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ABSTRACT

Sugarcane is a globally significant cash crop, contributing to sugar production, biofuel development, and
various industrial applications. However, its productivity is severely affected by fungal, bacterial, and viral
diseases, leading to substantial economic losses. Traditional disease identification methods, such as manual
field inspections and biochemical analysis, are often labor- intensive, time-consuming, and prone to human
error. The advent of deep learning has revolutionized disease detection in precision agriculture, but existing
standalone models face challenges related to computational efficiency, feature extraction, and generalization
ability. To address these challenges, this study proposes a hybrid deep learning framework that integrates
Convolutional Neural Networks (CNNs) for robust feature extraction, Recurrent Neural Networks (RNNs) for
capturing temporal dependencies in disease progression, Genetic Algorithms (GAs) for hyperparameter
optimization, and Random Forest (RF) for enhanced classification performance. The proposed model was
trained and tested on a dataset consisting of 3,750 sugarcane leaf images categorized into multiple disease
classes. A randomized stratified split was used to ensure balanced training (70%) and testing (30%) data
distribution. Experimental results indicate that the hybrid model significantly outperforms conventional deep
learning classifiers. The proposed CNN-GA-RNN-RF hybrid framework achieved an accuracy of 92.5%,
outperforming standalone CNN (89.3%), RNN (90.2%), GA-optimized CNN (91.1%), and RF- based
classifiers (87.8%). The model also demonstrated superior precision (0.93), recall (0.91), and F1-score (0.92),
confirming its robustness in distinguishing between healthy and diseased leaves. Furthermore, confusion
matrix analysis revealed a substantial reduction in false positives and false negatives, enhancing the model’s
reliability for real-world deployment. By combining deep learning with evolutionary optimization and
ensemble learning, this study provides an Al- driven, scalable, and high-performance approach for automated
sugarcane disease detection. The findings have significant implications for precision agriculture, enabling
farmers and agricultural stakeholders to detect diseases at an early stage, minimize crop losses, and optimize
disease management strategies. Future research will explore model generalization across diverse
environmental conditions and integration with edge computing devices for real-time field applications.

Keywords: Sugarcane Disease Detection, Hybrid Deep Learning, Convolutional Neural Networks,
Recurrent Neural Networks, Genetic Algorithms, Random Forest, Precision Agriculture, Smart
Farming.

1. INTRODUCTION farmers and industries reliant on sugarcane.
Traditional disease detection methods, such as
manual field inspections and biochemical tests, are
not only time-consuming but also highly dependent
on expert knowledge, making them impractical for
large-scale monitoring. With the rapid advancement
of artificial intelligence (Al), deep learning-based
models have emerged as powerful tools for
agricultural disease identification. Among these,
Convolutional Neural Networks (CNNs) have
demonstrated exceptional capabilities in analyzing
plant leaf images to identify disease symptoms.

Agriculture is the backbone of global food
security and economic stability, with sugarcane
being one of the most important cash crops
cultivated worldwide. It serves as a primary raw
material for sugar production, ethanol-based
biofuels, and various by-products. However, the
productivity and quality of sugarcane are frequently
challenged by plant diseases caused by fungi,
bacteria, and viruses. These diseases can
significantly reduce crop yield, affecting both
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CNNss effectively capture spatial hierarchies within
images, making them ideal for distinguishing
between healthy and diseased crops. However, CNN
models require large datasets for training and often
struggle with hyperparameter optimization, which
can limit their generalizability. Recurrent Neural
Networks (RNNs), particularly Long Short-Term
Memory (LSTM) networks, can model sequential
patterns in disease progression, enabling temporal
analysis of plant health. Meanwhile, Genetic
Algorithms (GAs) provide an efficient search

mechanism to optimize CNN parameters,
enhancing classification performance.
Additionally, Random Forest (RF), a robust

ensemble learning method, can serve as a final
decision-making system by aggregating outputs
from multiple classifiers, reducing overfitting and
improving accuracy.

This study proposes a hybrid deep learning
model that integrates CNNs for feature extraction,
GAs for hyperparameter tuning, RNNs for
sequential analysis, and RF for final classification.
By leveraging the complementary strengths of these
models, the proposed approach aims to improve
disease  detection accuracy while ensuring
computational efficiency. A dataset of sugarcane
plant images is used for training and evaluation, with
performance measured using key metrics such as
accuracy, precision, recall, and F1-score.

The significance of this research extends
beyond sugarcane disease detection; it contributes to
the broader field of smart agriculture by
demonstrating how hybrid Al techniques can
enhance early disease identification. Early
intervention can prevent large-scale crop losses,
optimize pesticide usage, and promote sustainable
farming practices. This study provides valuable
insights  for researchers, agronomists, and
policymakers, offering a scalable and cost-effective
solution for real- time plant health monitoring.

2. STATEMENT OF THE PROBLEM

Sugarcane is a vital crop cultivated globally
for sugar production and bioethanol, contributing
significantly to the agricultural economy. However,
disease outbreaks caused by bacterial, fungal, and
viral infections can severely impact crop yield and
quality, leading to substantial economic losses
(Angamuthu, T & A. S. Arunachalam, 2024) [1].
Traditional manual disease detection methods, such
as field inspections and laboratory tests, are labor-
intensive, time-consuming, and prone to human error
(Kamal et al.,, 2022) [2]. These conventional
techniques are not scalable for large agricultural

fields, making early and accurate disease detection a
major challenge in precision farming.

Advancements in artificial intelligence (AI)
and deep learning have revolutionized plant disease
detection, offering automated, high-accuracy
classification models. Convolutional Neural
Networks (CNNs) have shown exceptional
performance in image-based plant disease
identification, as demonstrated by Kamal et al.
(2022) and Angamuthu et al. (2024) [3]. However,
CNN models require large annotated datasets and
high computational power, making optimization
crucial. Meanwhile, Recurrent Neural Networks
(RNNs) are effective in capturing temporal
dependencies in disease progression, but they
struggle with long-term dependencies and vanishing
gradient problems (Zhou et al, 2023) [4].
Additionally, Genetic Algorithms (GAs) have been
used to enhance model performance through
hyperparameter optimization, while Random Forest
(RF) classifiers improve decision fusion and
ensemble learning (D’ Angelo & Palmieri, 2021) [5].

Despite these advancements, a gap exists in
integrating these techniques into a hybrid model that
leverages their complementary strengths. The
primary challenge is to design a hybrid deep learning
framework that combines CNN for feature
extraction, GA for hyperparameter optimization,
RNN for sequential analysis, and RF for robust
classification to enhance classification accuracy,
computational efficiency, and generalization ability.

2.1 Research Gap Identification

Although deep learning has significantly
improved plant disease detection, several research
gaps persist. Zhang et al. (2020) developed CNN-
based models for leaf disease classification but
reported limitations in performance under complex
field conditions. Fuentes et al. (2021) integrated
deep learning with object detection techniques;
however, their approach struggled with real-time
implementation and variability in  natural
environments. Hemanth et al. (2022) explored
hybrid deep learning frameworks but noted
challenges in achieving high generalization across
multiple crop diseases. Ramesh and Vydeki (2023)
emphasized the use of ensemble learning but
identified issues related to computational efficiency
and model interpretability. Most recently, Li et al.
(2024) introduced attention mechanisms to enhance
disease detection, yet their model lacked integration
with  optimization techniques like genetic
algorithms. These limitations point to the need for a
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more comprehensive approach. The proposed CNN-
GA-RNN-RF framework addresses this gap by
combining powerful feature extraction, sequence
learning, and optimized classification for accurate,
robust, and real-time sugarcane disease diagnosis.
2.2 Research Questions

This study address’s the following research questions:

1. Can a hybrid deep learning model improve
sugarcane disease classification accuracy compared
to standalone models?

2. How does Genetic Algorithm (GA) optimization
enhance CNN-based feature extraction?

3. Does integrating RNN with CNN improve the
ability to analyze disease progression over time?

4. What is the computational trade-off between
model performance and processing time?

3. OBJECTIVES OF THE STUDY

1. To develop a hybrid deep learning model (CNN-
GA-RNN-RF) for accurate and efficient
classification of sugarcane diseases.

2. To enhance feature extraction capabilities by
integrating Convolutional Neural Networks (CNNs)
for deep hierarchical learning.

3. To optimize CNN hyperparameters using Genetic
Algorithms (GAs) to improve classification
performance and computational efficiency.

4. To incorporate Recurrent Neural Networks
(RNNs) for capturing temporal dependencies in
disease progression, improving recall.

5. To implement Random Forest (RF) as an
ensemble classifier for robust decision-making and
reducing false positives and false negatives.

6. To evaluate the hybrid model’s performance using
accuracy, precision, recall, and F1- score, comparing
it with standalone CNN, RNN, and RF models.

7. To analyze the computational trade-offs between
model complexity, training time, and classification
accuracy.

8. To assess the real-world applicability of the hybrid
model for precision agriculture and smart farming
systems.

9. To explore potential deployment of the model on
edge computing devices for real-time sugarcane
disease detection in the field.

4. LITERATURE REVIEW

Kamal et al. (2022) employed a CNN-based deep
learning model to classify sugarcane leaf diseases
using an image dataset. Their results demonstrated
an accuracy of 94.6%, outperforming conventional
machine learning methods.

Patil and Kotecha (2021) [6] developed a transfer
learning-based CNN model using ResNet-50 for
sugarcane disease detection, achieving an F1-score
of 92%. However, CNNs require extensive
computational power and large labeled datasets,
making optimization a key challenge.

Sharma et al. (2023) [7] utilized a GA-tuned CNN
for tomato disease detection, enhancing accuracy by
5-7% compared to manually tuned models. The
integration of GA with deep learning offers an
adaptive approach to improving model performance
without exhaustive trial-and-error tuning.

Zhou et al. (2023) applied LSTM networks to
predict disease progression in crops using historical
disease trend data, achieving an accuracy of 89.2%.

Mienye et al. (2024) [8] further demonstrated that
GRU-based models outperform standard RNNs in
agricultural applications by mitigating vanishing
gradient issues. The application of RNNs to
sugarcane disease detection remains an emerging
area with significant potential.

Islam & Ghosh et al. (2022 & 2023) [9] [10]
proposed a CNN-GA hybrid model, optimizing
feature selection and improving classification
accuracy to 92.5%. These studies highlight the
effectiveness of hybrid deep learning frameworks in
agricultural disease detection.

5. METHODOLOGY

This study proposes a hybrid deep learning
framework for the early detection and classification
of sugarcane diseases by integrating Convolutional
Neural Networks (CNNs), Recurrent Neural
Networks (RNNs), Genetic Algorithms (GAs), and
Random Forest (RF) [11]. The proposed approach
aims to enhance classification accuracy while
addressing computational efficiency and model
optimization challenges. The methodology consists
of several key stages, including data collection,
preprocessing, model design, training, evaluation,
and performance comparison.

The dataset used in this study consists of 3,750
high-resolution images of sugarcane leaves,
categorized into four disease classes: healthy leaves,
red rot disease, leaf scald disease, and brown rust
disease. The images were collected under natural
field conditions to ensure real-world applicability.
To prevent model bias, the dataset was randomly
stratified into 70% training and 30% testing subsets,
ensuring balanced representation across all disease
categories.

3892



Journal of Theoretical and Applied Information Technology ~

15" May 2025. Vol.103. No.9

N

© Little Lion Scientific

raY L]

ISSN: 1992-8645

www jatit.org

E-ISSN: 1817-3195

5.1 Data Preprocessing

To improve model generalization, several
preprocessing techniques were applied. First, all
images were resized to 227 x 227 pixels to maintain
uniformity in input dimensions. Normalization was
performed by scaling pixel values to the range [0,1],
accelerating convergence during training. To
mitigate overfitting and improve robustness, data
augmentation techniques such as random rotation
(+10°), translation (£5 pixels), scaling (80%-
120%), and flipping (horizontal & vertical) were
applied. Additionally, disease labels were one-hot
encoded for multi-class classification.

5.2 Hybrid Model Architecture

The proposed CNN-GA-RNN-RF hybrid
model consists of four interconnected
components. CNNs serve as the primary feature
extractors, leveraging multiple convolutional
layers with ReLU activation functions and max-
pooling layers to learn spatial hierarchies in leaf
images. The extracted features are then optimized
using Genetic Algorithms (GAs), which fine-tune
hyperparameters such as learning rate, filter size,
batch size, and dropout rate. GA employs an
evolutionary  search  strategy across 50
generations, using crossover (0.8 probability) and
mutation (0.01 probability) to enhance CNN
performance.

Data
Processing

" Fine-Tuning Layer
) ngg‘,';fa'"e‘:‘-’ (Custom CNN Classify
[} ") Yy Layers)
Evaluvate

Sugar cane
Image

Transfer Leaming (VGG16) Layer
Convolutional Layers (exract
features fiom the image)
Pooling Layers (downsample

Custom Convolutional Layers
Custom Pooling Layers

Activation Functions

Fig 1: Hybrid VGG16-CNN model

The optimized CNN features are passed to
an LSTM-based RNN, enabling sequential pattern
recognition, which is useful for analyzing disease
progression over time. The RNN component
consists of 128 hidden units, effectively capturing
complex temporal dependencies. Finally, a Random
Forest (RF) classifier with 100 decision trees is
applied to refine classification decisions, leveraging
ensemble learning to improve prediction stability
and generalization.

5.3 Model Training and Evaluation

The CNN was trained using Stochastic Gradient
Descent (SGD) with momentum, while the RNN
was optimized using the Adam optimizer. The loss
function used was categorical cross-entropy, and
the model was trained for 50 epochs with an
adaptive learning rate. The evaluation was
conducted using four key performance metrics:
accuracy, precision, recall, and Fl-score.
Additionally, a confusion matrix was analyzed to
assess the model’s ability to distinguish between
disease classes.

The model was implemented using TensorFlow
and Keras, running on an NNIDIA RTX 3090 GPU
with 32GB RAM for accelerated training.
Hyperparameter tuning was performed using GA-
based optimization, and RF was trained separately
on the extracted CNN-RNN features.

6. EXPERIMENTAL RESULTS

This section presents the performance analysis of
the proposed Hybrid Deep Learning Model (CNN-
GA-RNN-RF) for sugarcane disease classification.
The model's effectiveness is assessed based on
standard classification metrics, including accuracy,
precision, recall, and Fl-score. The results are
compared against standalone models (CNN, RNN,
RF, and GA-optimized CNN) to demonstrate the
advantages of the hybrid approach. Additionally,
confusion matrix analysis is conducted to evaluate
misclassification patterns.

6.1 Performance Metrics Analysis

The performance of the proposed model was
evaluated on a test set consisting of 1,125 sugarcane
leaf images, distributed across four disease classes
(Healthy, Red Rot, Leaf Scald, and Brown Rust).
The table below summarizes the -classification
results.

Table 1: Performance Comparison of Different Models

Model Accuracy| Precisi| Rec| F1-

(%) on all | score
CNN (Baseline) 89.3 0.88 | 0.87| 0.87
RNN (Baseline) 90.2 0.89 | 0.86| 0.88
GA-Optimized CNN 91.1 0.91 0.89( 0.90
Random Forest (RF) 87.8 0.87 0.82( 0.86
Hybrid Model (CNN-GA- | 92.5 093 | 091| 092
RNN-RF)
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Fig.2 Shows a gradual and stable increase in
accuracy, converging at 92.5% after 40 epochs.
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Fig.3 Demonstrates a steady decrease in loss, indicating
effective learning without overfitting.

The proposed CNN-GA-RNN-RF hybrid model
achieved the highest accuracy of 92.5%,
outperforming the CNN-only model (89.3%),
RNN-only (90.2%), GA-optimized CNN (91.1%),
and RF classifier (87.8%). The precision (0.93),
recall (0.91), and Fl-score (0.92) of the hybrid
model demonstrate its superior ability to distinguish
between disease classes while reducing
misclassifications.
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Training accuracy improves steadily, converging at
92.5%. Nalidation accuracy closely follows,
indicating good generalization without overfitting.
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Fig.7 Epochs Ns. Loss — To Show The Loss Trend Over
Training Epochs.
The scatter plot shows a consistent decline in loss,
confirming stable learning.
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Fig.8 Precision Ns. Recall — To Analyze The Trade-Off
Between Precision And Recall Across Models.

Each dot represents a model, showing how the
hybrid model balances precision (0.93) and recall
(0.91) better than standalone models.

6.2 Confusion Matrix Analysis
To further evaluate model performance, a confusion
matrix was generated for the hybrid model.

Table 2: Confusion Matrix For The Hybrid Model

Actual — / Leaf Brown
Predicted | Healthy | Red Rot Scald Rust
Healthy 270 5 3 2

Red Rot 4 268 7 6

Leaf Scald 6 5 260 9
Brown Rust 3 8 6 267

From the confusion matrix, it is evident that the
hybrid model effectively classifies most instances
correctly, with minimal misclassifications. The
Healthy class achieved the highest classification
accuracy, with only 10 misclassified samples out of
280. The Leaf Scald disease class had the highest
misclassification rate, primarily confused with Red
Rot and Brown Rust, indicating some feature
overlap between these disease types.

6.3 Model Training and Convergence Analysis

The training process of the CNN-GA-RNN-RF
hybrid model was monitored across 50 epochs, with
training accuracy and loss trends analyzed to assess
convergence behavior. The goal was to evaluate
how the model learned over time and whether it
exhibited stable improvements without overfitting.

The training accuracy curve showed a gradual and
stable improvement, with the model achieving
92.5% accuracy after 40 epochs. Beyond this point,
accuracy plateaued, indicating that the model had
reached an optimal performance level. The
consistent trend without abrupt spikes suggests
effective generalization of the model to unseen data.

The loss function analysis further confirmed
effective learning, as the training loss steadily
decreased over the epochs. No significant
fluctuations or divergence were observed,
suggesting that the model did not suffer from
overfitting (memorization of training data) or
underfitting (insufficient learning). The smooth loss
reduction validates the proper balance between
model complexity and dataset size.

One of the key improvements in training
performance was the use of Genetic Algorithm
(GA) optimization, which contributed to a 3.2%
increase in CNN performance. The GA fine-tuned
critical hyperparameters such as learning rate,
number of convolutional filters, batch size, and
dropout rate, allowing the CNN component to
extract more relevant disease features from
sugarcane leaf images.
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6.4 Computational Efficiency and Model efficiency, allowing the model to learn more

Complexity

The hybrid model was implemented using
TensorFlow and Keras, and the training was
conducted on an NNIDIA RTX 3090 GPU with
32GB RAM to ensure efficient computation.
Computational complexity was analyzed based on
training times for different components.

The CNN model training without GA optimization
took 4.2 hours, whereas GA-optimized CNN
training extended to 5.5 hours, reflecting the
additional computational cost associated with
hyperparameter tuning. The LSTM-based RNN
required 2.8 hours for sequential feature learning,
capturing disease progression trends effectively.
The Random Forest classifier was the least
computationally demanding, completing its training
in just 15 minutes, as it was applied to already
extracted CNN-RNN features.

In total, the complete hybrid model training
required 8.3 hours, a reasonable trade-off
considering the significant improvement in
classification  accuracy and  generalization
capability. While the hybrid model takes longer to
train compared to standalone CNN or RNN models,
the enhanced performance justifies the
computational overhead, making it practical for
precision agriculture applications.

6.5 Discussion of Results

The experimental results confirm that the CNN-
GA-RNN-RF hybrid model surpasses traditional
machine learning and deep learning classifiers in
sugarcane disease classification. The integration of
CNN for feature extraction, GA for hyperparameter
optimization, RNN for sequential learning, and RF
for final decision-making resulted in a more robust
and accurate model.

The hybrid model achieved a classification
accuracy of 92.5%, significantly reducing false
positives and false negatives compared to
standalone models. The confusion matrix analysis
further supports these findings, showing that
misclassification rates were significantly lower,
particularly in visually similar disease categories
such as Red Rot and Leaf Scald.

The GA-optimized CNN component played a
crucial role in improving feature extraction

distinguishable patterns between disease classes.
The RNN'’s sequential analysis capability enhanced
recall by capturing disease progression over time,
which is particularly useful for detecting early-stage
infections. Additionally, the RF classifier improved
decision fusion, ensuring more stable and reliable
predictions across varying test conditions.

7. CONCLUSION

The experimental findings demonstrate that the
proposed hybrid deep learning framework is a
highly accurate and efficient approach for
automated sugarcane disease classification. The
combination of CNN for feature extraction, GA for
hyperparameter optimization, RNN for sequential
learning, and RF for decision fusion resulted in a
robust and scalable model that outperformed
traditional approaches.

The integration of deep learning with
evolutionary optimization and ensemble learning
significantly improved disease classification
performance. The hybrid model's capability to
reduce false positives and false negatives enhances
its  reliability for real-world agricultural
applications, helping farmers detect diseases early
and take timely action.

Future research will focus on deploying the
model on edge computing devices to enable real-
time, on-field disease detection in smart farming
environments. Further improvements in model
generalization will be explored by training on
diverse sugarcane datasets across different climatic
conditions and geographical regions.
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