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ABSTRACT 
 

Alzheimer’s Disease remains a progressive neurodegenerative disorder, necessitating early detection for 
effective intervention. Traditional diagnostic methods face challenges in accuracy, feature selection, and 
handling high-dimensional neuroimaging data. The purpose of this study is to enhance classification 
performance by integrating bio-inspired optimization with Machine Learning. A Seal Optimization-driven 
Random Forest (SO-RF) framework is introduced to refine feature selection, optimize hyperparameters, 
and improve decision-making in disease classification. The methodology involves leveraging seal-inspired 
search strategies to enhance the diversity and robustness of the Random Forest model, ensuring balanced 
precision and recall. The proposed SO-RF model outperforms conventional approaches in classification 
accuracy, sensitivity, and specificity, demonstrating its effectiveness in reducing false positives and false 
negatives. Experimental results validate the model’s superiority in handling complex medical data, 
confirming its potential for automated Alzheimer’s Disease diagnosis. The optimized classification 
framework presents a promising solution for advancing computational techniques in neurodegenerative 
disease detection. 
Keywords: Alzheimer’s disease Classification, Bio-Inspired Optimization, Seal Optimization, Random 

Forest, Feature Selection, Healthcare. 
 
1. INTRODUCTION 
 

Alzheimer's Disease is a progressive 
neurodegenerative disease with symptoms of 
cognitive decline, memory loss, and changes in 
behavior[1]. It affects mostly old people, who over 
time lose the capacity to perform everyday tasks 
[2]. The disease results from abnormal protein 
depositions in the brain in the form of beta-amyloid 
plaques and tau tangles, which result in neuronal 
loss and dysfunction. Over time, the patient suffers 
from significant cognitive impairment, poor 
reasoning, and communication difficulties [3]. 
Brain atrophy worsens with the progress of the 
disease, causing severe loss of volume in gray 
matter and impairing neural connections. Early 
detection and treatment are pivotal in controlling 
the progress of the disease and enhancing patient 
outcomes [4]. Alzheimer's Disease is not limited to 
cognitive impairment and impacts individuals as 
well as families. 

 
Patients typically experience 

psychological distress, which in turn results in 
mood swings, depression, and enhanced 
dependence on caregivers. The chronic nature of 
the disease burden emotionally and economically 
on families in need of long-term care arrangements 
[5]. With ongoing degeneration of the neurons, the 
patients face challenge in speech, problem-solving 
abilities, and the ability to undertake motor 
functions. The healthcare delivery system is also 
severely strained from increasing cases and the 
need to make breakthroughs in early detection and 
treatment methodology. The disease imposes 
societal challenges on the health disorder, creating 
the imperative of effective diagnostic 
methodologies, individualized therapy, and 
effective support structures [6]. 
 

A number of Alzheimer's Disease effects 
change the neurological and physiological 
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functioning of a person. Memory loss is still one of 
the earliest signs, with patients having trouble 
remembering recent occurrences while 
remembering long-term ones for years [7]. 
Confusion and disorientation worsen as the disease 
progresses, causing it to be hard to identify known 
faces and environments. Behavioral symptoms like 
agitation, paranoia, and social withdrawal make 
everyday interactions even more complicated [8]. 
Sleep disturbances usually arise, resulting in 
abnormal sleep patterns and increased restlessness. 
The progressive nature of Alzheimer's Disease 
eventually leads to a total loss of independence, 
requiring full-time supervision and support in 
activities of daily living [9]. 

 
This research specifically focuses on 

enhancing early-stage classification of Alzheimer’s 
Disease using bio-inspired optimization within a 
Random Forest framework. The scope is confined 
to structural MRI data sourced from the OASIS 
dataset, assuming consistent imaging quality and 
accurate clinical labeling. The proposed model does 
not currently incorporate non-imaging modalities 
such as PET scans or EEG data. Another 
assumption is the static nature of the input data, 
which limits real-time prediction capabilities. 
While the seal-inspired optimization improves 
model performance, it may introduce computational 
overhead during training. Future work may explore 
dynamic data inputs, real-time adaptability, and 
inclusion of broader biomarkers to overcome these 
constraints and further refine Alzheimer’s Disease 
classification accuracy. 

 
Classification and prediction of 

Alzheimer's Disease continue to be critical in 
establishing early intervention programs [10]. 
Different stages of the disease, from mild cognitive 
impairment to full-blown dementia, demand 
accurate classification methods. Clinical judgment, 
cognitive examinations, and neuroimaging form the 
basis of traditional classification techniques. 
Subjective human evaluations and overlap of 
symptoms with other neurodegenerative conditions 
are major hindrances [11]. Sophisticated 
computational methods support enhanced 
classification precision through examination of 
multimodal information, such as genetic markers, 
neuroimaging scans, and behavioral patterns. Early-
stage classification has the potential to increase the 
possibilities for timely therapy interventions, 
dampening disease acceleration and enhancing the 
quality of patient life[12]. 

 

Prediction models utilize large datasets to 
predict the probability of developing Alzheimer's 
Disease prior to the onset of clinical symptoms. 
Risk assessment includes assessing genetic 
susceptibility, lifestyle, and trends in cognitive 
function[13]. Predictive analytics use structured 
and unstructured data to allow for a thorough 
assessment of disease susceptibility. Machine 
Learning methods improve prediction accuracy by 
detecting latent patterns in longitudinal data. Early 
prediction enables tailored treatment plans, 
enabling medical professionals to apply preventive 
measures and cognitive rehabilitation programs 
[14]. Ongoing advancements in predictive models 
lead to the improvement of risk assessment models 
and the optimization of long-term disease 
management. 

 
Machine Learning application in diagnosis 

and prognosis of Alzheimer's Disease has grown by 
leaps and bounds based on advancements in 
computational powers. Supervised models of 
learning predict disease phases by categorizing 
training data, mitigating the ambiguities in 
diagnoses [15]. Unsupervised learning helps 
uncover subpopulations of patients to identify 
patterns in disease course differences. 
Reinforcement learning tactics provide optimal 
treatment planning by continually varying 
interventions with response from the patients [16]. 
Feature selection methods improve diagnostic 
precision by ascertaining the most useful 
biomarkers for classification. The union of Machine 
Learning with biomedicine speeds up finding 
probable therapeutic targets, facilitating the 
development of new treatment approaches [17]. 

 
Deep Learning then goes on to transform 

Alzheimer's Disease detection through the 
automatic extraction of hierarchical features from 
high-dimensional data. Convolutional Neural 
Networks (CNNs) transform neuroimaging scans to 
identify faint abnormalities associated with disease 
onset. Recurrent Neural Networks (RNNs) process 
longitudinal cognitive evaluations, recognizing 
patterns of deterioration over time [18]. Transfer 
learning methods optimize model performance 
through the utilization of pre-trained networks for 
medical image classification. Generative models 
mimic disease progression scenarios to inform 
understanding of underlying mechanisms [19]. The 
synergy of Deep Learning and biomedical science 
enhances the accuracy of diagnosis equipment, 
enabling earlier detection and more precise 
diagnosis of Alzheimer's Disease. 
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MRI classification continues to be an 

anchor in diagnosing Alzheimer's Disease, through 
high-resolution images that measure structural brain 
changes. Structural MRI captures cortical thinning, 
hippocampal atrophy, and enlargement of the 
ventricles as essential biomarkers of disease 
development [20]. Functional MRI analyses brain 
activity patterns and identifies anomalies in neural 
connections. Automated segmentation methods 
extract features from MRI imaging, separating 
normal and diseased brain areas. Deep Learning 
models improve classification performance through 
learning spatial and temporal relationships in 
imaging data[21]. Combination of MRI 
classification with Machine Learning and Deep 
Learning enhances the power to detect Alzheimer's 
Disease in its early stages, facilitating early and 
specific interventions [22]. 

 
Random Forest is a common ensemble 

learning algorithm used for classification, including 
diagnosis in medicine. Random Forest creates 
multiple decision trees with each of them being 
trained on various subsets of the dataset and their 
results aggregated to make better predictions 
Classification in this model uses a majority vote 
rule by which individual trees make their prediction 
and the ultimate output is what was predicted by the 
most frequent predictions. The strength of Random 
Forest stems from its capacity to process high-
dimensional data and minimize overfitting via 
random feature selection and bootstrapped 
sampling. The algorithm is successful in identifying 
intricate patterns in medical data, hence a useful 
tool in disease classification [23]. In the case of 
Alzheimer's Disease, Random Forest is 
instrumental in processing neuroimaging data, 
cognitive function tests, and genetic markers 
towards classifying disease stages. The algorithm 
separates the relevant features responsible for the 
decline in cognitive functions, enabling early 
detection functionality. Through the integration of 
MRI scan results and clinical information, Random 
Forest classifies healthy people, mild cognitive 
impairment patients, and Alzheimer's with great 
accuracy. Its feature in handling missing values and 
understanding the importance of the features makes 
Random Forest a strong candidate for medicine 
[23]. The application of Random Forest in 
Alzheimer's research is promoting automated 
diagnosis, aiding clinical decision-making and 
enhancing patient management approaches. 

 

Bio-inspired computing is inspired by 
natural phenomena to address computationally 
intensive problems [24]. Optimization methods 
based on biological processes like swarm 
intelligence, evolutionary algorithms, and neural 
adaptation are part of this paradigm[25]. These 
optimization algorithms augment Machine 
Learning (ML) and Deep Learning (DL) by 
optimizing model parameters, feature engineering, 
and hyperparameter tuning, resulting in enhanced 
accuracy and efficiency. In ML, bio-inspired 
optimization improves classification, clustering, 
and regression tasks by optimizing feature 
representations and decision boundaries [26]. In 
DL, it improves convergence, avoids overfitting, 
and optimizes neural network architecturesfor 
enhanced generalization. The aim of this work is to 
incorporate bio-inspired optimization in 
Alzheimer's Disease prediction to enhance 
classification performance and facilitate early 
detection, thereby driving automated diagnosis and 
personalized treatment plans [27]. 

 
1.1. Problem Statement 

Alzheimer’s Disease remains one of the 
most challenging neurodegenerative disorders, 
affecting millions worldwide. Early detection is 
critical for effective intervention, yet traditional 
diagnostic methods rely on subjective clinical 
assessments, often leading to delayed diagnosis and 
limited treatment efficacy. The complexity of 
Alzheimer’s progression necessitates advanced 
computational approaches to analyze vast 
multimodal datasets, including MRI scans, genetic 
biomarkers, and cognitive assessments. 
Conventional ML models face challenges in feature 
selection, model optimization, and handling high-
dimensional data, leading to suboptimal 
classification accuracy.  

 
Existing DL techniques struggle with 

computational inefficiency, overfitting, and lack of 
interpretability when applied to Alzheimer’s 
detection. Bio-inspired optimization methods offer 
a promising solution by mimicking natural 
intelligence to enhance ML and DL models. 
However, the integration of such optimization 
strategies into Random Forest-based classification 
frameworks remains underexplored. The need for 
an optimized, robust, and interpretable 
classification model persists to improve early-stage 
detection and disease progression analysis. This 
research addresses these challenges by leveraging 
bio-inspired optimization techniques to enhance 
Random Forest models for Alzheimer’s Disease 
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prediction, ensuring accurate, efficient, and early 
detection, ultimately improving clinical decision-
making and patient outcomes.Recent studies 
[12]emphasize the limitations of current DL and 
multitask models due to poor generalization and 
complexity. This study uniquely addresses these 
gaps by embedding seal-inspired optimization into 
Random Forest, offering interpretable, adaptive, 
and performance-driven classification for early 
Alzheimer’s detection. 

1.2. Objective and Motivation 
The objective of this research is to develop 

an optimized classification framework for 
Alzheimer’s Disease using bio-inspired techniques 
integrated with Machine Learning and Deep 
Learning models. The study focuses on enhancing 
the accuracy of early-stage detection by refining 
feature selection, optimizing hyperparameters, and 
improving classification performance. By 
leveraging bio-inspired optimization, the goal is to 
overcome the limitations of conventional models, 
ensuring efficient handling of high-dimensional 
neuroimaging and clinical data. Implementing an 
adaptive optimization strategy will facilitate robust 
decision-making, reducing diagnostic uncertainties 
while supporting automated and interpretable 
predictions. 

The motivation behind this work arises 
from the increasing prevalence of Alzheimer’s 
Disease and the urgent need for reliable early 
detection methods. Conventional diagnostic 
approaches rely on subjective evaluations, often 
leading to delayed interventions and irreversible 
cognitive decline. Existing computational models 
lack adaptability, struggling with large-scale 
medical data complexity. Bio-inspired optimization 
provides an opportunity to mimic natural 
intelligence for refining predictive algorithms, 
ensuring a more precise and efficient classification 
system. Enhancing Random Forest with these 
strategies will allow better disease stratification, 
assisting clinicians in timely and personalized 
interventions. Addressing these challenges through 
an optimized computational model will 
significantly contribute to the advancement of 
Alzheimer’s disease diagnostics and patient 
care.The research also aims to bridge gaps 
identified in recent models such as INN-MT and 
FDCNN-AS by introducing a unified, lightweight, 
and bio-optimized Random Forest model. This 
ensures enhanced feature granularity, 
interpretability, and clinical relevance, contributing 
to next-generation AI-driven solutions for 
neurodegenerative disease prediction.The novelty 
of this study lies in integrating seal-inspired bio-

optimization with Random Forest to enhance 
Alzheimer’s Disease classification. Unlike the 
conventional methods, the proposed SO-RF 
framework introduces adaptive optimization at 
multiple stages feature selection, sampling, and tree 
construction. Outcome measures such as accuracy, 
F-measure, FMI, and MCC confirm improved 
performance and resilience against data imbalance. 
This layered optimization approach distinguishes 
the model by offering greater interpretability, 
robustness, and efficiency in early-stage detection. 

 
2. LITERATURE REVIEW 

 
“Brain Efficiency Model” [28] introduced 

a network integrating causal relationships with 
fMRI data for Alzheimer’s research. This study 
designed a causality-driven approach to uncover 
neural efficiency in brain networks, focusing on 
how various brain regions communicate during 
cognitive processes. By employing advanced causal 
inference techniques, the model analyzed 
connectivity patterns between regions to identify 
disrupted interactions associated with Alzheimer’s. 
Unlike traditional correlation-based studies, this 
approach emphasized the directional impact of one 
region's activity on another. The methodology 
utilized functional MRI scans to map neural 
pathways and incorporated causal algorithms to 
model the flow of information within the brain. 
This helped detect key areas where communication 
breakdowns occur, a hallmark of Alzheimer’s 
progression. The framework also provided insights 
into compensatory mechanisms employed by the 
brain to maintain function during early stages of the 
disease. This causality-driven network has shown 
potential for improving diagnosis and 
understanding disease progression by linking 
structural disruptions to functional deficits. 

 
Deep Learning Survey” [29] reviewed 

innovative deep learning models for detecting 
Alzheimer’s using MRI. The paper summarized 
various architectures such as “Convolutional Neural 
Networks” (CNNs), “Recurrent Neural Networks” 
(RNNs), and hybrid frameworks. The focus lay on 
how these models processed raw MRI data to detect 
structural abnormalities linked to Alzheimer’s. 
Techniques like transfer learning and attention 
mechanisms were highlighted for improving 
classification accuracy with limited data. 
Preprocessing steps like intensity normalization and 
skull stripping were discussed for preparing MRI 
images. The survey covered single-modality and 
multi-modality approaches that combined MRI with 
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PET or clinical data to enhance diagnosis. Methods 
for handling imbalanced datasets, such as 
“Generative Adversarial Networks” (GANs) for 
data augmentation, were emphasized. The paper 
also analyzed the trade-offs between computational 
cost and diagnostic performance. By providing a 
comprehensive overview, this work guided future 
research in Alzheimer’s detection, highlighting 
gaps like the need for interpretability and robust 
validation across diverse populations. 

 
“Error Mitigation Framework” [30] 

proposed a collaborative learning model to predict 
Alzheimer’s progression with minimal accumulated 
errors. This framework employed a layered 
strategy, allowing multiple models to learn from 
each other iteratively while refining their 
predictions. Unlike standard ensemble methods, it 

focused on error correction at each step, reducing 
bias and variance.  

 
The design included an innovative 

weighting mechanism to prioritize reliable 
predictions, dynamically adjusting model 
contributions based on performance. Input data, 
including MRI features and cognitive test scores, 
were preprocessed and divided across sub-models 
for independent analysis. Collaborative feedback 
loops ensured consistent information exchange, 
improving individual model accuracy. The 
framework also incorporated adaptive learning rates 
to optimize prediction in heterogeneous datasets. 
This system offered a novel way to track disease 
stages, showing promise for more reliable 
Alzheimer’s management. 

 
Method 
Name 

Algorithm/ 
Technique Used 

Advantages Limitations 

Brain 
Efficiency 
Model [28] 

Causal inference with 
fMRI data 

Identified directional 
connectivity disruptions; 
enhanced understanding of 
compensatory mechanisms 

Limited to fMRI data; high 
computational complexity in 
causal modeling 

Deep Learning 
Survey [29] 

Various DL 
architectures (CNNs, 
RNNs, GANs) 

Comprehensive review 
guiding future research; 
highlighted preprocessing and 
data augmentation 

Lack of detailed experimental 
validation; challenges in 
model interpretability 

Error 
Mitigation 
Framework 

[30] 

Collaborative learning 
with error correction 

Reduced bias and variance; 
robust prediction of disease 
progression 

Computational overhead due 
to iterative learning; limited 
scalability 

Fibonacci-
Based 

Analysis [31] 

Fibonacci sequence 
for feature extraction 
in MRI 

Improved feature selection 
and computational efficiency; 
fine-grained spatial analysis 

Applicability limited to 
specific imaging features; 
moderate generalization 

Texture-Based 
Classifier [32] 

SVM with texture 
feature extraction 

Captured subtle structural 
irregularities; reliable 
classification 

Dependency on feature 
extraction algorithms; 
moderate scalability 

Color-Fusion 
System [33] 

Deep learning with 
multimodal color-
coded visualization 

Enhanced interpretability; 
effective tracking of disease 
progression 

Computationally intensive; 
reliance on high-quality 
multimodal data 

Multi-Scale 
Framework 

[34] 

Multi-scale CNN + 
LSTM 

Captured granular insights 
across modalities; addressed 
heterogeneity 

Complex architecture; requires 
substantial labeled data 

Clinical 
Record 

Classifier [35] 

RNN with attention 
mechanism 

Effective use of longitudinal 
EHRs; holistic diagnostic 
approach 

Dependent on clinical data 
availability and consistency 

Next-Gen 
Diagnostics 

[36] 

Self-supervised 
learning, CNN, GNN 

Robust feature 
representations; domain-
specific pretraining improved 
generalizability 

High model complexity; 
extensive computational 
resources required 
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EEG 
Ensemble 

Classifier [37] 

Hybrid deep ensemble 
learning 

Strong classification 
performance with non-
invasive EEG signals 

Dependency on signal 
preprocessing; computational 
overhead due to ensembles 

ANALYZE-
AD [38] 

Comparative analysis 
of AI techniques 

Identified gaps and strengths 
in current methods; guided 
robust diagnostic development 

Limited to literature review; 
lacks implementation of 
proposed techniques 

Multimodal 
Hybrid Model 

[39] 

PCA, random forests, 
SVM for multimodal 
integration 

Holistic view of disease 
progression; improved 
diagnostic accuracy 

High complexity in feature 
alignment; moderate 
scalability 

Alzh-Net [40] Residual CNN with 
spatial attention 

Efficient processing of MRI 
data; robust early-stage 
diagnosis 

Limited to MRI data; 
challenges in handling multi-
modal datasets 

Graph-
Regularized 
Selector [41] 

Graph-based 
regularized feature 
selection 

Extracted meaningful patterns; 
effective multimodal fusion 

Sensitivity to noise in graph 
modeling; requires prior 
domain knowledge 

Robust-PCA 
EEG 

Classifier [42] 

Robust PCA and 
random forest 

Reduced noise; cost-effective 
diagnostic potential using 
EEG 

Limited to EEG signals; lower 
spatial resolution compared to 
imaging 

FDCNN-AS 
[43] 

Federated Deep 
Convolutional Neural 
Network (FDCNN) 

Ensures data privacy - Adapts 
to different age groups - 
Enhances detection accuracy. 

High computational cost - 
Communication overhead - 
Sensitive to non-IID data. 

INN-MT [44] Multi-Task Learning 
(MTL) with Neural 
Network 

Improves classification 
accuracy - Reduces overfitting 
- Enhances generalization. 

Complex implementation - 
Higher resource demand - 
Requires balanced task 
learning. 

Table 1: Literature Review 
 

“Fibonacci-Based Analysis” [31] explored 
Alzheimer’s detection using MRI and a Fibonacci-
inspired model. FiboNeXt applied the Fibonacci 
sequence for feature extraction, leveraging its 
mathematical properties to identify significant 
imaging patterns. The model divided brain MRI 
into segments and analyzed them hierarchically 
using Fibonacci ratios, uncovering fine-grained 
spatial changes in brain structure. These method 
enhanced feature selections, focusing on regions 
linked to early-stage Alzheimer’s, like the 
hippocampus and temporal lobes. A neural network 
classifier, trained on the extracted features, 
provided robust differentiation between healthy and 
diseased samples. Cross-validation techniques 
ensured model reliability, and performance was 
benchmarked against conventional methods. The 
innovative use of Fibonacci principles reduced 
computational complexity while improving 
diagnostic precision. 

 
“Texture-Based Classifier” [32] utilized 

machine learning to classify Alzheimer’s disease by 
analyzing texture features in MRI. Texture metrics, 
including coarseness, contrast, and homogeneity, 

were extracted from brain scans to characterize 
structural irregularities. Feature selection 
algorithms, such as ReliefF, identified the most 
relevant parameters for distinguishing Alzheimer’s 
stages. The classification process employed 
“Support Vector Machines” (SVMs) with a radial 
basis function kernel, optimized through 
hyperparameter tuning. The approach demonstrated 
efficiency in capturing subtle textural changes, 
particularly in the grey matter. Cross-validation and 
statistical analyses confirmed its reliability, making 
it a promising tool for Alzheimer’s detection. 

 
“Color-Fusion System” [33] developed a 

novel visualization technique combining 
multimodal data and deep learning for Alzheimer’s 
longitudinal studies. The system employed color-
coding to integrate structural MRI, PET scans, and 
clinical records, enhancing interpretability. The 
visualization framework mapped disease 
progression by dynamically updating colors to 
represent changes in biomarkers over time. Deep 
learning algorithms processed multimodal inputs, 
extracting spatial, temporal, and contextual 
features. These features were fused into a unified 
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model, providing comprehensive insights into brain 
atrophy patterns and metabolic activity. The system 
streamlined longitudinal analysis, enabling 
clinicians to track subtle cognitive and structural 
changes with ease. The integration of multimodal 
data significantly improved diagnostic accuracy and 
highlighted correlations between clinical and 
imaging biomarkers. 

 
“Multi-Scale Framework” [34] introduced 

a deep learning model integrating multi-scale 
features from multimodal data for Alzheimer’s 
diagnosis. The framework combined MRI, PET, 
and genetic information to capture structural, 
functional, and molecular changes. Multi-scale 
processing analyzed data at various resolutions, 
ensuring granular insights into brain alterations. A 
“Convolutional Neural Network” (CNN) extracted 
spatial features, while a “Long Short-Term 
Memory”(LSTM) network modeled temporal 
dependencies. A fusion layer synthesized outputs 
from multiple modalities, optimizing feature 
interactions. The framework addressed challenges 
in data heterogeneity and imbalanced datasets 
through transfer learning and augmentation. This 
approach delivered robust classification 
performance, enhancing early detection and disease 
staging. 
 

“Clinical Record Classifier” [35] utilized 
deep learning to diagnose Alzheimer’s using 
electronic health records (EHRs). The model 
processed longitudinal clinical data, including 
cognitive scores, medication history, and lab 
results, to identify patterns indicative of 
Alzheimer’s. A “Recurrent Neural Network” 
(RNN) architecture analyzed temporal trends, while 
an attention mechanism highlighted key predictors. 
The system integrated demographic and 
comorbidity information, enabling a holistic 
diagnostic approach. Preprocessing steps ensured 
data consistency by addressing missing values and 
standardizing input formats. The model 
outperformed traditional rule-based systems by 
capturing subtle correlations across heterogeneous 
clinical records, supporting reliable Alzheimer’s 
diagnosis and treatment planning. 

 
“Next-Gen Diagnostics” [36] employed 

advanced deep learning techniques to refine 
Alzheimer’s early detection. The study 
incorporated hybrid architectures combining 
convolutional layers and “Graph Neural Networks” 
(GNNs) to analyze spatial and relational data from 
MRI and PET scans. The model introduced an 

innovative self-supervised learning module to 
address limited labeled data. Contrastive learning 
extracted robust feature representations by 
maximizing differences between healthy and 
diseased samples. Transfer learning with domain-
specific pretraining improved model 
generalizability across diverse datasets. The 
framework achieved superior performance in 
identifying early-stage Alzheimer’s, laying a 
foundation for more precise and accessible 
diagnostic tools. 

 
“EEG Ensemble Classifier” [37] presented 

a hybrid deep ensemble learning approach for 
Alzheimer’s classification using EEG data. The 
model combined “Convolutional Neural Networks” 
(CNNs) for spatial feature extraction and 
“Recurrent Neural Networks” (RNNs) for temporal 
analysis. Ensemble learning incorporated multiple 
classifiers, including decision trees and “Support 
Vector Machines” (SVMs), to enhance robustness. 
The hybrid model utilized wavelet transforms to 
preprocess EEG signals, isolating frequency bands 
critical to Alzheimer’s diagnosis. A weighted 
voting mechanism optimized final predictions by 
integrating outputs from diverse classifiers. This 
approach demonstrated strong classification 
performance, highlighting its applicability in non-
invasive Alzheimer’s detection. 

 
“ANALYZE-AD” [38] conducted a 

thorough comparison of diverse artificial 
intelligence methodologies to identify effective 
techniques for early Alzheimer’s detection. The 
study reviewed supervised and unsupervised 
learning models, emphasizing their performance on 
structural MRI, PET scans, and clinical data. Each 
model's ability to handle imbalanced datasets, 
reduce feature dimensionality, and enhance 
interpretability was assessed. Novel frameworks 
such as graph-based neural networks and attention-
based mechanisms were included for their 
capability to capture complex relationships in 
multimodal datasets. Transfer learning and data 
augmentation were explored to improve 
generalization across different cohorts. The analysis 
identified the strengths and weaknesses of various 
approaches, offering guidance for developing 
robust diagnostic systems. 

 
“Multimodal Hybrid Model” [39] 

integrated data from structural MRI, PET scans, 
and cognitive assessments to detect Alzheimer’s 
disease with high precision. The model used a 
hybrid approach combining feature extraction, 
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selection, and classification techniques. “Principal 
Component Analysis” (PCA) reduced 
dimensionality, while random forests and “Support 
Vector Machines” (SVM) formed the ensemble 
classification layer. The model aligned extracted 
features from different modalities to capture 
complementary information about brain structure 
and function. By combining imaging biomarkers 
with clinical and cognitive data, the framework 
provided a holistic view of disease progression. 
This method achieved improved diagnostic 
accuracy and demonstrated adaptability to complex 
datasets. 

 
“Alzh-Net” [40] proposed a 

“Convolutional Neural Network” (CNN) 
specifically designed for analyzing MRI data to 
diagnose Alzheimer’s disease. The model 
incorporated residual connections to preserve 
critical features during processing, ensuring robust 
learning from complex brain imaging data. A 
preprocessing pipeline standardized MRI scans, 
enhancing contrast and eliminating noise. The 
network utilized spatial attention mechanisms to 
focus on key regions such as the hippocampus and 
temporal lobes. Batch normalization and dropout 
layers minimized overfitting and ensured 
generalization across datasets. The method 
demonstrated high efficiency in diagnosing mild 
cognitive impairment and early-stage Alzheimer’s 
disease, facilitating early medical intervention. 

 
“Graph-Regularized Selector” [41] 

introduced a feature selection method leveraging 
graph-based regularization to enhance Alzheimer’s 
classification using multimodal data. This approach 
employed multi-level graphs to model relationships 
among imaging, cognitive, and genetic data. 
Feature relevance was assessed by integrating local 
and global structural correlations. Robust 
optimization techniques addressed noise and 
outliers, ensuring stable feature selection. The 
selected features were fed into “Support Vector 
Machines” (SVMs) for classification. Cross-
validation confirmed the method's capacity to 
extract meaningful patterns while maintaining low 
computational complexity. The framework 
achieved effective multimodal fusion, advancing 
Alzheimer’s diagnostic tools. 

 
“Robust-PCA EEG Classifier” [42] 

utilized robust principal component analysis (PCA) 
to extract features from EEG signals for 
Alzheimer’s disease classification. This technique 
decomposed EEG data into low-rank and sparse 

components, isolating relevant patterns while 
reducing noise. Wavelet transformation and 
frequency domain analysis enhanced signal 
preprocessing. The extracted features captured 
brain connectivity and functional abnormalities 
associated with Alzheimer’s. A random forest 
classifier identified Alzheimer’s and healthy 
controls with significant accuracy. This method 
showcased the potential of non-invasive EEG data 
and feature decomposition techniques in developing 
cost-effective diagnostic solutions for Alzheimer’s 
disease. Bio-inspired are being applied in different 
research to attain better results [43]-[79]. 

 
“FDCNN-AS” [80]  presents a federated 

deep convolutional neural network framework for 
Alzheimer’s disease detection across various age 
groups. This model utilizes federated learning to 
train on distributed datasets while maintaining data 
privacy, ensuring collaborative learning without 
centralized data sharing. By employing deep 
convolutional architectures, the network captures 
essential biomarkers from brain imaging data, 
enhancing classification accuracy. The method 
adapts to age-related variations in Alzheimer’s 
progression, improving personalized detection 
strategies. Through advanced feature extraction and 
secure distributed learning, this approach offers a 
robust solution for early diagnosis and monitoring 
of the disease, catering to different age 
demographics while addressing privacy concerns in 
medical data analysis.“INN-MT” [81] introduces a 
neural network framework integrating multi-task 
learning to enhance Alzheimer’s disease 
classification. This approach enables simultaneous 
learning of multiple related tasks, improving model 
generalization and accuracy. The network processes 
diverse features from brain imaging data, 
identifying distinct patterns associated with 
different stages of the disease. By leveraging shared 
representations across tasks, the model enhances 
early diagnosis and disease progression monitoring. 
This method optimizes computational efficiency 
while maintaining high predictive performance, 
making it a valuable tool for Alzheimer’s detection 
and classification in clinical applications. 
 
3. SEAL OPTIMIZATION-INSPIRED 

RANDOM FOREST (SO-RF)  
SO-RF combines the principles of seal-

inspired optimization and the Random Forest 
algorithm to enhance the model's performance in 
complex prediction tasks such as Alzheimer’s 
detection. Seal-inspired optimization is based on 
seals' efficient navigation and decision-making in 
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dynamic environments, which can be applied to 
fine-tune the hyperparameters or enhance feature 
selection in Random Forest. Fig1. Depicts the 
overall framework of SO-RF. 

 

 3.1. Initialization of Seal-Inspired Parameters 
Seal optimization-based mechanisms 

emulate the behaviours of seals in complex 
navigation and foraging.

Fig1. Overall framework of SO-RF 
 

These behaviours are modelled mathematically to 
establish a robust foundation for optimization. The 
initialization of seal-inspired parameters involves 
defining the variables and equations necessary to 
guide the algorithm. The process ensures a strong 
basis for subsequent steps in the algorithm, 
particularly for feature selection, tree construction, 
and hyperparameter tuning. 
Parameter Definitions and Initialization 

In seal-inspired optimization, key 
parameters include search agents, navigation steps, 
energy levels, and the fitness of potential solutions. 
These parameters are initialized using specific 
mathematical formulations that mimic seal 
behaviour. The position of the seal in the search 
space is represented as Eq.(1). 

𝑆௜
௧ = 𝑆௜

௧ିଵ + 𝛼. (𝛽. 𝑅 − 𝛾. 𝑃) (1) 

where, 𝑆௜
௧denotes the position of the 𝑖-th seal at 

iteration 𝑡. The variable 𝑅 represents the random 
exploration direction, and 𝑃 indicates the prey's 
position. Parameters 𝛼, 𝛽, and 𝛾 are the navigation, 
randomness, and convergence rates, respectively. 
To ensure that seals navigate efficiently, the energy 
decay function is defined as Eq.(2). 

𝐸௧ = 𝐸௠௔௫ . 𝑒𝑥𝑝(−𝛿. 𝑡) (2) 

The term 𝐸௧describes the energy level at iteration 𝑡, 
𝛿 is the energy decay constant, and 𝐸௠௔௫ is the 
initial energy level. This formulation ensures 
realistic decay over time, aligning with seal 
foraging efficiency. 
Exploration and Exploitation Balance 

The behaviour of seals requires a balance 
between exploration (searching for new areas) and 
exploitation (intensifying around promising 
solutions). The exploration-exploitation control is 
established which is represented mathematically in 
Eq.(3). 

𝜓 = 𝜎. 𝑠𝑖𝑛(𝜔. 𝑡) + 𝜏 (3) 

𝜓controls the balance, 𝜎 and 𝜏 are parameters 
governing the oscillation amplitude and bias, while 
𝜔 represents the frequency of oscillation over 
iterations. 
The velocity of seal movement within the search 
space is described as expressed mathematically in 
Eq.(4). 
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𝑉௜
௧ାଵ = 𝜂. 𝑉௜

௧ + 𝜁. ൫𝑆௚
௧ − 𝑆௜

௧൯ (4) 

where, 𝑉௜
௧ାଵrepresents the updated velocity of the 𝑖-

th seal, 𝜂 is the inertia coefficient, and 𝜁 denotes the 
adjustment factor based on the global best position 
𝑆௚

௧ . 
Dynamic adaptation of parameters 

The initialization step also incorporates 
mechanisms for dynamically adapting the 
parameters based on feedback from the 
optimization process. The adaptive convergence 
parameter is mathematically expressed in Eq.(5). 

𝜇௧ = 𝜇଴. ൬1 −
𝑡

𝑇
൰ (5) 

Where 𝜇௧is the convergence parameter at iteration 
𝑡, 𝜇଴is the initial convergence value, and 𝑇 is the 
total number of iterations. This dynamic adaptation 
ensures the algorithm transitions smoothly between 
the exploration and exploitation phases. 
Seal swarm density, a critical factor for collective 
navigation, is expressed as Eq.(6). 

𝐷௧ =
∑ 𝑒𝑥𝑝(−𝑘. ‖𝑆௜

௧ − 𝑆௖
௧‖)ே

௜ୀଵ

𝑁
 (6) 

The swarm density 𝐷௧depends on the positions of 
all seals 𝑆௜

௧, the central position 𝑆௖
௧, and the 

dispersion constant 𝜅. 
Energy and distance considerations 

Seals rely on energy and distance 
constraints to optimize their movement. The 
energy-distance function for position updates is 
formulated as shown in Eq.(7). 

𝑈௜
௧ = 𝜆. 𝑆௜

௧ + 𝑣. (𝑃 − 𝑆௜
௧) (7) 

The position update factor 𝑈௜
௧combines the 

current position 𝑆௜
௧ and the prey position 𝑃 with 

weights 𝜆 and 𝜈, corresponding to local and global 
contributions. 
The scaling factor captures the adaptability in 
dynamic environments which is represented 
mathematically in Eq.(8). 

𝜃௧ = 𝜃௠௜௡ + (𝜃௠௔௫ − 𝜃௠௜௡).
𝑡

𝑇
 (8) 

This scaling factor 𝜃௧ensures a gradual 
shift from exploration-dominant to exploitation-
dominant strategies. 

 
3.2. Feature Selection Process 

The feature selection process in SO-RF 
leverages the seal-inspired optimization framework 
to identify the most significant features for model 
training. This step optimizes feature selection by 
mimicking seals' ability to focus on critical targets 

in dynamic environments. The mechanism ensures 
that only the most relevant features contribute to 
decision-making, reducing noise and enhancing 
overall model performance. 
Feature scoring and initialization 

Feature scoring assigns important values 
to each feature based on its contribution to the 
objective function. Seal-inspired behaviour drives 
this scoring by balancing local exploration and 
global exploitation of the feature space. The scoring 
function is defined as Eq.(9). 

𝐹௜ =
∑ 𝜙௝ . 𝐺௜௝

ெ
௝ୀଵ

∑ 𝜙௝
ெ
௝ୀଵ

 (9) 

where, 𝐹௜denotes the important score of feature𝑖. 
The parameter 𝐺௜௝represents the gradient 
contribution of feature 𝑖 across all 𝑀 samples, 
while 𝜙௝is the corresponding weight assigned to 
sample 𝑗, reflecting its significance. 

Each feature's initial weight is set 
dynamically which is represented mathematically in 
Eq.(10). 

𝜙௜
௧ = 𝜙௜

௧ିଵ ൬1 +
𝜂

1 + ‖𝑋௜ − 𝑃‖
൰ (10) 

where, 𝜙௜
௧is the weight of feature 𝑖 at iteration 𝑡. 

The term 𝜂 controls the influence of proximity to 
the target position 𝑃, and 𝑋௜represents the position 
of feature 𝑖 in the search space. 
Adaptive feature selection strategy 

The adaptive strategy uses energy levels 
inspired by seal behaviour to prioritize features 
dynamically. The selection probability of a feature 
is defined as Eq.(11). 

𝑃௜ =
𝑒𝑥𝑝(−𝜉. 𝐹௜)

∑ 𝑒𝑥𝑝(−𝜉. 𝐹௞)ே
௞ୀଵ

 (11) 

The parameter 𝑃௜represents the probability 
of selecting feature 𝑖, with 𝑁 being the total number 
of features. The scaling factor 𝜉 adjusts the 
sensitivity of the selection process to feature scores. 
The adaptive cutoff threshold for selected features 
is given as shown in Eq.(12). 

Θ = Θ௠௔௫ . 𝑒𝑥𝑝 ൬−𝜌.
𝑡

𝑇
൰ (12) 

𝛩 is the threshold at iteration 𝑡, Θ௠௔௫ is the initial 
maximum threshold, 𝜌 is the decay rate, and 𝑇 is 
the total number of iterations. This ensures the 
gradual refinement of selected features over time. 
Movement dynamics in feature space 

Seals' coordinated movement in the feature 
space is emulated to improve feature selection. The 
update rule for feature positions is formulated as 
Eq.(13). 
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𝑋௜
௧ାଵ = 𝑋௜

௧ + 𝜆. ൫𝑋௚ − 𝑋௚
௧൯ + 𝜁. 𝑅 (13) 

The position 𝑋௜
௧ାଵof feature 𝑖 at iteration 𝑡 + 1 

depends on its previous position 𝑋௜
௧, the global best 

position 𝑋௚, and a random exploration vector 𝑅. 
Parameters 𝜆 and 𝜁 balance exploitation and 
exploration. 

Feature stability over iterations is 
quantified using a convergence factor is defined as 
Eq.(14). 

𝐶௜
௧ = 𝛼. 𝐶௜

௧ିଵ + (1 − 𝛼). |𝐹௜
௧ − 𝐹௜

௧ିଵ| (14) 

The convergence factor 𝐶௜
௧ensures that features 

stabilizing quickly are prioritized, where 𝛼 controls 
the influence of historical stability. 
Feature optimization using seal behaviour 

The final selection of features integrates 
feedback from multiple iterations, optimizing the 
subset to balance diversity and relevance. The 
optimized subset 𝑆 is determined as Eq.(15). 

𝑆 = {𝑖: 𝐹௜ ≥ Θ 𝑎𝑛𝑑 𝑃௜ > 𝜏} (15) 

where, 𝑆 includes features meeting the importance 
threshold 𝛩 and having a selection probability 𝑃௜   
greater than a predefined threshold 𝜏. This ensures 
the chosen features align closely with the 
optimization objectives. 
 
3.3. Bootstrap Sampling 

Bootstrap sampling involves generating 
diverse subsets of data to train individual decision 
trees within the Random Forest algorithm. The 
seal-inspired optimization in SO-RF enhances the 
traditional bootstrap process by introducing 
dynamic sampling strategies influenced by seal 
foraging behaviour, ensuring diverse and balanced 
subsets. This step strengthens the model's 
robustness and generalization by leveraging 
optimized sampling mechanisms. 
Dynamic sampling rate 

The dynamic sampling rate, inspired by 
seals' adaptive exploration strategies, is defined as 
Eq.(16). 

𝑅௧ = 𝑅௠௜௡ + (𝑅௠௔௫ − 𝑅௠௜௡). 𝑠𝑖𝑛 ൬
𝜋. 𝑡

𝑇
൰ (16) 

The variable 𝑅௧represents the sampling rate at 
iteration 𝑡, 𝑅௠௜௡ and 𝑅௠௔௫denote the minimum and 
maximum sampling rates, and 𝑇 is the total number 
of iterations. This oscillatory mechanism ensures 
varied sampling patterns, balancing exploration and 
exploitation over time. 
The number of samples selected from the dataset is 
expressed as Eq.(17). 

𝑁௧ = ⌈𝑅௧ . 𝑁௧௢௧௔௟⌉ (17) 

where 𝑁௧is the number of samples at iteration 𝑡, 
𝑅௧is the sampling rate, and 𝑁௧௢௧௔௟is the total 
number of available samples. This formula ensures 
proportional sampling based on the dynamically 
adjusted rate. 
Weighting of Data Instances 

Seal-inspired strategies assign weights to 
data instances to prioritize informative samples. 
The instance weight 𝑤௜

௧at iteration, 𝑡 is computed 
as Eq.(18). 

𝑤௜
௧ =

1

1 + 𝑒𝑥𝑝(−𝑘. 𝑓௜)
 (18) 

where, 𝑤௜
௧represents the weight; for instance𝑖, 𝜅 

controls the steepness of the weighting function, 
and 𝑓௜is the fitness score of the instance, reflecting 
its relevance. 
 
To maintain a balance in instance selection, the 
normalized weight for sampling is defined as 
Eq.(19). 

𝑤ෝ௜
௧ =

𝑤௜
௧

∑ 𝑤௝
௧ே೟೚೟ೌ೗

௝ୀଵ

 (19) 

The normalized weight 𝑤ෝ௜
௧ ensures that the sum of 

weights across all instances equals one, facilitating 
probabilistic sampling. 
Selection probability adjustment 

The selection probability for each data 
instance integrates feedback from its weight and 
prior selection frequency. The probability 𝑃௜

௧for 
instance 𝑖 is calculated as defined in Eq.(20). 

𝑃௜
௧ =

𝑤ෝ௜
௧

1 + 𝜆. 𝑓𝑟𝑒𝑞௜
௧ (20) 

In this equation, 𝑃௜
௧accounts for the normalized 

weight 𝑤ෝ௜
௧, the prior selection frequency 𝑓𝑟𝑒𝑞௜

௧, and 
𝜆, which balances between informative selection 
and diversity. 
Diversity maximization in sampling 

Diversity among sampled subsets is 
enhanced by seal-inspired dispersion. The 
dispersion factor 𝛿௧determines the spread of 
selected instances and is expressed as Eq.(21). 

𝛿௧ = 𝛿௠௜௡ + (𝛿௠௔௫ − 𝛿௠௜௡). 𝑐𝑜𝑠 ൬
𝜋. 𝑡

2𝑇
൰ (21) 

The term 𝛿௧adjusts the dispersion based on iteration 
𝑡, with 𝛿௠௜௡ and 𝛿௠௔௫as bounds, this ensures broad 
coverage of the feature space in early iterations, 
narrowing it down as optimization progresses. 
Sampling update rule 

An update rule inspired by seal swarm 
dynamics is applied to refine the sample set. The 
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updated position of a selected instance is computed 
as Eq.(22). 

𝑋௜
௧ାଵ = 𝑋௜

௧ + 𝜎. (𝑋௖ − 𝑋௜
௧) + 𝜔. 𝑅௧ (22) 

where, 𝑋௜
௧ାଵdenotes the new position of instance 𝑖, 

𝑋௖is the centroid of the selected samples, 𝑅௧ 
represents a random perturbation, and 𝜎 and 𝜔 
balance convergence and diversity. 
 
3.4. Feature Subset Selection Per Tree  

Feature subset selection per tree ensures 
diversity and relevance in the construction of 
decision trees. In SO-RF, this process is guided by 
seal-inspired optimization principles, enabling the 
selection of optimal feature subsets for each tree. 
This step enhances the overall robustness and 
accuracy of the Random Forest by ensuring that the 
chosen features are dynamically aligned with the 
optimization objectives. 
Dynamic feature scoring 

Feature subset selection begins with 
assigning scores to features based on their 
contribution to learning. The dynamic feature 
scoring is represented as Eq.(23). 

𝑆௙
௧ = 𝑆௙

௧ିଵ + 𝛽.
𝐺௙

௧

ฮ𝐺௙
௧ฮ

 (23) 

Here, 𝑆௙
௧denotes the score of feature𝑓 at iteration 𝑡. 

The term 𝐺௙
௧represents the gradient of the feature at 

𝑡, normalized to unit magnitude. The coefficient 𝛽 
regulates the influence of the gradient on the score 
update. 
Feature selection probability 

Using the feature scores, the probability of 
selecting a feature is defined dynamically to 
prioritize informative features. The selection 
probability for feature 𝑓 is computed as Eq.(24). 

𝑃௙ =
𝑆௙

௧

∑ 𝑆௙
௧ி

௝ୀଵ

 (24) 

where, 𝑃௙denotes the probability of selecting 
feature 𝑓,  𝑆௙

௧is its score at iteration 𝑡, and 𝐹 is the 
total number of features. This normalization 
ensures that probabilities are proportional to feature 
importance. 
Diversity enhancement in feature subsets 

A dispersion mechanism inspired by seal 
behaviour is applied to maximize diversity among 
trees. The dispersion factor for feature subsets is 
expressed as Eq.(25). 

𝐷௙ =
1

1 + 𝑒𝑥𝑝൫−𝜆. ฮ𝑉௙ − 𝐶ฮ൯
 (25) 

The term 𝐷௙represents the dispersion value for 
feature 𝑓, 𝜆 adjusts the steepness of the function, 

𝑉௙is the vector representation of feature 𝑓, and 𝐶 is 
the centroid of selected features in the subset. 
Subset optimization 

The optimization of feature subsets is 
achieved by selecting features with the highest 
combined scores from importance and diversity. 
The optimization objective is defined as Eq.(26). 

𝑂௙ = 𝛼. 𝑃௙ + (1 − 𝛼). 𝐷௙  (26) 

where, 𝑂௙is the optimization value for feature 𝑓, 𝛼 
is the weight balancing importance and diversity, 
𝑃௙is the selection probability, and 𝐷௙is the 
dispersion factor. 
Feature subset allocation 

The final selection of features for a tree is 
determined by solving a maximization problem 
over the optimization values are expressed 
mathematically in Eq.(27). 

𝐹௧ = arg max
௙∈ி

൫𝑂௙൯, where |𝐹௧| ≤ 𝑘 (27) 

where, 𝐹௧is the subset of features selected for the 
tree at iteration 𝑡, and 𝑘 is the predefined maximum 
number of features per tree. This ensures that the 
subset includes only the most optimized features. 
 
3.5. Dynamic Node Splitting Criterion in SO-RF 

The Dynamic Node Splitting Criterion in 
SO-RF employs seal-inspired optimization 
principlesto determine optimal split points in 
decision trees. This mechanism ensures that splits 
maximize information gain while maintaining 
diversity and robustness in the decision process. 
The adaptive nature of the criterion enhances the 
tree's performance in handling complex and noisy 
data distributions. 
Information gain optimization 

The criterion for a node split begins with 
the calculation of information gain, defined as 
Eq.(28). 

𝐼𝐺(𝑋, 𝜃) = 𝐻(𝑋) − ෍
|𝑋௞|

𝑋

௄

௞ୀଵ

𝐻(𝑋௞) (28) 

Where, 𝐼𝐺(𝑋, 𝜃)represents the information gain for 
a feature 𝑋 at split point 𝜃. The term 𝐻(𝑋)is the 
entropy of the parent node, and 𝐻(𝑋௞)represents 
the entropy of the 𝑘-th child node, with 
|𝑋௞|denoting the number of samples in the child 
node and |𝑋| the total samples in the parent node. 
The Entropy 𝐻(𝑋) is calculated as represented 
mathematically in Eq.(29). 

𝐻(𝑋) = − ෍ 𝑝௜𝑙𝑜𝑔ଶ(𝑝௜)

஼

௜ୀଵ

 (29) 
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The term 𝑝௜indicates the proportion of samples in 
class 𝑖 at the node, and 𝐶 is the total number of 
classes. This equation quantifies the impurity of the 
node. 
Adaptive gini index for splitting 

The Gini index is adapted using seal-
inspired dynamics to prioritize nodes with a 
balanced class distribution. The adaptive Gini index 
is expressed as Eq.(30). 

𝐺(𝑋, 𝜃) = ෍ 𝑝௜(1 − 𝑝௜) + 𝛿. ‖𝑋 − 𝜃‖

஼

௜ୀଵ

 (30) 

The term 𝐺(𝑋, 𝜃)combines the traditional Gini 
index with a penalty term, where 𝛿 regulates the 
impact of the distance ‖𝑋 − 𝜃 ‖between the feature 
values and split point. This adaptation ensures 
optimal splits while accounting for feature 
variability. 
Weighted variance reduction 
In regression tasks, the splitting criterion uses 
weighted variance reduction is expressed 
mathematically in Eq.(31). 

𝑉𝑅(𝑋, 𝜃) = 𝜎ଶ(𝑋) − ෍
|𝑋௞|

𝑋

௄

௞ୀଵ

𝜎ଶ(𝑋௞) (31) 

The term 𝑉𝑅(𝑋, 𝜃)represents the variance 
reduction, where 𝜎ଶ(𝑋)is the variance of the parent 
node, and 𝜎ଶ(𝑋௞)denotes the variance of the 𝑘-th 
child node. This equation ensures that the split 
minimizes variance across child nodes. 
Variance is calculated as expressed mathematically 
in Eq.(32). 

𝜎ଶ(𝑋) =
1

|𝑋|
෍(𝑥௜ − 𝑥̅)ଶ

|௑|

௜ୀଵ

 (32) 

where, 𝜎ଶ(𝑋)is the variance, 𝑥௜are the feature 
values, and 𝑥̅is their mean. This formulation 
ensures that the split minimizes dispersion in the 
resulting nodes. 
Seal-inspired split selection 

The optimal split is selected using a seal-
inspired optimization function is expressed 
mathematically in Eq.(33). 

Θ∗ = arg max
ఏ

൫𝛼. 𝐼𝐺(𝑋, 𝜃) + 𝛽. 𝑉𝑅(𝑋, 𝜃)

− 𝛾. 𝐺(𝑋, 𝜃)൯ 
(33) 

The term Θ∗denotes the optimal split point. 
Parameters 𝛼, 𝛽, and 𝛾 balance the contributions of 
information gain, variance reduction, and the 
adaptive Gini index. This function ensures that 
splits optimize classification and regression 
objectives simultaneously. 
Dynamic thresholding for splits 

A dynamic threshold adjusts the sensitivity 
of split selection over iterations are expressed 
mathematically in Eq.(34). 

𝜆௧ = 𝜆଴. ൬1 −
𝑡

𝑇
൰ (34) 

where, 𝜆௧is the threshold at iteration 𝑡, 𝜆଴is the 
initial threshold, and 𝑇 is the total number of 
iterations. This dynamic adjustment refines the 
splits as the algorithm progresses. 
 
Seal-swarm feedback mechanism 

The feedback from neighbouring nodes 
influences split selection dynamically. This is 
expressed as Eq.(35). 

Φ௧ = Φ௧ିଵ + 𝜂. (Φ௕௘௦௧ − Φ௧ିଵ) (35) 

where, Φ௧represents the updated feedback at 
iteration 𝑡, Φ௕௘௦௧is the best feedback observed, and 
𝜂 regulates the influence of the input on the current 
iteration. This ensures continuous improvement in 
split quality. 
 
3.6. Construction of Diverse Trees 

The construction of diverse trees in SO-RF 
utilizes seal-inspired optimization principles 
toensure that each tree contributes unique decision-
making capabilities to the ensemble. This step 
emphasizes diversity to reduce overfitting and 
enhance generalization. Dynamic strategies balance 
exploration and exploitation in tree construction, 
guided by seal-like adaptive behaviour. 
Dynamic sampling for tree diversity 

Diverse trees are constructed using unique 
sampling rates and weights during bootstrap 
sampling. The weight-adjusted sampling 
probability for a data instance is defined as Eq.(36) 

𝑃௜
௧ =

𝑤௜
௧

∑ 𝑤௝
௧ே

௝ୀଵ

 (36) 

where, 𝑃௜
௧is the probability of selecting instance 𝑖 at 

iteration 𝑡, and 𝑤௜
௧ represents the weight of the 

instance. The summation ensures that probabilities 
are normalized. 
The weight 𝑤௜

௧evolves dynamically which is 
represented in Eq.(37). 

𝜔௜
௧ାଵ = 𝑤௜

௧ . ቆ1 + 𝛼.
𝛿௜

௧

𝑚𝑎𝑥(𝛿௧)
ቇ (37) 

The term 𝛿௜
௧measures the contribution of 

instance 𝑖 to the impurity reduction of the tree. This 
adaptive adjustment ensures that data contributing 
to better splits are prioritized. 
Feature subset selection for splitting nodes 

The selection of feature subsets further 
enhances diversity. A stochastic selection 
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mechanism determines the subgroup for each node 
split, expressed as Eq.(38). 

𝐹௞
௧ = {𝑓: 𝑓~𝑃(𝑓)Λ|𝐹௞| ≤ 𝑚} (38) 

The set 𝐹௞
௧includes features sampled 

probabilistically based on their importance scores 
𝑃(𝑓), ensuring the subset size does not exceed 𝑚. 
The importance score 𝑃(𝑓)for feature 𝑓 is 
computed dynamically as shown in Eq.(39). 

𝑃(𝑓) =
𝑒𝑥𝑝൫𝜆. 𝑆௙൯

∑ 𝑒𝑥𝑝൫𝜆. 𝑆௝൯ி
௝ୀଵ

 (39) 

where, 𝑆௙is the feature score, and 𝜆 adjusts the 
sensitivity to feature importance. 
Adaptive Tree Depth Control 

The depth of each tree is dynamically 
optimized to balance complexity and diversity. The 
adaptive depth 𝑑௧of a tree at iteration 𝑡 is 
determined as Eq.(40). 

𝑑௧ = 𝑑௠௔௫ . ൬1 −
𝜙. 𝑡

𝑇
൰ (40) 

where, 𝑑௠௔௫is the maximum depth, 𝜙 is a decay 
parameter, and 𝑇 is the total number of iterations. 
This equation ensures deeper trees initially for 
exploration and shallower ones later for 
convergence. 
The stopping condition for tree growth at depth 𝑑 
uses an entropy threshold which is expressed in 
Eq.(41). 

𝜖ௗ = 𝐻ௗ − 𝐻௠௜௡  (41) 

If 𝜖ௗ < 𝜏, tree growth halts at that node. Here, 
𝐻ௗrepresents the entropy at depth 𝑑, and 𝐻௠௜௡ is 
the minimum entropy threshold. 
Node splitting criterion for diversity 

Each tree uses unique criteria for node 
splitting, leveraging an adaptive gain function is 
expressed in Eq.(42). 

𝐺௞
௧ = 𝛼. 𝐼𝐺௞ + 𝛽. 𝑉𝑅௞ − 𝛾. 𝐺𝐼𝑁𝐼௞  (42) 

The term 𝐺௞
௧ represents the gain for node 𝑘 at 

iteration 𝑡, combining information gain (𝐼𝐺), 
variance reduction (𝑉𝑅), and Gini index (𝐺𝐼𝑁𝐼). 
The weights 𝛼, 𝛽, and 𝛾 ensure flexibility across 
trees. 
Random perturbations for tree diversity 

To further enhance diversity, random 
perturbations are introduced during tree 
construction. The perturbation vector for node 
criteria is defined as Eq.(43). 

∆𝜃௞ = 𝜎. 𝑅௞ (43) 

where, ∆𝜃௞is the perturbation for node 𝑘, 𝜎 is the 
scaling factor, and 𝑅௞is a random vector. This 
ensures that even similar trees exhibit variations in 
their decision-making paths. 
Weighted contribution of trees 

The contribution of each tree to the final 
ensemble prediction is weighted based on its 
performance during training is represented 
mathematically in Eq.(44). 

𝑊௧ =
1

1 + 𝑒𝑥𝑝(−𝑘. 𝐴𝑐𝑐௧)
 (44) 

Here, 𝑊௧is the weight for tree 𝑡, 𝜅 regulates the 
influence of accuracy, and 𝐴𝑐𝑐௧denotes the 
accuracy of the tree on the validation subset. 
Swarm-inspired feedback for tree refinement 

Feedback from neighbouring trees 
influences the construction of new trees, creating a 
collaborative swarm-like dynamic. The feedback 
adjustment for tree 𝑡 is expressed as Eq.(45). 

𝜙௧ = 𝜙௧ିଵ + 𝜂. (Φ௕௘௦௧ − Φ௧ିଵ) (45) 

where, 𝜙௧ is the feedback parameter, 
Φ௕௘௦௧represents the best feedback observed, and 𝜂 
is the adjustment rate. This iterative feedback 
ensures continuous improvement in tree diversity 
and performance. 
 
3.7. Optimization of Tree Depth in SO-RF 

The optimization of tree depth in SO-RF 
employs adaptive strategies inspired by seal 
behaviour to balance complexity and performance. 
The process ensures trees are neither too shallow, 
which may underfit the data, nor too deep, which 
may overfit. This optimization improves model 
generalization and computational efficiency while 
maintaining diversity across trees. 
Adaptive depth control mechanism 

The depth of each tree is dynamically 
adjusted based on iteration and data complexity. 
The depth control function is expressed as Eq.(46). 

𝑑௧ = 𝑑௠௔௫ − ൤
𝜁. 𝑡

𝑇
൨ (46) 

where, 𝑑௧represents the depth of the tree at iteration 
𝑡,  𝑑௠௔௫is the maximum allowable depth, 𝜁 is the 
depth decay rate, and 𝑇 is the total number of 
iterations. This function reduces tree depth 
progressively, ensuring initial exploration and later 
exploitation. 
Entropy-based depth threshold 
The entropy at each depth is computed to assess the 
information richness of splits is expressed in 
Eq.(47). 
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𝐻ௗ = − ෍ 𝑝௖1𝑛(𝑝௖)

஼

௖ୀଵ

 (47) 

where, 𝐻ௗrepresents the entropy at depth 𝑑, 𝑝௖is the 
proportion of samples in class 𝑐, and 𝐶 is the 
number of classes. A threshold 𝜖ௗis defined as 
Eq.(48). 

𝜖ௗ = 𝐻ௗ − 𝐻௠௜௡  (48) 

If 𝜖ௗfalls below a predefined limit, tree growth at 
that depth halts, preventing unnecessary splits. 
Depth optimization objective 

An optimization function combines 
accuracy, diversity, and computational cost to 
determine the optimal depth as expressed in 
Eq.(49). 

𝑂ௗ = 𝛼. 𝐴𝑐𝑐ௗ + 𝛽. 𝐷ௗ − 𝛾. 𝐶ௗ (49) 

where, 𝑂ௗis the optimization objective at depth 𝑑, 
𝐴𝑐𝑐ௗrepresents accuracy, 𝐷ௗis a diversity metric, 
𝐶ௗis the computational cost, and 𝛼, 𝛽, and 𝛾 are 
weights balancing these factors. 
Penalty for over-depth 

A penalty function discourages excessive 
depth that may lead to overfitting. The penalty term 
is defined as Eq.(50). 

𝑃ௗ = 𝜌. ൫𝑑 − 𝑑௢௣௧൯
ଶ
 (50) 

where, 𝑃ௗis the penalty for depth 𝑑, 𝜌 controls the 
severity of the penalty, and 𝑑௢௣௧is the empirically 
derived optimal depth. This penalty is integrated 
into the optimization function to guide depth 
selection. 
Adaptive gain adjustment 

An adaptive gain adjustment ensures 
optimal splits at each depth. The adjusted gain 
function is mathematically represented in Eq.(51). 

𝐺ௗ = 𝐼𝐺ௗ +
𝑣

1 + 𝑒𝑥𝑝൫−𝜏. (𝑑௠௔௫ − 𝑑)൯
 (51) 

The term 𝐺ௗrepresents the gain at depth 
𝑑,𝐼𝐺ௗ is the information gain, 𝜈 is a scaling 
parameter, and 𝜏 adjusts the rate of gain adaptation. 
This ensures deeper nodes focus on significant 
splits. 
Swarm-inspired feedback for depth adjustment 

Feedback from previously constructed 
trees influences depth decisions. The feedback-
adjusted depth is expressed as Eq.(52). 

𝑑௧ାଵ = 𝑑௧ + 𝜂. ൫𝑑̅ − 𝑑௧൯ (52) 

where, 𝑑௧ାଵ is the updated depth for the next tree, 
𝑑௧is the current depth, 𝑑̅is the average depth of 

constructed trees, and 𝜂 is a feedback adjustment 
factor. This encourages convergence to an optimal 
depth across trees. 
 

Dynamic sample distribution 
The distribution of samples across nodes at 

each depth impacts depth optimization. The 
distribution factor is given as Eq.(53). 

𝛿ௗ =
|𝑋ௗ|

|𝑋|
 (53) 

where, 𝛿ௗis the proportion of samples at depth 
𝑑,|𝑋ௗ| is the number of samples at depth 𝑑, and ∣
𝑋 ∣ is the total number of samples. High 𝛿ௗat 
deeper nodes triggers adjustments to maintain 
balance. 
Computation-efficiency metric 

A metric evaluating computational 
efficiency at each depth is defined as expressed in 
Eq.(54). 

𝐶ௗ =
∑ 𝐶𝑜𝑚𝑝(𝑛)

ே೏
௡ୀଵ

𝑁ௗ

 (54) 

where, 𝐶ௗis the average computational cost at depth 
𝑑, 𝐶𝑜𝑚𝑝(𝑛)is the cost for node 𝑛, and 𝑁ௗ is the 
total number of nodes at depth 𝑑. This metric 
ensures tree depth decisions are considered to be 
efficient. 
 
3.8. Hyperparameter Fine-Tuning 

Hyperparameter fine-tuning is crucial for 
optimizing the performance of the SO-RF model. 
This process uses seal-inspired optimization 
strategies to adjust parameters such as the number 
of trees, maximum depth, minimum samples per 
split, and feature subset size. The approach ensures 
these parameters align with the dataset and task 
requirements, enhancing predictive performance 
and generalization. 
Search space definition 

The fine-tuning process begins with 
defining the hyperparameter search space. Upper 
and lower limits bound each parameter. The search 
space for a hyperparameter ℎ is represented as 
Eq.(55). 

𝐻 = {ℎ: ℎ௠௜௡ ≤ ℎ ≤ ℎ௠௔௫} (55) 

where, 𝐻 denotes the set of possible values for ℎ, 
while ℎ௠௜௡  and ℎ௠௔௫are its lower and upper 
bounds, respectively. 

The initial position of a candidate solution 
in the search space is randomized as expressed in 
Eq.(56). 

ℎ௜
(଴)

= ℎ௠௜௡ + 𝑟. (ℎ௠௔௫ − ℎ௠௜௡) (56) 
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where, ℎ௜
(଴)represents the initial value of the 𝑖-th 

hyperparameter, and 𝑟 is a uniform random variable 
between 0 and 1. 
 
Objective function for hyperparameter tuning 

The objective function evaluates the 
performance of a hyperparameter combination. The 
evaluation metric, such as accuracy or F1-score, is 
computed as defined in Eq.(57). 

𝐹(𝐻) =
1

𝑘
෍ 𝐸𝑣𝑎𝑙൫𝐻, 𝑋௝ , 𝑌௝൯

௞

௝ୀଵ

 (57) 

where, 𝐹(𝐻)is the average evaluation score across 
𝑘-fold cross-validation, where 𝑋௝and 𝑌௝are the 
training and validation datasets for fold 𝑗, and 
𝐸𝑣𝑎𝑙൫𝐻, 𝑋௝ , 𝑌௝൯computes the score for a specific 
hyperparameter set 𝐻. 
Dynamic exploration-exploitation balance 

The exploration and exploitation phases 
are balanced dynamically during fine-tuning. The 

exploration probability 𝑃௘
(௧)at iteration, 𝑡 is 

modelled as Eq.(58). 

𝑃௘
(௧)

= 𝑃௠௜௡ + (𝑃௠௔௫ − 𝑃௠௜௡). 𝑒𝑥𝑝 ൬−
𝑡

𝜏
൰ (58) 

where, 𝑃௘
(௧)is the probability of exploring new areas 

of the search space, 𝑃௠௜௡and 𝑃௠௔௫are the minimum 
and maximum exploration probabilities, and 𝜏 
controls the decay rate. 

The exploitation probability complements 
exploration and is expressed mathematically in 
Eq.(59). 

𝑃௫
(௧)

= 1 − 𝑃௘
(௧) (59) 

Adaptive step size for fine-tuning 
Step size adaptation ensures efficient 

convergence during hyperparameter optimization. 

The step size ∆ℎ௜
(௧)for the 𝑖-th hyperparameter at 

iteration, 𝑡 is defined as Eq.(60). 

∆ℎ௜
(௧)

= 𝜂.
𝛿𝐹(𝐻)

𝜕ℎ௜

 (60) 

where, 𝜂 is the learning rate, and 
ఋி(ு)

డ௛೔
is the 

gradient of the objective function concerning ℎ௜. 
This ensures that adjustments are proportional to 
the influence of each hyperparameter. 
The updated value of ℎ௜is calculated as expressed in 
Eq.(61). 

ℎ௜
(௧ାଵ)

= ℎ௜
(௧)

+ ∆ℎ௜
(௧) (61) 

Diversity in hyperparameter solutions 

To maintain diversity among candidate 
solutions, a perturbation factor is introduced as 
mathematically expressed in Eq.(62) 

ℎ௜
(௧ାଵ)

= ℎ௜
(௧)

+ 𝜎. 𝑟 (62) 

where, 𝜎 controls the perturbation magnitude, and 𝑟 
is a random vector. This prevents premature 
convergence to suboptimal solutions. 
Penalty for overfitting 

To discourage overfitting, a penalty term 
is incorporated into the objective function which is 
expressed mathematically in Eq.(63). 

𝐹ᇱ(𝐻) = 𝐹(𝐻) − 𝜆. 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦(𝐻) (63) 

where, 𝐹ᇱ(𝐻)is the penalized objective function, 𝜆 
is the penalty coefficient, and 
𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦(𝐻)measures the complexity of the 
model for the given hyperparameter set. 
Collaborative search using seal-inspired 
behaviour 

The fine-tuning process leverages 
collaborative search, mimicking seal swarm 
behaviour. The position of a candidate solution in 
the search space is updated as shown in Eq.(64). 

ℎ௜
(௧ାଵ)

= ℎ௜
(௧)

+ 𝜁. ൫ℎ௚ − ℎ௜
(௧)

൯ + 𝜉. 𝑅 (64) 

where, ℎ௚is the global best solution, 𝜁 is the 
attraction coefficient, 𝜉 controls random 
exploration, and 𝑅 is a random vector. This 
mechanism ensures convergence to the optimal 
hyperparameter values. 
 
3.9. Diversity Maximization in SO-RF 

Diversity maximization is a critical step in 
SO-RF to ensure each tree contributes 
uniqueinsights to the ensemble. Incorporating seal-
inspired behaviour enhances the exploration of the 
solution space, prevents redundancy among trees, 
and improves generalization. Diversity 
maximization addresses variability in feature 
selection, sample subsets, and decision paths, 
creating a robust and balanced Random Forest. 
Quantifying diversity across trees 

Diversity is measured by assessing 
differences in decision paths between trees. The 
pairwise diversity metric for trees 𝑇௜  and 𝑇௝is 
expressed as Eq.(65). 

𝐷൫𝑇௜ , 𝑇௝൯ = 1 −
𝑆𝑖𝑚൫𝑇௜ , 𝑇௝൯

𝑀𝑎𝑥𝑆𝑖𝑚
 (65) 

where, 𝐷൫𝑇௜ , 𝑇௝൯represents the diversity between 

two trees, 𝑆𝑖𝑚൫𝑇௜ , 𝑇௝൯measures the similarity of 
their predictions, and 𝑀𝑎𝑥𝑆𝑖𝑚 is the maximum 
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possible similarity. Higher 𝐷൫𝑇௜ , 𝑇௝൯ indicates 
greater diversity. 
The aggregate diversity across the forest is defined 
as Eq.(66). 

𝐷௙௢௥௘௦௧ =
2

𝑁(𝑁 − 1)
෍ ෍ 𝐷൫𝑇௜ , 𝑇௝൯

ே

௝ୀ௜ାଵ

ேିଵ

௜ୀଵ

 (66) 

where, 𝐷௙௢௥௘௦௧represents the average diversity 
among 𝑁 trees. This ensures the assessment 
encompasses all pairwise combinations. 
Feature space dispersion 

To enhance diversity, feature dispersion 
within the forest is maximized. Dispersion is 
defined as Eq.(67). 

∆𝐹 =
∑ ‖𝐹௞ − 𝐹ത‖௠

௞ୀଵ

𝑚
 (67) 

where, ∆𝐹measures the dispersion of feature 
subsets across 𝑚 trees, 𝐹௞is the feature set of tree𝑘, 
and 𝐹തis the mean feature set vector. Higher 
dispersion ensures broader feature exploration. 
Sample variability across trees 

Sample variability is introduced by 
adjusting weights dynamically during bootstrap 
sampling. The weight of a sample 𝑥௜in tree 𝑘 is 
defined as Eq.(68). 

𝑤௜,௞ =
1

1 + 𝑒𝑥𝑝൫−𝑘, 𝛿௜,௞൯
 (68) 

where, 𝑤௜,௞is the weight of sample 𝑖 in tree 𝑘, 𝜅 
regulates the sigmoid steepness, and 𝛿௜,௞measures 
the distance of 𝑥௜from the centroid of the samples 
in tree 𝑘. 

Normalized weights are used to maintain 
consistency which is expressed mathematically in 
Eq.(69). 

𝑤ෝ௜,௞ =
𝑤௜,௞

∑ 𝑤௝,௞
௡ೖ
௝ୀଵ

 (69) 

This ensures that the weights of all samples within 
a tree sum to 1, facilitating probabilistic sampling. 
Tree path variability 

Tree path variability is introduced by 
incorporating randomness into node-splitting 
criteria. The adjusted gain function for a node in 
tree 𝑘 is expressed as Eq.(70). 

𝐺௞ = 𝛼. 𝐼𝐺௞ + 𝛽. 𝑉𝑅௞ − 𝛾. 𝐺𝐼𝑁𝐼௞ + 𝜌. 𝑅௞ (70) 

 
where, 𝐺௞represents the gain, 𝛼, 𝛽, and 𝛾 are 
weighting for information gain (𝐼𝐺௞), variance 
reduction (𝑉𝑅௞), and Gini index (𝐺𝐼𝑁𝐼௞), 
respectively, while 𝜌 controls the influence of the 
random vector 𝑅௞. This mechanism introduces 
stochasticity into tree construction. 
Diversity-conscious pruning 

Pruning strategies ensure trees remain diverse by 
selectively retaining nodes that contribute to 
variability. The pruning metric for a node 𝑛 in tree 
𝑘 is defined as Eq.(71). 

𝑃௞(𝑛) =
∆𝐷(𝑛)

𝐶𝑜𝑠𝑡(𝑛)
 (71) 

where, 𝑃௞(𝑛)represents the pruning priority, 
∆𝐷(𝑛)measures the diversity gain from retaining 
the node, and 𝐶𝑜𝑠𝑡(𝑛) evaluates the computational 
cost of the node. Nodes with higher 𝑃௞(𝑛)are 
retained to maximize diversity. 
Adaptive depth variation 

Depth variation across trees is achieved by 
dynamically adjusting the maximum depth 𝑑௞ for 
ech tree 𝑘 ia expressed mathematically in Eq.(72). 

𝑑௞ = 𝑑௠௜௡ + 𝜉. 𝑠𝑖𝑛 ൬
𝜋. 𝑘

𝑁
൰ (72) 

where, 𝑑௞is the depth of tree 𝑘,𝑑௠௜௡ is the 
minimum allowable depth, and 𝜉 is the scaling 
factor. This ensures variability in tree complexity, 
further enhancing diversity. 
Collaborative feedback for diversity 

Seal-inspired feedback mechanisms enable 
collaborative adjustment of tree parameters. The 
feedback-adjusted weight for tree 𝑘 is given as 
expressed in Eq.(73). 

Φ௞ = Φ௞
௣௥௘௩

+ 𝜂. ൫𝐷௙௢௥௘௦௧ − Φ௞
௣௥௘௩

൯ (73) 

where, Φ௞is the feedback-adjusted weight for tree 
𝑘, Φ௞

௣௥௘௩is its previous value, 𝐷௙௢௥௘௦௧is the 
aggregate diversity, and 𝜂 is the learning rate for 
feedback incorporation. 
 
3.10. Weighted Voting Mechanism 

The weighted voting mechanism in SO-RF 
integrates the outputs of diverse trees to produce 
arobust and accurate final prediction. Inspired by 
seal-like decision-making behaviour, weights are 
assigned to individual trees based on their 
reliability and performance. This ensures that trees 
contributing significantly to predictive accuracy 
have a higher impact on the ensemble decision 
while maintaining robustness against noisy or 
redundant contributions. 
Individual tree contribution 

The contribution of each tree to the final 
prediction is evaluated using a reliability score. The 
score for tree 𝑇௞is defined as Eq.(74). 

𝑅௞ =
𝐴𝑐𝑐௞

∑ 𝐴𝑐𝑐௝
ே
௝ୀଵ

 (74) 

where, 𝑅௞is the reliability score of 
tree𝑇௞,𝐴𝑐𝑐௞represents its accuracy on a validation 
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set, and 𝑁 is the total number of trees. The 
normalization ensures all scores sum to 1. 
Weighted voting for classification 

For classification tasks, the weighted 
voting mechanism computes the class probabilities 
for each label 𝑐 is expressed mathematically in 
Eq.(75). 

𝑃(𝑐) = ෍ 𝑅௞ . 𝑝௞(𝑐)

ே

௞ୀଵ

 (75) 

where, 𝑃(𝑐) is the ensemble probability for class 𝑐, 
𝑝௞(𝑐)does tree predict the probability 𝑇௞ for 𝑐, and 
𝑅௞ is the tree's reliability score. This equation 
combines predictions while emphasizing trees with 
higher reliability. 
 

The final predicted class is obtained which 
is mathematically represented in Eq.(76). 

𝑦 = 𝑎𝑟𝑔max
௖

𝑃(𝑐) (76) 

The class 𝑦 with the highest ensemble probability 
𝑃(𝑐) is selected as the final prediction. 
Weighted averaging for regression 

For regression tasks, the ensemble 
prediction 𝑦ො is calculated as a weighted average of 
individual tree predictions as expressed in Eq.(77). 

𝑦ො = ෍ 𝑅௞ . 𝑦௞

ே

௞ୀଵ

 (77) 

where, 𝑦 ෝ is the ensemble's prediction, 𝑦௞ is the 
prediction of tree 𝑇௞ ,and 𝑅௞is the reliability score. 
This ensures that the final output reflects the 
contributions of reliable trees. 
Diversity-based weight adjustment 

The reliability score 𝑅௞is adjusted to 
incorporate tree diversity. The adjusted weight 
𝑊௞for tree 𝑇௞is expressed as Eq.(78). 

𝑊௞ = 𝑅௞. (1 + 𝛿. 𝐷௞) (78) 

where, 𝑊௞is the weight of tree 𝑇௞ , 𝛿is a scaling 
parameter, and 𝐷௞is the diversity score of the tree. 
This adjustment ensures that diverse trees are 
prioritized in the ensemble decision. 
The diversity score 𝐷௞is computed as expressed in 
Eq.(79). 

𝐷௞ =
1

𝑁 − 1
෍ 𝐷൫𝑇௞ , 𝑇௝൯

௝ஷ௞

 (79) 

where, 𝐷௞represents the average diversity of tree 
𝑇௞relative to all other trees, and 𝐷൫𝑇௞ , 𝑇௝൯measures 
pairwise diversity. 
Confidence-based weighting 

A confidence measure is integrated into 
the voting mechanism to reflect the reliability of 

tree predictions. The confidence-adjusted weight 
Φ௞for tree 𝑇௞is defined as Eq.(80). 

Φ௞ = 𝑊௞ .
𝐶𝑜𝑛𝑓௞

∑ 𝐶𝑜𝑛𝑓௝
ே
௝ୀଵ

 (80) 

where, Φ௞is the confidence-adjusted weight, and 
𝐶𝑜𝑛𝑓௞represents the confidence of tree 𝑇௞in its 
predictions. This ensures predictions from 
confident trees are given higher priority. 
Penalization for incorrect predictions 

To mitigate the influence of trees with 
frequent errors, a penalization term is incorporated 
into the weight calculation which is expressed 
mathematically in Eq.(81). 

𝑊௞
ᇱ = Φ௞ . 𝑒𝑥𝑝(−𝛽. 𝐸௞) (81) 

where, 𝑊௞
ᇱis the penalized weight for tree 𝑇௞ , 𝛽is a 

penalization coefficient, and 𝐸௞ represents the error 
rate of tree 𝑇௞on a validation set. This adjustment 
reduces the impact of unreliable trees. 
Adaptive voting threshold 

An adaptive threshold 𝜏௞is applied to filter 
out trees with low reliability which is represented 
mathematically in Eq.(82). 

𝜏௞ =
𝜇௞

1 + 𝜎௞

 (82) 

where, 𝜏௞is the threshold for tree 𝑇௞ , 𝜇௞is its mean 
accuracy, and 𝜎௞is the standard deviation of its 
performance across validation folds. Trees with 
weights below the threshold are excluded from 
voting. 
 
3.11. Iterative Improvement in SO-RF 

Iterative improvement is a crucial step in 
the SO-RF algorithm, enhancing the overall 
performance of the ensemble through progressive 
refinements. Inspired by the adaptive learning 
behaviour of seals, this step focuses on optimizing 
individual tree parameters, adjusting feature 
subsets, and refining weight distributions across 
iterations. The ensemble becomes more accurate 
and robust by iteratively analyzing feedback and 
making targeted improvements. 
Refinement of feature subsets 
Feature subsets used in individual trees are 
iteratively refined to enhance their relevance and 
diversity. The refinement is guided by the weighted 
contribution of each feature to the ensemble's 
accuracy, expressed as Eq.(83). 

𝑤௙
(௧ାଵ)

= 𝑤௙
(௧)

+ 𝜂. ቆ
𝐴𝑐𝑐௙

∑ 𝐴𝑐𝑐௜
ி
௜ୀଵ

ቇ (83) 

where, 𝑤௙
(௧ାଵ)is the updated weight of feature 𝑓 at 

iteration 𝑡 + 1, 𝜂 is the learning rate, and  
𝐴𝑐𝑐௙represents the contribution of feature 𝑓 to the 
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accuracy of the ensemble. This ensures features 
with higher utility are prioritized in future 
iterations. 
 
Dynamic tree parameter adjustment 

Tree-specific parameters are adjusted 
iteratively to enhance individual performance. The 

adjustment for the maximum depth 𝑑௞
(௧ାଵ)of tree, 𝑘 

is calculated as Eq.(84). 

𝑑௞
(௧ାଵ)

= 𝑑௞
(௧)

+ 𝛼. ቆ
𝐺𝑎𝑖𝑛௞

∑ 𝐺𝑎𝑖𝑛௝
ே
௝ୀଵ

ቇ (84) 

where, 𝑑௞
(௧ାଵ)is the updated depth, 𝛼 is the scaling 

factor, and 𝐺𝑎𝑖𝑛௞represents the average gain 
achieved by tree 𝑘. This adjustment balances tree 
complexity and performance. 
Adaptive weight distribution 

Weights assigned to trees in the ensemble 
are iteratively refined to improve prediction 

reliability. The updated weight 𝑊௞
(௧ାଵ)for tree 𝑘 is 

defined as Eq.(85). 

𝑊௞
(௧ାଵ)

= 𝑊௞
(௧)

. ൬1 + 𝛽.
∆𝐴𝑐𝑐௞

𝑀𝑎𝑥𝐴𝑐𝑐
൰ (85) 

where, 𝑊௞
(௧ାଵ)is the refined weight, 𝛽 controls the 

adjustment magnitude, ∆𝐴𝑐𝑐௞is the improvement in 
accuracy for tree 𝑘, and 𝑀𝑎𝑥𝐴𝑐𝑐 is the maximum 
accuracy observed. 
Optimization of splitting criteria 

The splitting criteria for nodes in each tree 
are refined iteratively based on feedback. The 
adjusted criterion for node 𝑛 is calculated as 
Eq.(86). 

𝐶௡
(௧ାଵ)

= 𝐶௡
(௧)

+ 𝛾. ൭
∆𝐺௡

∑ ∆𝐺௝
ே೙
௝ୀଵ

൱ (86) 

where, 𝐶௡
(௧ାଵ)is the updated criterion, 𝛾 is a scaling 

parameter, ∆𝐺௡represents the gain improvement for 
node 𝑛, and 𝑁௡is the total number of nodes in the 
tree. This ensures that nodes contributing more to 
performance receive higher priority. 
Incorporation of feedback mechanisms 

Feedback mechanisms inspired by seal 
behaviour guide iterative improvement by adjusting 
weights and parameters based on the performance 
of neighbouring trees. The feedback-adjusted 

parameter 𝑃௞
(௧ାଵ)for tree, 𝑘 is expressed as Eq.(87). 

𝑃௞
(௧ାଵ)

= 𝑃௞
(௧)

+ 𝛿. ൫𝑃ത௞ − 𝑃௞
(௧)

൯ (87) 

where, 𝑃௞
(௧ାଵ)is the updated parameter, 𝛿 is the 

feedback adjustment rate, and 𝑃ത௞is the average 
parameter value among neighbouring trees. 
Diversity improvement across iterations 

The dispersion of feature subsets across 
iterations is maximized to maintain and enhance 
diversity. The iterative update for feature dispersion 
∆𝐹(௧ାଵ)is defined as Eq.(88). 

∆𝐹(௧ାଵ) = ∆𝐹(௧) + 𝜖. ቆ
𝑉𝑎𝑟൫𝐹(௧)൯

𝑀𝑎𝑥𝑉𝑎𝑟
ቇ (88) 

Here, ∆𝐹(௧ାଵ)represents the updated dispersion, 𝜖 is 
the dispersion adjustment factor, 𝑉𝑎𝑟൫𝐹(௧)൯is the 
variance of feature subsets at iteration 𝑡, and 
𝑀𝑎𝑥𝑉𝑎𝑟 is the maximum allowable variance. 
Penalization of redundant trees 

Redundant trees are penalized iteratively 
to prevent over-reliance on similar decision paths. 

The penalization factor 𝑃௞
(௧ାଵ)for tree, 𝑘 is 

expressed as Eq.(89). 

𝑃௞
(௧ାଵ)

= 𝑃௞
(௧)

. 𝑒𝑥𝑝(𝜁. 𝑅𝑒𝑑௞) (89) 

where, 𝑃௞
(௧ାଵ)is the penalized factor, 𝜁 is the 

penalization coefficient, and 𝑅𝑒𝑑௞measures 
redundancy for tree 𝑘. This encourages unique 
contributions from each tree. 

 
4. ABOUT DATASET AND METRICS 

 
The OASIS (Open Access Series of 

Imaging Studies) Alzheimer's Detection Dataset is 
a well-structured collection of MRI scans, 
supporting research in cognitive decline and 
neurodegenerative disorders. This dataset consists 
of 1012 images, systematically divided into training 
and testing subsets for structured model evaluation. 
The training set comprises 796 images, while the 
testing set contains 216 images, ensuring balanced 
representation for algorithm development. The 
dataset includes T1-weighted MRI scans, offering 
high-resolution anatomical details of gray matter, 
white matter, and cerebrospinal fluid (CSF). 
Diagnostic labels categorize subjects into Normal 
Control (NC), Mild Cognitive Impairment (MCI), 
and Alzheimer’s Disease (AD), allowing 
supervised classification models to distinguish 
between cognitive states. Additional attributes such 
as age, gender, and brain volume measurements 
provide insights into the progression of 
neurodegeneration. This dataset is ideal for 
machine learning and deep learning-based 
applications, including automated classification, 
early detection systems, and feature extraction 
models. The availability of well-labeled MRI scans 
supports advanced computational neuroscience 
research, improving clinical decision-making in 
Alzheimer's detection. 
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5. OUTCOMES AND DEBATES 
 

Results and discussions involve analyzing 
the obtained performance metrics and interpreting 
their significance in relation to the classification 
framework. The effectiveness of a model is 
evaluated through multiple indicators, among 
which classification accuracy and F-measure hold 
primary importance. Classification accuracy 
represents the proportion of correctly classified 
instances among the total instances, providing a 
direct measure of the model’s reliability. The F-
measure, or F-score, balances precision and recall, 
ensuring that both false positives and false 
negatives are adequately considered in assessing 
model performance. 

 
Classification accuracy varies significantly 

among the evaluated models. The SO-RF model 
achieves a classification accuracy of 72.328%, 
outperforming INN-MT, which records an accuracy 
of 57.097%, and FDCNN-AS, which achieves 
53.483%. This improvement highlights the 
effectiveness of the bio-inspired optimization 
strategy integrated into SO-RF, allowing it to refine 
feature selection and reduce classification errors. 
The increased true positive and true negative rates 
in SO-RF contribute to higher accuracy, indicating 
enhanced decision boundaries and better 
generalization in detecting Alzheimer’s Disease. 

 

Fig2. Classification Accuracy and F-Measure 
 
The F-measure further supports the 

superiority of SO-RF, which attains a value of 
74.1282%, surpassing INN-MT at 58.3252% and 
FDCNN-AS at 54.279%. This metric considers 
both precision and recall, reinforcing the model’s 
ability to handle imbalanced data and minimize 
incorrect classifications. The notable increase in F-
measure for SO-RF is attributed to its optimized 
classification framework, which efficiently 
balances sensitivity and specificity. The 

performance gain confirms the impact of 
integrating bio-inspired optimization with Random 
Forest, leading to a more reliable and precise 
classification system for Alzheimer’s Disease 
detection. 

Fig.2 further illustrates the comparative 
performance of the models concerning 
classification accuracy and F-measure. The 
significant gap between SO-RF and the other two 
models emphasizes the advantage of structured 
optimization techniques in enhancing classification 
performance. The findings validate the proposed 
approach, demonstrating its potential in improving 
automated Alzheimer’s Disease detection through 
advanced Machine Learning methodologies. 

 
The Fowlkes-Mallows Index (FMI) and 

Matthews Correlation Coefficient (MCC) provide 
valuable insights into the quality of classification. 
The FMI evaluates the geometric mean of precision 
and recall, measuring the balance between correctly 
classified positive instances and overall predictions. 
The MCC, a comprehensive statistical metric, 
assesses the correlation between actual and 
predicted classifications, offering a more reliable 
evaluation for imbalanced datasets. 

Fig3. FMI and MCC 
 

The FMI values reveal a clear distinction 
in model performance. The SO-RF model achieves 
an FMI of 74.214, surpassing INN-MT at 58.461 
and FDCNN-AS at 54.405. This improvement 
indicates that the SO-RF framework enhances both 
precision and recall, ensuring a well-balanced 
classification strategy. The higher FMI suggests 
that the bio-inspired optimization approach 
integrated into SO-RF refines feature selection and 
decision boundaries, minimizing misclassifications 
and improving overall predictive reliability. 

 
The MCC values further validate the 

efficiency of SO-RF in handling classification 
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complexity. The SO-RF model records an MCC of 
44.772, significantly higher than INN-MT at 14.686 
and FDCNN-AS at 7.452. MCC considers all four 
confusion matrix components, making it a robust 
metric for evaluating model performance, 
particularly in datasets with class imbalances. The 
substantial improvement in SO-RF indicates better 
discrimination between Alzheimer’s and non-
Alzheimer’s cases, reflecting an optimized 
classification structure. 
 

Fig 3. exhibits the comparative evaluation 
of models with the parameters FMI and MCC. 
From the comparasion that SO-RF consistently 
outperforms other models in FMI and MCC, 
confirming the effectiveness of integrating bio-
inspired optimization with Random Forest. The 
findings reinforce the model’s ability to enhance 
early detection and classification accuracy, making 
it a promising tool for Alzheimer’s Disease 
diagnosis. 

 
Among the critical indicators, precision 

and recall play a significant role in assessing the 
reliability of the model. Precision measures the 
proportion of correctly identified positive cases out 
of all predicted positive instances, highlighting the 
model’s ability to minimize false positives. Recall, 
also known as sensitivity or the true positive rate, 
evaluates the proportion of correctly classified 
positive instances from the actual positive cases, 
reflecting the model’s capacity to detect 
Alzheimer’s cases accurately. The SO-RF model 
demonstrates a substantial improvement in 
precision, achieving 70.730%, compared to 
54.600% in INN-MT and 50.825% in FDCNN-AS. 
This significant increase indicates that SO-RF 
effectively reduces false positives while 
maintaining high classification confidence. The 
enhancement results from optimized feature 
selection and decision boundary refinement, 
ensuring that the model prioritizes relevant features 
for accurate classification. 

 
In recall, SO-RF outperforms the other 

models, reaching 77.869%, whereas INN-MT 
records 62.595% and FDCNN-AS attains 58.237%. 
The increased recall in SO-RF signifies its ability to 
correctly classify a higher proportion of actual 
positive cases, minimizing false negatives. This 
improvement stems from the bio-inspired 
optimization strategies embedded in SO-RF, 
enhancing sensitivity to critical Alzheimer’s-related 
patterns in the dataset. 

 

 
Fig4. Precision and Recall 

Fig4. Illustrates the results obtained by 
models evaluated under the metrics Precision and 
Recall. The combined evaluation of precision and 
recall confirms that SO-RF achieves a more 
balanced classification performance, maintaining 
both specificity and sensitivity. The bio-inspired 
optimization incorporated into the model 
significantly enhances predictive accuracy, making 
it a more effective tool for Alzheimer’s Disease 
classification. The results validate the potential of 
SO-RF in refining automated diagnostic 
frameworks, ensuring reliable and early detection 
of neurodegenerative conditions. 

 
The SO-RF framework presents multiple 

advantages over existing models such as INN-MT 
and FDCNN-AS. It achieves superior classification 
accuracy, F-measure, FMI, and MCC through 
robust feature selection and bio-inspired 
optimization. However, it incurs higher 
computational costs and lacks real-time adaptability 
or privacy-preserving capabilities like those in 
federated systems. Interestingly, the integration of 
seal-inspired dynamics particularly in convergence, 
diversity, and feature-space exploration is a novel 
contribution in ensemble learning for Alzheimer’s 
detection. These mechanisms enhance 
interpretability and decision reliability, positioning 
SO-RF as a promising, innovative tool in 
automated neurodegenerative disease diagnosis. 
 
 
6. CONCLUSION 

 
The proposed research introduces a novel 

classification framework SO-RF by integrating 
seal-inspired bio-optimization with Random Forest 
to enhance early detection of Alzheimer’s Disease. 
This study contributes an innovative multi-layered 
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optimization strategy, impacting feature selection, 
sampling, tree construction, and voting 
mechanisms, which collectively improve model 
interpretability, precision, and generalization. The 
incorporation of adaptive convergence dynamics, 
diversity maximization, and iterative refinement 
establishes SO-RF as a significant advancement 
over conventional ML and DL models. 
Comparative analysis confirms superior 
performance in accuracy, F-measure, FMI, MCC, 
precision, and recall, reinforcing the framework’s 
robustness in handling imbalanced and high-
dimensional neuroimaging data.In the current 
healthcare landscape, where early diagnosis and 
personalized interventions are imperative, the 
findings offer a timely and practical solution. The 
SO-RF model holds potential for integration into 
automated diagnostic tools, supporting clinicians in 
delivering informed, early-stage decisions for 
neurodegenerative conditions. This research lays a 
strong foundation for future developments in 
interpretable, optimization-driven, and scalable AI 
systems tailored for Alzheimer’s Disease detection. 
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