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ABSTRACT 

A brain tumour (BT) is a severe and lethal disease that significantly reduces human lifespan. Magnetic 
resonance imaging (MRI) is a commonly employed imaging technique for the early detection of tumours. 
The segmentation and classification of brain tumours (BTs) through manual and traditional methods is a 
labour-intensive and subjective process, necessitating the involvement of expert radiologists for evaluation, 
which may result in prediction inaccuracies. Class imbalance presents a notable challenge in MRI datasets, 
impacting the efficacy of the classification system. This paper presents an optimised deep learning approach, 
referred to as Honey Badger optimised Long Short-Term Memory (HBLSTM), aimed at the detection of BT 
through effective segmentation and feature extraction methodologies. The preprocessing steps are conducted 
on the collected CE-MRI dataset to reduce noise through Gaussian filtering. The class imbalance issue is 
addressed through the application of the Adaptive Synthetic Sampling (ADASYN) model. The system 
employs the Spatial and Channel attention-based Three-Dimensional U-shaped Network (SC3DUNet) for 
tumour segmentation. The segmentation images utilise the most discriminative features through the Spatial 
Pyramid Pooling centred Xception Network (SPPXNet). The essential features are subsequently selected 
utilising the Diagonal Linear Uniform and Tangent Flight-based Butterfly Optimisation Algorithm 
(DTBOA). The tumour classes are classified utilising the HBLSTM algorithm. The experimental results 
demonstrate the efficacy of our hybrid deep learning models, achieving an average accuracy of 99.81% in 
tumour detection, surpassing current state-of-the-art models. 

Keywords: Brain Tumor, Segmentation, Magnetic Resonance Imaging, Figshare Dataset, Dataset 
Balancing, Pre-trained CNN, Deep Learning 

1. INTRODUCTION  

For human beings, a BT is one of the most 
threatening malignancies caused by uncontrolled 
and abnormal cell divisions, mainly in the brain or 
in the nerves of the skull [1]. Almost 120 categories 
of BTs are affecting people, which the National BT 
Society reported. The primary classes are Glioma, 
Meningioma, and Pituitary tumors. Almost 75% of 
BTs were covered by these three types, which 
include 45% for Glioma, 15% for Meningioma, and 
15% for Pituitary [2]. Nowadays, Magneto 

Encephalo Graphy (MEG), X-ray, 
Ultrasonography, Computed Tomography (CT), 
MRI, Electro Encephalo Graphy (EEG), and 
Positron Emission Tomography (PET) have not 
only emerged to demonstrate the complete and 
detailed facets of BTs but also to analyze the tumor 
precisely and provide exact treatment mechanisms 
by the doctors [3]. MRI is the most familiar imaging 
approach for determining BTs [4]. The initial step 
is considered tumor segmentation in the analysis of 
MRIs of infected people. A lot of time and effort 
was spent during the manual segmentation of tumor 
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areas because it included many tissue regions and 
varying degrees of degradation. Fuzzy clustering, 
region-based segmentation, thresholding, 
watershed, k-means clustering, and Otsu’s method 
are widely used approaches to perform tumor 
segmentation, which avoids manual segmentation 
[5]. In addition to these models, CNN and its 
variants are also used in image segmentation 
processes by learning the hierarchical features of 
MRI and capturing the essential features like shape, 
texture, and intensity variations related to the 
tumors.  

Recently, the 3D-UNet has gained significant 
traction for image segmentation in the biomedical 
domain. It yields favourable outcomes with 
numerous examples. Extracting deeply hidden 
features for tumour segmentation remains 
challenging, despite the superior performance of the 
3D-UNet model. The system employed a modified 
3D-UNet model to extract local and global features 
for improved tumour segmentation accuracy. The 
fundamental function of medical image analysis is 
image classification [6, 7]. It is essential to identify 
the tumour type present in the patient, such as 
glioma, pituitary tumour, or meningioma [8]. 
Recent advancements in machine learning, 
particularly in deep learning, have facilitated the 
recognition and classification of brain tumours from 
MRI patterns. It serves effectively as an alternative 
to acquiring knowledge from experts or technical 
literature, particularly in retrieving and extracting 
information from data. The researchers in deep 
learning utilised convolutional neural networks to 
achieve effective classification performance and 
feature extraction [10]. Employing convolutional 
neural networks (CNNs) in medical imaging 
remains a challenge. First, an increase in the volume 
of data within medical image datasets is necessary, 
as the process of saving images to the database is 
challenging and time-intensive for radiologists. 
Secondly, training convolutional neural networks 
on small datasets presents challenges related to 
overfitting. 

Consequently, for visible solutions to address 
those challenges, they used pre-trained models for 
transfer learning (TL) and fine-tuning [11]. The 
process involves using a network and training it 
with a wide-ranging database; this allows the filter 
to use the weights to create multipart activation 
maps associated with the dataset. The network 
learns the assignment with a high degree of 
overview only when the database is large enough 
[12]. The researchers trained several pre-trained 
models, such as residual network 50 (ResNet50), 

visual geometry group (VGG), GoogleNet, 
MobileNet v2, SqueezeNet, Inception V3, 
Xception, etc., to perform a specific task via transfer 
learning [13, 14]. The Xception network is a 
reliable and effective technique for best feature 
representation with the help of depth-wise separable 
convolutions that maintain higher accuracy without 
maximizing computational complexity [15]. 
However, it extracting the deep spatial features 
from the tumor images is difficult, so they still need 
improvement to categorize the tumor classes with 
less time. Thus, for BT classification from the MRI, 
the system proposes a SPPXNet-based pre-trained 
model along with HBLTSM to perform rich feature 
learning and tumor classification. The major 
objectives of the paper is explained as follows: 

 The system employs the ADASYN 
method to solve the dataset’s class 
imbalance problem by preventing the 
results from being biased toward a single 
class, i.e., the majority class. 

 The system segments the tumor lesions 
using the SC3DUNet model, incorporating 
a spatial and channel attention mechanism 
to enhance the quality of segmentation 
throughout its feature hierarchy. 

 The system introduces the SPPXNet 
model to extract features from the 
segmented images, incorporating SPP to 
learn features at a deeper level. 

 The system employs the DTBOA 
algorithm to optimally find the best 
features that reduce overfitting and 
improve model performance. 

 The system develops an HBLSTM model 
to classify the tumor classes; the 
hyperparameter is optimally selected via 
the GAHBO algorithm to improve the 
generalization and robustness of the 
classifier. 

The paper’s remaining portions are sectioned 
as follows: Section 2 presents the discussion of the 
most related works. The proposed mechanism 
includes all its phases in depth, as discussed in 
section 3. The outcomes of the proposed and 
existing methods regarding some performance 
indicators are discussed in section 4. Finally, 
section 5 describes the conclusion and future scope 
of the work. 
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2. LITERATURE REVIEW 

This section presents the significant earlier works in 
BTs segmentation and classification from MRI, 
providing a comprehensive understanding of the 
field's progress.   

A BT segmentation and classification 
system using an improved unsupervised clustering 
technique and an Extreme Learning Machine 
(ELM) was suggested by Usharani 
Bhimavarapu et al. [16]. The system used 
complete mean deviation as well as the kurtosis 
function-based improved hybrid contrast 
enhancement model for enhancing images’ 
contrast. Then, the system used the improved fuzzy 
model for image segmentation, and then the shapes, 
textures, and color features were extracted. Finally, 
the ELM was used to identify tumor classes. On the 
Fig share dataset, the method attained accuracy, 
precision, and recall rates of 98.47%, 98.59%, and 
98.74%. Sarmad Maqsood et 
al. [17] presented deep neural networks 
and multiclass SVM (M-SVM) for multi-modal BT 
detection. At first, the edges from the source image 
were determined using a linear contrast stretching 
algorithm, and then a custom 17-layered DNN was 
used to segment the BTs. Thirdly, the feature 
extraction and selection processes were carried out 
using a modified MobileNetV2 architecture and 
entropy-based controlled method. Finally, M-SVM 
was utilized to classify BTs. The system was tested 
on BraTS 2018 and Figshare datasets, achieving 
97.47% and 98.92% accuracy.  

An MRI-based BT categorization using 
CNN and Bayesian optimization was presented 
by Mohamed Ait Amou et al. [18]. The system 
used CNN on the collected images for tumor 
classification, in which hyperparameters were 
optimally selected using a Bayesian optimization 
algorithm. The system achieved 98.70% accuracy 
with the experimentation done on the T1W-CE 
MRI dataset. An MRI-based DL approach was 
presented by Ejaz Ul Haq et al. [19] for BT 
detection. Preprocessing was performed at the 
beginning to remove the noise from the MRI. The 
system then used the DCNN model to classify the 
tumor; here, the activation function and gradient are 
maintained based on Xavier initialization. The 
system used Figshare and BraTS 2018 datasets for 
experimentation, achieving 97.3% and 96.5% 
accuracy for detection. A hybrid DL approach was 
suggested by Shaimaa E. Nassar et al. [20] for 
robust BT classification. First, data augmentation 
was done to improve the dataset's quality and to 

classify the tumors; the AlexNet, ShufeNet, 
SqueezeNet, GoogleNet, and NASNet-Mobile 
methods were used. It achieved 99% accuracy with 
the experimentation on 3064 T1-weighted contrast-
enhanced brain MR images (T1W-CE MRI).  

The categorization of tumors in MRI based 
on DL was proffered by Prince Priya Malla et 
al. [21]. The system used VGGNet to extract more 
discriminative features, and also overfitting and 
gradient vanishing issues were avoided using a 
global average pooling layer at the output. Lastly, 
the distinct features were classified based on a log-
SoftMax layer, and the system reached 98.93% 
accuracy for the Figshare dataset. A novel DL-
based BT classification model was proffered 
by Mohd Anul Haq et al. [22]. To initiate, the 
system collected MRI from the MICCAI–RSNA 
and CE-MRI datasets and the system used six well-
known DL algorithms such as SE-ResNet-101, 
EfficientNetB0, SENet154, SE-ResNet-152, 
EfficientNetB5, and ResNet152V2 to categorize the 
BTs. The method reached a maximum accuracy of 
99% in the performance evaluation. Gopal S. 
Tandel et al. [23] suggested an ensemble deep-
learning model for detecting BTs from multi-MRI 
sequence data. Initially, the augmentation was 
performed to avoid overfitting. Then, the system 
adopted five CNN models, say ResNet18, VGG16, 
AlexNet, GoogleNet, and ResNet50, for classifying 
the tumors. The experimentation was carried out on 
FLAIR, T2W, and T1W-MRI datasets, and the 
maximum test accuracy was 98.88%, 97.98%, and 
94.75% for the respective datasets. 

The MRI classification of BTs based on 
vision transformers was presented by Sudhakar 
Tummala et al. [24]. The system’s overall 
accuracy was 98.7% for the experimentation done 
on the T1W CE MRI database. Abdullah A. 
Asiri et al. [25] introduced a block-wise neural 
network for BT detection. To improve the quality of 
the dataset, the system first performed 
preprocessing. To classify the tumor classes, the 
system used a pre-trained VGG19 that was fine-
tuned with CNN structural design in the block-wise 
mechanism, and it achieved 98% accuracy when the 
system used the CE-MRI dataset for evaluation. For 
classifying the BT, Syed Muhammad Ahmed 
Hassan Shah et al. [26] recommended a model, 
namely, the Voting Semi-Supervised Bayesian 
Ensemble Attention Mechanism (VS-BEAM). The 
VS-BEAM system integrated squeeze and 
excitation attention blocks to extract features, and a 
convolution autoencoder was used to segment the 
tumor. The system attained 98.91% accuracy while 
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testing its efficiency by utilizing the T1W-CE MRI 
dataset. Based on hybrid DL models, the detection 
and categorization of BTs were proffered by Baiju 
Babu Vimala et al. [27]. Preprocessing was 
performed first to prepare the samples. The system 
used pre-attained EfficientNet models, namely 
EfcientNetB0 and EfcientNetB4, for future 
extraction and classification. Then, the system 
utilized the CE-MRI Fig share dataset to fine-tune 
the model, and it offered overall accuracy and an 
F1-score of 99.1% and 98.7%.  

Zheng Liyuan [28] presented a BT 
classification using the attention-guided deep-
learning technique. A dual attention mechanism 
was used to choose the critical information 
affiliated with the objective area while avoiding 
irrelevant details. The experimental evaluation was 
made on the T1W CE-MRI database, and the 
approach achieved an overall accuracy of 98.61%. 
K. Kavin Kumar et al. [29] suggested an ensemble 
of transfer learning models, say ResNet 50, 
Inception V3 and AlexNet, with a data 
augmentation mechanism for BT detection. The 
experiment was performed on the T1W CE-MRI 
dataset, and the AlexNet model achieved 96.2% of 
higher accuracy than the other approaches.  Jiang 
Linqi et al. [30] recommended an optimal SE-
ResNeXt network for BT classification. 
Initially, the system dynamically adjusted the 
learning rate using MultiStepLR, which enhances 
the network’s learning capability. Then, a label 
smoothing strategy was utilized to optimize the 
one-hot label to reduce the dependence of the 
network on the probability distribution of actual 
labels. Finally, the tumor classification was done 
using the SE-ResNeXt model, and the system 
reached an accuracy of 97.45% and 98.99% for the 
BraTS2017, and BraTS2019 datasets.  

2.1 PROBLEM STATEMENT  

The works above show better prediction results for 
BT prediction; however, the following are their 
significant limitations to address and improve its 
performance further for higher classification 
outcomes for BT detection.  

 Noise removal is an important 
preprocessing step in any image 
processing work because the noise in the 
collected MRI image can degrade the 
quality of the image and affect its 
usefulness for analysis or display. 
However, none of the works focused on 
noise suppression. 

 It cannot be overstated how crucial it is to 
balance the collected dataset to avoid 
biased outcomes. This imbalance occurs 
when one class has a significantly higher 
number of data samples than the others. If 
the dataset is not balanced, the classifier's 
outcomes for the minority class will be 
biased. This can lead to suboptimal 
treatment planning, such as ineffective 
radiation therapy. 

 Few works focused on segmentation [16, 
17], which is crucial and essential in the 
medical field and can help diagnose and 
predict overall growth. These traditional 
models of tumor segmentation require 
manual supervision for labelling the 
medical images, which is time-consuming 
and prone to human error. Also, the 
models do not scale well on higher-
resolution images, and large datasets lead 
to computational complexity and time for 
processing the images effectively.  

 Some works use these, such as DNN and 
CNN models, for BT classification [17–
19]. They produce satisfactory 
performance; however, the random choice 
of hyperparameters in the network affects 
the model's suboptimal performance, 
lower accuracy, and sensitivity. It leads to 
the classifier being overfitted or 
underfitted in the training data. In addition, 
the poor choice of random parameters 
leads to higher training times. The model 
[18] uses Bayesian optimization for 
hyperparameter tuning, but the model 
suffers from local optimization issues and 
decreases the global search ability. 

 While many studies utilize pre-trained 
CNN models for BT classification, it's 
important to note their limitations. These 
models do offer better feature learning 
ability than standard CNNs, requiring only 
a smaller amount of data for training. 
However, they suffer from spatial 
information loss due to downsampling 
features in deep pooling layers. This loss 
of spatial information can significantly 
impact the accuracy and effectiveness of 
the classification results.    

Considering the limitations above, this paper 
offers solutions for effective BT detection using the 
following steps: Initially, Gaussian filtering is used 
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to suppress the noise in the collected MRI, 
improving the image's quality for further analysis. 
After that, the ADASYN algorithm balances the 
dataset and prevents the classifier from having 
biased outcomes. Next, the system uses the 
SC3DUNet algorithm for segmentation that focuses 
on relevant parts or features of the input data. This 
helps attain finer details and the difference between 
tumor and healthy tissue more effectively than 
traditional segmentation approaches. Then, the 
system used the SPPXNet algorithm to extract the 
most discriminant features from the segmented 
tumor regions that offer improved performance 
over traditional pre-trained CNN models by pooling 
features at multiple scales and resolutions, thus 
reducing the loss of spatial information. After that, 
it uses the DTBOA algorithm to optimally select the 
features, leading to lower computational 

complexity and higher detection accuracy. Finally, 
the system uses the HBLSTM algorithm to classify 
the tumor classes based on the optimally selected 
features, in which the hyperparameters are 
optimally chosen using the GAHBO algorithm, 
leading to the optimal classification performance of 
the classifier. 

3. PROPOSED METHODOLOGY 

Figure 1 demonstrates the overall workflow of the 
proposed BT segmentation and classification 
method. The input images are collected from the 
publicly available CE-MRI dataset. Then, the 
system uses the following steps: preprocessing, 
dataset balancing, segmentation, feature extraction, 
feature selection, and classification to perform the 
detection task more accurately.  

 

Figure 1: workflow of the proposed methodology 
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3.1 Preprocessing 

MRI images suffer from different noise sources, 
including thermal noise, motion artifacts, and 
radiofrequency interference. These noises impose 
challenges in DL-based applications. Filtering and 
motion correction techniques are used for pre-
processing to reduce noise and increase image 
quality. Gaussian filter is used in our study for the 
noise filtering process that reduces undesired 
signals or artifacts from MRI images and improves 
the image quality for subsequent analyses. Based on 
the Gaussian distribution, the weighted average of 
the surrounding pixel is computed by a non-uniform 
low-pass filter called the Gaussian filter. It is also 
used for noise reduction and is an unfocused lens 
practical model. This provides gentler smoothing 
and preserved edges, which is better than the 
existing filter algorithms. It is mathematically 
shown as follows: 

 






 


2

22

2 2
exp

2

1
,


nm

nmG   

   (1) 

Here, 𝑚 𝑎𝑛𝑑 𝑛 refers to the horizontal and 
vertical axis’ distance from the origin, and 𝜎 
represents the Gaussian distribution’s standard 
deviation.   

3.2 Dataset Balancing 

  The data was assumed to be imbalanced when 
classes were not proportionally distributed. Many 
real-time datasets suffer from imbalanced datasets, 
where standard samples have more occurrences 
than abnormal samples. Overfitting and underfitting 
are the major issues faced by the classifiers running 
on these imbalanced datasets. Therefore, addressing 
the class imbalance is essential to ensure fair and 
accurate learning, eliminating bias towards the 
majority classes, and encouraging the model’s 
ability to recognize all classes successfully, 
particularly in critical areas like medical diagnosis. 
Unfortunately, many oversampling techniques are 
not convenient for oversampling the multi-class 
imbalance problems.  For example, the overlapping 
trouble occurs when the SMOTE is applied to the 
imbalanced multi-class datasets. Hence, the 
Adaptive Synthetic Sampling (ADASYN) method 
was used by the proposed system to balance the 
collected dataset. The weighted distribution is the 
main idea of ADASYN which is to use it for various 
minority class examples according to their learning 

difficulty with generating more synthetic samples 
for the minority classes. Therefore, the ADASYN 
technique used two ways to enhance the data 
distribution learning: firstly, class imbalance bias 
was reduced, and secondly, the decision boundary 
classification was adaptively sent towards 
demanding samples. The ADASYN steps are 
explained as follows: 

Step 1: At first, degree of class imbalance is 

calculated  ID

 according to equation (2), where, 

CSMin
  

refers to minority and CSMaj  refers to 

majority class samples. 

CS

CS
I Maj

Min
D 


     

  (2) 

In this, if  ID

 is lower than a particular 

threshold, initialize the algorithm.  

Step 2: The number of synthetic data samples for 
the generation of minority class is 
computed as  

 CSCS MinMajS 


  

   (3) 

Where,  1,0  refers to the parameter, 

that describes the desired balanced level after the 
generation of synthetic data samples and 𝜒 = 1 
indicates the fully balanced data set after the 
ADASYN procedure. 

 Step 3: Each minority instance’s k-nearest 

neighbors were obtained and the VR value is 

computed. The VR  value represents the domination 

of the majority class in every specific 
neighborhood. It is illustrated as follows: 

K

Majority
RV

#
     

  (4) 

 Step 4: Standardize the VR values so as to get the 

sum of all VR values equal to 1.  
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 

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V R

R
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 (5) 

Where, VR̂ refers to the standardized VR
value. 

Step 5: The number of synthetic examples for each 
minority sample was calculated according to 
equation (6). 

VV RSS ̂


     

 (6) 

Step 6: Generate VS


 quantity of data for every 

neighborhood, and then the new synthetic 

observation  OBN
  
was generated by equation (7). 

 VXVVOB pppN
     

  (7) 

Where,  refers to the random number 

between 0-1, Vp


 represents the minority samples 

of a neighborhood, and XVp


 shows that the 

randomly chosen minority example from the same 
neighborhood.   

3.3 Segmentation 

Segmentation is a critical part of the image 
classification system where the brain image is 
segmented into several objects like white matter, 
grey matter, skull, cerebral spinal fluid, Tumors, 
etc., from the surroundings. Our paper uses our 
previously suggested model called spatial and 
channel attention-based three-dimensional u-
shaped network (SC3DUNet) [31] for segmenting 
the tumor lesions. 3DUNet progresses a volumetric 
(3D) image that is MRI brain scans by keeping the 
U-shaped structure with skin connections operating 
in three dimensions. The basic U-net structures 
have two paths: contracting or encodes and decoder 
paths. The features at different levels of abstraction 
are captured using each layer of the encoder. Higher 
layers capture more abstract and semantic features 
and lower layers capture low-level features such as 
edges and textures. This enables the network to 
learn complex representations of the input data 
increasingly. The decoder uses up convolutions and 

concatenations with the first features of the path. 
However, only some of the generated features from 
the encoder are useful for segmentation, and the 
gaps between high- and low-level features are filled 
using the model’s skip connections, resulting in 
detailed information’s loss. So spatial and channel 
attention mechanisms are included in the 
conventional 3DUNet model to effectively leverage 
both spatial and channel-wise information present 
in the input data, leading to enhanced performance 
in tasks such as medical image segmentation. Also, 
cross-dimensional interactions are captured by the 
model to avoid dimensionality reduction and 
improve the prediction performance with less 
computational cost. 

3.4 Feature Extraction 

The feature extraction process includes identifying 
and extracting significant features from the 
segmented images. The Spatial Pyramid pooling 
centered Xception Network (SPPXNet) is used by 
the proposed system to extract features from the 
segmented image. The Xception Network (XNet) 
architecture, also called ‘‘Extreme Inception,’’ is 
one of the famous and strong pre-trained models 
compared to other networks that are advanced 
under various essential concepts, such as depthwise 
separable convolution layer, convolutional layer, 
residual connections, which reduce the 
computational complexity while maintaining high 
accuracy. It contains 36 convolutional layers and 71 
layers. The fully used depthwise separable 
convolutions as an alternative to Inception modules 
make this model unique. For every channel, the 1x1 
convolutions are used to extract the cross-channel 
correlations, and for each output, the 3x3 
convolutions are used to extract the spatial 
correlations.    

The depthwise convolution is the process of the 
original depth-wise separable convolution layer, 
followed by a pointwise convolution; however, the 
XNet architecture has modified this by maintaining 
the pointwise convolution, followed by depthwise 
convolution. It also used GAP at the network end, 
which takes the average of all feature maps across 
all proportions, leading to the network’s 
information loss specifically for large-size input 
images. Also, a layer takes the input at a fixed size 
so that to process the image, other operations such 
as cropping or resizing are required. To overcome 
these difficulties, the Spatial Pyramid Pooling 
(SPP) strategy was used instead of GAP, which 
pools feature maps at different scales without 
information loss by protecting more spatial 
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information. The model handles the various input 
sizes without cropping or resizing, which makes 
them flexible and adaptable for the network. SPP 
improves the model’s accuracy by pooling feature 

maps at various scales compared to GAP. Thus, the 
SPP incorporation in the existing XNet to enhance 
its performance is known as SPPXNet. The 
proposed SPPXNet diagram is shown in Figure 2. 

 

                      Figure 2: Architecture of the proposed Xception model 

Figure 2 mainly consists of three flows. The initial 
flow is based on the XNet network, which is used 
for feature extraction. The second one is an 
intermediate flow that consists of separate 
convolution layers. The middle layer was repeated 
eight times. The final layer is the exit flow, which 
builds the dense layer. The brief explanations of 
these layers are as follows: 

 

 

a) Initial flow 

 

First, the input segmented images go 
through the entry flow by the size of 299×299×3.   
Then, it travels to the 1 x 1 convolutional layers 
with stride 2. The primary part of the XNet 

architecture is this convolution layer where feature 
extraction is performed. It mainly contains a 
mixture of linear and nonlinear processes, i.e., 
convolution and activation functions. A special 
form of a linear function called convolution is used 
for extracting the features, and a small array of 
numbers known as a kernel is functional to the input 
called a tensor. At each tensor’s location, the system 
computes the element-wise product betwixt the 
input tensor and the kernel’s element, which is then 
summed to get the output value in the output 
tensor’s equivalent position. The convoluted 
features are passed to a separable convolution layer 
with a 3x3 kernel, and these layers consist of depth-
wise convolutions, which is the Xception’ s main 
part. So, the computation is decreased, and the 
model parameters are organized in the color 
channels as depth dimensions and spatial 
dimensions. The depth-wise convolution filters the 
input data channel and produces the feature map. 
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The depth-wise convolution of the input channel 
filter is attained using equation (8): 

ivmul
ivu

ivuiml IEDK ,1,1
,,

,,,,  


  

  (8) 

Where, K


 shows the feature maps’ 

alternative output created by I


as the input feature 

map,  
ED

 represents the depth wise convolution 

kernel, l and m indicates the filter size, and i
indicates the channel, correspondingly.  

Batch normalization is utilized after the 
depth-wise separable convolution layer. During the 
neural network training, all layers affect each 
layer’s distributed input values that come before it. 
This variability decreases the speed of training 
(lower learning rate). The batch normalization is 
created to solve this inconsistency and speed up the 
learning. After that, to decrease the computational 
complexity, the features are passed to the pooling 
layer, which uses the 1 x 1 pooling with stride 2. 
The model’s pooling layer decreases the input 
matrixes size by decreasing the number of 
parameters and the quantity of network 
computation, which prevents overfitting. Like, the 
convolutional layer, multiple input values were 
taken by the pooling layer inside a filter from the 
previous layer and until every part of the input 
matrix process, the filters transmit some pixels at a 
time. In this network, the dimension is reduced by 
the max-pooling layer by taking the minimum value 
within the window. The height and the weight of the 
incoming array are only decreased by the max-
pooling layer, and it does not change the number of 
channels. It is mathematically shown as follows: 

                                                           

 FMofm CPP 
   

 (9) 

Where, fmP   indicates the pooling map, 

oP  indicates the pooling operation, and FMC   

represents the convoluted feature maps. Every 
convolution and pooling layer are followed by a 
ReLU activation function. The activation function 
decides the neuron activation by calculating the 
weighted sum and adding bias to it. It is used to 
initiate non-linearity in the neuron output. The entry 

flow produces the feature maps with a size of 
19x19x728. 

 

b) Intermediate flow  

The original XNet’s intermediate flow 
contains eight residual separable convolutional 
blocks within a single branch. By using different 
levels of convolution, the network can study various 
high-dimensional semantic features of the image. 
Three separable convolutional layers and ReLU 
activation functions are within the intermediate 
layer. The convolution kernel’s size of each layer of 
the middle flow is 3 × 3, the number of the channels 
is 728, and in the intermediate stream, the data 
tensor is repeated eight times. By doing this, we can 
reduce the feature map dimension into 19×19×728 
maps given to the exit flow. 

c)  Exit flow  

In the exit flow, the network performed a 
computation sequence similar to the entry flow, 
followed by pooling. This flow contains four 
separable convolutional layers that flatten the 
features and are given to the SPP block as an 
alternative to the GAP layer to reduce the 
dimensions. The SPP block takes averages of full 
feature maps, and this layer pools the features and 
generates the output of fixed-length. Before the 
SPP, the extracted feature map was usually 
flattened and applied in a sliding window fashion, 
which gives an output of varied size. These SPPs 
maintain the local spatial bins’ spatial information, 
in which the bins’ quantities as well as size are 
permanent. The system pools each filter’s spatial 
bin responses, and three levels of pooling functions 
are used in SPP blocks. 

1. In the first pooling layer, the output contains a 
single bin and covers a complete feature. This 
is similar to the global pooling operation, and 
the output is 728. 

2. In the second pooling layer, the feature map is 
pooled into 4 bins, resulting in an output of size 
4*728.  

3. In the third pooling, 16 bins of feature maps are 
gathered, resulting in an output size of 16*728. 

Every pooling layer output was flattened 
and concatenated to provide a fixed dimension 
irrespective of input size. Finally, this vector was 
taken as an input by the fully connected network. A 
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bias value is added to the connection weights, and 
the data from the preceding layer is multiplied with 
them to obtain the final feature vectors. The output 
produces a feature size of 19 × 19 × 728, and it 

carries 2048 features for a standard-size of input 
image. The layer information of the proposed 
SPPXNet is presented in Table 1. 

Table 1: Layers information 

Flows Layers Output size Settings 

Entry flow Conv 299×299×3 Conv 1×1 and stride 2×2 

SeparableConv 256×256×3 Conv 3×3 and stride 2×2 

Max-pool 19×19×728 Conv 1×1 and stride 2×2 

Middle flow SeparableConv 19×19×728 Conv 3×3 and stride 2×2 
(Repeated 8 times) 

Exit flow SeparableConv 19×19×728 Conv 3×3 and stride 2×2 

SPP 19×19×728 Conv 1×1 and stride 2×2 

Fully connected  2048-dimensional 
vector 

1×1 and stride 2×2 

 

3.5 Feature Selection 

Feature selection is a process that isolates the most 
consistent, non-redundant, and relevant features 
from the extracted features for model construction. 
The proposed system uses the earlier suggested 
diagonal linear uniform with a tangent flight-based 
butterfly optimization algorithm (DTBOA) [31] for 
feature selection. The BOA indicates butterflies’ 
food-seeking as well as mating behaviour. The 
algorithm is relatively simple to implement than 
some other optimization algorithms that can 
necessitate complex mathematical formulations. 
The model achieves robust performance even for 
noisy data or incomplete problem formulations. 
Even though BOA produces efficient outcomes, 
they can occasionally be prone to local optima and 
fail to explore the search areas globally, which leads 
to premature convergence. So, two mechanisms, 
diagonal linear uniform (DLU) and tangent flight 
(TAF), are included in BOA to overcome its 
drawbacks. Initially, the DLU approach is used as a 
population initialization model that avoids local 
optimal solutions by spreading the initial solutions 
uniformly across the search space. It guarantees that 
the initial population covers a widespread range of 
possible solutions by diagonally distributing 
individuals, increasing the possibilities of exploring 
different regions of the search space. Secondly, a 
TAF is included in the position updating phase to 
improve the global search capability of the model. 
The TAF introduces the diversity in BOA to explore 
different regions and directions of the search space, 
which aids in maintaining population diversity and 

avoids clustering around local optima. This 
diversity also avoids premature convergence and 
improves the model’s capability to find globally 
optimal solutions. 

3.6 Classification 

Lastly, the HBLSTM is used to classify the classes 
of BTs based on the optimally selected features. 
LSTM is a DL network designed as the 
development of a conventional Recurrent Neural 
Network (RNN). The LSTM model is superior to 
the other DL models because the LSTM model can 
accumulate long-term information without being 
affected by the existing input or output and has a 
separate memory cell. This allows them to study 
long-term dependencies and avoids the problems 
like vanishing or exploding gradients. It consists of 
three parts: a forget gate, an input gate, and an 
output gate; each part has a specific function. It uses 
random hyperparameters such as bias, weights, 
learning rate, batch size, etc., to train the learning 
model, which may require a huge number of 
evaluations to discover a good solution, particularly 
in high-dimensional spaces, and it does not take 
advantage of any prior knowledge or structure in the 
search space. Therefore, to select the optimal 
hyperparameters, our system uses the Group 
Aggregation-centered Honey Badger Optimization 
algorithm (GAHBO).  

In addition, the sigmoid and tanh 
activation methods are utilized by the existing 
LSTM network for frequent connections and 
output. The gradient goes to zero when the input is 
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extremely large or extremely small in the sigmoid 
and tanh activation. The gradient descent tends to 
enclose very slow convergence (vanishing gradient 
problem) when the gradient goes to zero. The 
proposed system uses the ReLU activation function 
to resolve these problems instead of the 
conventional sigmoid as well as tanh activations. 

The ReLU training speed is six times faster than that 
of the sigmoid as well as tanh. Hence, ReLU is 
utilized to attain faster training times and avoid the 
gradient effect. These improvisations included in 
the existing LSTM are known as HBLSTM. The 
structural design of the proposed LSTM is shown in 
Figure 3.  

 

Figure 3: Architecture of the LSTM model  

The above structural design mainly 

comprises three gates. Input gate  tMI , forget gate

 tMF , and output gate  tMO . All gates are 

activated when input data  tFS  at the current state 

as well as output  1th  from the hidden state of the 

preceding layer is entered. The forget gate controls 
amount of information used for the current state 
from the previous time steps. The forget gate’s 
output is between 0 and 1. It signals that the 
information will be eliminated, every time the value 
is near to zero. There is a tendency to keep more 
information nearer to oneself. The formula of the 
forget gate is computed using equation (10). 

                                        

  
MF

ttMF
t BFShMF


  ,1

  
 (10) 

Where,   refers to the weight, B


refers 

to the bias, t  refers to the time step, and   

indicates the ReLU activation function as an 
alternative to sigmoid activation. The ReLU 
activation function is nonlinear and valuable for 
eliminating the gradient difficulty which occurs 

during backpropagation training. The LSTM model 
uses ReLU to improve the regularization, and the 
drop out possibility is fixed to a high value to avoid 
possible overfitting problems. The input will be 
directly returned by ReLU if the value is greater 
than 0. If less than 0, then 0 is returned. It is 
computed as follows: 

                                                        

 FS,0max     (11) 

Then, the input gate uses the transform 
function to change the value from 0 to 1 that decides 
which part of input information is updated in the 
cell state. Where, 1 refers to significance and 0 
refers to insignificance. It is computed as follows: 

  
MI

ttMI
t BFShMI


  ,1   

 (12) 

Then, candidate of the ell state tJ


 is 
evaluated, and to reflect the change, the cell state 
includes the new value. 
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  
JttJt BFShJ 


  ,1

  
 (13) 

                                          

ttttt JMIJMFJ


 1   
  (14) 

Where, tJ


refers to the cell state’ 

candidate at time step t . At last, the output gate 
decides the selection of the next hidden state. Then, 

the model transforms the new hidden state th
and 

new memory cell tJ
 to subsequent time step. It is 

represented as follows: 

                                             

  
MO

ttMO
t BFShMO


  ,1

  
   (15) 

                                              

 ttt JMOh 
    (16) 

Finally, the SoftMax activation function 
was used to produce a probability distribution over 
the class, which outputs the BT classes.  

1.6.1 Hyperparameter tuning 

In the LSTM network, the experts adjusted some 
hyperparameters, such as weights, bias, learning 
rate, activation function, batch size, etc., to enhance 
the learning process. The network hyper-
parameter’s random adjustment can affect the 
network presentation and take a larger number of 
iterations to select the ideal one. Therefore, the 
GAHBO is used by the proposed system to 
optimally select the hyperparameters. The honey 
badger’s intelligent foraging motivates the HBO 
algorithm, which is a modern metaheuristic search 
technique to find prey. The HB tracks or scents and 
digs the honeyguide bird to finds the food sources. 
The initial stage is digging mode; then, a further 
stage is the honey mode. In the earlier phase, 
sniffing skills are used to evaluate its prey’s 
position; Honey badgers directly locate beehives in 
the final model using a honeyguide bird. Even 
though the HBO algorithm professionally handles 
large data, it also suffers from local optima 
problems due to being deficient in local 

exploitation, global exploration and diversity issues 
in the search space. This paper uses HBO’s group 
aggregation strategy to overcome these 
deficiencies, which can avoid local optimal issues 
by improving their capability to discover the 
searches are effectively. It also discovers finer 
solutions to optimize the problems. These 
improvisations in HBO are described as GAHBO 
algorithm, and the steps implicated are explained as 
follows:  

Step 1: Initialize the candidate’s population (honey 
badger) solutions randomly, where each solution 
specifies a set of hyperparameters for the LSTM. 
Set other algorithm parameters such as population 
size and maximum number of iteration counts.  

Step 2: calculate the fitness of each individual 
according to Equation (17). In our study, we take 
the classification error as the fitness, aiming to 
choose the solution offering lower classification 
error for the classification BT classes. 

                                  

 













100
samplesofnoTotal

samplesiedmisclassifofNo
Min

errorclassifierMinfitness

  (17) 

Where, SV


refers to the total number of samples, 

TPV


refers to true positive and TNV


indicates the 
true negative, respectively. 

Step 3: The intensity  I


 is linked to the target’s 

concentration strength along with the spacing 
betwixt the honey badger and its target. If the 
smell’s intensity is high, the honey badger’s 
movement is fast towards the target, and vice versa. 
Smell’s intensity is calculated by equation (18). 

                                                                  

24 b

L
b d

I 




 

    
            (18) 

 Where, L  and d refers to the smell source’s 
strength as well as the spacing betwixt the honey 

badger and its target, and  refers to the random 
number.  



 Journal of Theoretical and Applied Information Technology 
15th May 2025. Vol.103. No.9 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 

 
3879 

 

Step 4: The HBO location’s update process is 
divided into two parts. The first process is the 
“Mining stage” in which honey badgers follow 
similar to Cardioid shape to look for preys as the 
expression: 

  

     2cos1*2cos*****  bSVpreyVpreyNew dCZIZZ 


 
           (19) 

 Where, NewZ


 refers to the new position of honey 

badge, preyZ


 refers to the target location,   

indicates a constant ability to find food, V  denotes 

the flag that changes the search direction, and SC


 

represents the group aggregation strategy to 
improve the local exploration precision, the ability 
of algorithm exploitation, and accelerates the 
algorithm convergence. The honey badger will look 
directly for the optimal food sources surrounded by 
the population when gathering and foraging in 
groups. The degree of aggregation slowly increases 
when they move closer, and the honey badger’s 
range of activity decreases. Based on the honey 
badger’s performance, the specific formula is as 
follows:  

                                              

  
 


2arctan

/2arctan
5.0

mac
S

GG
C





             

(20) 

Where, G


refers to the current number of 

iteration and macG


 denotes the highest number of 
iterations. When the degree of aggregation was 
high, the honey badger’s range of movement was 
smaller. Due to the honey badger population’s low 
dispersion at the beginning, the aggregation’s 
degree quickly increased and then transitioned to a 
minimal increase when it achieved a particular 
level. Then, the “Honey stage” is the second 
location update process that locates the honey 
beehive the badger takes aid from the honey-guide 
bird and follows its path. It is computed as follows: 

                                                  

bSVpreyNew dCZZ 


* 
 

  (21) 

Where, NewZ


 refers to the new position of 

honey badger’s and preyZ


 refers to the target’s 

location.   

Step 5: In the end, the highest number of 
evaluations are reached by the best possible 
solutions (hyperparameters) of the LSTM. The 
pseudocode of the proposed HBO algorithm is 
shown in Figure 4.  

Figure 4: Pseudocode of the proposed HBO 

4. RESULTS AND DISCUSSION  

Here, an experimental investigation of the 
proposed as well as existing systems is carried out 
regarding some performance indicators. The 
proposed technique is executed in Python with 64-
bit Windows 10 OS, Intel (R) Xeon (R) Silver 4210 
CPU @ 2.20 GHz (2 processors), 128GB RAM, and 
NVIDIA Titan RTX. The hyperparameters used in 
the work are given in Table 2. 

Table 2: Hyperparameter settings 



 Journal of Theoretical and Applied Information Technology 
15th May 2025. Vol.103. No.9 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 

 
3880 

 

SI. 
No. 

Hyperparameters Values 

1 Learning Rate 0.001 
2 Optimizer GAHBO 
3 Dropout 0.5 
4 Activation function ReLU 
5 Batch size 32 

 

4.1 Dataset descriptions 

We use the freely available CE-MRI 
Figshare dataset, accessed 
through https://figshare.com/articles/dataset/brain_
tumor_dataset/1512427, to train and verify the 
system's efficiency. The tumor classes of the 
collected dataset include four distinct classes: 
glioma, pituitary, normal, and meningioma, which 
are shown in Fig. 4. The dataset consists of a 
healthy brain (500 images), meningioma (937 

images), glioma (926 images), and pituitary gland 
tumor (901 images).  

Normal: These images do not contain any masses 
or abnormalities. 

Glioma: The irregularly formed masses with 
heterogenous intensity come under this category, 
and these tumors are more challenging to recognize. 

Meningioma: These tumors are usually a rounded 
mass, well defined, and have a more uniform 
texture compared to gliomas. 

Pituitary: These tumors are located at the base of 
the brain and are small pea-sized glands. The 
pituitary gland produces hormones by regulating 
several bodily functions, which can control growth, 
reproduction, metabolism, and other vital 
procedures.  

 

      Normal                     Glioma                     Pituitary                    Meningioma 

Figure 4: Sample brain MR images from Figshare 

Figure 4 shows the sample images form the dataset and table 3 shows the imaging results of the 
proposed preprocessing and segmentation system for accurate BT detection form various types of brain MRI.  

Table 3: Resultant Images 

Input image Preprocessing Segmentation 
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4.2 Evaluation Metrics 

Our study uses the following performance 
indicators to assess the performance of the proposed 
and existing systems.  

i) Accuracy 

It is defined as the ratio of correctly 
identified tumor classes over total number of tumor 
classes or images in the dataset. It is computed as 
follows:  

FNFPTNTP

TNTP

VVVV

VV
Accuracy 






   

   (22) 

Where, TPV


, TNV


, FPV


 , and FNV


 

indicates the true positive, true negative, false 
positive, and false negative values respectively. 

ii) Precision 

The ratio of accurately detected positive 
samples over the samples is predicted as positive by 
the classifier. It is represented as follows: 

FPTP

TP

VV

V
precision 




   

   (23) 

iii) Recall 

It is the ratio of accurately detected 
positive instances over the total amount of positive 
instances in the dataset. It is depicted as follows: 

FNTP

TP

VV

V
recall 




     

  (24) 

iv) F1-score 

It is a precision and recall’s harmonic 
mean and it is a single metric, which summarizes 
both metrics. It is mathematically expressed as 

recallprecision

recallprecision
scoref




 21   

   (25) 

v) Area under Curve (AUC) 

It is a graphical plot of the receiving operating 
characteristic curve that indicates the trade-off 
between the true positive rate and the false positive 
rate under several discrimination thresholds. It 
ranges from 0 to 1; a value near 1 indicates the 
classifier's higher accuracy for prediction, and a 
value near 0 and its variants indicates the classifier's 
lower prediction performance. It is mathematically 
formulated as follows.  
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 
1

0

FPRdTPRAUC    

  (26) 

vi) Geometric mean (G-mean) 

This metric evaluates the performance of the 
classifiers, particularly when handling imbalanced 
datasets. It provides a balanced assessment of the 
classifier's performance across negative and 
positive classes. It can be computed as follows: 

recallprecisionmeanG    

   (27) 

vii) Kappa  

This statistic is generally utilized to evaluate 
classification models and inter-rater reliability 
assessment. It measures the agreement between two 
sets of ratings for categorical items. A higher kappa 
value means that the model strongly agrees with the 
actual labels of the classifier. It is computed as 
follows: 

V

VVQ
Kappa











1

    

  (28) 

Where, VQ


and V


refers to the actual 

values and predicted values, respectively. 

viii) Error rate 

It is estimated as the ratio of number of all 
incorrect predictions to the total number of the 

samples  PS


 in the dataset. It is formulated as 

follows: 

 

S

FNTN

V

VV
rateError 




    

  (29) 

Where, SV


indicates the total number of 

instances. 

 

 

 

ix) Classification time  

It is the time taken by the classifier to 
classify the tumor classes. It is computed by taking 
the difference between the prediction completed 

time  CT


 and the starting time  IT


 and it is 

represented as follows: 

CTITCLT 


     

  (30) 

4.3 Performance Analysis  

In this section, the outcomes of the 
recommended model with the existing methods 
such as visual geometry group 16 (VGG16), 
residual network-12 (ResNet-12), AlexNet, and 
deep convolutional neural network (DCNN) for the 
four classes such as Normal, Glioma, meningioma, 
and pituitary are analyzed. Figure 6 displays the 
training as well as testing accuracy of the proposed 
system for 20 epochs. An epoch is the one complete 
pass via the entire training dataset during the 
training of a classifier. The classifier uses the entire 
dataset during training to update its parameters 
(weights and biases) based on learned features and 
corresponding labels. The epoch will vary based on 
the complexity of the dataset to attain the optimal 
solutions in classification. Our study uses 20 epochs 
to classify BTs accurately. The model with higher 
classification accuracy and lower classification loss 
indicates its effectiveness in accurately detecting 
classifiers. The training and validation accuracy of 
the system are 0.521 and 0.725 at 0 epochs. When 
the epochs increase from 0 to 20, the proposed one 
achieves 0.998 accuracy.  
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Figure 6: Analysis of training and testing accuracy 

 

Figure 7: Analysis of training and testing loss 

Figure 7 illustrates the training as well as 
testing loss of the proposed system for 20 epochs. 
The training and validation loss of the system is 
0.52 and 0.38 for the 0 epoch. When the epochs are 
increased, the loss of the system is decreased. 
However, the proposed system maintains a lower 

loss (below 1), showing the model's effectiveness in 
detection. Thus, the outcomes illustrate that there is 
no overfitting of the detection model because the 
accuracy and loss are nearly identical between the 
training and validation datasets. 
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Figure 8: Accuracy analysis 

Figure 8 demonstrates the efficiency of the 
classifiers in terms of accuracy metric. Accuracy is 
an important metric that shows how the proposed 
model works on the collected CE-MRI dataset. In 
this, for normal class, the existing methods such as 
VGG-16, ResNet-12, AlexNet, and DCNN achieve 
98.15%, 96.42%, 95.58%, and 93.72% accuracy, 

but the proposed one attains the accuracy rate of 
99.85%, which is higher than others. Also, for the 
remaining classes, such as Glioma, meningioma, 
and pituitary classes, the proposed one offers better 
classification accuracy compared to the existing 
methods.  

Table 4: Precision, recall, and f1-score analysis 

Metrics Tumor 
classes 

Proposed VGG16 ResNet-12 AlexNet DCNN 

 
Precision 

(%) 

Normal 99.92 98.23 96.54 95.69 93.84 

Glioma 99.99 98.35 96.69 95.76 93.96 
Meningioma 99.64 97.82 96.25 95.33 93.48 

Pituitary 99.97 98.45 96.79 95.85 93.99 

 
Recall (%) 

Normal 99.76 98.07 96.35 95.49 93.66 

Glioma 99.86 98.15 96.49 95.56 93.79 

Meningioma 99.48 97.67 96.04 95.13 93.28 

Pituitary 99.76 98.24 96.54 95.65 93.84 

 
F1-score 

(%) 

Normal 99.88 98.19 96.45 95.64 93.75 

Glioma 99.97 98.26 96.62 95.69 93.88 

Meningioma 99.58 97.75 96.16 95.26 93.38 

Pituitary 99.91 98.35 96.68 95.74 93.96 
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Table 4 provides the outcomes of the 
classifiers regarding precision, recall, and f1-score 
metrics. The proposed one attains 99.92%, 99.99%, 
99.64%, and 99.97% precision for the class labels 
such as normal, glioma, meningioma, and pituitary. 
For the same four class labels, the recall and f-score 
achieved by the proposed system are 99.76%, 

99.86%, 99.48%, and 99.76% and 99.88%, 99.97%, 
99.58%, and 99.91%. The existing models also 
show better performance for BT classification; 
however, compared to our proposed system, the 
models show lower performance for diagnosing the 
BTs.   

 

Figure 9: AUC analysis 

AUC based performance investigation of 
the proposed and the prevailing approaches is 
shown in figure 9. For the normal class, the 
proposed one achieves 99.81% AUC, which is 

1.69%, 3.45%, 4.27%, and 6.16% higher than the 
existing VGG16, ResNet-12, AlexNet, and DCNN. 
Also, for the remaining classes such as glioma, 
meningioma, and pituitary, the proposed one attains 
an AUC of 99.89%, 99.49%, and 99.81%, which is 
better than the existing methods.  

Table 5: Results analysis of the proposed model 

Metrics Proposed VGG16 ResNet-12 AlexNet DCNN 
G-mean (%) 99.72 98.02 96.33 95.39 93.58 
Kappa (%) 99.65 97.85 96.14 95.12 93.41 

Error rate (%) 0.32 0.55 1.76 2.85 3.41 
Classification 

time (s) 
74.23 107.42 196.13 241.22 308.18 

 

Table 5 demonstrates the average outcomes of 
the proposed and the existing methods for BT 
detection regarding g-mean, kappa, error rate and 
classification time. In this, the existing models are 
also kind of pre-trained models, which proffers 
better accuracy, but comparatively lower than the 
proposed method because our model comes with 
several advantages over existing methods like 
effective feature learning, selection and 
classification capabilities, which improves the 
system performance with reduced classification 
time. For example, the proposed one achieves 

higher prediction results of 99.72% G-mean. 
99.65% kappa and 0. 32% error rate, along with it 
taking less classification time of 74.23s. Thus, the 
overall experimental analysis shows that our 
technique attains better outcomes than the existing 
methods. 

4.4 Comparative Analysis 

Here, the comparative assessment of the 
proposed and existing related works is done 
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regarding detection accuracy, which is shown in 
table 6.  

Table 6: Comparative analysis 

Author Name & Ref. No. Method used Dataset used Accuracy (%) 
Ours HBLSTM CE-MRI 99.81 

Usharani Bhimavarapu et 
al. [16] 

ELM Figshare 98.47 

Sarmad Maqsood et al. 
[17] 

DNN and M-SVM BraTS 2018 and 
Figshare 

97.47 and 98.92 

Mohamed Ait Amou et al. 
[18] 

CNN T1W-CE MRI 98.70 

Ejaz Ul Haq et al. [19] DCNN Figshare and BraTS 
2018 

97.3 and 96.5 

Shaimaa E. Nassar et al. 
[20] 

GoogleNet, AlexNet, 
ShufeNet, SqueezeNet, 
and NASNet-Mobile 

T1W-CE MRI 99 

Prince Priya Malla et al. 
[21] 

VGGNet Figshare 98.93 

Mohd Anul Haq et al. [22] SE-ResNet-101, SE-
ResNet-152, SENet154, 

ResNet152V2, 
EfficientNetB0, and 

EfficientNetB5 

CE-MRI 99 

Gopal S. Tandel et al. [23] AlexNet, VGG16, 
ResNet18, GoogleNet, 

and ResNet50 

FLAIR, T2W, and 
T1W-MRI 

98.88, 97.98, and 
94.75 

Sudhakar Tummala et al. 
[24] 

Vision transformers 
ensembling 

T1W-MRI 98.7 

Abdullah A. Asiri et al. 
[25] 

VGG-19 CE-MRI 98 

Syed Muhammad Ahmed 
Hassan Shah et al. [26] 

VS-BEAM T1W-MRI 98.91 

Baiju Babu Vimala et al. 
[27] 

EfcientNetB0 and 
EfcientNetB4 

CE-MRI Figshare 99.1 

Wen Jun and Zheng 
Liyuan [28] 

Attention guided DL T1W-MRI 98.61 

K. Kavin Kumar et al. [29] AlexNet, ResNet 50, and 
Inception V3 

T1W-MRI 96.2 

Jiang Linqi et al. [30] SE-ResNeXt BraTs2017 and 
BraTs2019 

97.45 and 98.99 

 

The above analysis shows that most of the 
existing works attain highly satisfied performance 
to classify the BTs, but improvement is still 
possible by focusing on the major problems like the 
absence of dataset balancing that leads to biased 
outcomes for the majority class label of data. Most 
of the works used several pre-trained CNN models 
for BT detection and analyzed their performance 
across diverse datasets. However, the utilization of 

more pre-trained CNN increases the complexity of 
the system, and it is time-consuming. The CNN [18 
and 29] and its variants [21 and 25] alone are not 
capable of focusing on relevant parts of the tumor 
images by avoiding irrelevant ones for 
classification. Also, the CNN requires a large 
amount of training data to achieve target accuracy. 
Most of the works offer up to 98 to 99% accuracy 
for BT detection, which is good. However, our 
model achieves higher results than the existing 
systems.  
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The reason is that the proposed model initially 
performs noise removal from the dataset using a 
Gaussian filtering algorithm, which suppresses the 
noise and improves the quality of the dataset. Then, 
it solves the class imbalance issue using the 
ADASYN method, which prevents the network 
from having biased outcomes for the majority 
classes. After that, the segmentation is performed 
using SC3DUNet, which helps to measure the 
tumor size, shape, and volume precisely, which is 
vital for staging and assessing the progression of the 
tumor. Then, the system performs feature extraction 
via the SPPXNet model that effectively captures 
hierarchical and abstract representations of 
segmented tumor lesions. Then, the system uses the 
DTBOA algorithm to optimally select the features 
from the extracted features that only allow relevant 
features for classification by reducing the 
computation overhead. Finally, the classification 
was done based on the HBLSTM algorithm, in 
which the hyperparameter was optimally chosen via 
the GAHBO algorithm for optimal performance. In 
this way, our model achieves remarkable 
performance over others.  

5. CONCLUSION 

This paper proposes an HBLSTM-based BT 
classification system with SC3DUNet model-based 
tumor segmentation and ADASYN model-based. 
The system used the CE-MRI fig share dataset to 
verify its efficacy over existing methods for BT 
detection. The proposed technique is weighted 
against the existing methods, namely, VGG16, 
ResNet-12, AlexNet, and DCNN models for 
normal, Glioma, Meningioma, and pituitary classes. 
The evaluations are done with respect to the 
accuracy, precision, recall, f1-score, AUC, G-mean, 
kappa, error rate, and classification time metrics. In 
this, the proposed one achieves an average outcome 
of 99.81% accuracy, 99.88% precision, 99.72% 
recall, 99.84% f1-score, 99.75% AUC, 99.72% G-
mean, 99.65%kappa, and 0.32% error rate, along 
with it takes less classification time of 74.23s. Thus, 
the overall analysis shows that the proposed method 
achieves outstanding outcomes compared to the 
existing methods. Our model could be applicable to 
the early detection of BTs because of its high 
performance. In future, our work will be validated 
on diverse datasets with various imaging 
modalities, tumor types, and patient demographics 
to evaluate their generalization ability and 
robustness in prediction.  
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