ABSTRACT 

 
Satellite image classification plays a pivotal role in diverse applications, including land use monitoring, urban 
planning, and environmental analysis. This paper explores the comprehensive classification of satellite 
images into five classes: desert, forest, green fields, oceans, and urban areas. Initial preprocessing techniques 
such as resizing, histogram equalization, noise reduction, rotation, cropping, color jittering, and random 
erasing were applied to enhance data quality. Four Transformer Neural Network (TNN) models i.e., Vision 
Transformer (ViT), Class Attention Image Transformer (CAiT), Pyramid Vision Transformer (PVT), and 
Tokens-to-Token Vision Transformer (T2T-ViT) were analyzed. Among these, T2T-ViT demonstrated the 
best accuracy at 73.21%. Further optimization of T2T-ViT using machine learning techniques, including 
ensemble methods, feature scaling, and stratified k-fold cross-validation, achieved an accuracy of 84.09%. 
Subsequently, Particle Swarm Optimization (PSO) was employed for hyperparameter tuning, boosting the 
model accuracy to 98.75%. This research highlights the efficacy of combining advanced TNN architectures 
with optimization strategies for robust satellite image classification. 
Keywords: Satellite Image Processing, Vision Transformers, Preprocessing, Soft Computing Techniques. 
 
1. INTRODUCTION  

Satellite image classification plays a pivotal role in 
various remote sensing applications such as 
environmental monitoring, urban planning, disaster 
management, and agricultural assessment [1]. In 
these domains, large volumes of satellite imagery 
are categorized into distinct classes like desert, 
forest, agricultural fields, oceans, and urban areas. 
Accurate classification of these images is essential 
for understanding land-use patterns and making 
informed decisions. However, satellite images are 
inherently complex and high-dimensional, which 
presents significant challenges for traditional 
machine learning methods. These methods often 
struggle to effectively capture the spatial and 
contextual information necessary to classify such 
images accurately. As a result, there has been a 
growing interest in adopting more advanced 
machine learning methodologies, such as 
Transformer Neural Networks (TNNs), to address 
these challenges [2]. 

TNNs have emerged as powerful tools for image 
analysis, particularly due to their self-attention 
mechanisms that allow them to capture long-range 
dependencies and global context in image data. 

Traditional convolutional neural networks (CNNs) 
often focus on local patterns, whereas TNNs, like 
Vision Transformers (ViT) [3], Class Attention 
Image Transformers (CAiT) [4], Pyramid Vision 
Transformers (PVT) [5], and Tokens-to-Token 
Vision Transformers (T2T-ViT) [5], excel in 
capturing broader relationships across the image. 
These architectures have proven to be highly 
effective for image classification tasks due to their 
ability to handle complex patterns and large 
datasets. Among these models, T2T-ViT stands out 
due to its novel tokenization approach, which 
reduces token redundancy and improves 
computational efficiency [7]. This approach 
involves transforming input images into smaller, 
more compact tokens that maintain critical 
information, enabling the model to learn more 
effectively and reduce the computational burden. 

Despite the promising advantages of TNNs, their 
application to satellite image classification is not 
without challenges.  
These include issues like computational complexity, 
the risk of overfitting due to large parameter spaces, 
data imbalance, and the need for careful 
hyperparameter tuning. Previous works on TNN-
based satellite image classification have highlighted 
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the strengths of models such as ViT, CAiT, and 
PVT. For instance, ViT provides a foundational 
framework for vision tasks, CAiT improves class-
specific attention mechanisms, and PVT introduces 
hierarchical feature extraction that allows the model 
to handle varying scales in image data. However, 
these models often struggle with large datasets and 
complex images, and their performance can degrade 
if not properly tuned or optimized. Achieving 
optimal performance from these models requires 
addressing the challenges of overfitting, class 
imbalance, and hyperparameter selection [8]. 
To overcome these challenges and enhance the 
performance of T2T-ViT, this study proposes a 
multi-faceted approach that integrates advanced 
preprocessing techniques and optimization 
strategies. Preprocessing steps such as resizing, 
histogram equalization, noise reduction, and data 
augmentation are employed to improve the quality 
of satellite images and make them more suitable for 
classification. These techniques help enhance image 
clarity, reduce distortions, and augment the 
available data, leading to better model 
generalization. Additionally, the study incorporates 
Particle Swarm Optimization (PSO) for 
hyperparameter tuning. PSO is an optimization 
algorithm inspired by the social behavior of particles 
in a swarm. It helps fine-tune hyperparameters such 
as token dimensions, image resolution, and 
classifier-specific parameters like the number of 
estimators and learning rates. The use of PSO in this 
study allows for the efficient exploration of the 
hyperparameter space, leading to an optimized 
configuration that significantly improves the 
model’s accuracy. 
The novelty of this study lies in the combination of 
T2T-ViT with advanced preprocessing techniques 
and the optimization of hyperparameters using PSO. 
This integrated approach addresses several key 
challenges in satellite image classification, such as 
computational complexity, overfitting, and data 
imbalance. By leveraging cutting-edge TNN 
architectures and robust optimization strategies, the 
study demonstrates a significant improvement in 
classification accuracy, achieving a remarkable 
increase in performance. This comprehensive 
methodology provides a framework for setting new 
benchmarks in the field of satellite image 

classification. Moreover, the findings highlight the 
importance of combining state-of-the-art deep 
learning models with advanced optimization 
techniques to achieve better generalization and 
model robustness. The work not only contributes to 
the development of more effective satellite image 
classification models but also sets the stage for 
future advancements in the field. 
 
2. RELATED WORK 

Transformer architectures have revolutionized 
image processing by leveraging self-attention 
mechanisms that effectively capture long-range 
dependencies [9]. The Vision Transformer laid the 
foundation by treating images as sequences of 
patches, enabling powerful feature extraction 
without relying on convolutional layers. However, 
ViT struggled with computational inefficiency and 
lack of hierarchical representations. To address 
these issues, PVT introduced a hierarchical structure 
that progressively reduces resolution while 
capturing multi-scale features, enhancing both 
efficiency and accuracy.  
CAiT refined attention mechanisms by focusing on 
class tokens, leading to improved classification 
performance and stability during training. These 
advancements have paved the way for more efficient 
and scalable transformer-based models in computer 
vision [10]. 
Among these innovations, the Tokens-to-Token 
Vision Transformer by Yuan et al. stands out for its 
novel approach to tokenization. Unlike ViT, which 
directly splits images into fixed-size patches, T2T-
ViT employs a progressive tokenization process, 
reducing redundancy and preserving local structural 
information. By iteratively aggregating neighboring 
tokens, it mitigates the loss of spatial details that 
occurs in traditional patch-based methods. This 
results in more compact and meaningful 
representations, improving model efficiency and 
accuracy. The T2T mechanism also reduces 
computational overhead, making it a promising 
approach for applications requiring both 
performance and scalability in image recognition 
tasks [11]. 
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Table 1. Comparative Analysis of Transformer Neural Networks with Soft Computing Optimizers. 

Ref
. 

Dataset 
Preprocessin

g 
Techniques 

TNN Model Tuning 
Techniques 

Performanc
e Before 

Optimizatio
n 

Soft 
Computing 
Optimizer 

Performanc
e After 

Optimizatio
n 

[12
] 

Custom 
geospatial 
imagery 

Resize GeoViT 
L2 

Regularization 
Accuracy: 

88.0% 
Genetic 

Algorithm 
Accuracy: 

91.0% 

[13
] 

GaoFen-2 
and 

WorldView-
3 images 

Data 
normalizatio

n 
PanFormer 

Hyperparamet
er tuning, 

Early Stopping 

Accuracy: 
77.52% 

Particle 
Swarm 

Optimizatio
n 

Accuracy: 
86.24% 

[14
] 

Geostationar
y satellite 
imagery 

Histogram 
equilizer 

SRViT 
Stratified K-
Fold Cross-
Validation 

Accuracy: 
82.71% 

Simulated 
Annealing 

Accuracy: 
85.66% 

[15
] 

Landsat-8, 
Sentinel-2, 

and 
Cartosat-2s 

images 

Resize CLiSA 
Hyperparamet
er tuning, L2 

Regularization 

Accuracy: 
81.46% 

Ant Colony 
Optimizatio

n 

Accuracy: 
89.35% 

[16
] 

Aerial 
imagery and 
Satellite II 

Noise 
removing 

STransU2N
et 

Feature 
Normalization 

Accuracy: 
90.5% 

Genetic 
Algorithm 

Accuracy: 
92.17% 

[17
] 

Munich and 
Lombardia 

Colour 
Jittering 

Swin 
UNETR 

Hyperparamet
er tuning, 

Early Stopping 

Accuracy: 
89.42% 

Particle 
Swarm 

Optimizatio
n 

Accuracy: 
92.58% 

[18
] 

Landsat-8 
imagery 

Data 
augmentatio

n, 
normalizatio

n 

Transformer
-based 
model 

Hyperparamet
er tuning, L2 

Regularization 

Accuracy: 
90.0% 

Simulated 
Annealing 

Accuracy: 
93.0% 

[19
] 

Landsat-8 
and 

Sentinel-2 
imagery 

Data 
normalizatio

n 

Transformer
-based 
model 

Hyperparamet
er tuning, 
Ensemble 
Learning 

RMSE: 0.05 
Ant Colony 
Optimizatio

n 
RMSE: 0.03 

[20
] 

Sentinel-2 
imagery 

Data 
augmentatio

n, 
normalizatio

n 

Multi-modal 
Vision 

Transformer 

Stratified K-
Fold Cross-
Validation 

Accuracy: 
85.0% 

Genetic 
Algorithm 

Accuracy: 
88.5% 

[21
] 

Earth 
satellite 
images 

Data 
augmentatio

n, 
normalizatio

n 

Deep Neural 
Network 

(e.g., U-Net, 
MobileNet) 

Hyperparamet
er tuning, 

Early Stopping 
IoU: 0.75 

Particle 
Swarm 

Optimizatio
n 

IoU: 0.80 

[22
] 

Custom 
satellite 
imagery 
dataset 

Data 
normalizatio

n 

Transformer
-based 
model 

L2 
Regularization 

Accuracy: 
85.0% 

Genetic 
Algorithm 

Accuracy: 
89.5% 

[23
] 

Optical 
satellite 
images 

Data 
normalizatio

n 

Deep 
Learning 

Model 

Hyperparamet
er tuning, 
Feature 

Normalization 

RMSE: 0.05 
Ant Colony 
Optimizatio

n 
RMSE: 0.03 

[24
] 

Landsat 
satellite 
images 

Data 
normalizatio

n 

Deep 
Learning 

Model 

Ensemble 
Learning 

Accuracy: 
90.0% 

Genetic 
Algorithm 

Accuracy: 
93.0% 
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Optimization algorithms like PSO have been widely 
applied to fine-tune machine learning models. By 
simulating the social behavior of particles, PSO 
efficiently explores the hyperparameter space, 
enabling improved model performance in various 
domains, including image classification. Despite 
extensive research on TNNs and optimization 
techniques, limited studies have combined these 
approaches for satellite image classification [25]. 

3. DATASET AND PREPROCESSING 
 
The dataset used in this study consists of satellite 
images that are categorized into five distinct land-
use classes: desert, forest, green fields, oceans, and 
urban areas. These categories represent a broad 
spectrum of natural and urban environments, 
offering a diverse range of visual features that are 
critical for effective classification.  

The satellite images vary in resolution and 
geographical coverage, representing different 
seasons and weather conditions. This diversity in the 
dataset provides a comprehensive test bed for 
evaluating the performance of various Vision 
Transformers. The images are sourced from 
publicly available satellite imagery repositories, 
ensuring they are large enough to serve as a robust 
dataset for training and validation. One of the first 
preprocessing steps applied to the dataset was 
resizing all images to a uniform dimension. This is 
crucial for ensuring consistency across all inputs, as 
Transformer-based models, including TNNs, 
require images of the same size for efficient 
processing. The resizing ensures that all images are 
compatible with the model architecture, preventing 
dimensionality mismatches during training.  
 

 

 

Figure 1. Dataset Preprocessing. 

This step also helps in reducing computational 
complexity, making the training process faster and 
more memory-efficient. Typically, the images were 
resized to a resolution of 224x224 pixels, which 
strikes a balance between computational efficiency 
and maintaining enough detail for accurate 
classification. To improve the contrast and highlight 

key features in the satellite images, histogram 
equalization was applied as part of the preprocessing 
pipeline. Histogram equalization adjusts the pixel 
intensity distribution across the image, enhancing 
the visibility of important features that may 
otherwise be difficult to detect. This is especially 
important in satellite imagery, where environmental 

 Resized                            HistEq                       NoiseRed                    Rotated                      Cropped                       Erased                    Colorjit 
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factors like cloud cover or shadows can obscure 
critical land-use patterns. By equalizing the 
histogram, the overall contrast of the image is 
enhanced, making it easier for the model to 
distinguish between different land classes, such as 
urban areas versus forested regions, which may 
otherwise appear similar under certain lighting 
conditions.To address noise in the images, Gaussian 
filtering was employed to smooth out pixel values, 
reducing high-frequency noise that could negatively 
affect model training. Satellite images often contain 
noise due to atmospheric interference or sensor 
limitations, so this step is crucial in preserving the 
clarity and integrity of the data. Additionally, to 
increase data variability and reduce overfitting, 
various data augmentation techniques were applied.  
To further enhance model robustness and prevent 
overfitting, random erasing was used as a technique 
to simulate occlusions in the images. This approach 
involves randomly masking portions of the image 
during training, forcing the model to rely on 
available context and improving its ability to 
generalize to incomplete data. The final dataset, 
after applying all preprocessing techniques, was 
ready for training the TNN models. The images 
were then split into training, validation, and testing 
sets, ensuring that each class was well-represented 
across all sets through stratified sampling. This 
comprehensive preprocessing pipeline effectively 
enhanced the dataset’s quality, making it suitable for 
training advanced Transformer-based models, 
including T2T-ViT, and ensuring the accuracy of 
the classification results. 
 
4. TNN MODELS COMPREHENSIVE 

ANALYSIS 
 
Transformer Neural Networks have revolutionized 
image classification tasks due to their ability to 
model long-range dependencies within data. 
Originally introduced for natural language 
processing, Transformer architectures like Vision 
Transformer have since been adapted for image 
analysis tasks. Unlike traditional CNNs, which rely 
heavily on local receptive fields, TNNs utilize self-
attention mechanisms to capture global 
relationships between pixels across the entire image. 
This allows for better feature extraction and an 
understanding of the broader context within the 
image, which is especially useful in complex tasks 
like satellite image classification, where features 
may be spread across large areas and involve 
various patterns. 
 
4.1. Vision Transformer 

 
The Vision Transformer serves as the baseline 
model for this study, offering a simple yet effective 
approach to image classification [26]. ViT divides 
an image into fixed-size patches, which are then 
linearly embedded into tokens that are processed 
through a series of Transformer layers. These layers 
capture the global dependencies in the image 
through self-attention. The ViT model has shown 
considerable promise in image classification tasks 
but can suffer from high computational cost, 
especially when handling large datasets like satellite 
imagery. While it achieves decent accuracy, its 
performance often lags behind more advanced 
architectures that incorporate additional 
enhancements. 
 

 

Figure 2. Steps in Standard Vision Transformer. 

4.2. Class Attention Image Transformer 
 
The Class Attention Image Transformer (CAiT) 
model builds upon the ViT architecture by 
introducing class-specific attention mechanisms 
[27]. This enhancement allows the model to focus 
more on the most relevant parts of the image that 
correspond to specific classes, such as desert, forest, 
or urban areas. In traditional ViT, attention is 
applied uniformly across the image, which can lead 
to inefficient feature extraction when distinguishing 
between similar-looking classes.  
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Figure 3.  Steps in Class Attention Image Transformer. 

CAiT’s class-specific attention enables more fine-
grained feature extraction, making it particularly 
useful for satellite image classification, where the 
distinction between similar land types requires 
detailed and localized attention to class features. 
However, while CAiT improves feature 
representation, it still faces challenges in terms of 
computational cost and complexity when scaling to 
larger datasets. 
 
4.3. Pyramid Vision Transformer  
The Pyramid Vision Transformer (PVT) introduces 
hierarchical feature extraction, another innovation 
aimed at improving the handling of multi-scale 
features [28]. Unlike ViT and CAiT, which treat the 
entire image uniformly, PVT incorporates a 
pyramid structure that enables the model to learn 
features at multiple scales. This is particularly 
important in satellite image classification, where 
objects and land types may appear at different sizes 
and resolutions depending on the zoom level or the 
region being observed. PVT’s hierarchical approach 
allows the model to capture both fine details in 
urban areas and larger patterns in forests or deserts. 
While PVT improves on the scalability and feature 
extraction process, it may still struggle with 
computational efficiency, especially when dealing 
with very high-resolution satellite images or large 
datasets. 
 

Figure 4. Steps in Pyramid Vision Transformer. 

4.4. Tokens-to-Token Vision Transformer 
Among the Transformer models evaluated, the 
Tokens-to-Token Vision Transformer stands out as 
the most effective for satellite image classification 
[29]. The key innovation of T2T-ViT lies in its 
tokenization process, which reduces redundancy by 
converting patches into tokens more efficiently, thus 
minimizing unnecessary computations and 
improving model performance. This approach not 
only enhances the model’s efficiency but also 
improves the overall representation of the image by 
preserving essential spatial information while 
discarding irrelevant data. T2T-ViT’s ability to 
handle token redundancy and reduce the 
computational burden is particularly advantageous 
for large-scale tasks like satellite image 
classification.  
The T2T Vision Transformer is a type of Vision 
Transformer designed to handle visual data more 
effectively, especially by capturing both local and 
global features more efficiently through the Token-
to-Token process. The input image I ∈RH×W×C be a 
3D tensor, where H is the height, W is the width, and 
C is the number of color channels. The first step in 
the Vision Transformer model is to split the image 
into non-overlapping patches.  
Flatten the patches i.e., Divide the image into P×P 
patches and flatten each patch. Each patch xp is of 
size P×P×C. If the image is of size H×W, then the 
number of patches will be (H/P)×(W/P).  
Embedding the patches i.e., each patch is flattened 
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into a 1D vector and linearly projected to a D-
dimensional embedding space, where D is the 
embedding dimension. This projection is done using 
a learned projection matrix WE∈R(P2C)×D. The result 
is,  
                                                                                                        
     𝑧ෝ ௣ = 𝐹𝑙𝑎𝑡𝑡𝑒𝑛(𝐼௉)𝑊ா                                            (1) 
 
Where, 𝑧̂௣ is the patch embedding. Add positional 
encoding in transformers are permutation-invariant, 
positional encodings are added to each token 
embedding to provide information about the 
position of the patches in the image. The positional 
encoding Epos ∈ RN×D is added to the patch 
embeddings: 
 
  𝑧௣ = 𝑧̂௣ + 𝐸௣௢௦(𝑝)                                                          (2) 
 
Where, N is the total number of patches.  
 
 
After tokenizing and embedding the patches, the 
sequence of patch embeddings is passed through the 
Transformer encoder. The core operation of the 

Transformer encoder is the self-attention 
mechanism, which allows each token to attend to all 
other tokens in the sequence. For a given sequence 
of tokens Z=[z1, z2,…, zN], the self-attention is 
computed as follows,  
 

𝐴𝑡𝑡𝑒𝑛𝑐𝑡𝑖𝑜𝑛 (𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 ቀ
ொ௄೅

√஽
ቁ 𝑉         (3) 

 
Where Q, K, V are the query, key, and value 
matrices, respectively, which are learned linear 
projections of the input embeddings.  The self-
attention process enables the model to capture long-
range dependencies between patches. The attention 
mechanism, each token is passed through a 
feedforward neural network (FFN) which consists 
of two linear layers with a ReLU activation in 
between,  
 
𝐹𝐹𝑁(𝑥) = 𝑅𝑒𝐿𝑈(𝑥𝑊ଵ + 𝑏ଵ)𝑊ଶ + 𝑏ଶ                   (4) 
 
Where W1∈RD×d, W2∈Rd×D, and b1, b2 are the biases. 

 

                    
            (a)                                        (b)                                    (c)                                   (d)                                    (e) 

               
                                                      (f)                                                                                        (g) 

Figure 5. T2T Vision Transformer, (a)Input Image, (b)Patch Extraction, Grid of 14×14 patches, (c) Initial 
Tokenization, 768-dimensional vector, of 196 tokens, (d)Local Aggregation (Stage-1), (e) Global Attention (Stage-1), 

(f)  Local Aggregation (Stage-2), (g) Global Attention (Stage-2). 

This operation is applied independently to each 
token. Once the Transformer encoder processes all 
the tokens, the output tokens Zout are fed into a 
classification head to generate the final output.  
Consider the output of the encoder as Zout = 
[z1,z2,…,zN], the final classification prediction can 
be made by applying a linear transformation to one 
of the tokens, 
 

 
      𝑦ෝ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑍௢௨௧𝑊௖௟௦ + 𝑏௖௟௦)                       (5) 
 
Where, Wcls and bcls are the learned weight and bias 
for the classification layer, and the softmax function 
normalizes the output to produce a probability 
distribution over the class labels. 
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Table 2. Performance Comparison of Vision Transformer Models Across Key Metrics. 

Performance 
indices 

Standard vision 
transformer 

Class Attention 
Image 

Transformer 

Pyramid Vision 
Transformer 

Tokens-to-Token 
Vision 

Transformer 
Accuracy(%) 13.74 25.83 41.01 73.21 
Precision(%) 1.89 7.13 42.49 68.37 

Recall(%) 13.74 25.83 41.09 69.13 
F1-score(%) 11.18 11.18 39.47 67.87 

The performance of four vision transformer models 
Standard Vision Transformer, Class Attention 
Image Transformer, Pyramid Vision Transformer, 
and Tokens-to-Token Vision Transformer shows 
significant variation across accuracy, precision, 
recall, and F1-score. The Standard Vision 
Transformer demonstrates the lowest performance 
with an accuracy of 13.74% and an F1-score of 
11.18%. The Class Attention Image Transformer 

performs better, achieving 25.83% accuracy but still 
shares the same F1-score of 11.18%. The Pyramid 
Vision Transformer exhibits notable improvement 
with 41.01% accuracy, 42.49% precision, and an 
F1-score of 39.47%. However, the Tokens-to-Token 
Vision Transformer outperforms all others 
significantly, achieving 73.21% accuracy, 68.37% 
precision, 69.13% recall, and an F1-score of 
67.87%, making it the most effective model. 

 
Figure 6. Different TNN models Performance analysis. 

5. T2T-VIT WITH TUNING TECHNIQUES 
 
The Tokens-to-Token Vision Transformer is a 
powerful deep learning model that has gained 
attention for its efficient tokenization strategy, 
making it particularly well-suited for tasks like 
satellite image classification. T2T-ViT reduces 
token redundancy, improving both computational 
efficiency and model performance. However, 
despite its promising architecture, the raw 
performance of T2T-ViT can still benefit from a 
range of optimization techniques. These tuning 
techniques aim to refine the model’s capabilities, 
improving its accuracy, robustness, and 
generalization when applied to real-world datasets. 
In this study, a series of advanced machine learning 
techniques were applied to enhance the T2T-ViT 
model further. 
 

5.1. Data Quality Enhancements and Feature 
Normalization 

One of the first critical steps in improving the T2T-
ViT model is ensuring the quality and consistency 
of the input data. Techniques like NaN handling 
were employed to address missing values, ensuring 
that the model was trained on a clean and reliable 
dataset. In addition, feature normalization was 
applied to scale the data and ensure that all features 
were on a comparable scale. This helped prevent 
issues like numerical instability and allowed the 
model to converge more efficiently during training. 
By standardizing the input data, the model was able 
to learn more effectively, resulting in improved 
classification accuracy. Feature normalization 
ensures that each feature has zero mean and unit 
variance, which helps with training stability. This 
can be mathematically represented as, 
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      𝑥௜,௝
ᇱ =

௫೔,ೕିஜೕ

஢ೕ
                                                          (6) 

Where, μj is the mean and σj is the standard deviation 
of the jth feature. NaN handling involves replacing 
missing values with imputed values. These 
techniques are applied in the data preprocessing step 
before feeding the data into the model for 
tokenization. 
 
5.2. Ensemble Learning for Improved Predictions 
 
Ensemble learning is another crucial tuning 
technique used to enhance the performance of T2T-
ViT. By combining multiple models, the strength of 
one model’s predictions can complement the 
weaknesses of another. In this study, ensemble 
learning involved combining the predictions of 
Histogram Gradient Boosting, Logistic Regression, 
and Random Forest classifiers through a voting 
mechanism. This approach allowed for more robust 
predictions, as it reduced the likelihood of 
overfitting and improved the model's ability to 
generalize to unseen data. The combination of 
various classifier outputs helped increase the 
model's accuracy, especially when handling the 
diverse and complex patterns in satellite images. 
ensemble learning involves combining the 
predictions of multiple models. Mathematically, if 
we have k models and their corresponding 
predictions y^1, y^2,…,y^k, the ensemble prediction 
can be made by majority voting or averaging: 
 

            𝑦ො௘௡௦௘௠௕௟௘ =
ଵ

௞
∑ 𝑦ො௜

௞
௜ୀଵ                                         (7) 

 
 
5.3. Stratified K-Fold Cross-Validation for Robust 

Evaluation 
 
Stratified k-fold cross-validation was applied to 
evaluate the performance of the T2T-ViT model 
more robustly. This technique involves splitting the 
dataset into k subsets and training the model k times, 
with each fold serving as the validation set once. 
Stratified k-fold ensures that each fold maintains the 
same distribution of classes as the original dataset, 
preventing the issue of class imbalance that could 
skew model performance. This method provided a 
more reliable estimate of the model’s accuracy and 
helped avoid overfitting by ensuring that the model 
was evaluated across diverse subsets of the data. The 
use of stratified k-fold cross-validation was 
particularly useful in ensuring that the T2T-ViT 

model performed consistently across different 
variations of the dataset. Stratified k-fold cross-
validation involves splitting the data into k folds and 
ensuring that each fold maintains the same class 
distribution as the full dataset. The performance of 
the model is evaluated by averaging the 
performance over all k folds: 
 

𝐶𝑉 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
ଵ

௞
∑ 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝐷௜)௞

௜ୀଵ                  (8) 

 
Where Di is the ith fold. 
 
5.4. L2 Regularization and Early Stopping to Prevent 

Overfitting 
 
To mitigate overfitting and further fine-tune the 
model’s performance, L2 regularization was applied 
during training. L2 regularization penalizes large 
weights, encouraging the model to learn simpler, 
more generalized patterns rather than overfitting to 
the training data. This regularization technique 
helped improve the model's ability to generalize to 
new, unseen data, which is crucial in satellite image 
classification, where unseen images may contain 
variations that were not present in the training set. 
In addition, early stopping was used to monitor the 
model’s performance during training and halt the 
process when the validation accuracy no longer 
improved. This prevented the model from training 
too long and overfitting to the training set, leading 
to a more robust and generalizable model. L2 
regularization penalizes large weights and 
encourages the model to learn simpler patterns.  
 
𝐿௥௘௚ = 𝐿௟௢௦௦ + λ ∑ 𝑤௝

ଶௗ
௝ୀଵ                                            (9) 

 
Where Lloss is the loss function, wj are the weights, 
and λ is the regularization strength. Early stopping 
halts training if the validation loss doesn't improve 
for a specified number of epochs, preventing 
overfitting. The combination of these tuning 
techniques resulted in a significant improvement in 
the T2T-ViT model's performance. The advanced 
preprocessing, ensemble learning, and 
regularization strategies collectively led to a notable 
boost in the model's classification accuracy, raising 
it from 73.21% to 84.09%. This highlights the 
importance of optimization strategies in enhancing 
the capabilities of deep learning models like T2T-
ViT. 
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Figure 7. Role of Tuning Techniques to improve accuracy. 

By employing a multi-faceted approach to model 
tuning, this study demonstrated how a well-tuned 
Transformer model could achieve high levels of 
performance, making it a strong candidate for 
satellite image classification tasks. The combination 
of robust data handling, model blending, and 
validation techniques has set the stage for further 
advancements in the field. 
 
6. HYPER PARAMETER ANALYSIS 
 
This study explores the impact of parameter tuning, 
preprocessing strategies, and ensemble learning 

techniques on machine learning model performance, 
achieving significant improvements in classification 
accuracy. Several key parameters were analyzed, 
including token dimensions, scaling methods 
(MinMaxScaler, StandardScaler, and 
RobustScaler), and imputation strategies (Median, 
Mean, and Mode). The iterative optimization 
process revealed that larger token dimensions (e.g., 
128) combined with advanced preprocessing 
techniques and robust regularization yielded 
substantial gains in performance.  

 
Table 3. Impact of Hyperparameter Tuning on Model Accuracy. 

Parameter 
Set 1 - 
Default 

Set 2 - More 
Iterations 

Set 3 - Stronger 
Regularization 

Set 4 - 
Different 

Imputation 

Set 5 - 
Aggressive 
Ensemble 

 Token Dimension 32 64 16 64 128 
Ensemble Method False True True True True 

Imputation Strategy Median Mean Median Mode Median 
Scaling Method MinMaxScaler StandardScaler RobustScaler RobustScaler MinMaxScaler 

Hist Gradient Classifier - 
Max Iterations 

100 250 150 200 300 

Logistic Classifier - Max 
Iterations 

2000 2500 1000 1500 3000 

Logistic Classifier - 
Regularization (C) 

0.1 0.1 0.01 0.1 0.1 

Random Forest Classifier - 
Number of Estimators 

100 150 100 100 200 

Random Forest Classifier - 
Max Depth 

8 12 6 14 18 

Accuracy (%) 80.67 96.67 91.68 96.57 97.09 
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Accuracy improvements ranged from 80.67% in the 
baseline configuration to a peak of 97.09% with an 
aggressive ensemble approach, demonstrating the 
importance of parameter interplay in model 
refinement. Ensemble learning was identified as a 
critical driver of performance enhancement. 
Configurations with ensemble methods consistently 
outperformed single-model setups, with accuracies 
exceeding 96% across multiple parameter settings. 
Specifically, increasing the number of Random 
Forest estimators from 100 to 200 and adjusting the 
maximum depth from 6 to 18 enhanced the model's 
ability to capture complex data patterns. Similarly, 
using higher maximum iterations and stronger 
regularization improved robustness and prevented 
overfitting. The integration of these strategies, along 
with token dimension adjustments, further 
optimized the model's predictive capabilities. The 
study underscores the importance of systematic 
parameter exploration and advanced techniques in 
achieving high classification accuracy. The 
combination of preprocessing strategies, 
hyperparameter tuning, and ensemble methods 
consistently yielded accuracies above 90%, with the 
highest performance of 97.09% obtained by 
balancing aggressive ensemble strategies, robust 
scaling methods, and optimized token dimensions. 
 

 
 Figure 8. Hyper parameter Tuning Analysis. 

These findings emphasize the significance of 
iterative experimentation and provide a structured 
framework for designing high-performing machine 

learning pipelines for diverse datasets and 
applications. 

7. OPTIMIZATION USING PSO 
 
Particle Swarm Optimization (PSO) is a powerful 
optimization algorithm inspired by the social 
behavior of birds flocking or fish schooling. It 
simulates the movement of particles in a search 
space, where each particle represents a potential 
solution to the optimization problem. These 
particles explore the search space based on their 
own experiences and the experiences of neighboring 
particles, iteratively improving their positions. 
PSO’s strength lies in its ability to efficiently 
explore large and complex hyperparameter spaces, 
which makes it particularly suitable for optimizing 
deep learning models like T2T-ViT, where manual 
tuning of hyperparameters can be time-consuming 
and ineffective. PSO to optimize hyperparameters 
related to a T2T Vision Transformer with tuning 
techniques, such as the ensemble method, 
imputation strategy, scaling method, and the 
specific hyperparameters of various classifiers.  
Step-1: Define the Search Space  
The first step in PSO involves defining the 
hyperparameters to be optimized. For the T2T 
Vision Transformer, the search space includes 
parameters such as the token dimension (D), the use 
of the ensemble method (EM), the imputation 
strategy (IS), and the scaling method (SM). 
Additionally, classifier-specific parameters such as 
the maximum iterations for the Histogram Gradient 
Boosting Classifier (HGC_max_iter) and Logistic 
Regression Classifier (LogReg_max_iter), 
regularization strength for Logistic Regression 
(LogReg_C), and the number of estimators 
(RF_n_estimators) and maximum depth 
(RF_max_depth) for the Random Forest Classifier 
are included. Each parameter has predefined 
discrete values or ranges that the particles will 
explore.  
Step-2: Initialize the PSO Parameters 
Next, initialize key PSO parameters, such as the 
swarm size and the dimension of each particle, 
which corresponds to the number of 
hyperparameters. Set values for inertia weight (w), 
cognitive coefficient (c₁), and social coefficient (c₂) 
to influence particle movement. Additionally, 
impose limits on the maximum velocity to control 
how far particles can move in the search space 
during each iteration. 
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Step-3: Initialize Particles (Position and 
Velocity) 
 
Each particle in the swarm represents a set of 
hyperparameters for the T2T-ViT model. The 
position of each particle is randomly initialized 
within the defined search space. The velocity 
represents the change in position over time and is 
also randomly initialized. The position vector of 
each particle is a vector of hyperparameter values, 
e.g., θ=[D, EM, IS, SM, HGCmax_iter, 
LogRegmax_iter, LogRegC, RFn_estimators, 
RFmax_depth]. The velocity vector determines how 
much to change the particle’s position in the next 
iteration. 
 
Step-4: Evaluate the Fitness Function 
For each particle, evaluate its fitness by first 
applying the hyperparameters (e.g., scaling method, 
imputation strategy) to preprocess the dataset. Train 
the T2T-ViT model using the specified 
configuration and compute its classification 
accuracy on the validation dataset. Since PSO is a 
minimization algorithm, the fitness function is 
defined as the negative of the model’s accuracy (f(θ) 
= -Accuracy(θ)), ensuring better-performing 
configurations yield lower fitness values.  
 
Step-5: Update the Personal Best (p_best) 
After evaluating the fitness of each particle, update 
the personal best position pbest  of the particle. The 
personal best is the best set of hyperparameters that 
the particle has encountered so far. If the particle’s 
current fitness is better than the previously recorded 
fitness, update the personal best position:  

         Pbest = θ         if      f(θ)<f(pbest)         (10) 

Step-6: Update the Global Best (g_best) 
After evaluating all the particles, update the global 
best position gbest. This is the best set of 
hyperparameters encountered across all particles in 
the swarm. If any particle’s fitness is better than the 
global best fitness, update the global best position:  
 

gbest=θ            if          f(θ)<f(gbest)             (12) 
 
Step-7: Update Particle Velocities and Positions 
Using the PSO velocity update equation, update the 
velocities and positions of all particles: 
 
vi(t+1)=w⋅vi(t)+c1⋅r1⋅(pbest−xi(t))+c2⋅r2⋅(gbest−xi(t))  
                                                                             (12) 

Where, vi(t) is the velocity of the i-th particle at time 
step t, xi(t) is the position of the i-th particle at time 
step t, r1 and r2 are random numbers between 0 and 
1, c1 and c2 are the cognitive and social coefficients 
(typically 2.0), w is the inertia weight. 

               xi(t+1)=xi(t)+vi(t+1)                        (13) 

This update moves the particle to a new position in 
the search space based on its velocity. 
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Figure 9. PSO Flow to optimize T2T Vision Transformer Hyperparameters. 
 

Step-8: Check for Convergence 
After updating the particles, check if the swarm has 
converged. This can be done by checking if, the 
global best position gbest has stopped improving for a 
certain number of iterations. The difference between 
the fitness values of the best particle and the global 
best is below a threshold. If convergence is reached, 
then the process ends. Otherwise, the optimization 
process continues with the updated velocities and 
positions. 
Step-9: Return the Optimal Hyperparameters 
Once PSO has converged or completed the defined 
iterations, the hyperparameters in the global best 
position gbest will represent the optimal configuration 
for the T2T-ViT model. In T2T-ViT model 
optimization, PSO was employed to fine-tune 
several critical hyperparameters that directly impact 
the model’s performance. Additionally, PSO was 
used to optimize ensemble methods, classifier 
parameters such as iterations and regularization, and 
the number of training epochs for faster 
convergence. By using PSO, the model could 

achieve a more precise configuration, which 
ultimately led to a remarkable performance 
improvement, increasing accuracy 98.75%. 

 
Figure 10. PSO for Hyperparameter Tuning Performance 

Analysis. 

Define Search 
Space 

Initialize the PSO Parameters i.e., Create 
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Table 4. Comparison of Classification Accuracy and Optimization Techniques in Satellite Image Classification. 

Ref./Present 
Work 

Model 
Optimization 
Techniques 

Dataset 
Classification 

Accuracy 
(%) 

Key Findings 

[30] 
ViT  

(Vision 
Transformer) 

Standard 
Hyperparameter 
Tuning, Cross-

validation 

ImageNet 76.90% 

Focused on the Vision 
Transformer model for 
image classification, 
using standard tuning 

methods and achieving 
moderate accuracy. 

[31] 

CNN 
(Convolutional 

Neural 
Network) 

Traditional 
CNN 

Architecture 

CIFAR-10, 
CIFAR-100 

85.0% 

Implemented CNN 
architectures with 

traditional approaches, 
achieving solid 

performance for object 
recognition tasks on 

CIFAR datasets. 

[32] 

Transformer-
based Model 
(BERT-like 
for Images) 

Data 
Augmentation, 

Fine-tuning 
ADE20K 85.60% 

Introduced a hybrid 
transformer model for 
image segmentation, 

leveraging fine-tuning 
and data augmentation to 
achieve high accuracy in 

segmentation tasks. 

[33] 

CAiT  
(Class-

Attention in 
Vision 

Transformer) 

Attention 
Mechanisms, 
Learning Rate 
Optimization 

Diverse 
Natural 
Images 

88.40% 

Enhanced ViT with 
attention mechanisms, 
achieving improved 

results on natural image 
datasets, outperforming 
the standard ViT model 
in several benchmarks. 

Present Work 

T2T-ViT 
(Tokens-to-

Token Vision 
Transformer) 

Ensemble 
Learning, PSO, 

Feature 
Normalization, 
Stratified k-fold 

CV, L2 
Regularization 

Satellite 
Imagery 

(Customized 
Dataset) 

98.75% 

Achieved highest 
accuracy with PSO 

optimization. 
Demonstrated the power 

of combining 
Transformer models with 

advanced optimization 
for satellite image 

classification. 

8. CONCLUSION 
 
This paper presents a novel approach to satellite 
image classification by leveraging the power of 
Transformer Neural Networks, focusing particularly 
on the Tokens-to-Token Vision Transformer (T2T-
ViT). The study introduces several innovative 
elements, including advanced preprocessing 
techniques such as resizing, histogram equalization, 
noise reduction, and data augmentation, all aimed at 
enhancing the quality of satellite images. By 
exploring multiple Transformer models (ViT, CAiT, 
PVT, and T2T-ViT), the research identifies T2T-
ViT as the top performer, achieving an accuracy of 
73.21%. To further improve this result, the study 
incorporates a range of machine learning 
optimization techniques, such as ensemble methods, 

stratified k-fold cross-validation, and feature scaling, 
which elevate the accuracy to 84.09%. The 
significant breakthrough of this study is the 
application of Particle Swarm Optimization (PSO) 
for hyperparameter tuning, which refines key 
elements like image size, token dimension, and 
classifier parameters, leading to a remarkable 
increase in accuracy to 98.75%. This research 
contributes to the field by demonstrating the power 
of combining state-of-the-art Transformer 
architectures with advanced optimization strategies. 
It not only establishes a new benchmark in satellite 
image classification (SIC) but also offers a 
comprehensive solution that improves model 
performance and generalization. This work 
highlights the importance of iterative optimization 
techniques and provides a structured framework for 
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future developments in SIC, with potential 
applications in a wide range of remote sensing and 
machine learning tasks. 
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