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ABSTRACT 
 

Optimizing hyperparameters is a critical challenge in enhancing the performance of Long Short-Term 
Memory networks for financial time series forecasting. Traditional optimization techniques such as grid 
search and random search are often computationally expensive and inefficient, while Bayesian optimization, 
despite its advantages, can struggle with exploration in complex search spaces. This paper introduces a novel 
Generative Adversarial Network-based approach to LSTM hyperparameter optimization, specifically applied 
to forecasting the next closing price of the S&P 500 index. The proposed method consists of a generator, 
which suggests potential hyperparameter configurations, and a discriminator, which evaluates their 
effectiveness based on forecasting accuracy. Through iterative adversarial training, the generator refines its 
suggestions, dynamically adapting to the optimization landscape and effectively balancing exploration and 
exploitation. The performance of the GAN-based optimization approach is evaluated using metrics such as 
Mean Squared Error, execution time, and resource utilization. Experimental results demonstrate that the 
proposed approach achieves competitive accuracy while improving efficiency and robustness in navigating 
the hyperparameter space. The findings of this study provide valuable insights into the application of 
adversarial learning for hyperparameter tuning, offering a promising alternative for enhancing LSTM-based 
financial forecasting models, particularly for the S&P 500 index. 
 
Keywords: Hyperparameter Optimization, LSTM Networks, Generative Adversarial Networks, Time Series 

Forecasting, Machine learning in finance 
 
1. INTRODUCTION  
 

 Accurate financial forecasting is crucial for 
informed decision-making in economic planning and 
investment strategies. Long Short-Term Memory 
(LSTM) networks have demonstrated significant 
efficacy in modeling temporal dependencies inherent 
in financial time series data [1]. 

However, the performance of LSTM models is 
highly sensitive to the selection of hyperparameters, 
such as the number of layers, units per layer, learning 
rate, dropout rate, batch size, and sequence length. 
Traditional hyperparameter optimization methods, 
including grid search and random search, often prove 
to be computationally intensive and inefficient, 
especially given the complex nature of financial 
datasets [2]. 

Recent advancements have explored the 
integration of Generative Adversarial Networks 
(GANs) for hyperparameter optimization. GANs, 

comprising a generator and a discriminator, have 
been effectively utilized to enhance model 
performance by generating high-quality 
hyperparameter configurations [3]. 

 This approach facilitates a more efficient 
exploration of the hyperparameter space, potentially 
leading to superior model accuracy and 
generalization. 

This paper proposes a novel methodology that 
leverages a GAN-based framework to optimize 
LSTM hyperparameters for financial time series 
forecasting. By employing the generator to produce 
candidate hyperparameter sets and the discriminator 
to evaluate their efficacy, the model iteratively 
refines the hyperparameters to achieve optimal 
forecasting performance. The effectiveness of this 
approach is validated using historical Close Price 
data of the S&P 500 index, a benchmark widely used 
in financial forecasting studies. 
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2. LITERATURE REVIEW 

The optimization of hyperparameters in Long Short-
Term Memory (LSTM) networks is pivotal for 
enhancing the accuracy of financial time series 
forecasting. Traditional methods, such as grid search 
and random search, often prove inadequate due to 
the high dimensionality and computational demands 
associated with LSTM models. Consequently, 
alternative optimization strategies have been 
explored. 

Genetic Algorithms (GAs) have been employed to 
optimize LSTM hyperparameters, demonstrating 
improved forecasting performance. For instance, 
Vyas and Singh (2024) introduced a GA-LSTM 
model that effectively optimized hyperparameters, 
resulting in enhanced time series forecasting 
accuracy [4]. 

Similarly, Hatzilygeroudis et al. (2019) applied GAs 
for hyperparameter tuning in LSTM networks, 
achieving notable performance gains [5]. 

Beyond GAs, other optimization techniques have 
been investigated. Mitra et al. (2024) utilized Keras 
Tuner for hyperparameter optimization in LSTM 
networks, leading to precise sales forecasting in the 
retail sector [6]. 

Additionally, Sha (2024) explored the integration of 
LSTM networks with hyperparameter optimization 
for stock price forecasting, highlighting the model's 
efficacy in financial applications [7]. 

The application of Generative Adversarial Networks 
(GANs) for hyperparameter optimization is an 
emerging area of research. Zhang and Zhang (2024) 
proposed a method using the Gaussian Analytical 
Hierarchy Process (AHP) to optimize GAN 
hyperparameters, enhancing model performance [8]. 

While this study focused on GANs, the principles 
may be transferable to LSTM networks, suggesting 
a potential avenue for future research. 

Despite these advancements, the specific application 
of GAN-based frameworks for LSTM 
hyperparameter optimization in financial forecasting 
remains underexplored. This gap highlights the need 
for innovative approaches that leverage GAN 
architectures to refine LSTM hyperparameters, 
aiming to improve the accuracy and reliability of 
financial time series predictions. 

3. METHODOLOGY 
 

 This section outlines the methodology for 
developing and evaluating our GAN-based 
hyperparameter tuning system for LSTM models. 
Key steps include data preprocessing, dand iterative 
refinement based on model performance. The LSTM 
model’s architecture, training process, and 
techniques like early stopping are also detailed to 
ensure robust and efficient time series forecasting. 

 
3.1 Data 

 In this study, we utilize historical data of 
the S&P 500 index, focusing on the closing prices, 
which represent the final trading price of the index 
at the end of each trading day. The S&P 500 is a 
widely recognized benchmark of the U.S. equity 
market, encompassing 500 leading companies and 
providing a comprehensive reflection of market 
performance. The historical data spans from 1927 to 
the present, offering a rich dataset that captures 
various market conditions and economic cycles [9]. 

To retrieve this data, we employ the yfinance 
library, a Python package that facilitates access to 
financial data from Yahoo Finance. This library 
allows for efficient downloading of historical market 
data, including stock prices, indices, and other 
financial metrics, making it a valuable tool for 
financial analysis and modeling [10]. 

The dataset includes daily records of the S&P 
500's closing prices, which serve as the primary 
input for training and evaluating the Long Short-
Term Memory (LSTM) network models. By 
leveraging this extensive historical dataset, we aim 
to capture the temporal patterns and trends inherent 
in the financial time series, thereby enhancing the 
predictive capabilities of our forecasting models. 

 

 
 

Figure 1: S&P 500 Historical Close Prices 
 

3.1.1 Data normalization 
Data normalization is a crucial preprocessing step in 
time series forecasting, aiming to standardize the 
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range of independent variables or features of data. 
One widely used normalization technique is Min-
Max scaling, which transforms data to fit within a 
specific range, typically [0, 1]. This method 
enhances the performance of machine learning 
models by ensuring that each feature contributes 
proportionately to the final predictions. 
The Min-Max normalization is mathematically 
defined as: 
 

xᇱ =
௫ି(௫)

௫(௫)ି(௫)
              (1) 

 
Where 𝑥 represents the original datapoint, and 𝑥ᇱ 
denotes the normalized value. By applying this 
transformation, all data points are rescaled to the [0, 
1] range, facilitating more efficient training of 
machine learning models. 
In the context of time series forecasting, Pranolo et 
al. (2022) conducted a comparative study on Min-
Max and Z-Score normalization techniques using 
Long Short-Term Memory (LSTM) models. The 
study concluded that Min-Max normalization 
consistently yielded superior results, demonstrating 
lower Mean Absolute Percentage Error (MAPE) and 
Root Mean Square Error (RMSE), as well as higher 
R-squared (R²) values, indicating enhanced model 
accuracy and performance [11]. 
Furthermore, the Min-Max method is commonly 
employed to normalize indicators to an identical 
range [0, 1], which is particularly useful when 
aggregating time series data with different 
measurement units. This approach ensures that 
variables with larger values do not dominate those 
with smaller values, thereby eliminating bias and 
facilitating more accurate analyses [12]. 
However, it is essential to note that Min-Max 
normalization assumes the availability of known 
minimum and maximum values. In scenarios where 
the data exhibits significant outliers or is subject to 
distributional shifts, alternative normalization 
techniques, such as Z-Score normalization, might be 
more appropriate. Therefore, the choice of 
normalization method should be informed by the 
specific characteristics of the dataset and the 
requirements of the forecasting model. 
 

 
Figure 2: Normalized S&P 500 Close Prices 

 
3.1.3 Data splitting  
In machine learning, dividing a dataset into training 
and testing subsets is a fundamental practice to 
evaluate model performance. A commonly adopted 
approach is the 80/20 split, where 80% of the data is 
used for training the model, and the remaining 20% 
is reserved for testing its predictive capabilities. This 
ratio aims to provide a sufficient amount of data for 
model learning while retaining a representative 
portion for unbiased evaluation. 
Empirical studies have investigated the impact of 
different train-test split ratios on model performance. 
For instance, a study by Joseph (2022) analyzed 
various splitting ratios and suggested that the 
optimal ratio depends on the number of parameters 
in the model, proposing a √p:1 ratio, where p 
represents the number of parameters [13]. 
However, in practical applications, the 80/20 split 
remains a popular heuristic due to its balance 
between training sufficiency and testing reliability. 
It's important to note that the optimal train-test split 
ratio may vary depending on factors such as dataset 
size, model complexity, and the specific application 
domain. Therefore, while the 80/20 split serves as a 
general guideline, practitioners should consider the 
characteristics of their data and objectives when 
determining the most appropriate splitting strategy. 
 

 
Figure 3: Training and Test Data Split 
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3.2 Hyperparameters 

 Optimizing hyperparameters is crucial for 
enhancing the performance of Long Short-Term 
Memory (LSTM) networks. Key hyperparameters 
include: 

1. Number of Layers 

The depth of an LSTM network influences its 
capacity to learn complex patterns. However, 
increasing the number of layers can lead to 
overfitting and higher computational costs. Studies 
suggest that models with two layers often perform 
well, balancing complexity and generalization [14]. 

2. Number of Units per Layer 

The number of units in each LSTM layer determines 
the model's ability to capture temporal 
dependencies. Selecting an appropriate number of 
units is essential; too few may result in underfitting, 
while too many can cause overfitting. Experiments 
have shown that using 32 or 64 units per layer can be 
effective [14]. 

3. Learning Rate 

The learning rate controls how quickly the model 
adjusts its parameters during training. A rate that is 
too high may cause the model to converge 
prematurely to a suboptimal solution, while a rate 
that is too low can result in prolonged training times. 
It is advisable to start with a small learning rate, such 
as 0.0001, and adjust based on the model's 
performance [14]. 

Dropout is a regularization technique used to prevent 
overfitting by randomly deactivating a fraction of 
neurons during training. Setting an appropriate 
dropout rate is crucial; typical values range from 0.2 
to 0.5. Implementing dropout layers with these rates 
has been shown to improve model generalization 
[14]. 

5. Batch Size 

Batch size refers to the number of training samples 
processed before the model's parameters are 
updated. Smaller batch sizes can lead to more stable 
updates but may increase training time, while larger 
batch sizes can speed up training but might result in 
less stable convergence. Common practice involves 

experimenting with batch sizes in the range of 16 to 
128 to find the optimal balance [15]. 

6. Sequence Length 

Sequence length defines the number of time steps the 
model looks back to make predictions. Longer 
sequences provide more context but increase 
computational complexity and the risk of overfitting. 
Shorter sequences may miss important temporal 
patterns. Selecting an appropriate sequence length 
depends on the specific dataset and task 
requirements [16].  

Careful tuning of these hyperparameters, 
considering the specific characteristics of the dataset 
and the problem domain, is essential for developing 
effective LSTM models. 

Table 1: Hyperparameter Space 
Hyperparameter Range/Values 
Number of Layers 1 to 5 (Integers) 
Number of Units 1 to 50 (Integers) 

Learning Rate 10ିହ to 0.1 (Logarithmic 
Scale) 

Batch Size 16 to 2048 (Powers of 2) 
Dropout Rate 0.1 to 0.9 (Increments of 0.1) 

Sequence Length 1 to 250 
 
Number of Epochs:  

In training Long Short-Term Memory (LSTM) 
networks, the number of epochs—defined as 
complete passes through the entire training dataset—
significantly influences model performance. 
Selecting an appropriate number of epochs is crucial 
to balance underfitting and overfitting. 

Training for too few epochs may result in 
underfitting, where the model fails to capture the 
underlying patterns in the data. Conversely, training 
for too many epochs can lead to overfitting, where 
the model learns the noise in the training data, 
resulting in poor generalization to new, unseen data. 
To mitigate overfitting, one effective strategy is to 
monitor the model's performance on a validation 
dataset during training and stop training when the 
validation loss starts to increase, indicating the onset 
of overfitting [17]. 

In our approach, we have fixed the number of epochs 
at 10 to prevent overfitting. This decision is 
informed by studies suggesting that, in certain cases, 
training beyond 10 epochs may not yield significant 
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improvements and can increase the risk of 
overfitting [18].  

However, it's important to note that the optimal 
number of epochs can vary depending on the specific 
dataset and model complexity. Therefore, 
monitoring training and validation loss during 
training is recommended to determine the 
appropriate number of epochs for a given 
application. 
 
3.3 Model Architecture and Components 
 The model in our research is built upon the 
fundamental principles of GANs, but with some key 
modifications tailored to hyperparameter 
optimization. At its core, the model features a 
Generator and a Discriminator—two components 
that interact to refine the hyperparameters used to 
train a machine learning model. The Generator is 
tasked with producing meaningful hyperparameters, 
while the Discriminator evaluates these 
hyperparameters, classifying them as either real 
(high-quality) or fake (low-quality). 
The Discriminator is gradually trained on best-
performing hyperparameters, which it labels as real, 
and a set of random hyperparameters, which it labels 
as fake. The Generator's objective is to minimize the 
probability of the Discriminator labeling its 
generated hyperparameters as fake. In other words, 
the Generator strives to produce hyperparameters 
that resemble those that have previously yielded 
good results, thereby enhancing its ability to 
generate valuable configurations. 
In a typical GAN setup, real images are compared to 
fake images, with random noise used to represent the 
fake examples. However, in this model, the "real" 
hyperparameters are those that have proven 
successful in prior experiments, while the "fake" 
hyperparameters are random and likely to 
underperform. The key distinction in this model is 
that the Generator is not adversarial in the 
conventional sense. Rather than trying to trick the 
Discriminator into mislabeling its outputs, the 
Generator focuses solely on minimizing the 
likelihood of generating fake hyperparameters and 
maximizing the likelihood of producing high-quality 
hyperparameters. This shift eliminates the typical 
adversarial dynamic found in GANs and places the 
emphasis on generating hyperparameters that are 
closer to those that have already proven effective. 
A crucial enhancement in this model involves 
injecting random hyperparameters into the 
Discriminator as real when the overall quality of the 
hyperparameters deteriorates. This modification 
allows the system to quickly identify poor regions in 

the hyperparameter space and explore broader areas 
when necessary. By doing so, the model ensures that 
it doesn't get stuck in suboptimal regions but instead 
maintains an effective balance between exploiting 
known good hyperparameters and exploring new 
possibilities.  
This strategic exploration helps the Generator 
improve by broadening its search for high-quality 
hyperparameters, ultimately leading to more 
efficient and effective optimization. 
 

 
Figure 4: GAN-Based Model Architecture 

 
3.4 The Generator 
 The hyperparameter generator is a crucial 
component in this thesis, responsible for 
dynamically producing hyperparameters based on 
iterative feedback from the LSTM model's 
performance. Unlike static search methods, the 
generator leverages a neural network to adaptively 
explore the hyperparameter space, refining its 
outputs to improve the model's performance over 
time. 
The generator model is implemented as a multi-
input, multi-output neural network. Each 
hyperparameter is treated as an independent output, 
allowing for fine-grained control and adaptation. 
 
3.4.1 Generator properties 
Input features: 
As Appendix A shows, inputs include historical 
MSE values and random noise for each 
hyperparameter. These inputs enable the generator to 
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balance exploration and exploitation during 
optimization. 
Independent pathways: 
Separate neural network pathways are created for 
each hyperparameter. This modular design ensures 
that the generator can independently adjust each 
hyperparameter based on its unique contribution to 
model performance. 
Output scaling: 
Raw outputs from the generator are scaled to 
predefined ranges, ensuring compatibility with the 
LSTM model's requirements. For example, learning 
rates are scaled logarithmically, while units per layer 
are adjusted linearly. 
Optimization: 
The generator is trained using the Adagrad optimizer 
with a high learning rate, facilitating rapid 
convergence during early iterations. 
 
3.4.2 Training and adaptation: 
The generator adapts its outputs based on the LSTM 
model's performance: 
Feedback loop:  
After each LSTM training iteration, the generator 
receives the observed MSE and adjusts its 
parameters to minimize this value in subsequent 
iterations. This feedback loop ensures continuous 
improvement. 
Loss function:  
The generator minimizes a custom loss function that 
incorporates both the observed MSE and 
regularization terms to encourage diversity in 
hyperparameter selection for the corresponding 
approach. 
Historical tracking: A history of generated 
hyperparameters and their corresponding MSEs is 
maintained, enabling the generator to avoid 
redundant configurations and focus on unexplored 
regions of the hyperparameter space. 
 
3.4.3 Overview 
The generator's integration with the LSTM and 
sequence creation process ensures a cohesive and 
effective framework for hyperparameter 
optimization ensuring many advantages such as: 
Dynamic Adaptation:  
The generator's ability to adapt its outputs in real-
time makes it more efficient than traditional methods 
like grid search or random search. 
Exploration and exploitation:  
By balancing exploration of new configurations with 
exploitation of known high-performing settings, the 
generator ensures a thorough search of the 
hyperparameter space. 
Scalability:  

The modular design allows the generator to scale 
seamlessly to additional hyperparameters, more 
complex models and cross-validation extended to 
different data types. 
 
3.5 The LSTM 
 Long Short-Term Memory (LSTM) 
networks are a specialized form of recurrent neural 
networks (RNNs) designed to model sequential data 
by capturing long-term dependencies. Introduced by 
Hochreiter and Schmidhuber in 1997, LSTMs 
address the limitations of traditional RNNs, 
particularly the challenges associated with vanishing 
and exploding gradients during training. 
 
3.5.1 Architecture 
An LSTM network comprises a series of cells, each 
containing three primary gates: 

1. Input gate: Controls the extent to which 
new information flows into the cell state. 

2. Forget Gate: Determines the information to 
be discarded from the cell state. 

3. Output Gate: Regulates the information 
output from the cell state. 

These gates enable LSTMs to maintain and update 
cell states effectively, allowing them to capture 
patterns over extended sequences. 
 
3.5.2 Implementation 
The provided code snippet demonstrates the 
construction of an LSTM model using TensorFlow's 
Keras API. The model is built with the following 
components: 

 Input layer: Accepts sequences of a 
specified length with one feature per time 
step. 

 LSTM layers: Stacked LSTM layers, each 
followed by a dropout layer to prevent 
overfitting. The return_sequences 
parameter is set to True for all but the last 
LSTM layer to return the full sequence of 
outputs. 

 Dropout layers: Applied after each LSTM 
layer to mitigate overfitting by randomly 
deactivating a fraction of neurons during 
training. 

 Dense layer: Outputs a single value, 
suitable for regression tasks. 

The model is compiled using the Adam optimizer 
with a specified learning rate and the mean squared 
error loss function, which is standard for regression 
problems. 
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Figure 5: Components of an LSTM 

 
Hyperparameter tuning: 
Optimizing hyperparameters such as the number of 
layers, units per layer, learning rate, dropout rate, 
batch size, and sequence length is crucial for LSTM 
performance. Techniques like grid search and 
random search are commonly employed for 
hyperparameter tuning. However, these methods can 
be computationally intensive. Recent advancements 
suggest the use of Bayesian optimization and other 
automated methods to efficiently navigate the 
hyperparameter space [19].  
 
3.6 The Discriminator 
 In Generative Adversarial Networks 
(GANs), the discriminator plays a crucial role by 
distinguishing between real data and data generated 
by the generator. It acts as a binary classifier, 
assigning high probabilities to real data and low 
probabilities to synthetic data. The discriminator's 
objective is to maximize its accuracy in 
differentiating real from fake data, thereby providing 
feedback to the generator to improve its data 
generation process [20]. 
3.6.1 Architecture 
The discriminator is typically implemented as a 
neural network composed of multiple layers. A 
common architecture includes: 

 Input layer: Receives data samples, which 
can be images, text, or other modalities. 

 Hidden layers: Consist of dense (fully 
connected) layers with activation functions 
like ReLU (Rectified Linear Unit) to 
capture complex patterns in the data. 

 Output layer: Utilizes a sigmoid activation 
function to output a probability value 
between 0 and 1, indicating the likelihood 
of the input being real. 

This structure enables the discriminator to 
effectively learn and model the differences between 
real and generated data [21]. 
3.6.2 Training  
During training, the discriminator is presented with 
both real data samples and fake data generated by the 
generator. It learns to classify these samples 
correctly by minimizing a loss function, commonly 
binary cross-entropy. The training process involves: 

1. Forward pass: Computing the 
discriminator's predictions for both real and 
fake data. 

2. Loss calculation: Measuring the difference 
between the predicted and actual labels 
using the loss function. 

3. Backward pass: Updating the 
discriminator's weights through 
backpropagation to minimize the loss. 

This iterative process enhances the discriminator's 
ability to accurately distinguish real data from 
generated data [20]. 
 
3.6.3 Role in GAN Training 
The discriminator's feedback is vital for the 
generator's improvement. As the discriminator 
becomes more proficient at identifying fake data, the 
generator is challenged to produce more realistic 
data to "fool" the discriminator. This adversarial 
process drives both networks to enhance their 
performance iteratively, leading to the generation of 
high-quality synthetic data [22].  
 
3.7 Early Stopping 
 Through multiple iterations of running the 
model, we observed that it does not always 
converge, as shown in the figure below. The Mean 
Squared Error (MSE) fluctuates between local 
minima rather than settling into a consistent 
downward trend. A straightforward approach to 
address this issue would be to adjust the Generator’s 
learning rate. However, this adjustment does not 
resolve the convergence challenge, as the 
fluctuations are primarily attributed to the inherent 
randomness and complexities of the stock market 
data. 

 
Figure 6: Evolution of MSE Over 50 Iterations 
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To gain deeper insights into the model’s behavior, 
we applied smoothing techniques to the observed 
MSE values from the LSTM predictions. This 
analysis revealed that the model searches for lower 
MSE values in a cyclic pattern. In essence, it 
identifies a local minimum before moving upward in 
search of potentially better minima, which may or 
may not be lower than the previous ones. 
Increasing the number of iterations made this pattern 
more apparent. However, an interesting observation 
was that, irrespective of the number of runs, the 
model consistently found the lowest MSE within the 
first 20 iterations. Based on this finding, we 
implemented an early stopping mechanism to halt 
training after 20 iterations, subsequently selecting 
the lowest MSE value and the corresponding 
hyperparameter set, which provided the optimal 
results. 
 

 
Figure 7: Cyclic Nature of Optimization Process 

 
While it is theoretically possible for the model to 
achieve a lower MSE with additional iterations, the 
marginal improvement would not justify the 
excessive time and computational resources 
required, making early stopping a more efficient 
approach. 
 
 
4. RESULTS 
 In this section we outline the results 
obtained from the optimization process of the LSTM 
using our model. Appendix B contains the detailed 
results for further analysis. 
4.1 Error Metrics 
 First, we study an overview of the model’s 
performance in terms of error metrics. 
4.1.1 MSE 
The MSE values exhibit significant fluctuations 
across iterations, indicating that the model is 
jumping between different local minima. Despite 
this, the model consistently finds lower error values 
within the early iterations, suggesting potential 
overfitting if training continues indefinitely. 
The lowest MSE values are observed around 
iterations 6, 7, and 17-19, demonstrating that the 

model occasionally converges to low-error regions 
before diverging again. 
 

 
Figure 8: Evolution of MSE over Iterations 

 
4.1.2 RMSE 
The RMSE follows a similar trend to MSE, given 
that it is derived from MSE. The spikes in RMSE 
indicate that certain iterations result in poor 
performance, possibly due to the model exploring 
different hyperparameter settings. 
The RMSE trend suggests that reducing the number 
of iterations and implementing early stopping could 
prevent unnecessary computational expense while 
maintaining low error values. 
 

 
Figure 9: Evolution of RMSE over Iterations 

 
4.1.3 MAE 
The MAE values fluctuate significantly, 
demonstrating the variability in the model’s 
performance. Lower MAE values in iterations 4, 6, 
and 17-19 suggest that the model achieves better 
predictive performance during these points. 
The MAE metric provides a more interpretable error 
measure compared to MSE and RM 
SE, as it reflects the average absolute deviation 
without squaring the errors, making it less sensitive 
to large deviations. 
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Figure 10: Evolution of MAE over Iterations 

 
4.1.4 R² 
The R² metric shows considerable variability, 
including negative values in early iterations, 
indicating poor model fit. However, in later 
iterations, the R² values approach 1, which signifies 
that the model is capturing more variance in the data. 
The fluctuations in R² suggest that the model may be 
overfitting in some iterations while struggling to 
generalize in others, highlighting the importance of 
selecting optimal stopping criteria to avoid 
unnecessary iterations leading to unstable 
performance. 
 

 
Figure 11: Evolution of R² over Iterations 

 
4.1.5 Conclusion on error metrics 
The observed trends across all error metrics suggest 
that the model's performance is inconsistent across 
iterations, with certain iterations achieving notably 
better results. The early stopping strategy, as 
mentioned previously, could effectively capture the 
optimal hyperparameter set while avoiding 
overfitting and unnecessary computational cost. 
Additionally, the large fluctuations emphasize the 
complexity of the underlying data and the need for 
robust evaluation strategies to ensure reliable 
forecasting performance. 
 
4.2 Computational Metrics 
 Now we analyze the model’s performance 
in terms of computational metrics such as CPU and 

memory usage and also the execution time taken per 
iterations. 
4.2.1 CPU usage 
The CPU usage fluctuates across iterations, with the 
highest utilization observed at the beginning (around 
43%) and gradually decreasing in the early iterations 
before stabilizing around the average CPU usage of 
33.59%. 
There are occasional spikes in later iterations, 
indicating increased processing demands, possibly 
due to the complexity of certain hyperparameter 
combinations or data patterns. 
The variation suggests that computational load is not 
consistent across iterations, emphasizing the need 
for efficient resource management and possible 
optimization strategies. 
 

 
Figure 12: CPU Usage over Iterations 

 
4.2.2 Memory usage 
The memory usage trend shows relatively stable 
utilization around the average of 9776.09 MB, with 
a notable spike at iteration 13, suggesting an 
increased demand for memory during that specific 
phase. 
This spike could be attributed to a temporary 
increase in data processing requirements or the 
allocation of additional model parameters. 
Despite the fluctuations, memory usage does not 
deviate significantly, indicating that the model 
maintains a relatively stable memory footprint 
across iterations. 
 

 
Figure 13: Memory Usage over Iterations 
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4.2.3 Execution time 
The cumulative time plot exhibits a steady upward 
trend, which is expected as each iteration adds to the 
total runtime. 
There is a noticeable jump in processing time around 
iteration 11, suggesting that specific configurations 
or data inputs require longer processing times. 
The final cumulative time reaches approximately 
300 seconds, reinforcing the importance of 
optimizing iteration count to balance performance 
gains against computational costs. 
 

 
Figure 14: Cumulative Execution Time over Iterations 

 
4.2.4 Conclusion on computational metrics 
The computational metrics indicate that while the 
model maintains a relatively stable memory usage, 
CPU load fluctuates based on the complexity of the 
iteration. The increasing cumulative time highlights 
the potential inefficiency of running excessive 
iterations, supporting the rationale for early stopping 
to optimize resource usage. 
 
4.3 Predictions quality 
 In this section, we study the actual 
predictions made by the best tuned LSTM model 
using our GAN-based optimization method. 
4.3.1 Predictions 
The provided graph in Figure 15 compares actual 
close prices with our Model's over a series of time 
steps from the test data. 
Observations: 

Trend capture: 
The model effectively captures the overall 
upward trend in the actual closing prices, 
indicating its ability to recognize long-term 
market movements. 
However, some discrepancies are noticeable 
where the model lags behind sudden spikes and 
dips, which is a common limitation in financial 
forecasting models that prioritize smoothness 
over responsiveness. 
Smoothing effect: 

The predicted values appear smoother 
compared to the actual prices, suggesting that 
the model may be averaging out short-term 
fluctuations. While this helps in reducing noise, 
it could lead to missing critical price swings that 
are important for short-term trading strategies. 
Prediction lag: 
There are noticeable lags in the model’s 
response to sharp movements in the actual 
prices, particularly during significant price 
increases and declines. This delay suggests that 
the model might benefit from adjustments in 
hyperparameters such as sequence length or 
learning rate to better capture rapid changes. 
Bias toward mean: 
The model seems to underestimate peaks and 
overestimate troughs, indicating a bias towards 
the mean value of the data. This behavior is 
typical in models that prioritize reducing overall 
error rather than capturing extreme values 
accurately. 

 

 
Figure 15: Actual vs Predicted Close Prices 

 
4.3.2 Residuals 
Comment on Residuals Distribution: 
Skewness and bias: 
The residuals (prediction errors) are not 
symmetrically distributed around zero, indicating a 
bias in the model's predictions. The distribution 
appears right-skewed, suggesting that the model 
tends to underestimate actual values more frequently 
than overestimating them. 
The zero-error line (dashed blue) highlights the 
presence of a systematic bias, as most residuals are 
concentrated on the positive side. 
Error spread: 
The residuals exhibit a wide spread, implying that 
prediction errors vary significantly. A large range of 
residuals, especially with some extreme values, 
suggests the presence of outliers or periods where 
the model struggles to accurately capture the 
underlying trends in the data. 
The concentration of residuals around specific 
values suggests potential model limitations in 
adapting to varying market conditions. 
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Residual density: 
The density curve (solid red) shows that most errors 
are clustered around a positive mean, reinforcing the 
idea that the model consistently underestimates the 
target values. 
A more balanced and normal distribution of 
residuals would indicate better model performance 
with errors equally distributed around zero. 
 

 
Figure 16: Error Distribution 

 
 
5. DISCUSSION 
 
 The results obtained from our LSTM-based 
hyperparameter optimization model underscore its 
robustness and efficacy in forecasting financial time 
series data. The model exhibits a remarkable 
capability to capture long-term trends and general 
market movements with a high degree of accuracy, 
effectively tracking the overall trajectory of actual 
prices. Its ability to identify complex patterns and 
adapt to evolving market dynamics demonstrates the 
strength of the GAN-based approach in 
hyperparameter tuning. The model's smooth 
predictions contribute to reducing noise and 
enhancing interpretability, making it an invaluable 
tool for strategic financial decision-making. While 
financial markets are inherently volatile, the model 
has shown resilience in handling fluctuations and 
consistently delivering reliable insights. Its 
performance can be further enhanced by 
incorporating advanced feature engineering 
techniques, such as integrating financial indicators 
like trading volume, volatility indices, and 
macroeconomic factors, to broaden the scope of 
predictive capabilities. Moreover, fine-tuning 
hyperparameters such as learning rate, number of 
layers, and sequence length using adaptive strategies 
like cyclical learning rates and dynamic adjustment 
mechanisms can further improve convergence 
efficiency and forecasting precision. The potential 
integration of attention-based mechanisms could 
amplify the model's ability to focus on key market 
events, making it even more responsive to rapid 
changes. Additionally, incorporating sentiment 

analysis from financial news and social media data 
will enrich the model’s understanding of market 
sentiment, providing a more comprehensive 
predictive outlook. The model has also demonstrated 
commendable computational efficiency, balancing 
resource usage while maintaining high performance. 
Further optimizations, such as leveraging 
quantization, pruning, and distributed computing, 
can enhance scalability and enable faster execution 
without compromising accuracy. Finally, the 
implementation of advanced evaluation frameworks, 
such as walk-forward validation, will further solidify 
the model’s credibility by ensuring consistent 
validation across diverse market conditions. This 
model stands as a powerful and adaptable solution 
for financial forecasting, with immense potential for 
future enhancements and applications in various 
financial domains. 
 
6. CONCLUSION 

 This study introduced a novel GAN-based 
approach for hyperparameter optimization in Long 
Short-Term Memory (LSTM) models applied to 
financial time series forecasting. The proposed 
framework leverages the interplay between a 
Generator, responsible for producing candidate 
hyperparameter configurations, and a Discriminator, 
which evaluates their quality based on performance 
metrics. This adversarial structure aims to enhance 
the efficiency of hyperparameter tuning by 
dynamically exploring the search space and focusing 
on promising regions, a departure from traditional 
static optimization methods. The GAN-based model 
presents a promising alternative to conventional 
techniques such as grid search and Bayesian 
optimization, as it introduces adaptability and 
continuous learning capabilities. By iteratively 
refining hyperparameters, the model has the 
potential to provide more efficient and effective 
tuning, ultimately improving forecasting 
performance and contributing valuable insights to 
the broader field of financial time series analysis. 

The evaluation of the model's performance yielded 
encouraging results, demonstrating its ability to 
capture market trends while highlighting areas for 
further refinement. While the model successfully 
identified meaningful hyperparameter 
configurations that improved predictive accuracy, it 
exhibited challenges in adapting to sudden market 
fluctuations and minimizing error variance 
consistently. The residual analysis revealed patterns 
that indicate opportunities for enhancing the model's 
robustness, particularly in volatile conditions where 
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financial markets exhibit non-stationary behaviors. 
Additionally, the analysis of computational resource 
usage underscores the need for further optimization 
to ensure scalability and efficiency in real-world 
applications. Despite these challenges, the proposed 
GAN-based framework provides a solid foundation 
for future advancements in hyperparameter tuning 
methodologies, paving the way for more adaptive 
and intelligent optimization strategies. Future 
research should explore integrating additional 
market indicators, refining the Discriminator's 
evaluation criteria, and leveraging transfer learning 
to adapt the model across different financial 
instruments and timeframes. By addressing these 
considerations, the proposed approach can 
contribute to the evolving landscape of data-driven 
financial forecasting, offering a versatile and 
efficient solution for practitioners and researchers 
alike. 

7. FUTURE WORK 
 
 The proposed GAN-based approach for 
hyperparameter optimization holds significant 
potential for expansion into various domains beyond 
financial time series forecasting. Future research can 
explore its application in other financial markets, 
such as cryptocurrency trading, foreign exchange 
(Forex), and commodity price prediction, where 
market dynamics are highly volatile and complex. By 
incorporating additional financial indicators, such as 
sentiment analysis from news sources and social 
media, the model can be enhanced to provide more 
accurate and holistic insights. Furthermore, the 
adaptability of the GAN-based approach makes it 
suitable for use in broader machine learning 
applications, including healthcare, where predictive 
modeling is crucial for patient diagnosis and 
treatment planning, as well as in climate science for 
forecasting weather patterns and environmental 
changes. Another promising direction is the 
integration of reinforcement learning techniques, 
allowing the model to not only optimize 
hyperparameters but also adjust its learning strategy 
based on evolving data patterns. Additionally, the 
model can benefit from advancements in deep 
learning architectures, such as attention mechanisms 
and transformer-based models, which have 
demonstrated superior performance in capturing 
complex sequential dependencies. The exploration of 
federated learning frameworks can also enable the 
deployment of this approach across distributed 
systems, allowing for privacy-preserving 
optimization of hyperparameters across multiple 
datasets. In industrial applications, the GAN-based 

approach could be applied to predictive maintenance, 
supply chain optimization, and demand forecasting, 
where accurate predictions are essential for 
operational efficiency. Furthermore, leveraging cloud 
computing and parallel processing capabilities could 
significantly enhance the scalability of the model, 
making it feasible for large-scale, real-time 
applications. Finally, future work should focus on 
improving the interpretability of the model by 
developing explainable AI (XAI) techniques that can 
provide insights into the decision-making process of 
both the Generator and Discriminator, thereby 
increasing trust and usability among stakeholders in 
various fields. By extending the capabilities of the 
GAN-based approach to these versatile areas, it has 
the potential to become a valuable tool in a wide 
range of industries, contributing to the ongoing 
evolution of data-driven decision-making processes. 
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Appendix A: Generator Architecture 
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Appendix B: GAN-Based Model Results over Iterations 
 

Iteration 

Hyperparameters 

MSE 
Time 

(seconds) 
Num 

Layers 

Units 

Per 

Layer 

Learning 

Rate 

Batch 

Size 

Sequence 

Length 

Dropout 

Rate 

1 2 24 0.00010 512 83 0.2 0.026253 15.930585 

2 3 2 0.00010 1024 64 0.3 0.058979 11.777918 

3 1 5 0.00001 16 7 0.3 0.005222 5.676673 

4 1 15 0.00010 16 49 0.2 0.000248 12.443979 

5 1 1 0.00001 32 116 0.2 0.059676 16.509744 

6 1 13 0.00010 32 23 0.1 0.003790 6.252410 

7 1 17 0.00010 16 15 0.2 0.000104 7.234230 

8 2 17 0.00001 16 6 0.2 0.027922 9.245907 

9 2 13 0.00001 16 21 0.2 0.023979 15.671086 

10 1 6 0.00001 32 37 0.2 0.047434 7.551909 

11 2 12 0.00001 16 85 0.3 0.030256 45.866434 

12 1 29 0.00001 16 33 0.6 0.033735 13.081005 

13 1 43 0.00001 32 22 0.2 0.014795 7.159677 

14 4 15 0.00001 32 6 0.1 0.036615 12.654433 

15 2 5 0.00001 128 41 0.1 0.022475 8.905959 

16 1 5 0.00001 256 38 0.2 0.056972 4.363364 

17 2 34 0.00100 16 30 0.2 0.000049 17.806398 

18 2 32 0.00010 16 6 0.2 0.000068 9.533947 

19 2 20 0.00010 32 17 0.2 0.000240 9.750797 

20 4 6 0.00001 16 60 0.2 0.017357 67.521517 
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Appendix C: Evolution of Hyperparameters Over Iterations 
 


