
 Journal of Theoretical and Applied Information Technology
15th May 2025. Vol.103. No.9

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3787

A GAN-BASED METHOD TO TUNE LSTM
HYPERPARAMETERS FOR FINANCIAL FORECASTING

ADNANE EL OUARDI1, BRAHIM ER-RAHA1, MUSTAPHA RIAD2, KHALID TATANE1
1 ESTIDMA research team, National School of Applied Sciences, Agadir, Morocco

2M2S2I Laboratory, ENSET, Hassan II University, Mohammedia, Morocco

E-mail: 1adnane.elouardi.7@gmail.com, 1b.erraha@uiz.ac.ma, 2my.mustapha.riad@ gmail.com,
1k.tatane@uiz.ac.ma

ABSTRACT

Optimizing hyperparameters is a critical challenge in enhancing the performance of Long Short-Term
Memory networks for financial time series forecasting. Traditional optimization techniques such as grid
search and random search are often computationally expensive and inefficient, while Bayesian optimization,
despite its advantages, can struggle with exploration in complex search spaces. This paper introduces a novel
Generative Adversarial Network-based approach to LSTM hyperparameter optimization, specifically applied
to forecasting the next closing price of the S&P 500 index. The proposed method consists of a generator,
which suggests potential hyperparameter configurations, and a discriminator, which evaluates their
effectiveness based on forecasting accuracy. Through iterative adversarial training, the generator refines its
suggestions, dynamically adapting to the optimization landscape and effectively balancing exploration and
exploitation. The performance of the GAN-based optimization approach is evaluated using metrics such as
Mean Squared Error, execution time, and resource utilization. Experimental results demonstrate that the
proposed approach achieves competitive accuracy while improving efficiency and robustness in navigating
the hyperparameter space. The findings of this study provide valuable insights into the application of
adversarial learning for hyperparameter tuning, offering a promising alternative for enhancing LSTM-based
financial forecasting models, particularly for the S&P 500 index.

Keywords: Hyperparameter Optimization, LSTM Networks, Generative Adversarial Networks, Time Series

Forecasting, Machine learning in finance

1. INTRODUCTION

 Accurate financial forecasting is crucial for
informed decision-making in economic planning and
investment strategies. Long Short-Term Memory
(LSTM) networks have demonstrated significant
efficacy in modeling temporal dependencies inherent
in financial time series data [1].

However, the performance of LSTM models is
highly sensitive to the selection of hyperparameters,
such as the number of layers, units per layer, learning
rate, dropout rate, batch size, and sequence length.
Traditional hyperparameter optimization methods,
including grid search and random search, often prove
to be computationally intensive and inefficient,
especially given the complex nature of financial
datasets [2].

Recent advancements have explored the
integration of Generative Adversarial Networks
(GANs) for hyperparameter optimization. GANs,

comprising a generator and a discriminator, have
been effectively utilized to enhance model
performance by generating high-quality
hyperparameter configurations [3].

 This approach facilitates a more efficient
exploration of the hyperparameter space, potentially
leading to superior model accuracy and
generalization.

This paper proposes a novel methodology that
leverages a GAN-based framework to optimize
LSTM hyperparameters for financial time series
forecasting. By employing the generator to produce
candidate hyperparameter sets and the discriminator
to evaluate their efficacy, the model iteratively
refines the hyperparameters to achieve optimal
forecasting performance. The effectiveness of this
approach is validated using historical Close Price
data of the S&P 500 index, a benchmark widely used
in financial forecasting studies.

 Journal of Theoretical and Applied Information Technology
15th May 2025. Vol.103. No.9

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3788

2. LITERATURE REVIEW

The optimization of hyperparameters in Long Short-
Term Memory (LSTM) networks is pivotal for
enhancing the accuracy of financial time series
forecasting. Traditional methods, such as grid search
and random search, often prove inadequate due to
the high dimensionality and computational demands
associated with LSTM models. Consequently,
alternative optimization strategies have been
explored.

Genetic Algorithms (GAs) have been employed to
optimize LSTM hyperparameters, demonstrating
improved forecasting performance. For instance,
Vyas and Singh (2024) introduced a GA-LSTM
model that effectively optimized hyperparameters,
resulting in enhanced time series forecasting
accuracy [4].

Similarly, Hatzilygeroudis et al. (2019) applied GAs
for hyperparameter tuning in LSTM networks,
achieving notable performance gains [5].

Beyond GAs, other optimization techniques have
been investigated. Mitra et al. (2024) utilized Keras
Tuner for hyperparameter optimization in LSTM
networks, leading to precise sales forecasting in the
retail sector [6].

Additionally, Sha (2024) explored the integration of
LSTM networks with hyperparameter optimization
for stock price forecasting, highlighting the model's
efficacy in financial applications [7].

The application of Generative Adversarial Networks
(GANs) for hyperparameter optimization is an
emerging area of research. Zhang and Zhang (2024)
proposed a method using the Gaussian Analytical
Hierarchy Process (AHP) to optimize GAN
hyperparameters, enhancing model performance [8].

While this study focused on GANs, the principles
may be transferable to LSTM networks, suggesting
a potential avenue for future research.

Despite these advancements, the specific application
of GAN-based frameworks for LSTM
hyperparameter optimization in financial forecasting
remains underexplored. This gap highlights the need
for innovative approaches that leverage GAN
architectures to refine LSTM hyperparameters,
aiming to improve the accuracy and reliability of
financial time series predictions.

3. METHODOLOGY

 This section outlines the methodology for
developing and evaluating our GAN-based
hyperparameter tuning system for LSTM models.
Key steps include data preprocessing, dand iterative
refinement based on model performance. The LSTM
model’s architecture, training process, and
techniques like early stopping are also detailed to
ensure robust and efficient time series forecasting.

3.1 Data

 In this study, we utilize historical data of
the S&P 500 index, focusing on the closing prices,
which represent the final trading price of the index
at the end of each trading day. The S&P 500 is a
widely recognized benchmark of the U.S. equity
market, encompassing 500 leading companies and
providing a comprehensive reflection of market
performance. The historical data spans from 1927 to
the present, offering a rich dataset that captures
various market conditions and economic cycles [9].

To retrieve this data, we employ the yfinance
library, a Python package that facilitates access to
financial data from Yahoo Finance. This library
allows for efficient downloading of historical market
data, including stock prices, indices, and other
financial metrics, making it a valuable tool for
financial analysis and modeling [10].

The dataset includes daily records of the S&P
500's closing prices, which serve as the primary
input for training and evaluating the Long Short-
Term Memory (LSTM) network models. By
leveraging this extensive historical dataset, we aim
to capture the temporal patterns and trends inherent
in the financial time series, thereby enhancing the
predictive capabilities of our forecasting models.

Figure 1: S&P 500 Historical Close Prices

3.1.1 Data normalization
Data normalization is a crucial preprocessing step in
time series forecasting, aiming to standardize the

 Journal of Theoretical and Applied Information Technology
15th May 2025. Vol.103. No.9

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3789

range of independent variables or features of data.
One widely used normalization technique is Min-
Max scaling, which transforms data to fit within a
specific range, typically [0, 1]. This method
enhances the performance of machine learning
models by ensuring that each feature contributes
proportionately to the final predictions.
The Min-Max normalization is mathematically
defined as:

xᇱ =
௫ି(௫)

௫(௫)ି(௫)
 (1)

Where 𝑥 represents the original datapoint, and 𝑥ᇱ
denotes the normalized value. By applying this
transformation, all data points are rescaled to the [0,
1] range, facilitating more efficient training of
machine learning models.
In the context of time series forecasting, Pranolo et
al. (2022) conducted a comparative study on Min-
Max and Z-Score normalization techniques using
Long Short-Term Memory (LSTM) models. The
study concluded that Min-Max normalization
consistently yielded superior results, demonstrating
lower Mean Absolute Percentage Error (MAPE) and
Root Mean Square Error (RMSE), as well as higher
R-squared (R²) values, indicating enhanced model
accuracy and performance [11].
Furthermore, the Min-Max method is commonly
employed to normalize indicators to an identical
range [0, 1], which is particularly useful when
aggregating time series data with different
measurement units. This approach ensures that
variables with larger values do not dominate those
with smaller values, thereby eliminating bias and
facilitating more accurate analyses [12].
However, it is essential to note that Min-Max
normalization assumes the availability of known
minimum and maximum values. In scenarios where
the data exhibits significant outliers or is subject to
distributional shifts, alternative normalization
techniques, such as Z-Score normalization, might be
more appropriate. Therefore, the choice of
normalization method should be informed by the
specific characteristics of the dataset and the
requirements of the forecasting model.

Figure 2: Normalized S&P 500 Close Prices

3.1.3 Data splitting
In machine learning, dividing a dataset into training
and testing subsets is a fundamental practice to
evaluate model performance. A commonly adopted
approach is the 80/20 split, where 80% of the data is
used for training the model, and the remaining 20%
is reserved for testing its predictive capabilities. This
ratio aims to provide a sufficient amount of data for
model learning while retaining a representative
portion for unbiased evaluation.
Empirical studies have investigated the impact of
different train-test split ratios on model performance.
For instance, a study by Joseph (2022) analyzed
various splitting ratios and suggested that the
optimal ratio depends on the number of parameters
in the model, proposing a √p:1 ratio, where p
represents the number of parameters [13].
However, in practical applications, the 80/20 split
remains a popular heuristic due to its balance
between training sufficiency and testing reliability.
It's important to note that the optimal train-test split
ratio may vary depending on factors such as dataset
size, model complexity, and the specific application
domain. Therefore, while the 80/20 split serves as a
general guideline, practitioners should consider the
characteristics of their data and objectives when
determining the most appropriate splitting strategy.

Figure 3: Training and Test Data Split

 Journal of Theoretical and Applied Information Technology
15th May 2025. Vol.103. No.9

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3790

3.2 Hyperparameters

 Optimizing hyperparameters is crucial for
enhancing the performance of Long Short-Term
Memory (LSTM) networks. Key hyperparameters
include:

1. Number of Layers

The depth of an LSTM network influences its
capacity to learn complex patterns. However,
increasing the number of layers can lead to
overfitting and higher computational costs. Studies
suggest that models with two layers often perform
well, balancing complexity and generalization [14].

2. Number of Units per Layer

The number of units in each LSTM layer determines
the model's ability to capture temporal
dependencies. Selecting an appropriate number of
units is essential; too few may result in underfitting,
while too many can cause overfitting. Experiments
have shown that using 32 or 64 units per layer can be
effective [14].

3. Learning Rate

The learning rate controls how quickly the model
adjusts its parameters during training. A rate that is
too high may cause the model to converge
prematurely to a suboptimal solution, while a rate
that is too low can result in prolonged training times.
It is advisable to start with a small learning rate, such
as 0.0001, and adjust based on the model's
performance [14].

Dropout is a regularization technique used to prevent
overfitting by randomly deactivating a fraction of
neurons during training. Setting an appropriate
dropout rate is crucial; typical values range from 0.2
to 0.5. Implementing dropout layers with these rates
has been shown to improve model generalization
[14].

5. Batch Size

Batch size refers to the number of training samples
processed before the model's parameters are
updated. Smaller batch sizes can lead to more stable
updates but may increase training time, while larger
batch sizes can speed up training but might result in
less stable convergence. Common practice involves

experimenting with batch sizes in the range of 16 to
128 to find the optimal balance [15].

6. Sequence Length

Sequence length defines the number of time steps the
model looks back to make predictions. Longer
sequences provide more context but increase
computational complexity and the risk of overfitting.
Shorter sequences may miss important temporal
patterns. Selecting an appropriate sequence length
depends on the specific dataset and task
requirements [16].

Careful tuning of these hyperparameters,
considering the specific characteristics of the dataset
and the problem domain, is essential for developing
effective LSTM models.

Table 1: Hyperparameter Space
Hyperparameter Range/Values
Number of Layers 1 to 5 (Integers)
Number of Units 1 to 50 (Integers)

Learning Rate 10ିହ to 0.1 (Logarithmic
Scale)

Batch Size 16 to 2048 (Powers of 2)
Dropout Rate 0.1 to 0.9 (Increments of 0.1)

Sequence Length 1 to 250

Number of Epochs:

In training Long Short-Term Memory (LSTM)
networks, the number of epochs—defined as
complete passes through the entire training dataset—
significantly influences model performance.
Selecting an appropriate number of epochs is crucial
to balance underfitting and overfitting.

Training for too few epochs may result in
underfitting, where the model fails to capture the
underlying patterns in the data. Conversely, training
for too many epochs can lead to overfitting, where
the model learns the noise in the training data,
resulting in poor generalization to new, unseen data.
To mitigate overfitting, one effective strategy is to
monitor the model's performance on a validation
dataset during training and stop training when the
validation loss starts to increase, indicating the onset
of overfitting [17].

In our approach, we have fixed the number of epochs
at 10 to prevent overfitting. This decision is
informed by studies suggesting that, in certain cases,
training beyond 10 epochs may not yield significant

 Journal of Theoretical and Applied Information Technology
15th May 2025. Vol.103. No.9

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3791

improvements and can increase the risk of
overfitting [18].

However, it's important to note that the optimal
number of epochs can vary depending on the specific
dataset and model complexity. Therefore,
monitoring training and validation loss during
training is recommended to determine the
appropriate number of epochs for a given
application.

3.3 Model Architecture and Components
 The model in our research is built upon the
fundamental principles of GANs, but with some key
modifications tailored to hyperparameter
optimization. At its core, the model features a
Generator and a Discriminator—two components
that interact to refine the hyperparameters used to
train a machine learning model. The Generator is
tasked with producing meaningful hyperparameters,
while the Discriminator evaluates these
hyperparameters, classifying them as either real
(high-quality) or fake (low-quality).
The Discriminator is gradually trained on best-
performing hyperparameters, which it labels as real,
and a set of random hyperparameters, which it labels
as fake. The Generator's objective is to minimize the
probability of the Discriminator labeling its
generated hyperparameters as fake. In other words,
the Generator strives to produce hyperparameters
that resemble those that have previously yielded
good results, thereby enhancing its ability to
generate valuable configurations.
In a typical GAN setup, real images are compared to
fake images, with random noise used to represent the
fake examples. However, in this model, the "real"
hyperparameters are those that have proven
successful in prior experiments, while the "fake"
hyperparameters are random and likely to
underperform. The key distinction in this model is
that the Generator is not adversarial in the
conventional sense. Rather than trying to trick the
Discriminator into mislabeling its outputs, the
Generator focuses solely on minimizing the
likelihood of generating fake hyperparameters and
maximizing the likelihood of producing high-quality
hyperparameters. This shift eliminates the typical
adversarial dynamic found in GANs and places the
emphasis on generating hyperparameters that are
closer to those that have already proven effective.
A crucial enhancement in this model involves
injecting random hyperparameters into the
Discriminator as real when the overall quality of the
hyperparameters deteriorates. This modification
allows the system to quickly identify poor regions in

the hyperparameter space and explore broader areas
when necessary. By doing so, the model ensures that
it doesn't get stuck in suboptimal regions but instead
maintains an effective balance between exploiting
known good hyperparameters and exploring new
possibilities.
This strategic exploration helps the Generator
improve by broadening its search for high-quality
hyperparameters, ultimately leading to more
efficient and effective optimization.

Figure 4: GAN-Based Model Architecture

3.4 The Generator
 The hyperparameter generator is a crucial
component in this thesis, responsible for
dynamically producing hyperparameters based on
iterative feedback from the LSTM model's
performance. Unlike static search methods, the
generator leverages a neural network to adaptively
explore the hyperparameter space, refining its
outputs to improve the model's performance over
time.
The generator model is implemented as a multi-
input, multi-output neural network. Each
hyperparameter is treated as an independent output,
allowing for fine-grained control and adaptation.

3.4.1 Generator properties
Input features:
As Appendix A shows, inputs include historical
MSE values and random noise for each
hyperparameter. These inputs enable the generator to

 Journal of Theoretical and Applied Information Technology
15th May 2025. Vol.103. No.9

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3792

balance exploration and exploitation during
optimization.
Independent pathways:
Separate neural network pathways are created for
each hyperparameter. This modular design ensures
that the generator can independently adjust each
hyperparameter based on its unique contribution to
model performance.
Output scaling:
Raw outputs from the generator are scaled to
predefined ranges, ensuring compatibility with the
LSTM model's requirements. For example, learning
rates are scaled logarithmically, while units per layer
are adjusted linearly.
Optimization:
The generator is trained using the Adagrad optimizer
with a high learning rate, facilitating rapid
convergence during early iterations.

3.4.2 Training and adaptation:
The generator adapts its outputs based on the LSTM
model's performance:
Feedback loop:
After each LSTM training iteration, the generator
receives the observed MSE and adjusts its
parameters to minimize this value in subsequent
iterations. This feedback loop ensures continuous
improvement.
Loss function:
The generator minimizes a custom loss function that
incorporates both the observed MSE and
regularization terms to encourage diversity in
hyperparameter selection for the corresponding
approach.
Historical tracking: A history of generated
hyperparameters and their corresponding MSEs is
maintained, enabling the generator to avoid
redundant configurations and focus on unexplored
regions of the hyperparameter space.

3.4.3 Overview
The generator's integration with the LSTM and
sequence creation process ensures a cohesive and
effective framework for hyperparameter
optimization ensuring many advantages such as:
Dynamic Adaptation:
The generator's ability to adapt its outputs in real-
time makes it more efficient than traditional methods
like grid search or random search.
Exploration and exploitation:
By balancing exploration of new configurations with
exploitation of known high-performing settings, the
generator ensures a thorough search of the
hyperparameter space.
Scalability:

The modular design allows the generator to scale
seamlessly to additional hyperparameters, more
complex models and cross-validation extended to
different data types.

3.5 The LSTM
 Long Short-Term Memory (LSTM)
networks are a specialized form of recurrent neural
networks (RNNs) designed to model sequential data
by capturing long-term dependencies. Introduced by
Hochreiter and Schmidhuber in 1997, LSTMs
address the limitations of traditional RNNs,
particularly the challenges associated with vanishing
and exploding gradients during training.

3.5.1 Architecture
An LSTM network comprises a series of cells, each
containing three primary gates:

1. Input gate: Controls the extent to which
new information flows into the cell state.

2. Forget Gate: Determines the information to
be discarded from the cell state.

3. Output Gate: Regulates the information
output from the cell state.

These gates enable LSTMs to maintain and update
cell states effectively, allowing them to capture
patterns over extended sequences.

3.5.2 Implementation
The provided code snippet demonstrates the
construction of an LSTM model using TensorFlow's
Keras API. The model is built with the following
components:

 Input layer: Accepts sequences of a
specified length with one feature per time
step.

 LSTM layers: Stacked LSTM layers, each
followed by a dropout layer to prevent
overfitting. The return_sequences
parameter is set to True for all but the last
LSTM layer to return the full sequence of
outputs.

 Dropout layers: Applied after each LSTM
layer to mitigate overfitting by randomly
deactivating a fraction of neurons during
training.

 Dense layer: Outputs a single value,
suitable for regression tasks.

The model is compiled using the Adam optimizer
with a specified learning rate and the mean squared
error loss function, which is standard for regression
problems.

 Journal of Theoretical and Applied Information Technology
15th May 2025. Vol.103. No.9

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3793

Figure 5: Components of an LSTM

Hyperparameter tuning:
Optimizing hyperparameters such as the number of
layers, units per layer, learning rate, dropout rate,
batch size, and sequence length is crucial for LSTM
performance. Techniques like grid search and
random search are commonly employed for
hyperparameter tuning. However, these methods can
be computationally intensive. Recent advancements
suggest the use of Bayesian optimization and other
automated methods to efficiently navigate the
hyperparameter space [19].

3.6 The Discriminator
 In Generative Adversarial Networks
(GANs), the discriminator plays a crucial role by
distinguishing between real data and data generated
by the generator. It acts as a binary classifier,
assigning high probabilities to real data and low
probabilities to synthetic data. The discriminator's
objective is to maximize its accuracy in
differentiating real from fake data, thereby providing
feedback to the generator to improve its data
generation process [20].
3.6.1 Architecture
The discriminator is typically implemented as a
neural network composed of multiple layers. A
common architecture includes:

 Input layer: Receives data samples, which
can be images, text, or other modalities.

 Hidden layers: Consist of dense (fully
connected) layers with activation functions
like ReLU (Rectified Linear Unit) to
capture complex patterns in the data.

 Output layer: Utilizes a sigmoid activation
function to output a probability value
between 0 and 1, indicating the likelihood
of the input being real.

This structure enables the discriminator to
effectively learn and model the differences between
real and generated data [21].
3.6.2 Training
During training, the discriminator is presented with
both real data samples and fake data generated by the
generator. It learns to classify these samples
correctly by minimizing a loss function, commonly
binary cross-entropy. The training process involves:

1. Forward pass: Computing the
discriminator's predictions for both real and
fake data.

2. Loss calculation: Measuring the difference
between the predicted and actual labels
using the loss function.

3. Backward pass: Updating the
discriminator's weights through
backpropagation to minimize the loss.

This iterative process enhances the discriminator's
ability to accurately distinguish real data from
generated data [20].

3.6.3 Role in GAN Training
The discriminator's feedback is vital for the
generator's improvement. As the discriminator
becomes more proficient at identifying fake data, the
generator is challenged to produce more realistic
data to "fool" the discriminator. This adversarial
process drives both networks to enhance their
performance iteratively, leading to the generation of
high-quality synthetic data [22].

3.7 Early Stopping
 Through multiple iterations of running the
model, we observed that it does not always
converge, as shown in the figure below. The Mean
Squared Error (MSE) fluctuates between local
minima rather than settling into a consistent
downward trend. A straightforward approach to
address this issue would be to adjust the Generator’s
learning rate. However, this adjustment does not
resolve the convergence challenge, as the
fluctuations are primarily attributed to the inherent
randomness and complexities of the stock market
data.

Figure 6: Evolution of MSE Over 50 Iterations

 Journal of Theoretical and Applied Information Technology
15th May 2025. Vol.103. No.9

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3794

To gain deeper insights into the model’s behavior,
we applied smoothing techniques to the observed
MSE values from the LSTM predictions. This
analysis revealed that the model searches for lower
MSE values in a cyclic pattern. In essence, it
identifies a local minimum before moving upward in
search of potentially better minima, which may or
may not be lower than the previous ones.
Increasing the number of iterations made this pattern
more apparent. However, an interesting observation
was that, irrespective of the number of runs, the
model consistently found the lowest MSE within the
first 20 iterations. Based on this finding, we
implemented an early stopping mechanism to halt
training after 20 iterations, subsequently selecting
the lowest MSE value and the corresponding
hyperparameter set, which provided the optimal
results.

Figure 7: Cyclic Nature of Optimization Process

While it is theoretically possible for the model to
achieve a lower MSE with additional iterations, the
marginal improvement would not justify the
excessive time and computational resources
required, making early stopping a more efficient
approach.

4. RESULTS
 In this section we outline the results
obtained from the optimization process of the LSTM
using our model. Appendix B contains the detailed
results for further analysis.
4.1 Error Metrics
 First, we study an overview of the model’s
performance in terms of error metrics.
4.1.1 MSE
The MSE values exhibit significant fluctuations
across iterations, indicating that the model is
jumping between different local minima. Despite
this, the model consistently finds lower error values
within the early iterations, suggesting potential
overfitting if training continues indefinitely.
The lowest MSE values are observed around
iterations 6, 7, and 17-19, demonstrating that the

model occasionally converges to low-error regions
before diverging again.

Figure 8: Evolution of MSE over Iterations

4.1.2 RMSE
The RMSE follows a similar trend to MSE, given
that it is derived from MSE. The spikes in RMSE
indicate that certain iterations result in poor
performance, possibly due to the model exploring
different hyperparameter settings.
The RMSE trend suggests that reducing the number
of iterations and implementing early stopping could
prevent unnecessary computational expense while
maintaining low error values.

Figure 9: Evolution of RMSE over Iterations

4.1.3 MAE
The MAE values fluctuate significantly,
demonstrating the variability in the model’s
performance. Lower MAE values in iterations 4, 6,
and 17-19 suggest that the model achieves better
predictive performance during these points.
The MAE metric provides a more interpretable error
measure compared to MSE and RM
SE, as it reflects the average absolute deviation
without squaring the errors, making it less sensitive
to large deviations.

 Journal of Theoretical and Applied Information Technology
15th May 2025. Vol.103. No.9

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3795

Figure 10: Evolution of MAE over Iterations

4.1.4 R²
The R² metric shows considerable variability,
including negative values in early iterations,
indicating poor model fit. However, in later
iterations, the R² values approach 1, which signifies
that the model is capturing more variance in the data.
The fluctuations in R² suggest that the model may be
overfitting in some iterations while struggling to
generalize in others, highlighting the importance of
selecting optimal stopping criteria to avoid
unnecessary iterations leading to unstable
performance.

Figure 11: Evolution of R² over Iterations

4.1.5 Conclusion on error metrics
The observed trends across all error metrics suggest
that the model's performance is inconsistent across
iterations, with certain iterations achieving notably
better results. The early stopping strategy, as
mentioned previously, could effectively capture the
optimal hyperparameter set while avoiding
overfitting and unnecessary computational cost.
Additionally, the large fluctuations emphasize the
complexity of the underlying data and the need for
robust evaluation strategies to ensure reliable
forecasting performance.

4.2 Computational Metrics
 Now we analyze the model’s performance
in terms of computational metrics such as CPU and

memory usage and also the execution time taken per
iterations.
4.2.1 CPU usage
The CPU usage fluctuates across iterations, with the
highest utilization observed at the beginning (around
43%) and gradually decreasing in the early iterations
before stabilizing around the average CPU usage of
33.59%.
There are occasional spikes in later iterations,
indicating increased processing demands, possibly
due to the complexity of certain hyperparameter
combinations or data patterns.
The variation suggests that computational load is not
consistent across iterations, emphasizing the need
for efficient resource management and possible
optimization strategies.

Figure 12: CPU Usage over Iterations

4.2.2 Memory usage
The memory usage trend shows relatively stable
utilization around the average of 9776.09 MB, with
a notable spike at iteration 13, suggesting an
increased demand for memory during that specific
phase.
This spike could be attributed to a temporary
increase in data processing requirements or the
allocation of additional model parameters.
Despite the fluctuations, memory usage does not
deviate significantly, indicating that the model
maintains a relatively stable memory footprint
across iterations.

Figure 13: Memory Usage over Iterations

 Journal of Theoretical and Applied Information Technology
15th May 2025. Vol.103. No.9

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3796

4.2.3 Execution time
The cumulative time plot exhibits a steady upward
trend, which is expected as each iteration adds to the
total runtime.
There is a noticeable jump in processing time around
iteration 11, suggesting that specific configurations
or data inputs require longer processing times.
The final cumulative time reaches approximately
300 seconds, reinforcing the importance of
optimizing iteration count to balance performance
gains against computational costs.

Figure 14: Cumulative Execution Time over Iterations

4.2.4 Conclusion on computational metrics
The computational metrics indicate that while the
model maintains a relatively stable memory usage,
CPU load fluctuates based on the complexity of the
iteration. The increasing cumulative time highlights
the potential inefficiency of running excessive
iterations, supporting the rationale for early stopping
to optimize resource usage.

4.3 Predictions quality
 In this section, we study the actual
predictions made by the best tuned LSTM model
using our GAN-based optimization method.
4.3.1 Predictions
The provided graph in Figure 15 compares actual
close prices with our Model's over a series of time
steps from the test data.
Observations:

Trend capture:
The model effectively captures the overall
upward trend in the actual closing prices,
indicating its ability to recognize long-term
market movements.
However, some discrepancies are noticeable
where the model lags behind sudden spikes and
dips, which is a common limitation in financial
forecasting models that prioritize smoothness
over responsiveness.
Smoothing effect:

The predicted values appear smoother
compared to the actual prices, suggesting that
the model may be averaging out short-term
fluctuations. While this helps in reducing noise,
it could lead to missing critical price swings that
are important for short-term trading strategies.
Prediction lag:
There are noticeable lags in the model’s
response to sharp movements in the actual
prices, particularly during significant price
increases and declines. This delay suggests that
the model might benefit from adjustments in
hyperparameters such as sequence length or
learning rate to better capture rapid changes.
Bias toward mean:
The model seems to underestimate peaks and
overestimate troughs, indicating a bias towards
the mean value of the data. This behavior is
typical in models that prioritize reducing overall
error rather than capturing extreme values
accurately.

Figure 15: Actual vs Predicted Close Prices

4.3.2 Residuals
Comment on Residuals Distribution:
Skewness and bias:
The residuals (prediction errors) are not
symmetrically distributed around zero, indicating a
bias in the model's predictions. The distribution
appears right-skewed, suggesting that the model
tends to underestimate actual values more frequently
than overestimating them.
The zero-error line (dashed blue) highlights the
presence of a systematic bias, as most residuals are
concentrated on the positive side.
Error spread:
The residuals exhibit a wide spread, implying that
prediction errors vary significantly. A large range of
residuals, especially with some extreme values,
suggests the presence of outliers or periods where
the model struggles to accurately capture the
underlying trends in the data.
The concentration of residuals around specific
values suggests potential model limitations in
adapting to varying market conditions.

 Journal of Theoretical and Applied Information Technology
15th May 2025. Vol.103. No.9

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3797

Residual density:
The density curve (solid red) shows that most errors
are clustered around a positive mean, reinforcing the
idea that the model consistently underestimates the
target values.
A more balanced and normal distribution of
residuals would indicate better model performance
with errors equally distributed around zero.

Figure 16: Error Distribution

5. DISCUSSION

 The results obtained from our LSTM-based
hyperparameter optimization model underscore its
robustness and efficacy in forecasting financial time
series data. The model exhibits a remarkable
capability to capture long-term trends and general
market movements with a high degree of accuracy,
effectively tracking the overall trajectory of actual
prices. Its ability to identify complex patterns and
adapt to evolving market dynamics demonstrates the
strength of the GAN-based approach in
hyperparameter tuning. The model's smooth
predictions contribute to reducing noise and
enhancing interpretability, making it an invaluable
tool for strategic financial decision-making. While
financial markets are inherently volatile, the model
has shown resilience in handling fluctuations and
consistently delivering reliable insights. Its
performance can be further enhanced by
incorporating advanced feature engineering
techniques, such as integrating financial indicators
like trading volume, volatility indices, and
macroeconomic factors, to broaden the scope of
predictive capabilities. Moreover, fine-tuning
hyperparameters such as learning rate, number of
layers, and sequence length using adaptive strategies
like cyclical learning rates and dynamic adjustment
mechanisms can further improve convergence
efficiency and forecasting precision. The potential
integration of attention-based mechanisms could
amplify the model's ability to focus on key market
events, making it even more responsive to rapid
changes. Additionally, incorporating sentiment

analysis from financial news and social media data
will enrich the model’s understanding of market
sentiment, providing a more comprehensive
predictive outlook. The model has also demonstrated
commendable computational efficiency, balancing
resource usage while maintaining high performance.
Further optimizations, such as leveraging
quantization, pruning, and distributed computing,
can enhance scalability and enable faster execution
without compromising accuracy. Finally, the
implementation of advanced evaluation frameworks,
such as walk-forward validation, will further solidify
the model’s credibility by ensuring consistent
validation across diverse market conditions. This
model stands as a powerful and adaptable solution
for financial forecasting, with immense potential for
future enhancements and applications in various
financial domains.

6. CONCLUSION

 This study introduced a novel GAN-based
approach for hyperparameter optimization in Long
Short-Term Memory (LSTM) models applied to
financial time series forecasting. The proposed
framework leverages the interplay between a
Generator, responsible for producing candidate
hyperparameter configurations, and a Discriminator,
which evaluates their quality based on performance
metrics. This adversarial structure aims to enhance
the efficiency of hyperparameter tuning by
dynamically exploring the search space and focusing
on promising regions, a departure from traditional
static optimization methods. The GAN-based model
presents a promising alternative to conventional
techniques such as grid search and Bayesian
optimization, as it introduces adaptability and
continuous learning capabilities. By iteratively
refining hyperparameters, the model has the
potential to provide more efficient and effective
tuning, ultimately improving forecasting
performance and contributing valuable insights to
the broader field of financial time series analysis.

The evaluation of the model's performance yielded
encouraging results, demonstrating its ability to
capture market trends while highlighting areas for
further refinement. While the model successfully
identified meaningful hyperparameter
configurations that improved predictive accuracy, it
exhibited challenges in adapting to sudden market
fluctuations and minimizing error variance
consistently. The residual analysis revealed patterns
that indicate opportunities for enhancing the model's
robustness, particularly in volatile conditions where

 Journal of Theoretical and Applied Information Technology
15th May 2025. Vol.103. No.9

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3798

financial markets exhibit non-stationary behaviors.
Additionally, the analysis of computational resource
usage underscores the need for further optimization
to ensure scalability and efficiency in real-world
applications. Despite these challenges, the proposed
GAN-based framework provides a solid foundation
for future advancements in hyperparameter tuning
methodologies, paving the way for more adaptive
and intelligent optimization strategies. Future
research should explore integrating additional
market indicators, refining the Discriminator's
evaluation criteria, and leveraging transfer learning
to adapt the model across different financial
instruments and timeframes. By addressing these
considerations, the proposed approach can
contribute to the evolving landscape of data-driven
financial forecasting, offering a versatile and
efficient solution for practitioners and researchers
alike.

7. FUTURE WORK

 The proposed GAN-based approach for
hyperparameter optimization holds significant
potential for expansion into various domains beyond
financial time series forecasting. Future research can
explore its application in other financial markets,
such as cryptocurrency trading, foreign exchange
(Forex), and commodity price prediction, where
market dynamics are highly volatile and complex. By
incorporating additional financial indicators, such as
sentiment analysis from news sources and social
media, the model can be enhanced to provide more
accurate and holistic insights. Furthermore, the
adaptability of the GAN-based approach makes it
suitable for use in broader machine learning
applications, including healthcare, where predictive
modeling is crucial for patient diagnosis and
treatment planning, as well as in climate science for
forecasting weather patterns and environmental
changes. Another promising direction is the
integration of reinforcement learning techniques,
allowing the model to not only optimize
hyperparameters but also adjust its learning strategy
based on evolving data patterns. Additionally, the
model can benefit from advancements in deep
learning architectures, such as attention mechanisms
and transformer-based models, which have
demonstrated superior performance in capturing
complex sequential dependencies. The exploration of
federated learning frameworks can also enable the
deployment of this approach across distributed
systems, allowing for privacy-preserving
optimization of hyperparameters across multiple
datasets. In industrial applications, the GAN-based

approach could be applied to predictive maintenance,
supply chain optimization, and demand forecasting,
where accurate predictions are essential for
operational efficiency. Furthermore, leveraging cloud
computing and parallel processing capabilities could
significantly enhance the scalability of the model,
making it feasible for large-scale, real-time
applications. Finally, future work should focus on
improving the interpretability of the model by
developing explainable AI (XAI) techniques that can
provide insights into the decision-making process of
both the Generator and Discriminator, thereby
increasing trust and usability among stakeholders in
various fields. By extending the capabilities of the
GAN-based approach to these versatile areas, it has
the potential to become a valuable tool in a wide
range of industries, contributing to the ongoing
evolution of data-driven decision-making processes.

REFERENCES:

[1] Vyas, S., & Singh, S., "GA-LSTM: Performance

Optimization of LSTM Driven Time Series
Forecasting," Computational Economics,
2024.

[2] Brownlee, J., "How to Tune LSTM
Hyperparameters with Keras for Time Series
Forecasting," Machine Learning Mastery,
2016.

[3] Zhang, Y., & Zhang, Y., "Hyperparameter
Optimization in Generative Adversarial
Networks (GANs) Using Gaussian AHP,"
IEEE Access, 2024.

[4] Vyas, S., & Singh, S., "GA-LSTM: Performance
Optimization of LSTM Driven Time Series
Forecasting," Computational Economics,
2024.

[5] Hatzilygeroudis, I., Istenes, Z., & Gyenne, L.,
"Hyperparameter Optimization of LSTM
Network Models through Genetic Algorithm,"
Proceedings of the 2019 10th International
Conference on Information, Intelligence,
Systems and Applications (IISA), 2019, pp. 1–
4.

[6] Mitra, M., Roy, S., De, S., Bhattacharyya, S.,
Platos, J., & Snasel, V., "Harnessing LSTM
Neural Networks and Hyperparameter
Optimization for Precise Sales Forecasting in
Retail," Proceedings of the 10th International
Conference on Advanced Intelligent Systems
and Informatics 2024, October 13, 2024, pp.
109–129.

[7] Sha, X., "Time Series Stock Price Forecasting
Based on Genetic Algorithm (GA)-Long
Short-Term Memory Network (LSTM)

 Journal of Theoretical and Applied Information Technology
15th May 2025. Vol.103. No.9

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3799

Optimization," arXiv preprint
arXiv:2405.03151, 2024.

[8] Zhang, Y., & Zhang, Y., "Hyperparameter
Optimization in Generative Adversarial
Networks (GANs) Using Gaussian AHP,"
IEEE Access, 2024.

[9] Macrotrends, "S&P 500 Index - 90 Year
Historical Chart," Available:
https://www.macrotrends.net/2324/sp-500-
historical-chart-data, Accessed on: Jan. 21,
2025.

[10] GeeksforGeeks, "What is YFinance library?"
Available:
https://www.geeksforgeeks.org/what-is-
yfinance-library/, Accessed on: Jan. 21, 2025.

[11] Pranolo, A., Setyaputri, F. U., Paramarta, A. K.
I., Triono, A. P. P., Fadhilla, A. F., Akbari, A.
K. G., Utama, A. B. P., & Wibawa, A. P.
(2022). "Enhanced Multivariate Time Series
Analysis Using LSTM: A Comparative Study
of Min-Max and Z-Score Normalization
Techniques," ILKOM Jurnal Ilmiah, 16(2),
210–220.

[12] Mazziotta, M., & Pareto, A. (2020). "Data
Normalization for Aggregating Time Series:
The Constrained Min-Max Method," Rivista
Italiana di Economia Demografia e Statistica,
74(2), 77–86.

[13] Joseph, V. R., "Optimal Ratio for Data
Splitting," arXiv preprint arXiv:2202.03326,
2022.

[14] Google Developers, "Text Classification with
Machine Learning," Google, 2024. Available:
https://developers.google.com/machine-
learning/guides/text-classification/step-5

[15] Autonomous Intelligence Framework, "LSTM
Hyperparameter Tuning Best Practices,"
Restack, 2024. Available:
https://www.restack.io/p/hyperparameter-
tuning-answer-lstm-hyperparameter-tuning-
best-practices-cat-ai.

[16] DEV Community, "Mastering LSTM
Hyperparameter Tuning for Optimal
Performance," Dev.to, 2024. Available:
https://dev.to/ankush_mahore/mastering-llm-
hyperparameter-tuning-for-optimal-
performance-1gc1.

[17] J. Brownlee, "A Gentle Introduction to Early
Stopping to Avoid Overtraining Neural
Networks," Machine Learning Mastery, Jan.
2019. [Online]. Available:
https://machinelearningmastery.com/early-
stopping-to-avoid-overtraining-neural-
network-models/.

[18] K. Marshall, "How does epoch affect
accuracy?" Deepchecks, 2024. [Online].
Available:
https://www.deepchecks.com/question/how-
does-epoch-affect-accuracy/.

[19] J. Brownlee, "How to Tune LSTM
Hyperparameters with Keras for Time Series
Forecasting," Machine Learning Mastery,
2018. [Online]. Available:
https://machinelearningmastery.com/tune-
lstm-hyperparameters-keras-time-series-
forecasting/.

[20] Google Developers, "The Discriminator,"
[Online]. Available:
https://developers.google.com/machine-
learning/gan/discriminator.

[21] GeeksforGeeks, "Generative Adversarial
Network (GAN)," [Online]. Available:
https://www.geeksforgeeks.org/generative-
adversarial-network-gan/.

[22] Google Developers, "Overview of GAN
Structure," [Online]. Available:
https://developers.google.com/machine-
learning/gan/gan_structure

 Journal of Theoretical and Applied Information Technology
15th May 2025. Vol.103. No.9

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3800

APPENDICES:

Appendix A: Generator Architecture

 Journal of Theoretical and Applied Information Technology
15th May 2025. Vol.103. No.9

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3801

Appendix B: GAN-Based Model Results over Iterations

Iteration

Hyperparameters

MSE
Time

(seconds)
Num

Layers

Units

Per

Layer

Learning

Rate

Batch

Size

Sequence

Length

Dropout

Rate

1 2 24 0.00010 512 83 0.2 0.026253 15.930585

2 3 2 0.00010 1024 64 0.3 0.058979 11.777918

3 1 5 0.00001 16 7 0.3 0.005222 5.676673

4 1 15 0.00010 16 49 0.2 0.000248 12.443979

5 1 1 0.00001 32 116 0.2 0.059676 16.509744

6 1 13 0.00010 32 23 0.1 0.003790 6.252410

7 1 17 0.00010 16 15 0.2 0.000104 7.234230

8 2 17 0.00001 16 6 0.2 0.027922 9.245907

9 2 13 0.00001 16 21 0.2 0.023979 15.671086

10 1 6 0.00001 32 37 0.2 0.047434 7.551909

11 2 12 0.00001 16 85 0.3 0.030256 45.866434

12 1 29 0.00001 16 33 0.6 0.033735 13.081005

13 1 43 0.00001 32 22 0.2 0.014795 7.159677

14 4 15 0.00001 32 6 0.1 0.036615 12.654433

15 2 5 0.00001 128 41 0.1 0.022475 8.905959

16 1 5 0.00001 256 38 0.2 0.056972 4.363364

17 2 34 0.00100 16 30 0.2 0.000049 17.806398

18 2 32 0.00010 16 6 0.2 0.000068 9.533947

19 2 20 0.00010 32 17 0.2 0.000240 9.750797

20 4 6 0.00001 16 60 0.2 0.017357 67.521517

 Journal of Theoretical and Applied Information Technology
15th May 2025. Vol.103. No.9

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3802

Appendix C: Evolution of Hyperparameters Over Iterations

