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ABSTRACT 

The occurrence of crop diseases creates substantial danger for both agricultural production outputs and 
system stability. Accurate and early detection is essential for mitigating crop losses, but existing AI-based 
methods often suffer from challenges in noise sensitivity, data integrity, and computational inefficiency. 
This paper proposes an advanced plant leaf disease detection system integrating Vision Transformers (ViT) 
for feature extraction, Reinforcement Learning (RL) for feature optimization, and block chain technology 
for secure and decentralized data management. Experimental results on the Plant Village dataset 
demonstrate a 97.8% accuracy with a reduced processing time of 68.2 seconds. Block chain integration 
further ensures data transparency and immutability, setting a new benchmark for scalable and trustworthy 
plant leaf disease detection. 
Keywords: Plant Disease Detection, Block chain, Reinforcement Learning, Vision Transformers, 

Agricultural AI. 

1. INTRODUCTION 

Agriculture regulation is crucial for global food 
security and economic stability, but plant leaf 
diseases significantly damage agricultural 
operations, which can devastate crops. Manual 
inspection, often time-consuming, together with 
molecular diagnostics, which can be resource-
intensive, forms barriers to prompt detection and 
intervention in plant disease management [25].AI-
based methods have shown promising results, but 
they face challenges related to adaptability, data 
reliability, and computational 
efficiency[19].Furthermore, in distributed 
agricultural ecosystems, data is often collected from 
multiple sources such as IoT devices, drones, and 
farmers' mobile devices. Guaranteeing the integrity, 
traceability, and security of this data is a major 
challenge. Plant leaf disease detection is a critical 
area in agriculture. Timely and accurate 
identification can significantly reduce crop losses 
and ensure food security. However, existing AI-
based methods face several limitations: 
Data Integrity and Tamper Resistance: AI 
models require high-quality, reliable datasets for 
accurate  
 

predictions. In distributed agricultural 
environments, data often comes from various 
sources like IoT devices, drones, and farmers’ 
mobile applications. Ensuring that this data remains 
untampered and authentic is crucial for model 
reliability. Block chain provides a decentralized and 
tamper-proof mechanism for recording data, 
enhancing trust in AI outputs. 
Traceability and Transparency: Modern 
agricultural ecosystems demand traceable data to 
validate model decisions and improve 
accountability among stakeholders. Block chain’s 
provenance capabilities enable tracking the origin 
and evolution of datasets and model updates, 
ensuring transparency. 
Secure Collaboration: A secure collaboration 
framework requires researchers, farmers together 
with businesses to work effectively on disease 
identification. Smart contracts through Block chain 
enable protected database sharing. Through this 
Technology designated users obtain exclusive 
access to data that enables cooperative relationships 
while keeping information secure. 
Challenges in Existing AI Models: AI models are 
faced with challenges relating to overfitting, 
excessive features, and noisy data inputs. This is 
particularly important in the context of Vision 
Transformers (ViT) and Reinforcement Learning 
(RL), which is currently in use today. 
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 Block chain can enhance the overall system by 
maintaining the integrity of training datasets and 
securely logging feature selection processes, thus 
reinforcing AI model reliability. Traditional AI-
based plant disease detection methods rely on 
centralized databases for data storage and 
processing. However, these approaches introduce 
risks such as data tampering, unauthorized access, 
and lack of traceability. Block chain technology 
ensures data integrity, decentralized control, and 
transparent collaboration, making it highly 
suitable for distributed agricultural ecosystems. 
Xu and his research team [1] and Wu [13] 
introduced block chain and AI security solutions for 
IoT security combined with supply chain 
transparency through their static data methods that 
need dynamic improvements. Academic research 
indicates that Vision Transformers(ViT), as 
implemented in [5, 15], reached modern standards 
in feature extraction for general image recognition 
tasks; however, our analysis suggests they may fail 
to deliver suitable results when handling 
agricultural datasets due to inefficient performance 
and overfitting. 
The proposed system combines ViT feature 
extraction methods and decentralized security  from 
block chain  with RL  feature selection to resolve 
these problems. Development systems using 
teamwork produce precise detection results as well 
as protected data management abilities to address 
fragmented security vulnerabilities in agricultural 
systems. 
Contributions 
This work uniquely integrates ViT, RL, and block 
chain in a novel architecture tailored for 
agricultural disease detection, differing from prior 
static AI-block chain frameworks [1, 14]. 
The system includes: 
1.ViT for Feature Extraction: Robust feature 
extraction using self-attention mechanisms. 
Traditional Convolutional Neural Networks 
(CNNs) are prone to noise sensitivity and struggle 
with global dependencies in agricultural datasets. 
The self-attention mechanisms in ViT enable it to 
extract robust features that combine local and 
global visual inputs. 
2. RL for Feature Optimization: Dynamic and 
adaptive feature selection to improve clustering and 
classification. Reinforcement Learning is used to 
dynamically optimize feature subsets, addressing 
overfitting and computational inefficiencies. This 
adaptive feature selection ensures model remains 
effective across varying conditions and datasets. 
3. Block chain for Secure Data Management: 
Incorporates: 

 Secure storage of preprocessed and 
labeled data. 

 Smart contracts for controlled data 
access. 

 Decentralized traceability of 
training processes and model 
updates. 

Integration of block chain technology ensures that 
training data, model parameters, and results are 
stored securely and transparently. Smart contracts 
regulate data access, while provenance logs provide 
a complete audit trail of model training and 
updates, fostering trust in the system. 
The system utilizes RL for dynamic feature subset 
optimization because static AI-block chain systems 
[1, 14] do not adapt and allows 12% validation loss 
reduction through overfitting mitigation and block 
chain-based data integrity protection. The system 
establishes modern standards for large-scale 
dependable disease recognition within agricultural 
environments with fragmented structures. The 
proposed system achieves an accuracy of 97.8% on 
the Plant Village dataset with reduced processing 
time (68.2 seconds), outperforming state-of-the-art 
methods. Block chain integration ensures that these 
results are reproducible and trustworthy across 
distributed environments. 
Traditional AI-based plant disease detection 
methods rely on centralized databases for data 
storage and processing. However, these approaches 
introduce risks such as data tampering, 
unauthorized access, and lack of traceability. Block 
chain technology ensures data integrity, 
decentralized control, and transparent 
collaboration, making it highly suitable for 
distributed agricultural ecosystems. 
 
2.  LITERATURE SURVEY 
 
The section reviews already published research on 
AI, RL, block chain, and clustering methods that 
relate to plant disease detection while identifying 
the areas where our system brings improvements. 
 
2.1 AI Techniques for Plant Disease Detection 
CNNs, attention mechanisms, and hybrid models 
represent various techniques used to power plant 
leaf disease detection models. Liakos et al. [19] 
reviewed the progression of machine learning in 
agriculture, highlighting the shift from traditional 
models to advanced deep learning approaches, 
setting the stage for ViT-based systems. Traditional 
CNNs, such as VGG16, ResNet, and Dense Net, 
have been extensively used for plant leaf disease 
detection as demonstrated by works like Sladojevic 
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et al. [4].. For example, Sladojevic et al. [4] used a 
CNN to identify plant leaf diseases from leaf 
images, achieving high accuracy. However, these 
models often struggle with noise sensitivity and 
feature redundancy in large datasets. 
 
2.1.1 Vision Transformers (ViT)  
 ViTs showcase strong utility as a feature extraction 
tool because they effectively identify distant 
linkages in images. Dosovitskiy et al. [5] 
demonstrated that A task-demanding global context 
requires Vision Transformers (ViTs) to overcome 
Convolutional Neural Network (CNNs) 
performance in agricultural dataset processing. 
Vision Transformers (ViT) overcome these 
limitations by leveraging self-attention 
mechanisms, effectively capturing global and local 
dependencies [14]. 
 
2.1.2 Hybrid Approaches 
The application of ViTs in combination with CNNs 
represents an approach to benefit from their 
respective model capabilities. The global features 
that ViTs identify stand in contrast to the local 
feature extraction abilities of CNNs in addition to 
their classification function. Khan et al. [6] 
designed a medical image analysis hybrid model 
with application potential for plant leaf disease 
detection. 
 
2. 2 Reinforcement Learning for Feature 
Selection 
Reinforcement Learning (RL) offers a dynamic and 
adaptive approach to feature selection, addressing 
overfitting and computational inefficiency. 
 
2.2.1 Dynamic Feature Selection 
RL agents can evaluate subsets of features and 
optimize their selection based on reward metrics 
such as clustering quality and classification 
accuracy, enabling adaptive learning [8]. For 
instance, Bello et al. [7] utilized RL to optimize 
neural architecture search, showing its potential to 
dynamically adapt features in changing 
environments. 
 
2.2.2 Applications in Image Classification 
RL-based feature selection has been applied in 
image classification tasks to reduce dimensionality 
and improve accuracy. Sadeghi et al. [8] combined 
RL with unsupervised learning for clustering-based 
feature optimization, achieving state-of-the-art 
results. 

2.3. Block chain Technology in Agriculture 
 
2.3.1 Secure Data Management 
Block chain can securely store preprocessed data, 
model parameters, and results, ensuring 
immutability. Hyper ledger Fabric [2], a 
permissioned block chain framework, is widely 
used for secure agricultural data management. 
Kamilaris et al. [9] reviewed block chain 
applications in agriculture, highlighting its potential 
to enhance AI model transparency. 
 
2.3.2 Provenance and Traceability 
Provenance logs recorded on the block chain 
provide traceability for datasets and model updates. 
Liu et al. [10] applied block chain in AI systems to 
ensure secure collaboration and data sharing among 
stakeholders in decentralized environments. 
 
2.4. Clustering Techniques for Disease Grouping 
Clustering algorithms help group features into 
disease-specific categories, improving classification 
accuracy and interpretability. 
 
2.4.1 Spectral Clustering 
The data grouping process in spectral clustering 
performs analysis through graph-based system 
components for similar data points. Ng et al. [11] 
pioneered this approach, which has since been 
adapted for medical and agricultural datasets. 

 
2.4.2 Applications in Plant Disease Detection 
Spectral clustering has been used to preprocess and 
group plant features, enhancing classification 
performance. For example, Zhou et al. [12] 
demonstrated its effectiveness in disease-specific 
grouping using hyper spectral images. 
 
2.5. Related Systems Integrating AI and Block 
chain 
Solid systems developed by AI and block chain 
technology ensure secure data processing 
operations in agricultural environments and 
additional areas. 
 
2.5.1 Hybrid AI-Block Chain Systems 
AI models combined with block chain ensure the 
scalability and security of agricultural data 
pipelines. Xu et al. [1, 13] proposed a block chain-
enabled IoT framework for real-time data analysis 
in agriculture, setting a precedent for integrating 
block chain with AI. 
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2.5.2 Transparent AI Pipelines 
Block chain can track AI model updates, ensuring 
transparency and trust in critical systems. Wu et al. 
[13] demonstrated this concept in food supply 
chains, which can be extended to plant disease 
detection. 
 
3.  PROPOSED SYSTEM 
 
3.1 System Architecture 
The proposed system architecture is designed to 
address the multifaceted challenges of plant leaf 
disease detection through preprocessing, advanced 
machine learning techniques, and secure data. 
The enhanced system architecture combines 
preprocessing, ViT for feature extraction, RL for 
feature selection, block chain for secure data 
management, and a hybrid ViT-CNN for 
classification management.  
Fig.1 illustrates the system workflow, detail data 
flow from preprocessing to block chain logging, 
with ViT, RL, and hybrid ViT-CNN components 
integrated seamlessly. 

 
Fig. 3.1. Enhanced System Architecture 

 
Fig.1 illustrates the Enhanced System Architecture 
of Blockchain-Integrated ViT-RL for Plant Disease 
Detection (BIViT-RL-PDD. 
 It is composed of four main components: 
1. Preprocessing and Feature Extraction 

The system requires preprocessing and feature 
extraction as its initial processes to make data 
clean and standard for analytical purposes. 
Image Processing: The processing technique for 
images involved adjusting all pictures to the 
standard 224x224 pixel size because it 
maintained consistency within the dataset 
information. Proper image enhancement 
techniques including Gaussian filtering help 

decrease artifacts while improving image quality 
so that features can be extracted accurately. 
Using Vision Transformers (ViT) for Feature 
Extraction: ViTs reconstruct images into smaller 
patterns that model processes as tokens through 
self-attention operations to detect elaborate 
relationships between input data[14].Unlike 
traditional convolutional approaches, ViTs excel 
in handling complex patterns and noise [14], 
making them particularly effective for 
agricultural datasets, which often include 
variations in lighting, textures, and disease 
presentations.Unlike traditional convolutional 
approaches, Vision Transformers (ViTs) excel in 
capturing complex patterns and noise resilience 
[14], making them ideal for agricultural datasets 
with variations in lighting, texture, and disease 
manifestations. In this system, we adopt the ViT-
B/16 variant, pretrained on ImageNet, configured 
with a patch size of 16×16 pixels, resulting in 
196 patches per 224×224 input image. The 
architecture comprises 12 transformer layers, 
each with 12 attention heads and a hidden 
dimension of 768. Fine-tuning on the Plant 
Village dataset uses a learning rate of 3×10⁻⁵, a 
batch size of 32, and 10 epochs, optimizing for 
disease-specific features like lesion patterns and 
discoloration. The multi-head self-attention 
(MSA) mechanism, defined as MSA(Q, K, V) = 
Concat(head₁, ..., headₕ)Wᴼ, where headᵢ = 
Attention(QWᵢᵠ, KWᵢᴷ, VWᵢᵛ) and Attention(Q, 
K, V) = softmax(QKᵀ/√dₖ)V, enables robust 
extraction of global and local dependencies, with 
Q, K, V as query, key, and value matrices, dₖ as 
the key dimension, and Wᵢ as learnable weights. 

MSA(Q,K,V)=Concat(head1,…,headh)WO        (1) 
  

headi=Attention(QWi
Q, KWi

K, VWi
V) = 

softmax(QWi
Q (KWi

K)T)/sqrt(dk)VWi
V                (2) 

Q,K,V: Query, key, and value matrices derived 
from input patches. 
dk: Dimension of each attention head (64 in 
ViT-B/16). 

       Wi
Q, Wi

K, Wi
V, WO:   Learnable projection    

        matrices. 
 
2. Dynamic Feature Selection with 
Reinforcement Learning 
Feature selection is optimized dynamically using 
Reinforcement Learning (RL), ensuring that the 
system identifies the most relevant features for 
disease detection while minimizing redundancy. 
Reinforcement Learning Agent: An RL agent 
evaluates feature subsets based on predefined 
reward functions, such as clustering quality and 
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classification accuracy. The agent iteratively learns 
to select features that maximize the detection 
performance, addressing overfitting and 
computational inefficiency. 
 To optimize feature selection, we implement a 
Deep Q-Network (DQN) with an epsilon-greedy 
policy, dynamically refining the ViT-extracted 
feature set (F_vit). The state space is F_vit (768 
dimensions), with actions defined as binary 
selections (include/exclude each feature). The Q-
network, featuring two hidden layers (256 and 128 
units, ReLU activation), is trained over 100 
episodes with a discount factor γ = 0.95 and 
epsilon decaying from 1.0 to 0.01. The reward 
function, R = 0.6 × SC + 0.4 × CA, balances 
clustering quality (Silhouette Coefficient,         SC 
∈ [-1, 1]) and classification accuracy (CA ∈ [0, 1]) 
from a validation set, where SC = (b(i) - a(i)) / 
max(a(i), b(i)) for a data point i, with a(i) as intra-
cluster distance and b(i) as nearest-cluster 
distance. Weights 0.6 and 0.4 prioritize clustering 
for disease-specific grouping while maintaining 
classification performance, reducing validation 
loss by 12% compared to static methods. 
 

R=0.6×SC+0.4×CA        (3) 
SC(i)=(b(i)−a(i))/max((a(i),b(i))        (4) 

 
 SC: Silhouette Coefficient, measuring 

clustering quality. 
 CA: Classification accuracy on a 

validation set. 
 a(i): Average distance of point i to others 

in its cluster. 
 b(i): Average distance of point i to the 

nearest different cluster. 
Adaptive Learning: The RL agent’s adaptive 
nature ensures the system remains robust across 
diverse environmental conditions and datasets. 
For agricultural disease detection systems, it is 
vital to have adaptable LX-3 architecture because 
diseases present differently throughout different 
geographical areas and over seasonal time 
frames. 

3. Clustering and Classification 
Clustering and classification are critical for 
identifying and categorizing plant diseases 
accurately. 
Spectral Clustering: Extracted features are 
grouped into disease-specific clusters using spectral 
clustering techniques. By leveraging graph-based 
methods, spectral clustering can effectively handle 
high-dimensional feature spaces, improving the 
interpretability and precision of disease 
classification. 

Hybrid ViT-CNN Model: The system employs a 
hybrid approach, combining the robust feature 
extraction capabilities of Vision Transformers(ViT) 
with the classification strengths of Convolutional 
Neural Networks (CNNs). While ViTs excel in 
identifying complex patterns, CNNs provide 
accurate and efficient classification, resulting in a 
synergistic model that outperforms standalone 
architectures. 
The optimized feature subset (F_opt, 768 
dimensions from ViT) is projected through a fully 
connected layer (768 to 512 units) and 
concatenated with ResNet-18’s feature map (512 
units from the final pooling layer). This combined 
1024-dimensional vector feeds a classification 
head (1024 to 38 units, softmax activation) to 
predict 38 disease classes from the Plant Village 
dataset. Training employs cross-entropy loss, L = -
∑(y_i log(ŷ_i)), with the Adam optimizer 
(learning rate 1×10⁻⁴), batch size 16, and 15 
epochs, leveraging ViT’s global context and 
ResNet-18’s local precision for superior 
performance over standalone models. 

L=−i=1∑Cyilog(y^i)                   (5) 
 C: Number of classes (38). 
 yi: True label (1 or 0) for class i. 
 y^i: Predicted probability for class i. 

 
4. Blockchain Integration 
Blockchain technology ensures secure, transparent, 
and decentralized data management. 
Data Storage: Preprocessed datasets, extracted 
features, model parameters, and classification 
results are stored on a blockchain. The 
decentralized nature of blockchain ensures tamper-
proof data records, enhancing trust among 
stakeholders. 
Smart Contracts: Smart contracts govern access 
control and data-sharing policies, ensuring 
authorized users can access or modify the data. This 
is particularly useful in distributed agricultural 
networks where multiple parties, such as 
researchers, farmers, and agribusinesses, need to 
collaborate securely.Smart contracts regulate access 
control and data-sharing policies, ensuring secure 
collaboration among authorized users. The system 
leverages Hyperledger Fabric v2.5 with a Raft 
consensus mechanism for fault-tolerant operation in 
a permissioned network of agricultural stakeholders 
(e.g., farmers, researchers). Smart contracts, 
implemented in Go, enforce read/write permissions 
and log system actions. Data—including 
preprocessed images, features (F_opt), and model 
parameters—are stored as JSON objects, each 
secured with a SHA-256 hash, H(x) = SHA-256(x), 
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where x is the serialized data. These hashes are 
recorded in a chaincode ledger, achieving 50 ms 
transaction latency and 200 transactions/second 
throughputs, ensuring scalable, tamper-proof data 
management. 

H(x)=SHA-256(x)       (6) 
x: Input data (e.g., JSON-serialized features or 
parameters). 
H(x): 256-bit hash output ensuring data 
integrity. 

Provenance Logs: Block chain maintains an 
immutable audit trail of all system processes, 
including data preprocessing, feature selection, and 
model updates. These provenance logs provide 
accountability and transparency, fostering trust in 
the system’s outputs. 
 
3.2 Advantages of the Proposed Architecture 

High Accuracy and Efficiency: The 
integration of ViT and RL achieves a 
detection accuracy of 97.8% with a 
processing time of 68.2 seconds, 
outperforming traditional methods. 

3.3 Algorithm 1: Blockchain-Integrated ViT-RL 
for Plant Disease Detection (BIViT-RL-PDD) 
Input: 

 I: Plant leaf images 
 D: Plant Village dataset 
 B: Blockchain network 

Output: 
 D: Disease diagnosis 
 S: Confidence score 
 L: Blockchain log 

Procedure: 
1. Preprocess Images: 

 Resize each image in I to 224 x 224 // 
Standardize image size for processing. 

 Apply Gaussian blur with σ =15 // Reduce 
noise and enhance features. 

 set lp to the preprocessed images. // Store 
for further processing. 

2. Feature Extraction(ViT): 
 Divide each image in Ip into 16x16 

patches.// Create patches for ViT 
processing. 

 Use ViT-B/16 to extract features 
F_vit(768 dimensions0.// Extract features 
using Vision Transformer. 

3. Feature Optimization(RL): 
 

 Initialize DQN agent with state F_vit // Set 
up RL agent with initial features. 

 Define reward R= 0.6 * Silhouette 
Coefficient * 0.4*Accuracy. // Continue 

clustering quality and classification 
performance. 

 for 1 from 1 to 100 
 select feature subset F_opt using 

epsilon-greedy policy // Balance 
exploration and  exploitation in 
feature selection. 

 Update Q-network based on R. // 
Train RL model to optimize features. 

 Set F_opt as the optimized feature subset. 
// Final optimized features for 
classification. 

4. Classification (Hybrid ViT-CNN): 
 Input F_opt into hybrid ViT- CNN model. 

// use combined ViT and CNN for 
classification. 

 Compute D and S using softmax over 38 
disease classes.//Output disease diagnosis 
and confidence. 

 
5. Blockchain integration: 

 Store Ip,F_opt , D,S on blockchain B using 
SHA - 256 hashing. // Ensure data 
integrity and security. 

D: Detailed Analysis and Implications 
The algorithm's integration of blockchain 
technology is an unexpected detail, as it is not 
typically associated with plant disease detection. 
This approach potentially offers enhanced security, 
transparency, and traceability, which could be 
particularly beneficial in large-scale agricultural 
systems where data integrity is paramount. The use 
of Reinforcement Learning for feature 
optimization, specifically through a Deep Q-
Network (DQN) with a reward function combining 
Silhouette Coefficient and Accuracy, suggests a 
sophisticated approach to handling feature 
selection, potentially improving model performance 
over traditional methods. 
The reliance on the Plant Village dataset, with its 
54,306 images across 38 disease classes, is 
consistent with existing research, as confirmed by 
external sources (Plant Village Dataset). This 
dataset's diversity and size support the algorithm's 
training and testing phases, contributing to its 
potential effectiveness. 
 
4. EXPERIMENTAL SETUP 
 
Dataset and Block chain Network 
 Dataset: The Plant Village dataset, containing 

54,306 images across 38 disease classes[24], 
was used for training and testing. 

 Block chain Network: A permissioned block 
chain (e.g., Hyper ledger Fabric) managed data 
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storage, smart contract execution, and log 
auditing. 

Evaluation Metrics: 
The system was evaluated using the following 
metrics: 
1. Precision, Accuracy, Sensitivity, Specificity:  

 
Core metrics for disease detection 
performance. The performance of the proposed 
system is evaluated by showing metrics such as 
sensitivity, specificity, and accuracy.  
 
The count values are  True Positive (TP), True 
Negative (TN), False Positive (FP), and False 
Negative (FN).  

 

 
Fig 4.1 confusion Matrix 
Precision 

 
The proportion of actual positives which are 
correctly identified is the measure of the 
sensitivity. It relates to the ability of the test to 
identify positive results.

(7) 
Precision: 98.3% 

Accuracy: This will calculate the overall 
accuracy of the images classified. 

   (8) 
 Achieved a high accuracy of 97.8% on the 
Plant Village dataset. 

Sensitivity (Recall or True Positive Rate - TPR) 

           (9) 

  Sensitivity = 96.9% 
This means the model correctly identifies 96.9% of 
Diseased leaves. 
Specificity: 
 

The proportion of negatives that are correctly 
identified is the measure of the specificity. It 
relates to the ability of the test to identify 
negative results. 

 (10) 
 Specificity: 98.4% 

This means the model correctly identifies 
98.4% of Healthy leaves. 

2. AUC - ROC: 

  
(11) 
AUC-ROC: 97.65% 

This means the model has high discrimination 
power between Diseased and Healthy. 

3. F1-Score: 
The F1-Score is the harmonic mean of 
Precision and Recall: 

. (12) 
F1-Score: 97.4% 

Interpretation: 
 The high accuracy (97.8%) indicates the 

model is performing well overall.  
 Sensitivity (96.9%) shows that the model 

is very good at detecting diseased leaves.  
 Specificity (98.4%) indicates that the 

model can correctly recognize healthy 
leaves.  

 The number of False Negatives (30) is 
slightly higher than False Positives (16), 
meaning the model sometimes misses 
diseased leaves, which might be a concern 
for plant health monitoring. 
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 AUC-ROC of 97.65% confirms that 
excellent separability between diseased 
and healthy leaves. 

 F1-Score of 97.4% ensures a  balanced 
performance between precision and recall. 

The model is highly accurate with strong 
classification performance. 

2. Clustering Quality: Measured using the 
silhouette coefficient. 
The silhouette coefficient measures the quality 
of clustering by assessing how well data points 
are assigned to their clusters. It provides a 
value between -1 and 1: 

 1 indicates that the data points are well-
clustered. 

 0 suggests that clusters overlap. 
 -1 implies that points are assigned to the wrong 

clusters. 
Interpretation: 
 High s(i): Indicates that the point is well-

separated from other clusters. 
 Low s(i): Suggests overlap between clusters 

or poor assignment 
Clustering quality is assessed using the 
silhouette coefficient, ranging from -1 to 1, 
where higher values indicate well-separated 
clusters. A score of 0.82 for our system 
reflects robust disease-specific grouping 

3. Block chain Metrics: 
o Transaction Latency: Time taken to record 

data on the blockchain50 ms/transaction. 
o Throughput: Number of transactions 

processed per second200 
transactions/second. 

 
 
 
 
 
 
 
 
 
 

5. RESULTS AND DISCUSSION 
5.1 Performance Comparison 

 
Figure 4.3: Accuracy Comparison 

 

 
Figure 4.4: Sensitivity Comparison 

 
 

 
Figure 4.6. Processing Time Comparison 

 
 

 
Figure 4.7: Specificity Comparison 
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Table 1. Performance Comparison with State-of-the-Art 
Methods

 
 

Table 2. Performance Metrics 

 
Table 1 shows the comparison of  state of art 
methods and Table 2 shows comparison of 
performance metrics of various methods. 
 
Our BI VIT-RL PDD system delivers 97.8% 
accuracy- tops Zhang et al. [14] at 96.5% and 
Kumar et al. [16] at 95.8%. Our RL component 
implements feature optimization to decrease 
overfitting by 12% through validation loss 
measurements, whereas Zhang et al. [8] do not 
explicitly address overfitting mitigation in their 
Vision Transformer approach. The block chain 
integration in our proposed system maintains data 
integrity at 50 ms transaction speed which is better 
than the previous traditional centralized approaches 
by 20%. 
These findings reflect our system’s distinct 
optimization approach, leveraging RL dynamically. 
5.2 Scalability & Adaptability 
The system is adaptable to large-scale agricultural 
applications. 
 
5.3 Security & Transparency 
Block chain ensures tamper-proof and traceable 
disease detection. Block chain integration in our 
system ensures a 50ms transaction speed and 200 
transactions per second throughput, providing a 
20% improvement over traditional centralized data-
sharing models. Unlike conventional databases, 
which require manual access control and periodic 

integrity checks, block chain enables automated and 
trustless data verification, ensuring a fully secure 
and auditable disease detection pipeline. 
 

Table 3. Performance Comparison Of AI And Block 
Chain Models 

 
 
 
Table 3 shows the performance comparison of 
Ethereum based model and Hyper ledger Fabric 
model.Hyper ledger Fabric provides better 
performance, privacy, and scalability for plant 
disease detection using AI and block chain. 
Ethereum high latency and lack of privacy make it 
unsuitable for secure AI-based IoT applications. 
 
6. CONCLUSION AND FUTURE WORK 
 
Conclusion:  
A novel method to identify plant leaf diseases has 
been released by applying ViT for feature 
extraction with RL for decision-making alongside 
block chain-based data protection and tracking. The 
achieved results demonstrate a significant progress 
with 97.8% accuracy and 68.2 seconds completion 
time validating this approach for precision farming. 
 
Limitations and Future Work 
The system faced limitations in its ability to 
generalize across various crops and unpredictable 
natural conditions because it depended exclusively 
on the data from the Plant Village dataset. The 
security benefit of block chain incorporation 
elevates computing costs by 15% higher than basic 
models and this presents hurdles for 
implementation on limited resource systems. 
The future research will expand to include legumes 
and cereals crops next to drought and humidity 
conditions. The integration of Raspberry Pi cameras 
to IoT allows real-time data monitoring because 
they achieve a processing speed of ten frames per 
second. Gubbi et al. [22] outline the architectural 
elements of IoT for real-time monitoring, providing 
a framework for integrating Raspberry Pi cameras 
into our system to achieve a processing speed of ten 
frames per second.Ongoing efforts will expand the 
dataset to new crops and optimize computational 
efficiency, This will enable a robust, versatile 
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system suitable for widespread agricultural use, 
enhancing its impact on precision farming. 
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