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ABSTRACT 
 

To resolve aberrations resulting from the dominating single color channel in the RGB plane, this work 
presents a novel approach for dividing skin lesions in dermoscopic pictures. The accuracy of melanoma 
diagnosis is greatly impacted by these abnormalities; hence a thorough approach is required. The suggested 
method combines undesirable hair removal, white balance, and picture segmentation based on unsupervised 
learning. Two different picture versions are produced by using the Colour Equalisation approach and Shades 
of Grey Method after starting with the iterative Dull Razor approach for efficient depilation. Dermoscopic 
image analysis is enhanced by integration using a multi-scale image fusion approach, which promises better 
benign lesion classification and melanoma detection accuracy. By combining two color-corrected versions, 
creating conclusive skin lesion delineation by k-means clustering, and leveraging inherent textural 
information acquired through the Gabor filter, the multi-scale image fusion approach further improves the 
process.  A very detailed picture of the skin lesion is produced by combining the resultant three-segmented 
images, demonstrating the complexity of this cutting-edge dermoscopic image processing technique. 

Keywords: Dermoscopic images, Skin lesion, Melanoma, Color correction, Image fusion, Color artifacts 
 
1. INTRODUCTION  
 

To detect pigmented skin lesions, dermoscopy 
may be used as a non-invasive technique that uses 
magnification of skin images to examine the 
epidermis thoroughly.  Nevertheless, dermoscopy 
does have a significant problem in that it might 
produce unwanted artifacts because pixel intensities 
vary unevenly between color channels.  One 
successful technique for reducing artifacts caused by 
color dominance and picture noise is to use 
dermoscopy image preparation.  Melanoma 
diagnosis relies heavily on this preprocessing phase 
for precise lesion segregation. When the tumor and 
healthy skin don't stand out in terms of color, making 
an accurate melanoma diagnosis becomes much 
more difficult.  Because of this, preprocessing is 
crucial for improving diagnostic accuracy.  
Dermoscopy pictures still show skin hairs on lesions 
since manually removing them before imaging is not 
an option.  Optimal augmentation of skin hairs is 

sometimes hindered by these photos, which often 
show them as dark or black. The refinement and 
enhancement of dermoscopic pictures therefore 
requires careful consideration of the existence of 
skin hairs. 

The article lays out a new, simplified approach 
that starts with repeatedly waxing the affected area 
using the Dull Razors method.  The next step is to 
deal with color dominance by combining versions of 
the same skin lesion picture that have been white-
balanced.  Dermoscopy pictures that are white-
balanced are the product of skillful use of multiscale 
and multi-image fusion methods. 

This article presents a new and simplified 
approach, starting with the repeated removal of skin 
hairs using a technique similar to the Dull Razors 
method.  After that, the technique takes two white-
balanced photos of the same skin lesion and merges 
them to fix the image's color dominance. By skilfully 
combining them, these two improved, white-
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balanced dermoscopy images showcase the 
advantages of modern multiscale and multi-image 
fusion methods. To further fine-tune the disparity in 
pixel intensities across color channels, a locally 
calculated contrast weight is used.  

The current research void, the manuscript unfolds 
as follows: Section 2 delves into an in-depth 
exploration of relevant studies, Section 3 outlines the 
envisioned methodology, Section 4 showcases 
experimental outcomes intertwined with 
comparative scrutiny, and Section 5 encapsulates the 
study's concluding remarks. 

1.1. Contribution 
 
 The extraction of hair is accomplished through 

the implementation of the Dull Razor 
technique. 

 Utilizing the Color Equalization (CE) approach 
and the Shades of Grey (SOG) method, we 
extract modified inputs from a singular 
dermoscopy image. 

 The derived iterations are amalgamated 
through the process of multiscale fusion, as 
outlined, yielding a version with a white 
balance. 

 Skin lesion segmentation, involving the 
utilization of texture information, is carried out 
using the unsupervised k-means algorithm, in 
conjunction with the Gabor filter. 

 
The three distinct segmented renditions of skin 

lesions within the same dermoscopic image are 
subsequently averaged to yield the ultimate 
segmented image. 
 

2. RELATED WORKS 
 

The utilization of image processing methods to 
scrutinize pertinent dermoscopy images facilitates 
the diagnosis of various skin diseases, irrespective of 
their benign or malignant nature and specific 
characteristics. This procedural step serves to 
diminish noise and rectify undesirable color 
distributions, thereby enhancing color contrast. 
Following the preprocessing phase, precise 
delineation of skin lesions occurs, leading to a clear 
identification of the underlying skin disease within 
the segmented region [1]. 

The concept of color correction finds application 
in various methods, including the traditional Gray 
World method [2], the Shades of Gray (SOG) 
method [3], techniques rooted in the Retinex theory 
[4], equalization of weak color channels to the 

predominant one in a method often referred to as 
Color Equalization (CE), and the assumption that in 
an ideal medium, the average color of a captured 
image should manifest as neutral gray within the 
RGB color plane. 

In addressing the RGB image's color channels, the 
Lab color space and the HSV model channels were 
incorporated [5]. Color normalization of 
dermoscopic images was achieved by leveraging the 
dominant color channel, following Max-RGB and 
Grey-World principles from [6], as well as by 
reducing the mean pixel intensity of the image's 
color channel from [7]. The enhancement of 
dermoscopy images was performed using the 
multiscale top-hat transformation. 

Jamil et al.'s methodology [8] for the segmentation 
of skin lesions, rooted in the dominant color space, 
particularly within the blue spectrum, was 
introduced. The standardization of color in 
dermoscopic images was meticulously executed 
through the Shades of Grey approach [9, 10]. 
Addressing illuminant fluctuations within 
dermoscopic images involved a sophisticated three-
stage model [11]. Various techniques were harnessed 
for the enhancement of dermoscopic images, 
encompassing Histogram Equalization (HE), 
Burkhardt enhancement [12], Spatio-Temporal 
Retinex-inspired Envelope with Stochastic Sampling 
(STRESS) as evaluated by C. Olga et al. [13], Roy's 
enhancement [14], and the implementation of white 
balance [15]. Lesion segmentation was performed in 
[19], where the creation of an illumination-stable 
grayscale intrinsic image was achieved in [16] 
through entropy minimization. The delineation 
between the lesion and the surrounding skin was 
accentuated through the utilization of a sigmoidal 
function [17]. 

The features of a gradient applied to a specific 
type of image Gaussian distributed patterns-based 
image segmentation were performed in [18] where 
the obtained segmentation was not achieved 
compared to ground truth in some cases. In the realm 
of skin lesion segmentation, [19] employed gradient 
magnitude and morphological operations, although a 
notable limitation was the absence of a comparative 
analysis with the ground truth. Leveraging Transfer 
Learning and Fine-Tuning methodologies, [20] 
utilized U-Net and LinkNet for skin lesion 
segmentation. The U-Otsu method [21] found 
application in segmenting skin lesions within the 
YUV color space [22]. Furthermore, a distinctive 
approach involved skin lesion segmentation through 
the implementation of a multi-atlas method, with 
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subsequent accuracy enhancement achieved via the 
Bayesian framework [23]. 

In reference [24], a pioneering deep neural 
network, configured in a Siamese architecture and 
integrated with tensorial regression, was introduced 
to facilitate the short-term identification of 
melanoma lesions. This model strategically 
emphasizes global features over local details. In the 
realm of early melanoma diagnosis, [25] advocates 
for the utilization of a spatio-temporal network that 
leverages lesion progression information across 
consecutive dermoscopy images. Proposing an 
innovative approach, [26] suggests employing a bag-
of-features model for melanoma identification, 
incorporating a learning strategy that combines a 
codebook with a histogram-based feature similarity 
measure. 

In the ongoing pursuit of advancing melanoma 
identification methodologies, the work presented in 
[27] delves into a comprehensive exploration of the 
field. This study systematically investigates various 
architectural variants of Convolutional Neural 
Networks (CNN) along with the deployment of 
multiple classifiers. The overarching objective is to 
augment the precision and efficacy of melanoma 
detection. The nuanced approach taken reinforces 
the trajectory of innovation within this domain. Here, 
a distinctive deep network paradigm, structured in a 
Siamese configuration and augmented by tensorial 
regression, is revisited. Notably, this model is 
intricately designed with a specific emphasis on 
capturing global features, thereby enhancing its 
capability to discern short-term changes indicative of 
melanoma progression. The confluence of these 
advancements underscores the dynamic evolution of 
techniques aimed at improving the accuracy and 
reliability of melanoma identification within the 
realm of medical imaging and diagnostic research. 

In the pursuit of refining melanoma classification, 
support vector machines (SVMs) were trained using 
the deep network features extracted from each 
image. The final prediction was achieved by 
aggregating the average prediction vectors from 
different Convolutional Neural Networks (CNNs). A 
distinctive approach is presented in [28], where the 
Morlet scattering transform is employed alongside 
CNNs for melanoma classification. This approach 
incorporates the assessment of skin roughness, 
determined from light field images, as a crucial third 
dimension in the classification process. 

Aligned with the revelations expounded in [29], a 
transformative paradigm was posited in the domain 
of skin lesion recognition, harnessing the prowess 

inherent in a Convolutional Neural Network (CNN). 
This cutting-edge approach is aimed at automating 
the differentiation of diverse skin lesions based on 
their semantic features. To enhance the precision and 
efficacy of melanoma classification, a meticulous 
fine-tuning and optimization process was conducted 
on the Google Xception model, involving strategic 
additions of new layers, as elucidated in [30]. 

Moreover, the landscape of melanoma 
classification witnessed the introduction of 
sophisticated deep CNN models, employing an 
ensemble learning approach, as elucidated in [31] 
and [32]. These pioneering models were intricately 
designed to elevate the precision and reliability of 
melanoma diagnosis. Of notable mention is the 
successful classification achieved through the 
implementation of the SkinNet-16 model, rooted in 
a comprehensive set of ten distinct geometric and 
textural criteria, detailed in [33]. 

Simultaneously, the research focus on the intricate 
task of segmenting skin lesions in dermoscopic 
images has expanded. Deep learning-based 
techniques, exemplified by the application of UNet 
and its various adaptations, as outlined in [34-39], 
have emerged as promising methodologies. These 
techniques have opened innovative avenues for 
meticulous delineation and isolation of skin lesions 
in dermatoscopic images, thereby significantly 
enhancing diagnostic capabilities in the field of 
dermatology. 

Upon scrutinizing the aforementioned studies and 
visualizing the insights presented in Figure 1, it 
becomes evident that the diagnostic performance of 
image processing-based methods is substantially 
influenced by the presence of color artifacts and hairs 
in dermoscopic images. Particularly challenging are 
skin lesions exhibiting color intensities closely 
mirroring normal skin, thereby posing a formidable 
obstacle in distinguishing these lesions from healthy 
skin when employing dermoscopy for diagnostic 
purposes. 

The collective findings from the various studies 
we've discussed, along with the insights provided in 
Figure 1, the substantial impact of color artifacts and 
the presence of hair in dermoscopic images on the 
efficacy of image processing-based diagnostic 
methods. These factors play a pivotal role in 
determining how accurately such methods can 
differentiate between malignant skin lesions and 
healthy skin. 

In particular, the challenge arises when skin 
lesions exhibit a color intensity that closely mimics 
that of normal skin. In such cases, the boundary 
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between pathological lesions and healthy skin 
becomes increasingly ambiguous, making it more 

difficult for dermoscopy-assisted diagnostic systems 
to provide accurate results. 

 

 
(a) 

 
(b) 

Figure 1: Histogram of Dermoscopic image 

To delve deeper, the color artifacts inherent in 
dermoscopic images can introduce incongruities in 
color, saturation, and contrast, thereby posing 
challenges for automated diagnostic algorithms. 
Simultaneously, the presence of hairs on the skin's 
surface introduces shadows and textural variations, 
further complicating the analytical process. These 
intricacies collectively underscore the imperative 
need for advanced image processing techniques 
capable of mitigating the adverse effects of color 
artifacts and hairs in dermoscopic images, 
consequently elevating the precision of skin lesion 
diagnosis. 

3. PROPOSED METHOD 
 

This groundbreaking research presents a cutting-
edge two-phase methodology, specifically designed 
to tackle the persistent challenge of red color 
imbalance in dermoscopic images a bottleneck 
frequently identified in earlier methodologies 
dedicated to image enhancement, such as those 
referenced in literature. The overarching objective of 
this innovative approach is to overcome the 
limitations observed in prior methods, which 
struggled to achieve precise skin lesion segmentation 
due to the complexity introduced by red color 
imbalance. In the initial phase, the methodology 
focuses on rectifying the red color imbalance, a 

critical issue that has often impeded accurate 
segmentation in previous studies. 

This involves the development of advanced 
techniques tailored to address the unique 
characteristics of dermoscopic images, paving the 
way for more effective image enhancement. The 
second phase strategically builds upon the 
corrections made in the first, directing attention 
toward achieving precise skin lesion segmentation. 
Leveraging insights gained from the rectification of 
color imbalance, this phase employs sophisticated 
algorithms and strategic methodologies to enhance 
the accuracy of lesion segmentation. By 
systematically addressing both color imbalance and 
segmentation challenges, this two-phase approach 
aims to establish a robust foundation for more 
effective and reliable skin lesion identification in 
dermoscopic images, marking a significant 
advancement in the field. 

To elucidate this methodology, a visual 
representation in the form of a flowchart is employed 
to elucidate the intricate processes of rectifying 
white balance and executing image segmentation, as 
depicted in Figure 2. Commencing with a dual-
pronged strategy, the primary objective is to rectify 
the white balance intricacies inherent in 
Dermoscopic images. Two discrete color constancy 
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techniques are meticulously applied independently 
to the same set of Dermoscopic images, yielding two 
distinct iterations with impeccably balanced color 
tones. Subsequently, a fusion process ensues, 
leveraging the weighted multi-scale image fusion 

technique. This technique adeptly amalgamates the 
two color-corrected images, resulting in a third 
iteration that achieves a heightened level of refined 
white balance. 

 

Figure 2: Flow chart of the proposed method 

Moving to the subsequent stage, the emphasis 
transitions to the nuanced undertaking of segmenting 
skin lesions. This entails the skillful application of 
image segmentation methodologies rooted in texture 
features. To distinguish the lesion area from the trio 
of color-corrected dermoscopic images, intricate 
texture information is extracted with precision 
utilizing the Gabor filter. Subsequently, the k-means 
clustering algorithm is employed to perform the 
necessary segmentation. The culmination involves 
averaging the results from the three-segmented 
images in their binary form, producing a 
meticulously delineated region corresponding to the 
skin lesion. 

3.1. White Balancing 
 
Delving deeper into the realm of white 

balancing, we expound upon the rationale behind the 
application of color equalization and shades of grey, 
intricately discussed in the preceding section. Color 
equalization serves as a pivotal technique, rectifying 
variations in color intensity within an image by 
leveraging comprehensive information on the mean 
intensity in each color space. This process 
harmonizes and equalizes the distribution of color, 
optimizing visual coherence. 

Contrastingly, the concept underlying 
shades of grey transcends a mere greyscale 
transformation. It entails the calculation of the mean 
intensity for a normalized image, resulting in a 
unique shade of grey that encapsulates the nuanced 
essence of the image's color balance. When 
strategically combined, the synergy between color 
equalization and shades of grey yields a potent 
approach. This fusion markedly enhances the quality 
and precision of each dermoscopic image, notably 
augmenting their appropriateness for the crucial 
undertaking of skin lesion segmentation. 

 

3.2. Color Equalization 
Dermoscopic images frequently exhibit a 

pronounced prevalence of the red color component. 
This equalization process involves careful 
adjustments to the less dominant color channels to 
harmonize them with the prevailing one, usually the 
red channel. It is essential to note that the dominance 
of color in dermoscopic images may exhibit 
variations depending on the specific lighting 
conditions employed during imaging. In more detail, 
meticulous adjustments are applied to the color 
channels that are less prominent in the dermoscopic 
images. The goal is to create a balanced and coherent 
representation where all color channels align 
harmoniously with the prevailing red channel. This 
harmonization process is crucial for ensuring 
uniformity and consistency in color representation, 
which is particularly sensitive in dermoscopic 
images. Importantly, variations in the dominance of 
color can be attributed to the diverse lighting 
conditions used during the imaging process, further 
emphasizing the need for adaptive equalization 
techniques to accommodate these variations and 
maintain the accuracy of subsequent analyses or 
processing steps. 

In instances where the dominance shifts 
toward the blue spectrum due to specific lighting 
characteristics, a judicious color equalization 
procedure is set into motion. This procedure 
meticulously aligns the red and green color channels 
with the blue channel, ensuring a more uniform and 
balanced color representation. 

i) Conversely, in scenarios where the 
average intensity of the red channel exceeds that of 
the blue and green channels, the equalization process 
is tailored to favor the red channel. This adaptive 
approach ensures a consistent optimization of color 
balance, resiliently accommodating fluctuations in 
color dominance across diverse dermoscopic 
images. 
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𝐽௚௖(𝑦, 𝑧) = ቆ
𝐽௥

௠(𝑦, 𝑧)

𝐽௚
௠(𝑦, 𝑧)

ቇ × 𝐽ீ(𝑦, 𝑧) (1) 

𝐽௕௖(𝑦, 𝑧) = ቆ
𝐽௥

௠(𝑦, 𝑧)

𝐽௕
௠(𝑦, 𝑧)

ቇ × 𝐽஻(𝑦, 𝑧) (2) 

 
ii) if the average intensity of blue color light 

is higher, then red and green channels are equalized 
by, 

𝐽௥௖(𝑦, 𝑧) = ቆ
𝐽௕

௠(𝑦, 𝑧)

𝐽௥
௠(𝑦, 𝑧)

ቇ × 𝐽ோ(𝑦, 𝑧) (3) 

𝐽௚௖(𝑦, 𝑧) = ቆ
𝐽௕

௠(𝑦, 𝑧)

𝐽௚
௠(𝑦, 𝑧)

ቇ × 𝐽ீ(𝑦, 𝑧) (4) 

 Here 𝐽௥௖(𝑦, 𝑧), 𝐽௚௖(𝑦, 𝑧) 𝐽௕௖(𝑦, 𝑧) are color 
manipulated versions of red, green, and blue 
respectively. Correspondingly 𝐽௥

௠(𝑦, 𝑧), 𝐽௚
௠(𝑦, 𝑧) 

and 𝐽௕
௠(𝑦, 𝑧) denote the average pixel intensities of 

their respective color spaces within 𝐽(𝑦, 𝑧). 
3.3. Shades of Grey 

The average scene is believed to have a 
somewhat different shade of grey from absolute 
grey. This presumption might be formed by 

𝜇௣൫𝑆(𝜆)൯ = ቎෍
{𝑆௜(𝜆)}௣

𝑀

ெ

௝ୀଵ

቏

ଵ
௣ൗ

= 𝑘௣ (5) 

In this, 𝜇 is the average scene radiance, 
𝑆(𝜆) signifies the Lambertian surface, 𝑀 represents 
image dimension, 𝑘 is the illuminant color constant, 
and here 𝑝 represents the Minkowski norm. (3) is 
extended to the three-color channels and they are 
individual equations: 

𝜇௣൫𝑟௣൯

= ቎න 𝐸௣(𝜆) ቌ෍
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𝑀

ெ

௝ୀଵ

ቍ 𝑟(𝜆)𝑑𝜆቏

ଵ
௣ൗ

= 𝑘௣𝑟௘ 

(6) 
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𝑀

ெ
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ቍ 𝑔(𝜆)𝑑𝜆቏

ଵ
௣ൗ

= 𝑘௣𝑔௘ 

(7) 

𝜇௣൫𝑏௣൯

= ቎න 𝐸௣(𝜆) ቌ෍
{𝑆௜(𝜆)}௣

𝑀

ெ

௝ୀଵ

ቍ 𝑏(𝜆)𝑑𝜆቏

ଵ
௣ൗ

= 𝑘௣𝑏௘ 

(8) 

 
This 𝐸(𝜆) shows the spectral distribution, 

while 𝑟(𝜆), 𝑔(𝜆) and 𝑏(𝜆) denotes the signals of red, 
green, and blue additionally 𝑟௘ , 𝑔௘ and 𝑏௘ represents 
the constancy of respectively red, green, and blue 
channels. (3) can reduce to the Grey-World method, 
if 𝑝 = 1. And (3) follows the max-RGB method, if 
𝑝 =  ∞ and hence Minkowski norm is limited as 
1 < 𝑝 < ∞. for shades of grey and a better result, the 
value is, 𝑝 =  5. 

 
3.4. Multiscale Image Fusion 

 
The luminance (L-channel) undergoes 

Laplacian filtering, to enhance edge details and fine-
tune contrast. To emphasize the distinctions between 
areas with gradual transitions and flat regions, the 

global contrast weight 𝐺௪௚
௝  is incorporated into the 

Laplacian contrast weight map. The computation of 

the local contrast weight 𝐿௪௚
௝

 is expressed as: 

𝐿௪௚
௝

= ฮ𝑖௟
௝

− 𝑖௟௣
௝

ฮ (9) 

Here 𝑖௟
௝ and 𝑖௟௣

௝  represent the luminance of 

the 𝑗𝑡ℎ input, in this example 𝑗 =  1 𝑎𝑛𝑑 2, along 
with their low passed versions, respectively. By 

passing them 𝑖௟௣
௝  through a filter, they 𝑖௟

௝ can be 

obtained [0.0625, 0.25, 0.375, 0.25, 0.0625] 
binomial kernel binomial. The frequency falls within 
the specified cut-off range, 𝑙௣ = 1.14182. The 

resultant image undergoes a blurring process 
facilitated by a three-Gaussian filter. Subsequently, 
the output is transposed to the Lab color domain, 

where the weight of the saliency map 𝑆௪௚
௝  is 

calculated. 

𝑆௪௚
௝

= (𝐿 − 𝐿௠)ଶ + (𝑎 − 𝑎௠)ଶ

+ (𝑏 − 𝑏௠)ଶ 
(10) 

Where the three planes' images in the 𝐿 ∗

𝑎 ∗ 𝑏 ∗ domain are 𝐿, 𝑎, 𝑎𝑛𝑑 𝑏. The average values 
of the 𝐿, 𝑎, 𝑎𝑛𝑑 𝑏 planes are 𝐿௠, 𝑎௠ and 𝑏௠. The 
enhancement of the fused image quality can be 
achieved by applying a weight to the exposedness 

map 𝐸௪௚
௝ , which is provided by, 
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𝐸௪௚
௝

= exp ቆ
(−(𝐼௝(𝑦, 𝑧) − 0.5)ଶ)

2 · 𝜎ଶ
ቇ (11) 

Here 𝐼௝(𝑦, 𝑧) is the pixel intensity of 𝑗𝑡ℎ 
input image at (𝑦, 𝑧) coordinates. Here we let 𝜎 =

 0.25. The weight of the normalized map 𝑛௪௧
௝  is used 

to get consistent results under the hypothesis that the 
total of all weight maps at every one of the pixel 
coordinates equals 1. 

𝑛௪௧
ଵ

=
𝐺௪௚

ଵ + 𝐿௪௚
ଵ + 𝑆௪௚

ଵ + 𝐸௪௚
ଵ

𝐺௪௚
ଵ + 𝐿௪௚

ଵ + 𝑆௪௚
ଵ + 𝐸௪௚

ଵ + 𝐺௪௚
ଶ + 𝐿௪௚

ଶ + 𝑆௪௚
ଶ + 𝐸௪௚

ଶ
 

(12) 

𝑛௪௧
ଶ

=
𝐺௪௚

ଶ + 𝐿௪௚
ଶ + 𝑆௪௚

ଶ + 𝐸௪௚
ଶ

𝐺௪௚
ଵ + 𝐿௪௚

ଵ + 𝑆௪௚
ଵ + 𝐸௪௚

ଵ + 𝐺௪௚
ଶ + 𝐿௪௚

ଶ + 𝑆௪௚
ଶ + 𝐸௪௚

ଶ
 

(13) 

The original and normalized weight maps 
are shown in Fig.3 and 3a. 

 
 

Figure 3: Original image 

  
Figure 3 (a): Images of normalized weight maps 

The two-color corrected image is next 
convolved through a kernel of five-level Gaussian, a 
laplacian, and an operator [0.0625, 0.25, 0.375, 0.25, 
0.0625] to generate low-pass and band-passed 
versions, respectively. At last, a higher resolution 
variant of the image J(y,z) is generated by, 

𝐽(𝑦, 𝑧) = ෍ ෍ 𝑔௞൛𝑛௪௧
௝

ൟ × 𝑙௞{𝑖஼(𝑦, 𝑧)}

ହ

௞ୀଵ

ଶ

௝ୀଵ

 (14) 

Here 𝑘 denotes the number of pyramid 
levels, 𝑗 denotes the number of derived input images, 
𝑔{𝑛} symbolizes the Gaussian pyramid of the 
normalized weight map, and {𝑖} signifies the 
Laplacian pyramid. 
 

3.5. 2-Dimensional Gabor Filter 
The Gabor filter, initially introduced by 

Gabor, is a method for characterizing image textures 
by analyzing them in the frequency domain. It 
operates by modulating a complex sinusoidal 
waveform concerning frequency and orientation 
using a Gaussian function. This modulation occurs 
in both the frequency and time domains. The Gabor 
filter, being suitable for textures with slight 
variations, analyzes an image by Fourier 
transforming it and then convolving it with a 
Gaussian function having different frequency 
centers. The resulting output is then subjected to an 
inverse fast Fourier transform (IFFT). The 2-D 
Gabor filter is constructed with a Gaussian function 
modulated by a complex sinusoidal waveform of 
frequency and orientation [26]. Its representation is 
articulated as: 

𝐺(𝑦, 𝑧) = 𝑒
ି

(௬ି௬బ)మ

ଶఙ೤
మ ି

(௭ି௭బ)మ

ଶఙ೥
మ

𝑒௝(ఠ೤బ௬ାఠ೥బ௭) 
(15) 

The coordinates of pixels are denoted by (y, 
z), where 𝜎௬ and 𝜎௭ express the standard deviation 
of the Gaussian function beside the y and z 
directions, respectively. Here the center frequencies 
for the y and z directions, denoted as 𝜔௬଴ and 𝜔௭଴, 
correspond to the locations with the highest 
responses to the filter. With a total of l = 6 
orientations, the bandwidth of orientation (𝛥𝜃) is 

calculated, 𝛥𝜃 =
ଷ଺଴

଼
= 45° = 0.7854 𝑟𝑎𝑑. Thus, 

the orientation, 𝜃 are 0°,45° and 135°. The centre of 
frequency 𝐶 is given by: 

𝜌஼ =
𝜔஼ + 𝜔஼ିଵ

2
=

1

2
(2஼𝜔଴ − 2஼ିଵ𝜔଴)

= 2஼ିଵ · 3𝜔଴ 
(16) 

 
(a)    (b) 

 
(c)    (d) 

Figure 4: Magnitude and Phase of Gabor filter for 
wavelength 4 and Orientation 90°. (a) Original image (b) 

Greyscale of original (c) Gabor magnitude (d) Gabor 
phase 
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In the realm of image analysis, a set of 24 
Gabor filters, each characterized by four distinct 
orientations, is applied to process an input image 
measuring 516 by 516 in dimensions. Figure 4 (a), 
(b), (c), and (d) provide a visual representation of the 
amplitude, phase, and orientation of the Gabor filter, 
specifically for the wavelength. 

 
3.6. k-means clustering 

Transitioning to the concept of clustering, 
clustering refers to the process of partitioning a 
dataset into a predetermined number of smaller 
groups. A widely employed clustering method is the 
k-means clustering approach, which involves 
dividing the dataset into k clusters. The k-means 
clustering process unfolds in two key stages. It 
begins by calculating the centroid for each cluster, 
followed by the assignment of data points to the 
cluster whose centroid is nearest to them. Typically 
determined using Euclidean distance. After the 
clustering has been established, there is a 
recalculation of the Euclidean distance between each 
centroid and data point. Subsequently, the data point 
is assigned to the cluster with the smallest distance. 

Every cluster is characterized by its distinct 
set of data points, with a centroid representing its 
central position. The fundamental goal of k-means 
clustering is to minimize the collective distance 
between all data points within a cluster and the 
corresponding cluster centroid, which effectively 
serves as an additional data point. The iterative 
nature of k-means clustering is focused on achieving 
this minimization of distances throughout the 
process. 

Considering this image 𝐽(𝑦, 𝑧) to be 
subjected to clustering into two clusters (k=2) to 
partition the Dermoscopic image into two segments: 
one comprising the skin lesion and the other 
containing normal skin. Let 𝑝(𝑦, 𝑧) represent the 
input pixels to be clustered, and 𝑐௞ denote the center 
of the clusters. The procedural steps in k-means 
clustering are delineated in Figure. 4 and also 
enumerated as follows: 

1. Initialization involves selecting the 
required number of clusters, k, and defining the 
initial centroids. 

2. The calculation of the Euclidean 
distance, denoted as 'd,' between each pixel and the 
center is determined by the formula: 

𝐷 = ‖𝑝(𝑦, 𝑧) − 𝑐௞‖ (17) 

3. Based on the calculated distances (D), 
assign each pixel to the nearest centroid. 

4. Subsequently, update the centroid's 
position using the formula: 

𝑐௞ =
1

𝑘
෍ ෍ 𝑝(𝑦, 𝑧)

௬∈௖ೖ௭∈௖ೖ

 (18) 

5. Iteratively repeat the process until the 
sum of variances reaches its minimum. 

6. Finally, reshape the clustered pixels to 
reconstruct the image. 
 

4. RESULTS AND DISCUSSION 
 

The implementation of this proposed 
methodology was carried out using MATLAB 
R2020a, leveraging an Intel i3 processor with 8GB 
of RAM. The assessment utilized a demanding 
image dataset obtained from the releases of the 
International Skin Imaging Collaboration (ISIC). 
The dataset encompassed a total of 900, 2000, and 
2594 images extracted from the releases in 2016, 
2017, and 2018, respectively. 

4.1 Qualitative Assessment 
 
The outcomes of the implemented method 

are visually presented in Figure 5. In Figure 5(a), the 
original skin lesion images, characterized by lower 
quality, are illustrated. Following this, Figures (b), 
(c), (d), and (e) depict the images after undergoing 
various enhancements. These enhancements include 
hair removal using Dull Razor's method, color 
equalization, grayscale transformation, and the 
combination of color equalization (CE) with shades 
of gray (SOG). 

Particularly, the enhancement achieved 
through the blending of CE and SOG produces well-
balanced images without any artifacts. In the original 
images displayed in Figure 5(a), you can observe the 
presence of red and blue color dominance. However, 
the proposed method effectively eliminates this 
dominance, as depicted in Figure 5(e). As a result, 
this approach surpasses the previous methods by 
offering improved color contrast and clear 
differentiation between the lesions and normal skin. 
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Figure 5: Comparison of existing methods for enhancement of melanoma images (a) original image, (b) Dull Razor’s 

result (c) result of Color Equalization (d) result of Shades of Grey, and (e) blending of (c) and (d) 

 
4.2 Quantitative Assessment 

The segmentation approach proposed for 
distinguishing skin lesions in dermatoscopic images 
is elucidated in Figure 6. Figure 6(a) provides an 
overview of the original dermoscopic images. 
Moving forward, Figure 6(b) showcases the binary 
ground truth version, while Figures 6(c), (d), (e), and 
(f) Respectively, Figures 6(c), (d), (e), and (f) depict 
the binary images resulting from color equalization 
(CE), shades of gray (SOG), the fused version of 
both, and the average image from all three versions. 
To gauge the efficacy of the proposed method and 
validate it against existing approaches, various 

metrics are employed. These include the Jaccard 
Index (JI), Dice Coefficient (DI) (known to be F1-
Score), Precision, Recall, and Boundary F1-Score 
(BF Score). The Jaccard Index (JI) quantifies the 
ratio of the overlapping area to the union of two 
similar images. It serves as a metric to assess the 
concordance between the ground truth and the 
resulting image. 

JI =
Area of Overlap

Area of Union 
 (19) 

The Jaccard Index (JI) is bounded within 
the range of 0 to 1, where JI = 0 signifies no 
overlapping, and JI = 1 indicates full overlapping. 
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The F1-Score, encompassing the same range of 0 to 
1, can be characterized as follows: 0≤F1-Score≤1. 

F1 − Score

= 2 ×
Area of Overlap

Total no. of pixels in both images 
 

(20) 

It indicates the similarity i.e., the F1-Score 
=1 implies that the two images are mostly similar. 
The closeness of matching of boundaries of two 
images can be predicted using the BF Score. 

BF Score = 2 ×
Precision × Recall

Precision + Recall 
 (21) 

The precision provides the rate of true 
positive detection concerning total positive and is 
given by, 

Precision

=
true positive

true positive + false positive  
 

(22) 

The recall gives the true positive detection 
concerning true positive and false negative and is 
given by: 

Recall =
true positive

true positive + false negative 
 (23) 

 
Figure 6: Comparison Studies of Segmentation (a) original image, (b) Ground truth image, (c) CE version and (d) 

SOG version, and (e) blending of (c) and (d) and f) average of (c), (d) and (e) 

Both precision and recall metrics have 
values within the range of 0 to 1, representing their 
effectiveness. In Table I, you can find the specific 
values for the Jaccard Index (JI), Dice Coefficient 
(DI), Precision, Recall, and Boundary F1-Score (BF 
Score). Upon analyzing Table I, it becomes evident 
that the average binary image created by the 

proposed method, utilizing shades of gray, color 
equalization, and their fused version, achieves a 
notably high score compared to the approach 
involving the blending of CE and SOG. However, it 
is crucial to acknowledge a limitation in the 
proposed method, specifically in accurately 
segmenting certain areas. Dominated by the color 
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blue, as indicated by the lower scores in terms of BF 
Score, Precision, and Recall. 

 
4.3 Comparative Analysis 

In this study, we undertook a performance 
comparison of our proposed method against several 
existing techniques, including UNet [61], CPF-Net 
[62], CE-Net [63], FAT-Net [64], and EI-UNet [65]. 
To validate and benchmark the performance, we 
employed the Jaccard Index and Dice Index. The 
assessment encompassed datasets from ISIC 2016, 
ISIC 2017, and ISIC 2018. 

 
4.3.1 Study with ISIC Dataset 2016 
The results for both the proposed method and the 
aforementioned existing techniques (UNet, CPF-
Net, CE-Net, and EI-UNet) are presented in Figure 
7. In this figure, the red line represents manual skin 

lesion markings, while the black line indicates the 
segmentation produced by the various methods. 
The quantitative experimental results are concisely 
summarized in Tables I and II. Our proposed method 
achieves a Jaccard Index of 0.847 and a Dice Score 
of 0.901 for the ISIC 2016 dataset. In comparison, 
UNet, CPF-Net, CE-Net, FAT-Net, and EI-UNet 
exhibit average Jaccard Index scores of 0.836, 0.842, 
0.846, 0.853, and 0.855, respectively. It is 
noteworthy that for the ISIC 2016 dataset, EI-UNet 
outperforms UNet, CPF-Net, and CE-Net in terms of 
the Jaccard Index. For the Dice Score, EI-UNet 
stands out with a score of 0.919, while our proposed 
method achieves a score of 0.901. Conversely, UNet, 
CPF-Net, CE-Net, and FAT-Net achieve Dice 
Scores of 0.903, 0.907, 0.909, and 0.916, 
respectively.  

 
Figure 7: Experimental Results with ISIC 2016 Dataset 

 
Figure 8: Experimental Results with ISIC 2017 Dataset 
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4.3.2 Study with ISIC Dataset 2017 
We conducted a comparative analysis with ISIC 
Dataset 2017, pitting our proposed method against 
CE-Net, FAT-Net, and EI-UNet. The Dice-Scores 
achieved were 0.828, 0.847, 0.848, 0.850, and 0.855 
for CE-Net, FAT-Net, EI-UNet, UNet, CPF-Net, and 
our method, respectively. Notably, EI-UNet excelled 
in the Jaccard Index with a score of 0.771, 
outperforming the others. In contrast, UNet, CPF-
Net, CE-Net, FAT-Net, and our proposed method 
scored 0.737, 0.762, 0.764, 0.765, and 0.689 in the 
shown in Figure 8 Jaccard Index, respectively. 
It's essential to highlight that our proposed method 
showed a lower Jaccard Index for ISIC Dataset 2017 
compared to other methods discussed in this article. 

However, it demonstrated strong performance in 
terms of the Dice Score. 
CE-Net, FAT-Net, and EI-UNet achieve the Dice-
Score as 0.828, 0.847, 0.848, 0.850, and 0.855 
respectively. The EI-UNet achieves 0.771 Jaccard 
Index and outperforms well whereas the methods 
UNet, CPF-Net, CE-Net, FAT-Net, and the 
proposed method achieve the Jaccard Index of 0.737, 
0.762, 0.764, 0.765 and 0.689 respectively. The 
proposed method achieves a poor Jaccard Index for 
ISIC Dataset 2017 compared to other methods 
discussed in this article whereas in terms of Dice-
Score, the proposed method reaches good 
performance. 

 

 
 

Figure 9: Experimental Results with ISIC 2018 Dataset 

Table 1: Quantitative Analysis with Color Constancy Algorithms. 

No. 

Performance Metrics 

JI DI BF Score Precision Recall 

Resultant Image Types 

Average Fusion Average Fusion Average Fusion Average Fusion Average Fusion 

1 0.8541 0.8522 0.9214 0.9202 0.1675 0.1626 0.1242 0.1191 0.2582 0.2564 

2 0.3345 0.8102 0.5013 0.8952 0.1523 0.2933 0.1345 0.2322 0.8546 0.3979 

3 0.3626 0.0929 0.5323 0.1700 0.1819 0.1612 0.1168 0.0998 0.4116 0.4192 

4 0.7041 0.6812 0.8263 0.8104 0.2421 0.1525 0.1413 0.0882 0.8475 0.5608 

5 0.9389 0.8742 0.9685 0.9329 0.6581 0.1784 0.5120 0.1106 0.9209 0.4619 

6 0.9057 0.8999 0.9505 0.9473 0.6190 0.5599 0.4556 0.3943 0.9651 0.9651 

7 0.3892 0.1690 0.5604 0.2891 0.0440 0.0575 0.0230 0.0299 0.5037 0.7123 

8 0.6269 0.5789 0.7707 0.7333 0.0265 0.0067 0.0204 0.0058 0.0381 0.0081 

9 0.7488 0.7476 0.8564 0.8556 0.0207 0.0063 0.0128 0.0035 0.0538 0.0320 
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4.3.3 Study with ISIC Dataset 2018 
Moving on to the assessment with the ISIC Dataset 
2018, we conducted both qualitative and quantitative 
comparisons with existing methods, including UNet, 
CPF-Net, and EI-Net. Figure 9 presents the resulting 

images, with the red line indicating manual skin 
lesion markings and the black line representing the 
segmentations proposed by various methods. 
 

Table 2: Comparative Evaluation of the Proposed Approach with Other Methods. 

Method 

JI DI 

IMAGE DATASET 

ISIC 2016 ISIC 2017 ISIC 2018 ISIC 2016 ISIC 2017 ISIC 2018 

UNet [61] 0.836 0.737 0.810 0.903 0.828 0.879 

CPF-Net [62] 0.842 0.762 0.826 0.907 0.847 0.893 

CE-Net [63] 0.846 0.764 0.825 0.909 0.848 0.893 

FAT-Net [64] 0.853 0.765 0.833 0.916 0.850 0.899 

EI-UNet [65] 0.855 0.771 0.836 0.919 0.855 0.902 

Proposed 0.847 0.689 0.854 0.901 0.862 0.801 

 
When quantitatively comparing our proposed 
method with UNet, CPF-Net, CE-Net, FAT-Net, and 
EI-UNet in terms of Dice-Score and Jaccard Index, 
In our observations, EI-UNet demonstrated superior 
performance with a Dice-Score of 0.902. UNet, 
CPF-Net, CE-Net, FAT-Net, and our proposed 
method achieved Dice-Scores of 0.879, 0.893, 
0.893, 0.899, and 0.801, respectively. Our proposed 
method excelled in terms of the Jaccard Index, 
achieving a score of 0.854. For comparison, UNet, 
CPF-Net, CE-Net, FAT-Net, and EI-UNet obtained 
Jaccard Index scores of 0.810, 0.826, 0.825, 0.833, 
and 0.836, respectively. It's important to note that 
our proposed method exhibited a relatively lower 
Dice Score for ISIC Dataset 2018 compared to the 
other methods discussed in this article. However, in 
terms of the Jaccard Index, our proposed method 
demonstrated strong performance.  
 
5. CONCLUSION  
 

In conclusion, our proposed method, which 
integrates hair removal, color correction, and multi-
scale image fusion-based white balancing, offers a 
comprehensive approach to enhancing dermoscopic 
images for accurate skin lesion segmentation. By 
applying Gabor filter-based k-means clustering to 
extract texture features, we were able to segment 
skin lesions across three enhanced versions of the 
same dermoscopic image. The final step of averaging 
the binary versions of these three segmented images 
contributed to highly accurate and consistent lesion 
segmentation. Our results demonstrate that this 

multi-faceted enhancement approach outperforms 
individual image enhancements, showcasing its 
strong potential in advancing dermatological image 
analysis. 

Our findings provide significant insight into the 
importance of combining multiple image processing 
techniques to improve segmentation accuracy. The 
use of multi-scale image fusion for white balancing, 
alongside advanced texture extraction through Gabor 
filtering, appears to offer a robust solution for 
improving the quality of dermoscopic images and 
segmenting skin lesions more effectively than 
conventional methods. 

However, there are several areas where future 
research could build upon this work. First, exploring 
the scalability of this method for a wider range of 
skin types, lesion types, and lighting conditions 
could help determine its robustness and applicability 
in diverse real-world clinical settings. Additionally, 
while the use of three enhanced images showed 
promising results, further investigating the optimal 
number of images or advanced fusion techniques 
could potentially increase segmentation accuracy. 
Incorporating more advanced machine learning or 
deep learning techniques for texture feature 
extraction and segmentation might also yield even 
better results, especially when working with large 
datasets. Lastly, testing this method on a larger, more 
diverse dataset would provide further validation and 
help in addressing any limitations related to the 
variability of dermoscopic images across different 
demographics and devices. 
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In summary, this work offers a promising 
approach to skin lesion segmentation and enhances 
the potential for automated dermatological 
diagnosis, though further research is needed to refine 
and extend these techniques for broader and more 
varied clinical applications. 
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