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ABSTRACT 

Deepfake technology uses AI to create realistic but fake images, videos, and audio based on existing media. 
While intriguing, it poses significant threats in the digital era, affecting reputations, spreading rumors, and 
influencing political opinions. Advances in deepfake generation make it more convincing and accessible, 
increasing its misuse in cybercrimes such as identity theft, cyber extortion, fake news, financial fraud, and 
blackmail. To combat these threats, social media and networks seek intelligent algorithms for deepfake 
detection. The sophistication of deepfake technology is constantly increasing; therefore, robust and 
explainable deepfake detection is indispensable for digital forensics. Most existing approaches to deepfake 
detection focus on single-domain features, such as spatial inconsistencies, and have poor generalizability 
over different datasets. Moreover, they seldom handle artifacts produced by generative models like 
StyleGAN3, such as fine-grained blending errors and GAN-induced high-frequency noise. To overcome 
these limitations, we introduce an Explainable Deepfake Detection Framework that integrates a multi-stage 
deep learning pipeline with spatial, temporal, and frequency feature extraction. Our model begins with data 
collection using FaceForensics++ combined with synthetic deep fakes generated via StyleGAN3, 
guaranteeing diversity across compression levels, ethnicities, and poses while mitigating bias. Pre-
processing employs MTCNN for face alignment and DWT for frequency domain analysis, enhancing 
sensitivity to subtle artifacts. Feature extraction uses three specialized modules: (1) Xception CNN for 
spatial features to detect blending artifacts and edge inconsistencies, (2) LSTM-based Temporal Network to 
capture unnatural motion artifacts over video frames, and (3) DCT-DenseNet to identify high-frequency 
inconsistencies in frequency space. The multi-stage fusion classifier combines the features using an 
Attention-Based Weighted Fusion strategy to optimize accuracy through an emphasis on influential 
modalities. Grad-CAM and SHAP post-processing will provide explainability by showing regions that 
contribute to the artifacts and quantifying the importance of features. Experiments on the FaceForensics++ 
dataset achieved 99.2% accuracy, 98.7% F1 score, and 0.995 AUC-ROC, making it state-of-the-art. This 
work not only enhances the accuracy of detection but also improves interpretability, allowing forensic 
experts to understand and trust deepfake predictions better in the process. 
Keywords: Deepfake Detection, Explainable AI, Multi-Stage Fusion, Forensic Analysis, GAN Artifacts 
 
1. INTRODUCTION 
 
In recent years, cybercrime has surged 
significantly, contributing to a 67% rise in security 
breaches, making it one of the most pressing 
challenges for national security systems worldwide 

[1]. A particularly concerning aspect is the growing 
use of deepfakes—highly realistic artificial media 
generated through deep learning algorithms. These 
AI-synthesized manipulations, which can alter 
faces or objects in digital content, pose a serious 
threat to the assessment of authenticity. Given their 
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diverse forms, including audio, images, and videos, 
deepfakes have the potential to influence public 
perception and spread misinformation across 
various online platforms. 
 

With the rapidity, accessibility, and enormous 
reach of social media, convincing deepfakes can 
quickly influence millions, harm individuals, and 
hurt society as a whole [1]. The creation of 
deepfake media can stem from various intentions 
and motivations, ranging from revenge 
pornography to the spread of political 
misinformation. Additionally, deepfakes have been 
used to manipulate satellite imagery by fabricating 
non-existent landscape features for deceptive and 
malicious purposes. Detecting deepfake media 
through forensic techniques remains a significant 
challenge, as attackers continuously adapt to newly 
developed detection methods and integrate them 
into more advanced deepfake generation 
techniques. The widespread use of the internet and 
social media, coupled with the vast availability of 
images online, has contributed to a growing distrust 
among social media users[2]. Deepfakes pose a 
serious threat not only to society but also to the 
credibility of digital evidence in legal proceedings. 
Therefore, developing cutting-edge techniques to 
accurately detect deepfake content is crucial, 
particularly in criminal investigations[3]. 

However, under some conditions, these methods 
cannot provide good performance against 
sophisticated GANs that produce deepfakes in a 
way that creates subtle blending errors along with 
high-frequency artifacts and temporal inconsistency 
challenging to capture conventionally. Existing 
approaches [4, 5, 6] also have limited 
generalizability over diverse datasets with different 
compression, ethnicity, lighting, and poses, which 
reduces their practical use. To overcome these 
challenges, this paper proposes a new Explainable 
Deepfake Detection Framework that integrates 
multi-modal feature learning with a multi-stage 
forensic pipeline. The new approach uses spatial, 
temporal, and frequency domain analysis to ensure 
strong detection. For spatial artifacts, a pre-trained 
Xception CNN model extracts high-level features 
from cropped and aligned facial regions, enabling 
the identification of pixel-level inconsistencies and 
irregular edges. To detect temporal anomalies such 
as unnatural blinking or motion jitter, an LSTM-
based Temporal Network is used, which captures 
frame-to-frame inconsistencies in video sequences. 
Supporting this, a DCT-DenseNet model extracts 
frequency-specific features, identifying high-

frequency noise introduced during deepfake 
generation in the frequency space. 

  To fill these gaps, this paper proposes a 
holistic deepfake detection framework that 
integrates multi-modal feature learning and a multi-
stage deep learning pipeline. The contributions of 
this work are threefold: 

(1) The integration of spatial, temporal, and 
frequency-based feature extraction ensures the 
detection of a wide range of deepfake artifacts, 
including blending errors, unnatural motion, and 
high-frequency noise.  
(2) A new Attention-Based Weighted Fusion 
mechanism optimizes feature importance, which 
increases the accuracy and robustness of 
detection.  
(3) The use of Grad-CAM and SHAP guarantees 
model explainability, allowing forensic experts 
to understand the contributions of spatial, 
temporal, and frequency domains in the 
identification of deepfakes. The proposed 
framework achieves state-of-the-art performance 
on the FaceForensics++ dataset and introduces 
synthetic deepfakes generated via StyleGAN3, 
ensuring generalizability and bias mitigation. 
This work significantly enhances the reliability, 
accuracy, and transparency of deepfake 
detection systems, offering a robust solution for 
real-world forensic applications. 
(4)  

2. LITERATURE REVIEW 

Intelligent analysis of existing methods 
indicates notable progress in developing deepfake 
detection techniques over diverse domains, such as 
spatial and temporal analysis techniques, 
frequency-based methods, and emerging hybrid 
approaches. Even the earliest work, such as Ding et 
al. [1], focused on noise-aware progressive multi-
scale deepfake detection, achieving good 
performance through refinement of the multi-scale 
features to capture subtle inconsistencies in the 
process. Heidari et al. [2] presented a blockchain-
based federated learning model that facilitates 
distributed deepfake detection with more security, 
which is the necessity of decentralized systems. 
Karim et al. [3] used multi-collaborative 
architectures of GANs and transfer learning to 
advance real-time multimedia deepfake analysis. To 
enhance convolutional models, Fahad et al. [4] 
investigated ResNet-18 along with multi-layer 
CNN pooling to achieve better generalization 
against unseen deepfakes. Several studies had an 
optimization-driven improvement in them. 
Vashishtha et al. [5] demonstrated the utility of the 
extraction of optical flow combined with ensemble 
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learning to significantly enhance detection accuracy 
in dynamic frames. Cunha et al. [6] optimized 
detection networks with particle swarm 
optimization and deep neural networks to ensure 
high performance while having minimal 
computational costs. Similarly, Wang et al. [7] 
proposed an efficient similarity representation 
learning technique (ESRL) that improved 
performance by learning fine-grained differences 
between fake and real videos in the process. 

Table 1: Comparative Analysis of Existing Methods. 

Ref
eren
ces 

Method 
Main 

Objectives 
Findings Limitations 

1 Noise-
aware 

progress
ive 

multi-
scale 

detectio
n 

To detect 
deepfake 
videos 
using 

multi-scale 
progressiv
e methods. 

Achieve
d 

significa
nt 

accuracy 
by 

refining 
multi-
scale 

features. 

Limited 
robustness to 

new GAN 
architectures. 

2 Blockch
ain-

based 
federate

d 
learning 

To 
develop 

decentraliz
ed 

deepfake 
detection 

using 
blockchain

. 

Improve
d 

security 
and 

perform
ance in 
distribut

ed 
systems. 

High 
computational 
cost for large-

scale 
deployment. 

3 MCGA
N with 
transfer 
learning 

To 
integrate 

GANs and 
transfer 
learning 
for real-

time 
detection. 

Achieve
d state-
of-the-
art real-

time 
perform

ance. 

Limited 
generalizabilit

y to unseen 
datasets. 

4 ResNet-
18 with 
multilay
er CNN 
pooling 

To 
enhance 

ResNet for 
improved 
deepfake 
detection. 

Improve
d 

accuracy 
with 

robust 
feature 

extractio
n using 
pooling. 

Sensitive to 
compression 

and low-
resolution 

inputs. 

5 Optical 
flow 

extractio
n with 

ensembl
e 

learning 

To identify 
temporal 

inconsisten
cies using 

optical 
flow. 

Enhance
d 

accuracy 
by 

fusing 
multiple 
learning 
models. 

Computational 
overhead due 
to optical flow 

processing. 

6 PSO-
based 
deep 

neural 
network

s 

To 
optimize 
detection 
models 
using 

particle 
swarm 

optimizati
on. 

Improve
d model 
perform

ance 
with 
lower 

computa
tional 
costs. 

Requires 
careful tuning 

of PSO 
parameters for 
optimal results. 

7 ESRL: 
Efficient 
similarit

y 
represen

tation 

To 
enhance 
deepfake 
detection 

by 
learning 

fine-
grained 
features. 

Improve
d 

similarit
y-based 
detectio

n 
accuracy

. 

Struggles with 
highly 

compressed 
videos. 

8 Deepfak
e video 
detectio

n 
challeng

es 

To analyze 
current 

challenges 
and 

opportuniti
es in 

detection. 

Highligh
ted 

research 
gaps in 
generali
zation 
and 

robustne
ss. 

Lacks 
implementatio
n of specific 

detection 
models. 

9 Multi-
perspect

ive 
sensory 
learning 

To address 
open-
world 

deepfake 
attribution 
challenges. 

Achieve
d 

effective 
attributi

on in 
diverse 

and 
uncontro

lled 
scenario

s. 

Limited to 
certain 

perspectives of 
learning, 

requires further 
validation. 

10 Fusion 
of deep-
learned 

and 
hand-

crafted 
features 

To 
improve 
deepfake 
detection 

using 
feature 
fusion. 

Enhance
d 

interpret
ability 

and 
detectio

n 
accuracy

. 

Requires 
extensive 

computational 
resources. 

11 Systema
tic 

literatur
e review 

To review 
existing 
deepfake 
detection 

techniques
. 

Consoli
dated 

methods 
and 

identifie
d 

research 
gaps. 

Lacks 
implementatio

n or 
performance 

benchmarking. 

12 Assessm
ent 

framewo
rk 

To 
develop 

framework
s for real-

world 
deepfake 
detection. 

Provide
d 

evaluati
on 

metrics 
for real-
world 

conditio
ns. 

Requires 
further 

validation with 
diverse 

datasets. 
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13 Defensi
ve 

attention 
mechani

sm 

To detect 
multi-
modal 

deepfake 
content 
using 

attention 
models. 

Achieve
d 

robustne
ss across 

video, 
text, and 

audio 
deepfak

es. 

Computational 
complexity in 
multi-modal 

inputs. 

14 Data 
augment

ation 
with 

attention 
framewo

rk 

To 
improve 

robustness 
using 

augmented 
datasets. 

Enhance
d 

perform
ance in 
limited 

and 
small 

datasets. 

Relies heavily 
on augmented 

data for 
effectiveness. 

15 Self-
attention 
Efficient

Net 

To 
combine 
forensic 

methodolo
gies with 

EfficientN
et models. 

Achieve
d high 

accuracy 
with 

attention
-based 

mechani
sms. 

Computational
ly expensive 
for real-time 
applications. 

16 Vision 
transfor

mers 
with 

CNNs 

To 
integrate 

vision 
transforme

rs with 
CNNs for 
detection. 

Balance
d 

perform
ance and 
computa

tional 
efficienc

y. 

Limited 
scalability to 

large datasets. 

17 Crowd 
computi
ng for 

deepfak
e 

detectio
n 

To utilize 
distributed 

systems 
for 

detection. 

Enabled 
faster 

detectio
n using 
crowd-
based 

systems. 

Limited 
accuracy for 

complex 
manipulations. 

18 Plasmon
ic 

resonanc
e 

biosenso
r 

To detect 
deepfakes 

using 
biosensor-

based 
approaches

. 

Demons
trated 
novel 
real-
time 

detectio
n 

techniqu
es. 

Applicability is 
limited to 
specific 

controlled 
environments. 

19 D-Fence 
layer 

ensembl
e 

framewo
rk 

To use 
ensemble 

models for 
comprehen

sive 
detection. 

Improve
d 

accuracy 
through 
multiple 
ensembl
e layers. 

High 
computational 

cost due to 
model 

ensemble. 

20 Feature-
based 

AI 
techniqu

es 

To 
evaluate 
feature-
based AI 

models for 
detection. 

Identifie
d 

effective 
feature-
based 

techniqu
es for 

accuracy 
improve
ments. 

Limited focus 
on end-to-end 

hybrid 
approaches. 

21 Multipar
ametric 
analysis 

of 
human 
speech 

To analyze 
human 
speech 

deepfake 
recognitio

n. 

Demons
trated 

effective
ness for 
audio 

deepfak
e 

detectio
n. 

Limited 
applicability to 

video-based 
manipulations. 

22 Photople
thysmog
raphy-
based 

detectio
n 

To use 
physiologi
cal signals 

for 
deepfake 
detection. 

Achieve
d 

promisin
g results 

using 
pulse 

detectio
n 

methods
. 

Not robust 
under occluded 
or non-frontal 

faces. 

23 Fake-
checker: 
Texture 
fusion 

and 
deep 

learning 

To fuse 
texture 
features 

with deep 
learning 
models. 

Enhance
d 

accuracy 
through 
feature 
fusion 

techniqu
es. 

Requires 
extensive 

texture feature 
computation. 

24 Shallow 
vision 

transfor
mer 

To 
improve 

efficiency 
using 

lightweigh
t 

transforme
rs. 

Achieve
d fast 
and 

efficient 
deepfak

e 
detectio

n. 

Lower 
performance 
compared to 

deeper 
architectures. 

25 Multilay
er 

deepfak
e 

detectio
n 

framewo
rk 

To 
integrate 

multi-
domain 
analysis 

for robust 
detection. 

Achieve
d state-
of-the-

art 
results 
using 

spatial, 
temporal

, and 
frequenc

y 
analysis. 

High 
complexity for 
deployment in 

real-time 
scenarios. 

 
Challenges and opportunities in deepfake detection 
were recognized, and Kaur et al. [8] presented a 
systematic overview, which put more emphasis on 
the gaps in robustness and explainability. Sun et al. 
[9] pushed forward open-world deepfake attribution 
by introducing multi-perspective sensory learning 
that deals with the diversity of manipulation 
methods in uncontrolled environments. Singh et al. 
[15] applied self-attention-based EfficientNet 
models for the achievement of better performance 
while combining forensic methodologies with the 
deep learning process. Transformer-based 
architectures also attracted popularity. Soudy et al. 
[16] combined convolutional vision transformers 
and CNNs for a balance between performance and 
computational efficiency, and Salini and HariKiran 
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[17] explored crowd-computing strategies for 
distributed detection. StyleGAN3 introduces fine-
grained blending errors and high-frequency 
inconsistencies as subtle generative artifacts that 
enrich the diversity and complexity of training data 
samples. Maheshwari et al. [18] demonstrated 
advanced plasmonic resonance biosensors for 
deepfake detection which offers new cross-
disciplinary insights. S et al. [19] proposed the 
ensemble framework, D-Fence Layer, that used 
multiple models for comprehensive detection. 
Sandotra and Arora [20] assessed feature-based AI 
techniques to explore the most effective methods 
for fake media identification operations. Expanding 
the scope of deepfake analysis,  
Malinka et al. [21] showed a multiparametric 
analysis in human speech recognition to identify 
audio deepfakes to demonstrate the flexibility of 
deep-fake technologies. Xu et al. [22] proposed a 
photoplethysmography-based technique, in which 
the physiological signals were analyzed for 
detecting synthetic faces. Also, the texture-based 
approach was shown to be fruitful as Huda et al. 
[23] proposed the Fake-Checker, which combines 
the texture features with deep learning models. 
Similarly, Usmani et al. [24] have used shallow 
vision transformers for lightweight deepfake 
detection. Finally, in Rathoure et al. [25], a 
multilayer detection framework was proposed. This 
framework combined spatial, temporal, and 
frequency-based approaches, achieving state-of-the-
art results. 

In sum, the review shows how deepfake 
detection research currently stands, with multi-
modal approaches, optimization techniques, and 
complex architectures such as transformers. Using 
attention mechanisms, hybrid learning techniques, 
or physiological cues, models can be more 
innovative in solving the challenges due to 
sophisticated GAN-generated content. However, 
real-world applicability remains somewhat limited 
because there are no standardized evaluation 
frameworks and various datasets & their samples. 
Therefore, explainable AI solutions, 
computationally efficient models, and robust 
detection methods are in ever-increasing demand 
that would evolve according to emerging GAN 
architectures and deployment scenarios. 

The development of technologies for detecting 
and authenticating deepfakes is advancing rapidly; 
however, the ability to generate deepfake content is 
evolving at an even faster pace. Reports from 
Twitter indicate that approximately 8 million 
accounts attempt to spread misinformation and fake 
media each week. The growing variety of deepfake 

content, along with the various detection techniques 
used to identify them. This has posed a significant 
challenge for researchers striving to create solutions 
capable of efficiently analyzing vast amounts of 
digital content across the internet and social media 
platforms. Much of the prior research has focused 
on refining existing technologies to enhance the 
training of new detection systems. 
3. PROPOSED MODEL DESIGN 

To overcome issues of low efficiency & 
high complexity which are found in the existing 
methods, the design of an Iterative and efficient 
Explainable Deepfake Detection Using Multi-Stage 
Deep Learning with Spatial, Temporal, and 
Frequency Forensic Pipelines is further discussed in 
this section. As shown in Figure 1, the proposed 
deepfake detection framework is designed with a 
comprehensive and includes spatial, temporal, and 
frequency-based analysis to enhance robustness and 
explainability sets. This pipeline process relies on 
the FaceForensics++ dataset and synthetic 
deepfakes generated with StyleGAN3. Video 
frames Fₜ are taken at regular intervals and then pre-
processed using MTCNN for face detection, 
alignment, and cropping. Let Fₜ be a video frame at 
time t, and Rₜ cropped facial region such that it will 
be processed via equation 1, 

𝑅ₜ =  𝑀𝑇𝐶𝑁𝑁(𝐹ₜ)               (1) 
This ensures that the spatial alignment reduces 
variation due to pose and light changes. The 
cropped region Rₜ undergoes frequency domain 
transformation using DWT such that the image is 
broken down into frequency components. The 
DWT operation is defined via equation 2, 

𝑊(𝑢, 𝑣) =  ∫ ∫ 𝐼(𝑥, 𝑦)𝜓ᵤ, ᵥ(𝑥, 𝑦)𝑑𝑥 𝑑𝑦        
(2) 

Where I(x, y) is the input image, ψᵤ,ᵥ is the wavelet 
basis function at scale u and position v in the 
process. The frequency maps W(u, v) of high-
frequency inconsistencies such as GAN-generated 
noise and compression artifacts are found. The 
spatial domain analysis uses the Xception Network 
for high-level spatial features S to extract R setsₜ. 
The depthwise separable convolutions have been 
mathematically defined via equation 3, 

𝑂ᵢⱼˡ =  ∑ 𝑊ₖˡ ∗  𝐼ₖ, ᵢ, ⱼˡିଵ
          

(3) 
       Where Oˡ is the output feature map at layer 
l, Wˡ represents the depthwise kernel, and Iˡ⁻¹ 
represents the input feature maps.  

To capture the video's temporal 
inconsistency, the LSTM-based Temporal Network, 
sequentially processes frame features as described 
in process. Let 'hₜ' represent the hidden state at the 
time stamp t and, let xₜ stand for the input features 
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determined by Rₜ sets. Then, the update formulas 
for the LSTM are summarised as equations 4, 5, 6, 
7 & 8, 

𝑓ₜ =  𝜎(𝑊ₓ𝑥ₜ +  𝑈ₓℎ(𝑡 − 1) +  𝑏ₓ)    
(4) 

𝑖ₜ =  𝜎(𝑊ᵢ𝑥ₜ +  𝑈ᵢℎ(𝑡 − 1) +  𝑏ᵢ)    (5) 
𝑜ₜ =  𝜎(𝑊ₒ𝑥ₜ +  𝑈ₒℎ(𝑡 − 1) +  𝑏ₒ)    

(6) 

 
Figure 1: Model Architecture of the Proposed Analysis 
Process. 

 

 
Figure 2: Overall Flow of the Proposed Analysis Process 

𝑐ₜ =  𝑓ₜ ⊙  𝑐ₜିଵ +  𝑖ₜ ⊙  𝑡𝑎𝑛ℎ(𝑊𝑐𝑥ₜ +
 𝑈𝑐ℎ(𝑡 − 1) +
 𝑏𝑐)         (7)  

ℎₜ =  𝑜ₜ ⊙  𝑡𝑎𝑛ℎ(𝑐ₜ)          
(8) 

 
 
Here, fₜ, iₜ, and oₜ are the forget gates, input, and 
output of the cell gates, while cₜ is its cell state; hₜ 

captures dependencies over temporal instances 
across frames. In the frequency domain, through 
DCT, the map W (u, v), generated via the use of 
DWT in equation 9, frequency components of Fᴰ 
extracted, 

𝐹ᴰ(𝑢, 𝑣) =  ∑ ∑
𝐼(𝑥, 𝑦)𝑐𝑜𝑠 ቂ

గ(ଶ௫ ା ଵ)௨

ଶே
ቃ

𝑐𝑜𝑠 ቂ
గ(ଶ௬ ା ଵ)௩

ଶே
ቃ

        

(9) 
 
The classification process utilizes a Multi-Stage 
Fusion Model combining outputs derived from the 
spatial CNNs(S), the temporal set LSTMs(T), and 
the frequency DenseNets(F). The set of individual 
outputs yₛ, yt ₜand yF is fused with an Attention 
Based Weighted Fusion mechanism through 
equations 10 & 11, 

𝑦𝑓𝑢𝑠𝑖𝑜𝑛 =  𝛼ₛ𝑦ₛ +  𝛼ₜ𝑦ₜ +  𝛼𝐹𝑦𝐹 (10) 

𝛼ᵢ =
௫(ఉᵢ)

∑ⱼ௫(ఉⱼ)
              (11)   

                                           
To ensure interpretability, Grad-CAM generates 
heatmaps M by computing the gradient of the 
class score y𝚌 concerning the convolutional 
feature map AK via equation 12, 

𝑀ₖ =  𝑅𝑒𝐿𝑈 ቆ∑ ቀ
డ௬𝚌

డ(,,)
ቁ 𝐴(𝑖, 𝑗, 𝑘)ቇ    

(12) 
 
Additionally, SHAP explains feature contributions 
from spatial, temporal, and frequency domains 
using Shapley Values via equation 13, 

𝜑ᵢ =  ∑
|ௌ|!(|ே|ି |ௌ|ି ଵ)!

|ே|!ₛ⊆ₙ∖{ᵢ}  [𝑣(𝑆 ∪  {𝑖}) −  𝑣(𝑆)]                      

(13
) 

 
The final prediction score yfinal combines all 
components, expressed via equation 14, 

𝑦𝑓𝑖𝑛𝑎𝑙 =  𝑓𝑓𝑢𝑠𝑖𝑜𝑛(𝑆, 𝑇, 𝐹)      
(14) 

Where, represents the attention-based ensemble 
classifier process. This output is aided by Grad-
CAM heatmaps and SHAP explanations for levels 
of transparency heightened by the process. The 
spatial, temporal, and frequency analysis will 
guarantee the detection of a variety of deepfake 
artifacts while the fusion model will enhance 
accuracy and robustness. Grad-CAM and SHAP 
will further enhance the interpretability, and the 
forensic experts will be able to trust the model's 
decision-making process. This combination 
addresses the shortcomings of existing approaches 
and presents an all-inclusive solution to explainable 
deepfake detection. Next, we discuss the efficiency 
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of the proposed model in terms of different metrics 
and compare it with existing methods under 
different scenarios. 
 
4. COMPARATIVE RESULT ANALYSIS 

 The experimental setup for the proposed 
explainable deepfake detection framework is 
structured as a pipeline that begins with data 
collection, pre-processing, multi-modal feature 
extraction, fusion, and post-processing stages. For 
this paper, the FaceForensics++ benchmark was 
used, consisting of real and manipulated videos at 
different levels of compression and resolution for 
diversity and comprehensiveness. StyleGAN3 
generated fine-grained artifacts of synthetic 
deepfakes that included blending errors, pixel-level 
inconsistencies, and high-frequency distortions. 
Strong variability in poses, lighting conditions, 
gender, and ethnic diversity in the deepfakes 
generated by StyleGAN3 ensured that this results in 
robustness and bias mitigation after training the 
model. The dataset consisted of 10,000 videos that 
were split into 80% for training, 10% for validation, 
and 10% for testing. Each video was sampled at 
regular intervals of 5 fps to extract meaningful 
temporal sequences, which gave about 1.2 million 
frames. These frames were then resized to a 
resolution of 256x256 pixels to maintain 
computational efficiency without compromising 
feature quality. To compensate for compression 
effects, videos were processed at different levels of 
compression: QF=10 (low), QF=30 (medium), and 
QF=50 (high). Some contextual dataset samples are 
sequences of videos of facial expressions, blinking 
behaviors, and lighting transitions in which 
synthetic manipulations display minute blending 
inconsistencies in the process. The extracted frames 
underwent pre-processing through the Multi-task 
Cascaded Convolutional Network (MTCNN) for 
detecting and aligning face regions. These aligned 
faces are subjected to Discrete Wavelet Transform 
to create their respective frequency maps which 
also indicate high-frequency GAN-induced 
artifacts. Spatially, depthwise separable 
convolution layers were applied in the Xception 
Network with the Adam optimizer of a learning rate 
of 0.0001, a batch size of 32, and epochs maximum 
of 50 for the extraction process. The temporal 
domain used LSTM networks with two layers, 128 
hidden units, and a time-step sequence length of 10 
frames. To conduct the frequency domain analysis, 
the DWT frequency maps were transformed into 
DCT followed by a DenseNet classifier with 121 
layers and a growth rate of 32. The model of the 

DenseNet was optimized using SGD with a 
momentum factor of 0.9 and an initial learning rate 
of 0.01. The three domains of spatial, temporal, and 
frequency outputs were fused using an Attention-
Based Weighted Fusion mechanism that 
dynamically assigns importance weights to each 
modality while optimizing accuracy.
 FaceForensics++ is the most commonly used 
benchmark in deepfake detection models with real 
and manipulated videos with a range of forgery 
techniques. It contains 1,000 original videos 
sourced from YouTube on different subjects, 
ethnicities, and lighting conditions. All these videos 
have been manipulated using four major 
techniques, namely, Deepfakes, FaceSwap, 
Face2Face, and NeuralTextures, all of which 
produce unique artifacts like blending errors, edge 
inconsistencies, and anomalies over time. Videos 
are provided by FaceForensics++ at three levels of 
compression: QF=10 (low), QF=30 (medium), and 
QF=50 (high) to mimic the possible scenarios in 
which deepfakes may occur under real-world 
conditions.

 
Figure 3: Integrated Results of the Proposed Analysis 
Process 

 Further, synthetic deepfakes by StyleGAN3 have 
also been used to complement the dataset and partly 
eliminate deficiencies in the data set currently 
available. Deepfakes from StyleGAN3 provide 
fine-grained artifacts for blending, pixel-level 
inconsistencies, and high-frequency noise that can 
increase the variability and complexity of the 
dataset. The merged dataset provides wide coverage 
of real and synthetic manipulations and offers more 
than 10,000 videos and approximately 1.2 million 
frames extracted at 5 fps. This diversity of data 
would allow for deep training, testing, and cross-
validation under a variety of conditions that may 
include differing poses, expressions, gender, or 
compression artifacts, thereby proving the robust 
performance of the framework. Further, this was 
tested in accuracy on FaceForensics++ real-world 
samples of authentic videos face-swapped fakes 



 Journal of Theoretical and Applied Information Technology 
15th April 2025. Vol.103. No.7 

©   Little Lion Scientific  

 
ISSN: 1992-8645                              www.jatit.org                              E-ISSN: 1817-3195 

 
2960 

 

with GAN-generated synthetic faces. Other metrics 
that are utilized in measuring the performance of 
the model in identifying the deepfakes include 
accuracy, F1 score, and AUC-ROC. On the 
FaceForensics++ dataset with a high resolution and 
compression QF=30, the model was able to obtain 
an accuracy of 99.2%, F1 score of 98.7%, and 
AUC-ROC of 0.995, thereby surpassing existing 
deepfake detection methods by a great margin. 
During post-processing, the use of Grad-CAM was 
applied to produce heatmaps that reveal 
manipulated areas, such as faint artifacts around the 
eyes, lips, and hairline. Meanwhile, SHAP enabled 
an understanding of the relative contribution of 
spatial, temporal, and frequency features toward the 
prediction outcome. For instance, frequency 
features are associated with higher SHAP values for 
GAN-generated samples. Meanwhile, face-swapped 
videos with unnatural blinking or jittering features 
dominate those with temporal features. This setup 
further ensures the robustness, accuracy, and 
interpretability of the developed model, making it a 
trustworthy solution for various deepfake detection 
in real-world cases. 

Table 2: Performance on High-Resolution Videos 
(Compression QF=50). 

Method Accur
acy 
(%) 

F1-
Scor
e 
(%) 

AUC-
ROC 

Detectio
n 
timesta
mp 
(ms/fra
me) 

Method 
[3] 

94.1 92.5 0.956 22 

Method 
[8] 

95.7 94.2 0.971 18 

Method 
[18] 

97.2 96.0 0.983 16 

Propose
d Model 

99.2 98.7 0.995 14 

We further test the proposed framework using 
explainability on the FaceForensics++ dataset, 
combined with synthesized deepfakes with the 
StyleGAN3 architecture. The proposed model 
results are compared against three state-of-the-art 

methods, namely Method [3], Method [8], and 
Method [18], all of which were compared under 
identical conditions, for fairness in comparison. 
The model's performance can be gauged on metrics 
like Accuracy, F1-Score, AUC-ROC, as well as 
Detection timestamp as illustrated in the next few 
subsections. The reader will be able to discern 
detailed results along with implications for practical 
scenarios. 

Table 2 reports the performance of the proposed 
model on high-resolution videos with low 
compression (QF=50). The proposed model 
achieved an accuracy of 99.2% and an AUC-ROC 
of 0.995, which is much higher than the closest 
baseline, Method [18], with an accuracy of 97.2%. 
With the low detection timestamp of 14 ms per 
frame, it will make the system feasible for real-time 
deployment in cases like monitoring social media 
content for manipulated videos. The capability of 
reaching near-perfect performance on high-
resolution content shows that the model can 
recognize subtle blending errors and edge 
inconsistencies with a very high degree of accuracy 
levels. 

 

Figure 4: Model’s Accuracy Analysis 

Table 3: Performance on Medium-Resolution 
Videos (Compression QF=30). 

Method Acc
urac
y 
(%) 

F1-
Scor
e 
(%) 

AUC
-
ROC 

Detectio
n 
timesta
mp 
(ms/fra
me) 

Method 
[3] 

90.5 88.3 0.931 25 
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Method 
[8] 

92.7 90.9 0.949 21 

Method 
[18] 

95.1 93.6 0.965 19 

Propose
d Model 

98.1 96.8 0.988 16 

 

The proposed model obtained 98.1% accuracy and 
an AUC-ROC of 0.988. In comparison to Method 
[18], which reached 95.1% accuracy, the proposed 
model shows a 3% improvement, indicating 
robustness against compression artifacts. This has 
direct and strong implications for real-life 
applications in video streaming over YouTube and 
TikTok. Here, the videos get compressed to make 
bandwidth as efficient as possible in the process. 
And even compressed, the new method continues to 
be good at picking on GAN-induced pixel 
inconsistency and unnatural facial transition 
without compromising detection quality for 
nonideal content. 

 

Figure 5: Model’s Detection Analysis Across Durations 
of Samples 

Table 4: Performance on Low-Resolution Videos 
(Compression QF=10). 

Metho
d 

Accu
racy 
(%) 

F1-
Scor
e 
(%) 

AUC
-
ROC 

Detection 
timestamp 
(ms/frame) 

Metho
d [3] 

86.3 84.0 0.902 27 

Metho 89.1 87.2 0.921 23 

d [8] 

Metho
d [18] 

91.4 89.5 0.940 20 

Propos
ed 
Model 

96.4 94.9 0.976 17 

Table 4. Results for low-resolution video 
compressed at QF=10: The proposed model has 
gained an accuracy of 96.4% and 0.976 AUC-ROC, 
which surpassed the method [18] in more than 5% 
of accuracy. This result is especially important for 
forensics because such videos very often have very 
low resolution and much compression (e.g. 
surveillance). The reliance of the model on 
frequency-based DCT-DenseNet features allows it 
to detect subtly high-frequency artifacts that 
survive from compression, making it significantly 
effective in degraded conditions. 

 

Figure 6:Model’s Detection Analysis Across Durations of 
Samples 

Table 5 reports the performance of the proposed 
model on videos of different lengths. The model 
reaches an accuracy of 98.9% on short videos (5s), 
which drops to 95.8% for long videos (30s). 
Temporal inconsistencies, such as unnatural 
blinking or facial jittering, are more noticeable in 
longer videos, and the LSTM-based Temporal 
Network is particularly effective. The real 
implications of these results arise when trying to 
detect manipulated videos over various durations in 
video conferencing security or online exams, to 
name a few applications. 
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Table 5: Detection Performance Across Video 
Durations. 

Method Short 
(5s) 

Medium 
(15s) 

Long 
(30s) 

Method 
[3] 

92.5 90.1 88.3 

Method 
[8] 

94.1 91.8 89.9 

Method 
[18] 

96.0 93.4 91.2 

Proposed 
Model 

98.9 97.2 95.8 

 

Table 6 shows the effect of adding StyleGAN3-
generated synthetic deepfakes to the test set. If such 
samples were not present, the network would not 
learn GAN-specific artifacts, and, as shown, the 
performance would decrease to 93.2%. The 
addition of samples increases accuracy to 99.2%, 
thus providing evidence for their value to improve 
generalization. This result emphasizes the need for 
diverse and high-quality datasets to ensure real-
world applicability, where new GAN architectures 
frequently emerge in the process. 

Table 6:Impact of Synthetic Deepfake Data on 
Performance. 

Dataset Accuracy 
(%) 

F1-
Score 
(%) 

AUC-
ROC 

Without 
StyleGAN3 

93.2 91.5 0.954 

With 
StyleGAN3 

99.2 98.7 0.995 

 

 

Table 7:Ablation Study on Feature Contributions. 

Features 
Used 

Accuracy 
(%) 

F1-
Score 
(%) 

AUC-
ROC 

Spatial 
Features 

93.5 91.7 0.958 

Tempora
l 
Features 

94.3 92.8 0.965 

Frequenc
y 
Features 

95.1 93.6 0.972 

All 
Combin
ed 

99.2 98.7 0.995 

 

 
Figure 7:Model’s Ablation Analysis 

Table 7 is an ablation study of the contributions of 
individual feature extraction methods. Spatial 
features alone achieve 93.5% accuracy, while 
frequency features perform the best individually at 
95.1%. All three domains combined—spatial 
(Xception), temporal (LSTM), and frequency 
(DCT-DenseNet)—are improving performance up 
to 99.2%. It reflects that Attention-Based Weighted 
Fusion is a good approach for the use of the 
diversity of feature sets towards robust deepfake 
detection, hence underlining the strengths, 
accuracy, and potential usability of this proposed 
model. It ensures strong performance in varied 
resolutions and compression levels with varied 
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durations on diverse deployment scenarios such as 
social media moderation, surveillance, and digital 
forensics applications. We discuss the subsequent 
iterative validation use case based on the proposed 
model so that readers may get in-depth knowledge 
about the overall process. 

While previous studies have primarily focused 
on improving specific deepfake detection 
techniques, such as spatial feature extraction using 
CNNs or identifying temporal inconsistencies with 
RNNs, our research takes a more comprehensive 
approach by integrating spatial, temporal, and 
frequency-based feature extraction within a multi-
stage forensic pipeline. Unlike conventional 
methods that often lack generalizability across 
diverse datasets, our proposed Explainable 
Deepfake Detection Framework incorporates an 
Attention-Based Weighted Fusion mechanism to 
enhance feature importance, thereby increasing 
detection accuracy and robustness. Additionally, to 
address the issue of interpretability in deepfake 
detection models, our study leverages explainability 
techniques using Grad-CAM and SHAP, enabling 
forensic experts to better understand and interpret 
the model’s detection process. These advancements 
make our approach more applicable to real-world 
forensic investigations and help bridge existing 
gaps in deepfake detection methodologies. 

Validation using Iterative Practical Use Case 
Scenario Analysis 

The proposed deepfake detection pipeline is 
evaluated on a practical scenario involving the 
FaceForensics++ dataset combined with synthetic 
deepfakes generated using StyleGAN3. The dataset 
comprises 1,000 real videos and 1,000 manipulated 
videos across various conditions, including 
resolution, compression levels, ethnicity, and pose 
diversity. Videos are processed at compression 
quality levels QF=10 (low), QF=30 (medium), and 
QF=50 (high). Every video is sampled at 5 fps and 
pre-processed to extract aligned face regions using 
MTCNN. The final dataset contains about 1.2 
million frames with both real and manipulated 
content. Outputs of individual processes are 
elaborated below, presented in tabular form. The 
validation samples used in this practical use case 
analysis are derived from the FaceForensics++ 
validation set, comprising 150 genuine videos and 
150 forged videos, divided evenly across different 
manipulation methods: Deepfakes, FaceSwap, 
Face2Face, and NeuralTextures. These validation 
samples are precisely chosen to cover an assortment 

of scenarios, including changing compression ratios 
(QF=10, QF=30, and QF=50) resolutions (1920 x 
1080, 1280 x 720, and 640 x 360, lighting 
conditions and facial orientations. The validation 
set must contain videos with such real-life artifacts 
as motion blur or changes in the light levels, and 
natural head movements so often manipulated in 
the creation of deepfakes with artificialized 
expressions and lip motion sets. 

Table 8:Dataset Composition - FaceForensics++ 
and StyleGAN3 

Data 
Type 

Resolu
tion 

QF 
(Compr
ession) 

Num
ber of 
Video
s 

Numb
er of 
Frame
s 

Real 1920x
1080 

QF=50 500 300,00
0 

Real 1280x
720 

QF=30 300 180,00
0 

Real 640x3
60 

QF=10 200 120,00
0 

Fake 
(FaceF
orensic
s++) 

1920x
1080 

QF=50 500 300,00
0 

Fake 
(Style
GAN3) 

1280x
720 

QF=30 300 180,00
0 

Fake 
(Style
GAN3) 

640x3
60 

QF=10 200 120,00
0 

Table 8 Compositions of Dataset used for the 
Evaluation Process. The dataset involves real 
videos, FaceForensics++, and manipulated videos, 
wherein a part of the synthetic deepfakes were 
created with StyleGAN3. Compression levels and 
resolutions capture real-life settings, which include 
streaming contents at very high resolutions, QF=50 
and surveillance footage that are very heavily 
compressed, QF=10. Diversity in compression 
level, resolution, and kinds of manipulations ensure 
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the proposed model would be tested with realistic 
and challenging conditions to help in obtaining 
generalization sets. 

Table 9:Feature Outputs from Individual Modules 

 

 

 

In summary, Table 9 reveals the feature extraction 
module output containing DWT for frequency 
content analysis, Xception in addition to spatial 
features, then LSTM for temporal features along 
DCT-DenseNet for fine-grained frequency-specific 
feature extraction. The sample feature outputs 
represent scores capturing the mentioned key 
artifacts: GAN-induced noise, blending mismatch, 
and temporal mismatch. All these modules have 
focused on particular artifacts of deepfakes, viz., 
frequency-related irregularities by DWT and DCT-
DenseNet; spatial blending errors by Xception, and 
LSTM picks the inconsistencies of the process. 
With this multi-modal strategy, all these operations 
guarantee proper detection processes. 

Table 10: Fusion Model Performance - Attention 

Weights and Outputs. 

Table 10 The Attention-Based Weighted Fusion: 
This time, the attention weights αi are assigned to 
each spatial, temporal, and frequency output. For 
better contribution to the detection of high-
frequency artifacts, more weights (α=0.40) are 
given to frequency features. It makes the fusion 
model efficiently combine all the domain-specific 
features, so that finally the classification confidence 

Feature 
Source 

Attention 
Weight 
(αi\alphaiαi
) 

Weighted 
Contribution 

Spatial 
Features 
(Xception
) 

0.35 0.85 

Temporal 
Features 
(LSTM) 

0.25 0.88 

Frequency 
Features 
(DCT) 

0.40 0.91 

Final 
Fusion 
Output 

N/A Real (0.99 
Confidence) 

 

Meth
od 

Type Featu
re 
Dime
nsion 

Key 
Featu
re 
Outp
ut 
(Sam
ple 
Value
s) 

Inter
pretat
ion 

DWT 
(Frequ
ency 
Domai
n) 

Frequ
ency 
Map 

128x1
28 

High-
frequ
ency 
noise 
(0.78, 
0.92) 

Detect
s 
GAN 
artifac
ts 

Xcepti
on 
(Spati
al 
Domai
n) 

Spati
al 
Featu
res 

2048 Blend
ing 
artifa
ct 
score: 
0.85 

Irregu
lar 
pixel-
level 
blendi
ng 

LSTM 
(Temp
oral 
Domai
n) 

Temp
oral 
Featu
res 

128 
Hidde
n 
Units 

Temp
oral 
mism
atch 
score: 
0.88 

Unnat
ural 
motio
n & 
blinki
ng 

DCT-
Dense
Net 
(Frequ
ency) 

Frequ
ency 
Featu
res 

1024 Noise 
irregu
larity 
score: 
0.91 

Identi
fies 
high-
freque
ncy 
errors 
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score of manipulated video in the process is 
obtained to be 0.99. Dynamic weighting makes this 
algorithm more accurate and robust to a variety of 
datasets & samples. 

Table 11: Grad-CAM Heatmap Regions. 

Artifact 
Region 

Grad-
CAM 
Score 

Description 

Eye Region 0.91 Pixel-level 
inconsistencies 
detected 

Lip Region 0.88 Fine-grained 
blending errors 

Forehead/Edge 
Area 

0.84 GAN-induced 
texture artifacts 

Table 11 shows Grad-CAM outputs, which can be 
used to visualize the regions of the face that 
contribute the most to the classification decision. 
The eye and lip regions have the highest Grad-
CAM scores, suggesting that there are substantial 
pixel-level inconsistencies in these regions, which 
is typical in GAN-generated content sets. The 
Grad-CAM heatmap gives interpretable insights to 
forensic experts, allowing them to concentrate on 
the critical artifact regions influencing the model's 
decision. 

Table 12: SHAP Feature Contributions. 

Feature Source SHAP 
Value 

Impact on 
Final Decision 

Spatial Features 
(Xception) 

0.27 Moderate 
Contribution 

Temporal 
Features 
(LSTM) 

0.21 Lower 
Contribution 

Frequency 
Features (DCT) 

0.52 Strong 
Contribution 

Table 13: Final Outputs of the System. 

Vide
o ID 

Tru
e 
Lab
el 

Predict
ed 
Label 

Confiden
ce Score 

Proces
sing 
timesta
mp 
(ms/fra
me) 

Vide
o001 

Real Real 0.98 14 

Vide
o002 

Fake Fake 0.99 14 

Vide
o003 

Fake Fake 0.97 14 

Vide
o004 

Real Real 0.96 14 

Table 13 summarizes the final outputs of the 
deepfake detection system. For each video, it 
provides the predicted labels, confidence scores, 
and processing times per frame. The proposed 
model attains a high confidence score for its correct 
predictions at an average value of 0.98. The model 
also attained a consistent processing timestamp of 
14 ms per frame. Thus, the results ascertain that the 
model has good accuracy and efficiency that makes 
possible the real-time deployment in any of the 
applications above in the process. The combination 
of confidence scores and interpretable outputs 
ensures that the reliability and transparency levels 
of the system are good. Detailed results across the 
pipeline validate the robustness and interpretability 
of the proposed deepfake detection system process. 
Integration of diverse feature extraction methods, 
dynamic fusion, and explainability tools provides 
reliable and actionable outputs in challenging real-
world scenarios. 

 
5. CONCLUSION AND FUTURE SCOPES 

The current work provides an explainable deepfake 
detection framework that leverages a multi-stage 
deep learning pipeline to combine spatial, temporal, 
and frequency domain analysis. Using the 
FaceForensics++ dataset, which has been 
augmented with synthetic deepfakes generated 
using StyleGAN3, enabled comprehensive 
evaluation of the proposed model across various 
compression levels, resolutions, and video 
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durations. The framework, with all the advanced 
pre-processing methods-including MTCNN, that 
performs face alignment, and DWT for frequency 
decomposition among others effectively points out 
the smallest artifacts like blending errors GAN-
induced pixel distortions, and compression 
inconsistencies of a process. Experimental results 
reflect the better performance obtained with the 
proposed approach sets. On high-resolution videos 
with a little compression (QF=50), the accuracy 
reached 99.2%, F1-score of 98.7%, and the AUC-
ROC value was 0.995; obviously, the results are 
well outperforming the state-of-the-art baseline 
method of Method [18], achieving an accuracy of 
only 97.2% in the given task. Even under low-
resolution video conditions (QF=10), the model is 
impressive with 96.4% accuracy and an AUC-ROC 
of 0.976, making it quite robust against 
compression artifacts and degraded input quality. 
The LSTM-based temporal network is also very 
effective at identifying unnatural blinking and 
motion inconsistencies in longer video sequences, 
achieving 95.8% accuracy for 30-second video 
clips. Moreover, synthetic data using StyleGAN3 
are introduced, which enhances the generalizability 
to be as high as 99.2% compared to 93.2%, thus 
showing that heterogeneity in the dataset is 
necessary. Attention-Based Weighted Fusion 
strategy proves critical as the technique 
dynamically assigns importance to spatial, 
temporal, and frequency features to optimize 
performance. Moreover, such interpretability post-
processing techniques as Grad-CAM and SHAP 
will allow forensic analysts to better understand the 
functioning of the model while identifying the most 
significant features determining detection. Results 
show that the proposed approach is highly 
effective, reliable, and applicable in the real world 
and therefore a sound solution against deepfake 
threats in any domain-be it in digital forensics, 
content moderation, or media verification 
processes. 

While the proposed model achieves state-of-the-
art performance in deepfake detection, it is not yet 
the ultimate solution in terms of efficiency and 
adaptability. Several enhancements can further 
improve its robustness and real-world applicability. 
First, the framework can be extended to detect 
audio-visual deepfakes, where manipulated visual 
content is accompanied by synthesized audio. This 
would enhance the model's ability to identify lip-
sync inconsistencies and other audio-visual 
manipulations, strengthening overall detection 
accuracy. Second, the model's performance can be 
tested on real-time streaming data to evaluate its 

efficiency in live deployment scenarios. While the 
current system achieves near real-time detection 
with a 14 ms per frame processing time, further 
optimization of the fusion module and a lightweight 
implementation on edge devices would enable 
deployment in resource-constrained environments, 
such as mobile platforms and IoT-enabled systems. 
Third, adversarial training and generative models 
could be used to create more sophisticated synthetic 
datasets, pushing the limits of detection frameworks 
and ensuring greater resilience against evolving 
deepfake techniques. Future research may focus on 
integrating dynamic learning mechanisms that 
continuously adapt to newly emerging GAN-
generated deepfake artifacts, improving the 
system's ability to detect previously unseen 
manipulations. Finally, although the current model 
incorporates Grad-CAM and SHAP for 
explainability, advancements in Explainable AI 
(XAI) could further improve usability for forensic 
experts. Integrating natural language explanations 
or interactive visualizations would make deepfake 
detection more intuitive for non-technical forensic 
analysts. The combination of these advancements 
will lead to a more robust, adaptive, and 
interpretable deepfake detection system, addressing 
emerging threats in multimedia manipulation and 
ensuring the trust and authenticity of digital 
content. 

While our Explainable Deepfake Detection 
Framework exhibits strong performance across 
diverse datasets, its real-time detection capability 
remains an area for further investigation. 
Additionally, the model’s dependence on 
predefined feature extraction techniques may 
require enhancements to effectively counter 
evolving deepfake generation methods that leverage 
advanced adversarial strategies. Another challenge 
is the computational cost associated with multi-
modal feature learning, which may pose scalability 
issues for large-scale deployment. Future research 
will focus on improving computational efficiency, 
enhancing real-time applicability, and adapting the 
framework to keep pace with continuously 
advancing deepfake manipulation techniques. 
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