
 Journal of Theoretical and Applied Information Technology 
31st March 2025. Vol.103. No.6 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
2184 

 

A STRUCTURED TRACEABILITY APPROACH FOR 
TRANSFORMING REQUIREMENTS INTO CLASS 

DIAGRAMS 
 

KELETSO J. LETSHOLO 
Faculty of Computer Information Science, Higher Colleges of Technology, United Arab Emirates  

E-mail:  kletsholo@hct.ac.ae  
 
 

ABSTRACT 
 

In software engineering, requirement traceability is a critical factor in ensuring that software systems 
comply with user requirements, enabling effective management and verification throughout the 
development lifecycle. However, due to inherent ambiguities and inconsistencies in user-specified 
requirements, typically expressed in natural language, establishing accurate traceability remains a 
significant challenge. This study introduces a novel, automated approach to requirement traceability, 
addressing this challenge by transforming natural language requirement specifications (NLRs) into class 
diagrams while simultaneously generating traceability links. The proposed approach leverages Natural 
Language Processing (NLP) techniques and Semantic Object Models (SOMs), a structured and reusable 
pattern-based method that enhances the accuracy and consistency of traceability links. To validate this 
approach, the TRAM application was developed and evaluated against manually produced class diagrams 
from requirements engineering experts. Precision and recall metrics were used to assess the accuracy and 
completeness of the generated traceability links. Results indicate that TRAM achieves high recall (0.60–
0.96), demonstrating its effectiveness in capturing relevant elements, although precision (0.25–0.51) 
remains a challenge due to the integration of predefined elements through SOM patterns. These findings 
highlight the contribution of this research in advancing automated traceability solutions, reducing manual 
effort, and improving consistency in requirements engineering. Additionally, the structured use of SOMs 
suggests that this methodology can be extended beyond class diagrams to other software artifacts, 
broadening its applicability in software engineering. 

Keywords: Class Diagram; Natural Language Processing; Requirements Engineering; Requirements 
Traceability; Semantic Object Model. 

 
1. INTRODUCTION  

The requirements of a software system describe 
what the system should accomplish, the services it 
must provide, and the restrictions on its operation 
[1]. These requirements are derived from users 
seeking a system that meets specific needs and are 
usually specified in natural language. Natural 
language is highly expressive and intuitive for 
users, but it often introduces ambiguities and 
inconsistencies that can complicate the subsequent 
stages of the development process. Requirement 
traceability is crucial in this context, as it provides a 
systematic way to link and manage the relationships 
between the specification of natural language 
requirements (NLR) and its software artifacts. 

Requirement traceability refers to “the ability to 
describe and follow the life of a requirement, both 
in a forward and backward direction” [2]. 
Requirement forward traceability refers to the 

ability to track requirements components through 
various stages, including analysis, design, or 
implementation. The backward traceability of 
requirements is the ability to trace the model 
elements back to their original NLRs. A 
comprehensive approach to ensure traceability, 
especially for complex computer-based systems, 
requires linking all system components back to 
NLRs. These components include hardware, 
software, human resources, manuals, policies, and 
procedures. To accomplish this goal, it is crucial to 
maintain traceability throughout all phases of the 
system development process, starting from the 
requirements specified by the user, through the 
analysis, design, implementation, and testing of the 
final product. Various stakeholders can use this 
traceability information to show that requirements 
have been met, validate the reasoning behind design 
choices, and set up change control and maintenance 
procedures. By establishing and maintaining these 
connections, traceability helps identify and resolve 



 Journal of Theoretical and Applied Information Technology 
31st March 2025. Vol.103. No.6 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
2185 

 

ambiguities early, ensures alignment throughout the 
development life cycle [3], [4], [5], and supports 
accurate and reliable transformation of 
requirements into software artifacts [2], [6], [7]. 
This reduces errors, improves consistency, and 
ultimately leads to the development of software 
systems that satisfy user requirements. In addition, 
traceability promotes the simultaneous development 
of requirements and software, which in turn reduces 
the time and expenses associated with software 
maintenance and growth. [8], [9]. Despite progress 
in natural language processing (NLP) and model 
transformation methods, the semantic gap between 
NLRs and software artifacts continues to pose 
difficulties for requirement transformation 
techniques, resulting in lower accuracy of 
traceability links. This gap arises mainly from the 
intrinsic flexibility and ambiguity of the natural 
language, which contrasts starkly with the formal 
structure demanded by software artifacts. 

The primary objective of this study is to develop 
a structured method for the automatic creation of 
class diagrams from NLRs, while also ensuring the 
establishment and preservation of requirements 
traceability connections. Building on the previous 
work established during the doctoral research of the 
author [10], this work addresses the ongoing issue 
of ensuring the accuracy and completeness of the 
derived software artifacts. This method employs 
NLP techniques for data preprocessing along with a 
collection of reusable patterns called Semantic 
Object Models (SOMs), which bridge the semantic 
gap between unstructured NLR and class diagrams. 
These patterns impose both a semantic and a 
structural framework on NLR, enabling a more 
structured approach to model construction and 
improving the accuracy of trace link generation. 
This study focuses on class diagrams for two main 
reasons: they document key elements in 
requirements engineering, namely, classes, 
attributes, and relationships, and are a foundational 
analysis tool used in numerous software 
development methodologies [11], [12]. 
Furthermore, the use of SOM patterns enables the 
generation of other software artifacts. This 
adaptability underscores the flexibility of the 
approach, allowing it to extend beyond class 
diagrams and accommodate various aspects of 
software modeling, thus increasing its applicability 
across different methodologies. This approach was 
implemented using a software tool called Textual 
Requirements to Analysis Models (TRAM). TRAM 
was first introduced in [13], focusing mainly on the 
transformation process involved in the TRAM 
method. This study presents an evaluation 

framework that compares class diagrams generated 
with those created by professionals in requirements 
engineering. By offering structured translation and 
evaluation, this study contributes significantly to 
the domain of natural language processing in 
requirements engineering, providing valuable 
solutions and insights that enhance both the 
precision and effectiveness of early system design 
activities. 

The remainder of this document is structured as 
follows. Section 2 reviews the existing literature on 
requirement traceability and highlights research 
gaps. Section 3 explores the underlying theories and 
concepts that support the TRAM approach. Section 
4 provides a high-level description of the TRAM 
components. Sections 5, 6, and 7 focus on the 
specific components of the TRAM approach and 
detail their roles and functionalities. Section 8 
presents the method and results to evaluate the 
accuracy and completeness of the class diagrams 
produced by TRAM. Finally, Section 9 summarizes 
the findings and discusses future research and 
development directions. 

 

2. RELATED WORK 

Research on requirement traceability has been 
ongoing for more than four decades. One of the first 
notable tools in this area was reported in 1978 by 
Robert Pierce [14]. Since then, requirement 
traceability has become integral to software 
engineering, particularly requirements engineering. 
The previous research of the author [13] explored 
the initial aspects of the transformation process of 
the TRAM approach. This study expands on this 
foundation by integrating traceability link 
establishment and introducing detailed 
transformation rules, elements that have not been 
addressed earlier. 

 

2.1  Traceability Approaches of Traditional 
Requirements 

Spanoudakis et al. [6] developed a rule-based 
linguistic approach to establish traceability 
connections between use case specifications and 
UML analysis models. Building on this foundation, 
Jirapanthong and Zisman [15] introduced a 
reference model for traceability along with a rule-
based method to link documents focused on 
features in the engineering of the product line. 
Almeida et al. [16] offered a systematic framework 
to associate requirements with multiple artifacts 
during the model-driven design process. Although 



 Journal of Theoretical and Applied Information Technology 
31st March 2025. Vol.103. No.6 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
2186 

 

this framework is valuable for understanding the 
traceability of requirements in model-driven 
development, the proposed metamodel has a high 
level of abstraction and lacks representation of 
lower-level requirements and model elements. 
Cleland-Huang et al. [17] proposed an event 
notification-based traceability method suitable for 
heterogeneous and globally distributed development 
environments. This approach maintains a loose 
coupling between requirements and other artifacts 
by using an event service to inform stakeholders of 
any changes. A limitation, as noted in [6], is its 
dependence on preidentified relations, which lack 
support for the initial identification. 

2.2 Tools for Requirements Traceability 
The landscape of tools that support the 

traceability of requirements is diverse and includes 
both user-driven and system-defined approaches. 
Some tools enable users to establish traceability 
links based on their personal experience and 
intuition, although they often lack the ability to 
define the semantics of these links declaratively. An 
excellent example is IBM Rational DOORS [18], 
which is a platform tailored to monitor 
requirements and ensure traceability in the realms 
of complex systems and software development. The 
REquirements TRacing On-target (RETRO) tool 
[19] facilitates the automatic creation of 
requirement traceability matrices, which play a 
crucial role in the maintenance of software systems. 
It achieves traceability recovery for artifacts 
characterized by unstructured text, employing 
information retrieval and text mining methods to 
generate potential trace links. DesignTrack [20] is a 
prototype tool that supports requirement traceability 
(RT) by linking requirements with architectural 
design. It serves organizations by providing a 
unified environment for both requirement modeling 
and specification. This tool allows architects to 
effectively manage design requirements and related 
tasks. The object-oriented requirements traceability 
tool (TOOR) [21] offers a unique capability by 
allowing users not only to assert various types of 
traceability link, but also to define their semantics 
axiomatically. This capability allows for the 
connection of requirements to design documents, 
specifications, and code through significant and 
customizable relationships, thereby offering a more 
adaptable and thorough approach to traceability. 
Despite these advances, the integration of 
traceability tools across different platforms remains 
challenging. The diversity in methodologies and the 
lack of a common framework often led to 
compatibility issues, making it difficult to 
efficiently share traceability information across 

various tools and systems. Furthermore, there are 
no benchmarking models to assess the precision and 
completeness of traceability links generated by 
these tools. However, these tools remain essential 
for monitoring and maintaining connections 
between requirements and their related artifacts 
throughout the software development lifecycle. 

2.3 Deep Learning Models 
Advancements in deep learning have promoted 

the use of large language models (LLMs) such as 
bidirectional encoder representations from 
Transformers (BERT) [22] and generative pre-
trained transformers (GPT) [23], to transform NLRs 
into various software artifacts.ifacts. These models 
offer superior contextual understanding and 
leverage a pre-training and fine-tuning paradigm 
that surpasses the traditional requirement 
transformation approaches. In the domain of 
requirement traceability, various approaches have 
been proposed to take advantage of advanced deep 
learning and NLP techniques to improve accuracy 
and efficiency. Guo et al. [24] presented a deep 
learning-based method that uses word embedding 
and repetitive neural network models, particularly a 
bidirectional gated recurrent unit (BI-GRU), to 
improve trace link accuracy by integrating artifact 
semantics and domain knowledge. Ali et al. [25] 
proposed an LLM-supported retrieval-augmented 
generation strategy to improve the traceability of 
class diagrams within code repositories. This 
approach employs keyword, vector, and graph 
indexing techniques, and capitalizes on code 
comments, dependency trees, and enhanced code 
summarization to effectively link high- level 
requirements with technical code constructs. 
Further contributions include the introduction of 
Trace BERT (T-BERT) [26], which leverages the 
bidirectional contextual capabilities of BERT to 
improve automated traceability in industrial 
settings. T- BERT is particularly advantageous for 
projects with limited data and scale to 
accommodate large-scale applications. Dai et al. [7] 
addressed the challenges in automated requirement 
code traceability (RCT) by introducing a deep 
neural network method. RCT effectively processes 
natural language by converting software 
requirements and source code documents into same-
dimensional feature vectors and assessing linkages 
through a similarity analysis. 

These studies collectively demonstrate the 
potential of advanced NLP and deep learning 
techniques to address traceability challenges by 
improving the precision of linking diverse software 
artifacts. Although LLMs have shown promising 



 Journal of Theoretical and Applied Information Technology 
31st March 2025. Vol.103. No.6 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
2187 

 

results in the field [27], [28], their black-box nature 
presents a significant risk. The opaque decision-
making processes in these AI models make it 
challenging to debug and refine systems, thus 
complicating trust and acceptance between 
stakeholders [29]. Furthermore, in requirements 
engineering, where documents are typically highly 
domain specific, the limited availability of labeled 
data hinders the ability of these models to learn 
effectively. Pauzi and Capiluppi [30] identified two 
main challenges in the application of NLP to the 
traceability of requirements. First, it is challenging 
to ensure that syntax and semantic similarities 
between different artifacts are adequately 
represented because effective traceability is based 
on the identification and linking of related 
components. Second, they highlight the need for 
scalable, adaptive, and transparent NLP models, 
because current solutions often operate as black 
boxes. These models must be explainable and 
efficient, particularly for requirement validation and 
regulatory tracing, while justifying any resource 
trade-off involved in their implementation. 

 

3. THEORETICAL FOUNDATIONS 

Software engineering recognizes the need 
for different models to depict a software system as 
it evolves from initial requirements to completed 
implementation. These models can illustrate 
various facets of the system (such as structural or 
behavioral) or reflect the system at different 
abstraction levels (such as an analysis model or a 
design model). Ensuring traceability is crucial to 
verify that source elements are accurately converted 
to target elements. 

 

3.1 Classification of Traceability Links 
Pinheiro [21] identified two categories of 

traceability links: functional and nonfunctional. 
Functional links are created through the 
transformation of one element into another by 
adhering to a defined set of rules. These links are 
deliberately generated along with the artifact due to 
the transformation, or they can be accurately 
recreated at any point by analyzing the initial 
artifact, the final artifact, and the transformation 
rules that were applied. The traces come from the 
syntactic and semantic relationships dictated by the 
models or notations used. Non-functional links are 
related to tracing software requirements aspects, 
including intentions, purposes, goals, 
responsibilities, and other abstract notions. This 

study focuses on functional links that can be further 
categorized into three different types. 

 Links from text to model create a relationship 
between the concepts used in the requirements 
phase and the elements found in the analysis 
phase. For example, this connection can be 
seen between a requirements document and the 
associated software artifacts.  

 Model-to-model connections link elements of 
different models across various levels of 
abstraction. For example, when an intermediate 
model is utilized in the transformation process, 
these connections relate the elements of the 
intermediate model to those of the final model. 

 Inter-requirements or derived links connect 
different sections of artifacts. For example, 
when a class is linked to several requirements, 
it is related to that specific class. 

 

3.2 Representation & Visualization of Links 
Requirement tracking is essential for 

professionals in both management and technical 
domains, the task is driven by necessity. For 
instance, a technical aim may involve tracing the 
completeness of the software artifacts created. An 
analyst might review software artifacts alongside a 
requirement document to verify which parts are 
covered by the model and which are not. 
Management goals may include responding to 
change requests. When modifications affect certain 
aspects of the model, the manager should refer to 
the initial requirements before making any changes. 
User interfaces and visualization tools are vital to 
effectively explore and use traceability information. 
In [31], a set of requirements for visualization tools 
was identified, which outlined the ability to support 
the navigation and maintenance of traceability links 
and stipulated that such tools should: 

 Provide users with various methods to 
investigate traceability links. 

 Users can add, delete, and change the attributes 
of the existing links and their related artifacts, 
ensuring that changes are communicated 
effectively. 

 Enable users to perform queries and filter 
traceability links. 

 Connect with other software engineering 
applications (i.e., analysis tools). 

 Assess and condense information related to the 
traceability process and its links. 

Winkler and Pilgrim [8] classified visualization 
strategies into three main categories: matrices, cross 



 Journal of Theoretical and Applied Information Technology 
31st March 2025. Vol.103. No.6 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
2188 

 

references, and graph-based techniques, as shown 
in Figure 1. 
 
3.2.1 Traceability Matrix 
A traceability matrix is a grid with two dimensions 
that shows the connections between two categories 
of artifacts, such as the NLR and associated 
software artifacts. The rows and columns 
correspond to the artifact elements, with marks at 
their intersections indicating links. Although this is 
equivalent to a graph representation, the matrix is 
visually less ordered. For example, in Figure 1(a), 
the black box indicates a direct link between the 
artifact on the left side and the artifact on the top 
side. Although traceability matrices are 
straightforward for simple tasks, such as noting a 
single link between artifacts [8], they are complex 
and difficult to manage in large-scale projects. 
Moreover, the two-dimensional nature of the grid 
recursively complicates the tracking of links across 
multiple artifacts. 

 

3.2.2 Cross Referencing 
A requirement specification document often 
contains numerous cross-references within the 
document and between different artifacts. A cross-
reference serves as a guide within the text, which 
may be expressed in either casual everyday 
language or a structured specification. For ease of 
navigation, it is preferable for the cross-reference to 
appear as clickable hyperlinks. Figure 1(b) shows 
references stored as part of the metadata of an 
artifact, which is distinct from the artifact itself. 
Although readers can easily grasp these cross-
references, traceability links offer a limited view, 
showing only the outgoing and incoming links of a 
single artifact. Unlike traceability matrices, this 
format provides a local perspective rather than 
comprehensive traceability artifacts. Moreover, it is 

almost impossible to sensibly visualize n-ary links 
using cross references [8]. 

 

3.2.3 Graph-based visualization 
In visualizations that use graphs, artifacts are 
illustrated as nodes, while traceability links are 
shown as edges, allowing models to be displayed in 
a manner similar to that of other fields employing 
graph-based notation (Figure 1(c)). Unique 
identifiers were used as reference artifacts. This 
approach economizes space, provides a more 
comprehensive view of traceability information, 
and displays multiple artifacts, including their 
content and traceability links. Various link types, 
including n–ary links, can also be visualized; 
however, such models become large and complex, 
making it difficult for general users to understand 
them [8]. 

 

3.3 Semantic Object Models 
Semantic Object Models (SOMs) [32] serve as 

basic abstraction frameworks that encapsulate the 
meaning of frequently utilized requirement 
concepts and their interconnections. They represent 
essential business transactions in terms of a 
network of cooperative objects that perform tasks to 
achieve a given goal. The premise of SOMs is that 
most business application systems are grounded in 
transactional domains that involve the orderly 
transfer and movement of resources (e.g., loans, 
trading, and banking). The reusable knowledge 
attached to the SOMs provides partial solutions that 
can be customized to satisfy the requirements of the 
new application problem. SOMs represent a 
collection of business transactions characterized by 
a set of shared business concepts. The agent 
denotes the assignment of responsibility to humans 
or machines, such as customers, cashiers, or 

 

Figure 1. Visualization techniques: (a) Traceability matrix; (b) Cross-referencing; (c) Graph-based [8]. 



 Journal of Theoretical and Applied Information Technology 
31st March 2025. Vol.103. No.6 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
2189 

 

computers. An object refers to the subject matter 
involved in a business transaction that includes 
products or services. An action signifies the 
procedure of modifying an object to fulfill a 
particular objective; examples include ordering, 
purchasing, submitting, and detecting. A state 
illustrates the outcomes generated by actions 
performed on objects such as book-reserved or 
order-placed objects. A container refers to the 
storage or location where objects are stored or 
transferred, such as a warehouse or database. A 
problem or requirement is described by a minimal 
set of agents, objects, and actions that achieve a 
goal. A goal is a desired state of key objects, 
achieved through agent interactions and state 
transitions, and maintained by relationships 
between agents and key objects. State transitions 
are mapped to verb categories provided by 
WordNet. WordNet includes more than 21,000 
forms of verbs (with more than 13,000 of them 
being unique strings) and around 8,400 meanings of 
words [33]. These verbs are divided into 14 
categories, which correspond to the following 
semantic domains: verbs of bodily care and 
functions, change, cognition, communication, 
competition, consumption, contact, creation, 
emotion, emotion, motion, perception, possession, 
social interaction, and weather verbs. These 
categories form the basis for describing SOMs. 
SOMs are grounded in nine different types of 
actions from the following categories: possession, 
cognition, change, creation, motion, perception, 
communication, contact, and stative. Refer to 
Section 1 of the Supplementary Material for a 
visual representation of the SOMs. 

 Possession SOM: This pertains to at least one 
source agent and one destination agent, 
focusing on the key object. This SOM can be 
utilized to illustrate various scenarios in which 
the ownership of the key object shifts among 
different agents, including purchasing goods 
and allocating resources. 

 Creation SOM: This involves at least one 
agent, one key object, and the materials used to 
create a key object. This SOM captures the 
conditions under which a key object is formed 
from preexisting physical or conceptual 
elements, such as putting together a vehicle 
from ready-made components. 

 Change SOM: This is related to at least one 
agent and one key object. Optionally, 
instruments may be used to carry out actions. 
This SOM represents scenarios where a key 
object is altered based on specific business 

rules, such as changing or canceling a purchase 
order. 

 Motion SOM: This includes at least one agent, 
a key object, together with the source and 
destination containers. This SOM can depict a 
variety of situations in which the association of 
the key object with different containers is 
altered; for example, moving goods from a 
warehouse to a retail store. 

 Cognition SOM: This is associated with at 
least one agent and a key object and may also 
include additional objects and containers. This 
SOM represents diverse cognitive tasks such as 
preparing a purchase order and identifying a 
supplier. 

 Perception SOM: This relates to at least one 
agent and one key object. Tools may optionally 
be utilized to sense and report changes in the 
state of a key object. This SOM is applied in 
various contexts where monitoring the state 
changes of a key object is crucial, such as 
customers tracking their order status online. 

 Communication SOM: This involves at least 
one source agent, one destination agent, and a 
key object that serves as the subject of 
communication. This SOM captures the 
exchanges between two agents: for example, an 
employee requesting a purchasing form from 
their department. 

 Stative SOM: This is associated with at least 
one key object and an attribute. Attributes refer 
to the properties of things (elements or 
components). This SOM encapsulates the 
specifications that describe the characteristics 
of key objects. For example, a book contains a 
title and at least one author. 

 Contact SOM: This involves at least one agent 
and a key object. Tools may optionally be used 
to perform tasks. This SOM can represent 
scenarios in which an action engages a key 
object, but its physical state remains 
unchanged. 

 

4. OVERVIEW OF THE TRAM APPROACH 

The previous work of the author laid the 
groundwork for the transformation process within 
TRAM. This study details the transformation rules 
and outlines the methodology used to validate the 
effectiveness of this approach in establishing robust 
traceability links. As shown in Figure 2, the TRAM 
approach facilitates the automatic generation of 
traceability links between NLRs and their 



 Journal of Theoretical and Applied Information Technology 
31st March 2025. Vol.103. No.6 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
2190 

 

corresponding class diagrams. The transformation 
process begins with a domain expert providing an 
NLR specification, which is parsed by the NLR 
Parser into a structured format (XML). The parsed 
information is then utilized by the SOM 
Constructor, which employs a set of predefined 
rules to identify SOM patterns from the parsed 
NLR. The SOM Constructor then instantiates 
elements of the identified SOM pattern with 
constructs from the parsed NLR to produce SOM 
instances (SOMi) in XMI format. The SOMi is 
taken as input by the SOM Instances Translator, 
which transforms each SOMi into individual class 
diagrams. These individual class diagrams are 
assembled into UML class diagrams using the 
Model Composer. Furthermore, the approach 
incorporates a Requirements Tracer component, 
which creates and visualizes traceability links. This 
component produces a traceability report that 
facilitates traceability between NLRs, SOMs, and 
class diagram elements. These components will be 
discussed in detail in the following sections. 
 
5. NLR PARSER 

The NLR Parser is designed to preprocess the 
NLRs, while the Stanford parser [34] is utilized to 
perform this function. The Stanford parser is a 
natural language parser that lacks lexical 
information, trained on data from the Wall Street 

Journal, achieving a total accuracy of 96.86% and 
an accuracy of 86.91% for words not previously 
encountered. A detailed explanation of the Stanford 
parser exceeds the limits of this study and is 
available in [34]. The NLR parser aims to 
accomplish the following goals. 

 to identify the grammatical roles of words 
in the text and assign part-of-speech tags 
that reflect these roles. 

 to generate grammatical relations among 
elements of a requirement statement. 

 assign every word in the text a distinct 
identifier based on the sentence and token 
numbers. 

 

5.1 Part-of-Speech Tagging 
This step assigns a part-of-speech (POS) tag to 

each word in the text, which reflects its 
grammatical role; that is, nouns, verbs, adjectives, 
etc. Each sentence is parsed lexically to generate a 
parse tree using the Stanford Parser. The tagging 
was carried out in four steps. In the first stage, the 
text is divided into individual words and sentences. 
The words then receive POS tags using a 
predetermined lexicon and a specific set of rules. In 
the third stage, the preliminary POS tags are 
modified according to the contextual rules for POS 
assignments. Lastly, the likelihood of each possible 

 
 

Figure 2. TRAM Architecture: A Structured Approach for Model Generation and Traceability 
 



 Journal of Theoretical and Applied Information Technology 
31st March 2025. Vol.103. No.6 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
2191 

 

tag sequence is computed, and the sequence with 
the greatest probability is selected. The tagged 
requirement statements were then transformed into 
an eXtensible Markup Language (XML). Each 
word in the textual requirements is represented in 
XML according to the following definition:  

<w id="ID" pos="POS"> word </w> 

 
5.2 Generating Grammatical Relations 

This step establishes grammatical relationships 
among words in a requirement statement, 
generating semantically valuable information. It 
uses the POS tags generated earlier as input to 
produce grammatical relationships, also known as 
typed dependencies. This process relies on the rules 
and patterns applied to both phrase structure and 
English sentences. Currently, the Stanford-typed 
dependencies manual contains approximately 53 
grammatical relationships. Each grammatical 
relation involves a governor and is dependent. The 
following are examples of some typical 
grammatical relations; refer to [35] for a 
comprehensive list of definitions: 

 root: root – The grammatical relationship of 
the root highlights the foundation of the 
sentence. The ROOT node is labeled as 0, 
while the indexing of actual words in the 
sentence starts at 1. 

 dobj: direct object – The noun phrase that is the 
verb object is the verb’s direct object. 

 nsubj: nominal subject – A noun phrase that 
serves as the grammatical subject of a clause is 
known as a nominal subject. 

 aux: auxiliary – An auxiliary within a clause 
refers to a nonprimary verb in that clause, such 
as a modal auxiliary, or a form of "be", "do", or 
"have" used in a periphrastic tense. 

 neg: negation modifier – The negation modifier 
is the relation between a negation word and the 
word it modifies. 

 agent: agent – An agent refers to the subject of 
a passive verb that is presented by the 
preposition "by" and performs the action. 

 prep: prepositional modifier – A prepositional 
modifier associated with a verb function as a 
connection to the dobj relation; depending on 
the adjective, the noun involved in this relation 
may indicate either a source or a destination 
object. 

 conj: conjunct – A conjunct refers to the 
relationship between two components linked 

by a coordinating conjunction, for example, 
"and" or "or." 

A grammatical relation is written as the relation’s 
name (governor, dependent), where governor and 
dependent are words in the sentence. In general, 
content words are preferred as heads and auxiliaries 
that depend on them. However, in the TRAM 
approach, verbs are chosen as the heads of 
sentences when determining dependencies. The 
dependencies create a web of connections that 
correspond to a directed graph model, where the 
words in the sentence serve as the nodes, and the 
grammatical relationships are represented by the 
edge labels. The grammatical relations are further 
represented in XML format and grouped by direct 
object dependency. By linking these dependencies, 
the subjects and objects of verbs in a sentence can 
be determined, leading to the identification of the 
Semantic Object Models discussed in Section 3.3. 

 
5.3 Assigning identifiers to NLR Constructs 

The NLR Parser divides NLRs into linguistic 
components, including words, punctuation marks, 
numbers, and mixed alphanumeric sequences 
through a process called tokenization. This process 
produces a series of tokens, spaces, and positions. 
In English, words are generally divided by spaces 
that act as separators. A token is a sequence of 
characters grouped into meaningful linguistic units 
for processing within text. The tokenizer moves 
through the streams of spaces and tokens to identify 
pairs of character offsets that indicate the starting 
and ending positions of tokens. Given that the 
required text is a linear string of characters, each 
token has a distinct beginning and end character 
offsets. An identifier is created using the start and 
end character offsets of a token, indicating its 
length. This data was stored in an XML (parsed 
NLR) document generated by the NLR parser. A 
token ID follows the format: 

<beginCharacterOffset.endCharacterOffset>. 

 

6. MODEL GENERATOR 

6.1 SOM Constructor 
The SOM Constructor plays a key role in 

translating the information derived from the NLR 
Parser into SOM patterns. It utilizes a collection of 
verbs gathered from the dobj dependencies in 
Parsed NLR documents to pinpoint the relevant 
SOM types. Additionally, the SOM Constructor 
employs word-sense disambiguation [36] to 
identify the meaning of the verb. Each verb v is 
associated with a set of possible senses Sv; Given a 
direct object dependency; dobj containing the verb 



 Journal of Theoretical and Applied Information Technology 
31st March 2025. Vol.103. No.6 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
2192 

 

v, we determine which of the possible senses in Sv 
to assign to v in the context of dobj. In this study, 
the SOM Constructor chooses the primary sense of 
the verb from WordNet and associates it with a 
corresponding SOM pattern. The senses provided in 
WordNet are arranged in order of frequency, with 
the primary sense indicating the most frequently 
used meaning of the word. Nouns were classified in 
two stages. In the first stage, agents were tagged 
using WordNet derived dictionaries. Two separate 
dictionaries were created: one for human agents 
containing nouns representing individuals, and 
another for nonhuman agents containing nouns 
denoting groups. The dictionaries were developed 
by extracting person-related nouns for the former 
and group-related nouns for the latter. The second 
stage focuses on identifying key objects on the 
basis of their syntactic structures. Once each SOM 
pattern is identified, the SOM Constructor creates 
its corresponding concepts using elements from 
dependency relations. This component employs a 
series of translation rules to instantiate the SOM 
patterns. The result of this process is the SOM 
instances, which encapsulate the formalized textual 
requirements. The translation rules are as follows. 

 Rule 1: A noun phrase that functions as the 
syntactic subject of a clause is seen as a 
potential candidate for the agent’s role. If this 
noun phrase is not assigned to the agent role, it 
is classified as a non-agent. The distinction 
between agents and nonagents is that the latter 
cannot initiate or execute any actions. 

 Rule 2: The external subject of an open clausal 
complement (the argument associated with a 
predicate) is recognized as a potential 
candidate for the agent’s role. 

 Rule 3: The direct object of a verb phrase, 
which is a noun phrase acting as the object, is 
designated as a key object. 

 Rule 4: For a Communication SOM, the noun 
phrases introduced by the prepositions "for," 
"about," and "with" are assigned to the role of a 
key object. 

 Rule 5: In the case of a passive verb, the 
complement introduced by the preposition "by" 
is considered a candidate for the agent role. 

 Rule 6: A passive nominal subject, which 
serves as the syntactic subject of a passive 
clause, is assigned the role of key object. 

 Rule 7: For Possession and Communication 
SOMs, the prepositional modifier of the verb is 
viewed as a candidate for the source or 
destination agent. 

 Rule 8: Except for the rules mentioned above, 
all other verb prepositional modifiers are 
assigned roles, such as instruments, objects, 
containers, or materials, based on the specific 
SOM pattern that the verb triggers. 

 Rule 9: When an SOM includes a non-agent, it 
is categorized as a Stative SOM. To assess this, 
TRAM calculates the likelihood that each 
concept is a physical object. A concept with a 
higher probability value is assigned to the 
agent role in the Stative SOM. Agents in 
Stative SOMs cannot initiate or perform any 
actions, and key objects are usually attributes 
of the agent. 

Consider the following requirement statement: 

“A library issues loan items to customers. Along 
with the membership number, other details on a 
customer must be kept such as a name, address, 
and date of birth.” 

When the NLR parser and SOM Constructor 
process the input, they produce an XMI document 
that includes SOM instances, as shown in Figure 3. 
Two SOM patterns were derived from this sentence 
using the translation rules. The first is the SOM of 
Possession, which is represented by these concepts: 
a possession action (issues), a source agent 
(library), a key object (loan items), and a 
destination agent (customers). The second pattern is 
the Stative SOM, defined by the following 
concepts: a Stative Action (keep), an unidentified 
agent currently designated as UNKNOWN, a key 
object (details), and object properties (name, 
address, and date). 

 

6.2 SOM Instances Translator 
This component converts each SOMi into a 

distinct class diagram. This process involves 
several steps. 



 Journal of Theoretical and Applied Information Technology 
31st March 2025. Vol.103. No.6 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
2193 

 

Step 1. Loading SOM instances: A collection of 
SOMi is derived from the SOM Constructor 
component, created by instantiating SOM patterns 
that include NL requirement constructs. Each SOMi 
represents a requirement statement and is formatted 
in XMI. The XMI file shown in Figure 3 was 
uploaded to the SOMi Translator. The SOMi 
Translator employs an XMI parser to analyze 
separate SOM instances alongside their associated 
concepts, ultimately producing a parse tree. 
Following this, the XMI document is formatted for 
better human readability, allowing the modeler to 
explore SOMi and its associated concepts 
effectively. 

Step 2. Identifying Missing Concepts: This step is 
optional since TRAM can generate preliminary 
class diagrams, even if some concepts are absent. 
SOMi is deemed incomplete if TRAM has 
difficulty extracting certain concepts from a 
sentence due to co-reference challenges that are 
typical in NLP techniques. For example, 
requirements that use passive constructions or 
include pronouns (it, she, he, they, etc.) and 
acronyms can hinder coreference resolution. 
Accurate interpretation of the text or evaluation of 
the significance of different topics, pronouns, and 
other referential expressions presents computational 
difficulties. In the TRAM approach, if an SOMi 

cannot be fully instantiated using requirement 
constructs, it is designated UNKNOWN. The 
resolution of missing concepts was facilitated 
through an intuitive interface that allowed a human 
modeler to select a concept from a drop-down list 
or introduce a new one. When a missing concept is 
detected in the selected SOMi, a dedicated window 
prompts the user to address it directly. 

Step 3. Converting SOMi to Class Diagram: This 
process consists of three substeps for mapping 
SOM instances to class diagrams: (a) transforming 
each SOMi concept into a UML class element 
through the application of translation rules, (b) 
establishing UML relationships based on the 
concept associations defined in the SOM patterns, 
and (c) developing a UML class diagram to 
illustrate the SOMi. 

In Step 3(a), suitable translation rules were used to 
convert the SOMi concepts into the respective 
components of the UML class. These rules define 
the correlations between SOMi concepts and UML 
Class elements. Implementation occurs within a 
transformational context that converts the source 
model (SOMi) into the target model (UML Class 
Diagram), using the specific transformation rules 
presented in Table 1. 

<?xml version="1.0" encoding="ASCII"?> 
<som:FunctionalSpec xmi:version="2.0 name="Library"> 
<hasRequirement id="1" name="issue item"> 

<hasSOM type="Possession"> 
<hasAction name="issues" id="10.16" pos="VBZ" cardinality="1" lemma="issue"/> 
<haskeyObject name="items" id="22.27" pos="NNS" cardinality="*" lemma="item"/> 
<hasdstAgent name="customers" id="31.40" pos="NNS" cardinality="*" lemma="customer"/> 
<hassrcAgent name="library" id="2.9" pos="NN" cardinality="1" lemma="library"/> 

</hasSOM> 
</hasRequirement> 
<hasRequirement id="2" name="keep detail"> 
<hasSOM type="Stative"> 
<hasAgent name="UNKNOWN" id="" pos="" cardinality="" lemma=""/> 
<hasAction name="kept" id="72.76" pos="VBN" cardinality="1" lemma="keep"/> 
<haskeyObject name="Details" id="42.49" pos="NNS" cardinality="*" lemma="detail"/> 
<hasObject name="name" id="87.91" pos="NN" cardinality="1" lemma="name"/> 
<hasObject name="address" id="93.100" pos="NN" cardinality="1" lemma="address"/> 
<hasObject name="date" id="106.110" pos="NN" cardinality="1" lemma="date"/> 

</hasSOM> 
</hasRequirement> 

</som:FunctionalSpec> 
 

Figure 3. Example of Possession and Stative SOM Instances [10] 

 



 Journal of Theoretical and Applied Information Technology 
31st March 2025. Vol.103. No.6 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
2194 

 

Step 3(b) converts the relationships between 
concepts derived from the SOM definitions into 
UML relationships. Each SOM pattern follows a 
predefined structure based on the SOM metamodel. 
This internal framework specifies relevant concepts 
and their interconnections. For instance, a 
Possession SOM is linked with at least one source 
agent that possesses a key object assigned to a 
destination agent. In this case, association rule 1 
translates the ‘owns’ and 'allocate' relationships into 
UML associations. A Stative SOM can be 
associated with both an agent and a key object. 
Here, aggregation rule 2 converts the 'has' 
relationship into a UML aggregation association. 
TRAM extracts the multiplicity of conceptual 
relationships from part-of-speech tags produced by 
the NLP parser. The nature of noun tags, whether 
singular or plural, dictates how many instances of a 
concept can exist within a relationship. When a 
noun phrase is singular, the multiplicity is defined 
as one; conversely, if it is plural, the multiplicity is 
considered unlimited (*). 

To conclude the SOM Instances Translator phase, 
in Step 3(c), class diagrams representing each 
SOMi were created, as shown in Figure 4. The 

element that was formerly labeled as UNKNOWN 
in the Stative SOMi has now been recognized as a 
"library." 

 
 

Figure 4. UML Class Diagrams representing (a) 
Possession SOMi and (b) Stative SOMi 

Table 1. Rules for converting SOMi into UML Class elements. 

Target Element Rule Description 

Class 
All THING concepts (e.g., AGENT, KEY OBJECT, MATERIAL, CONTAINER, 
INSTRUMENT, OBJECT) are represented as class elements such that the class name is a 
THING name. 

Attribute 
If a THING has a PROPERTY, then the PROPERTY is an attribute of the THING class, 
such that, the attribute name and type are derived from a PROPERTY concept. 

Operation 
If an AGENT performs an ACTION and an ACTION affects a KEY OBJECT then an 
ACTION is an operation of the AGENT class, such that, operation name is the ACTION 
name and return type is the KEY OBJECT class. 

Association I 
If an AGENT performs an ACTION and an ACTION affects a KEY OBJECT, then the 
relationship is an association such that the memberEnd class is an AGENT, ownedEnd 
class is a KEY OBJECT and the association label is the ACTION name. 

Association II 
If an OBJECT modifies a KEY OBJECT, then the relationship is an association such that a 
memberEnd class is an OBJECT and ownedEnd class is KEY OBJECT. 

Composition 
If a MATERIAL makes a KEY OBJECT, then the relation is composition, such that the 
composite class is a KEY OBJECT and a part class is MATERIAL. 

Aggregation I 
If a CONTAINER contains a KEY OBJECT, then the relation is an aggregation, such that 
an aggregate class is a CONTAINER and part class is a KEY OBJECT. 

Aggregation II 
If a THING has an OBJECT, then the relation is an aggregation such that an aggregate 
class is a THING and a part class is an OBJECT. 

Dependency I 
If an AGENT uses an INSTRUMENT, then the relationship is a dependency, such that the 
client class is a AGENT and the supplier class is an INSTRUMENT. 

Dependency II 
If there is an ACTION that involves two AGENTs and one AGENT depends on another to 
perform the ACTION, then the relationship is a dependency. 

Generalization 
If a THING concept is a specialization of a generic concept THING, then the relationship 
is generalized, such that a specialized THING is a subclass and a generalized THING a 
superclass. 

 



 Journal of Theoretical and Applied Information Technology 
31st March 2025. Vol.103. No.6 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
2195 

 

6.3 Model Composer 
The Model Composer component was 

designed to combine class diagrams that represent 
individual SOMi into a cohesive class diagram. The 
integration process involves two primary steps. The 
first step, known as matching, involves identifying 
elements that depict the same concepts in different 
class diagrams. After the matching elements are 
identified, a merging process takes place where the 
matched elements are combined to create new 
model elements that offer a cohesive representation 
of concepts.  

Matching: A crucial step in creating the model 
elements is recognizing similarities or differences 
in the input models to decide what should be 
combined. This method relies on a signature-based 
composition technique that circumvents the 
conflicts typically found in name-based matching. 
A signature is composed of some or all properties 
linked to an element within the UML Class 
metamodel. Properties defining a signature can 
range from the name of the element to an extensive 
list of all associated properties. For example, the 
signature of an attribute is determined by both its 
name and type. The signature of a class element is 
established by its name and type, where the type is 
derived from the SOM metamodel, encompassing 
categories such as Agent, Key Object, and 
Container. Usually, the default signature includes 
only the name of the model element. In signature- 
based matching, elements that belong to the same 
type offer various points of view on a single 
concept. The semantics involved in the matching 
process depend on the specific domain. 
Recognizing model elements that signify the same 
concept is contingent on details pertinent to the 
interpretation of the model. 

Merging: The merging operator creates a new 
model by combining two pre-existing models. It 
combines elements that match the criteria 
established by the matching operator and produces 
new elements in the resulting model. This operator 
analyzes all elements that correspond to the two 
input models. When these elements fulfill the 
merging criteria, it generates a new element in the 
output model. The merging process follows the 
specified rules. 

MR 1. When the elements of the model (such 
as classes) in the input models share identical 
signatures, they are consolidated into a single 
element. 

MR 2. If the properties represented by model 
elements (such as class attributes) have 
corresponding signatures, they are 

represented only once in the resulting merged 
element. 

MR 3. If one property exists in one matching 
element but not in the other, it will be included 
in the composed model element. 

MR 4. If the relationships have matching ends, 
they merge, as shown in Figure 5. 

MR 5. In cases where matching relationships 
have different multiplicities at their respective 
ends, the greater multiplicity is applied to the 
end of the merged association in the composite 
model. 

 

 
 

Figure 5. Illustration of matching and merging 
relationship ends. Relationships are unified when 
their ends match, ensuring consistent connections 

within the model. 

 

 

7. REQUIREMENT TRACER 

A traceability link represents an abstraction 
that arises from converting one model element into 
another. These transformations are naturally 
directional, creating from-to-relations between the 
model elements. Each link is defined by a type that 
reflects its place in a series of transformations, 
influenced by the kind of model element involved 
and the transformation rule applied. TRAM can 
generate three types of traceability links: (1) linking 



 Journal of Theoretical and Applied Information Technology 
31st March 2025. Vol.103. No.6 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
2196 

 

requirement constructs with model elements, 
known as Text2Model; (2) connecting model 
elements across various levels of abstraction, 
referred to as Model2Model; and (3) associating 
concepts across multiple requirement statements, 
called inter-requirements. The Requirement Tracer 
component has a dual-step process that first 
generates traceability links, forming connections 
among related entities to clearly delineate 
dependencies and relationships. Second, it renders 
these traceability links visually, offering a graphical 
representation that facilitates the comprehension 
and analysis of the interrelations among various 
components. 

 

7.1 Creating Traceability Links 
As discussed in Section 5.3, a distinct 

identifier was assigned to each requirement 
element. Instances of SOM are derived from these 
requirement constructs (or terms). Therefore, the 
same identifier is assigned to an element within the 
SOMi that relates to a specific NLR construct. 
These identifiers are incorporated into the XMI 
document that contains the SOMi, as demonstrated 
in Figure 3. Each element within the SOMi 
corresponds to a specific requirement it represents. 
The connection between model elements and 
requirement constructs generally demonstrates a 
many-to-many relationship, where multiple model 
elements can reference the same requirement 
construct, and a single requirement construct can be 
represented by various model elements. TRAM 
defines three types of traceability links: 
Text2Model (T2M), Model2Model (M2M), and 
Inter-Requirements (R2R). A traceability link 
instance is created when a mapping rule establishes 
the connection between the source and target 
elements during the transformation process. 

T2M Links: These links are created using 
transformation rules that connect the Parsed NLR 
constructs with SOMi elements (intermediate 
model). Once the relationship between a Parsed 
NLR construct and an SOMi element is established, 
a T2M link is created. Each T2M link is 
represented as a tuple: Type(source_element, 
target_element), where the source element comes 
from the requirements, and the target element is an 
SOMi element. 

M2M Links: These links are created using 
mapping rules that connect elements of models at 
different levels of abstraction, such as those present 
in SOMi and UML. For example, an Agent or Key 
Object is associated with a class element; an action 
aligns with a class operation and is represented 

through an association between classes, while 
properties of the agent are related to attributes. 
M2M links are represented as a tuple: 
Type(source_element, target_element) in which the 
source element comes from SOMi and the target 
element belongs to a UML class model. 

Each element within a class diagram is assigned to 
a unique identifier that is generated automatically. 
This functionality is facilitated by the MetaObject 
Facility (MOF) and Eclipse Modeling Framework 
(EMF), which utilize XMI tags and attributes. The 
MOF is designed to provide a framework for 
defining and managing metadata and 
interoperability between different modeling tools. It 
describes how models are represented in XML 
Metadata Interchange, a standard that allows 
different tools to exchange metadata information 
common to UML tools. Throughout the model 
transformation process, a unique xmi.id is created 
for every UML element. This automatic creation of 
distinct identifiers supports consistency and 
guarantees traceability. 

R2R Links: Connections among concepts found in 
various requirement statements. R2R links are 
recognized during the model composition phase. To 
ensure traceability of requirements, a composed 
model M must meet the following criteria: 

 Each component of the input must correspond 
to a related component within M. 

 The input components are aligned with an 
identical component in M only if they are 
equivalent, and this equality matching must 
demonstrate transitivity. 

 In M there should be no elements outside those 
included in the input models. 

R2R links associate a model element with one or 
more requirement statements. For example, if an 
agent handles several tasks, these tasks are 
referenced in multiple requirement statements. 
During the composition process, elements that 
reference the same concept are combined into one 
single element. Consequently, an R2R link 
encompasses references where a merged element is 
indicated in the requirements document. An R2R 
link is formatted as an element (reqID, reqID, 
reqID, etc.), where element denotes a merged 
element from the resulting UML class diagram, and 
reqID reflects the requirement statement that 
defines the element. When intermediate models are 
utilized in the transformation, additional 
traceability links can be formulated between the 
initial and final target models. R2R links can be 
likened to the derived traceability links because 
they create implicit associations between the 



 Journal of Theoretical and Applied Information Technology 
31st March 2025. Vol.103. No.6 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
2197 

 

original NLRs and the final target model (UML 
class diagram). For example, knowing that the 
SOMi element S contributes to the fulfillment of 
requirements R1 and R2, and that the class diagram 
element C is derived from S, we can infer that the 
class diagram element C is also related to 
requirements R1 and R2. The traceability links 
derived facilitate a deeper understanding of the 
connections between the source and target models. 

 

7.2 Visualizing Links 
The TRAM approach incorporates both a 

traceability matrix and graph-based visualization 
techniques to address some of the known 
challenges associated with these methods. In this 
study, the traceability matrix is presented in a table 
format that is accessible to users of various 
backgrounds. Typically, an element in the matrix is 
identified by a reference number and a pop-up 
window is used to display the metadata or content 
of that element. Conventional traceability matrices 
only include references (IDs) to the elements or 
markers at each intersection to indicate the 
existence of a link, without revealing the model 
elements themselves. On the contrary, TRAM 
presents the elements at each intersection in the 
matrix instead of the identifiers, facilitating easier 
navigation through the links among the various 
elements. Furthermore, TRAM includes the ability 

to emphasize related elements within models at 
different abstraction levels. For example, the 
modeler can visualize the traceability connections 
between T2M and M2M. When an SOMi is 
selected, its associated textual requirements are 
highlighted, as illustrated in the lower left panel of 
Figure 6, which shows the T2M links. When an 
SOMi is selected, the corresponding UML class 
diagram is shown, as demonstrated in the right 
panel of Figure 6, which illustrates the M2M link. 

Table 2 presents an illustrative traceability report or 
matrix generated using the TRAM approach. 
Examples of T2M links include T2M (item, 
KeyObject.item) and T2M (library, Agent.library), 
while examples of M2M links are M2M 
(KeyObject.item, Class.Item) and M2M 
(Agent.library, Class.Library). An example of an 
R2R link is library (1, 7, 25), indicating that the 
library element is derived from requirements 1, 7, 
and 25. 

Traceability data may be incorporated within the 
models they reference, manifested as model 
element attributes like tags and properties, or kept 
separate from these models in another distinct 
model. The former approach encounters various 
issues [37], as each model possesses its own 
representation and semantics. Including such 
information directly within a model can lead to 
pollution. A directed link that exists solely in the 

 

 
 

Figure 6. Visual Representation of Traceability Connections 



 Journal of Theoretical and Applied Information Technology 
31st March 2025. Vol.103. No.6 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
2198 

 

source model would not be observable in the target 
model. However, if the linking data is maintained 
in both the source and target models, 
synchronization with each change would be 
necessary, increasing the effort needed to maintain 
consistency. The latter approach of external storage 
is beneficial because it keeps both the source and 
target models clean by storing link information in a 
separate model. Moreover, the maintenance 
required for linking information upon modifications 
is significantly reduced. Thus, TRAM opts to store 
linking information outside the models they pertain 
to, generating a traceability report in XML format 
that encapsulates all elements and properties of the 
links. A key requirement for externally storing 
traceability links is that model elements possess 
unique and persistent identifiers, allowing 
traceability links to be resolved clearly and 
unambiguously. 

 

8. EVALUATION OF TRAM  

This section presents the method and 
results to evaluate the accuracy and completeness 
of class diagrams produced by TRAM. This method 
compares the class diagrams generated by TRAM 
with those created manually by requirements 
engineering experts. Professionals and experts in 
the requirement engineering domain should 
participate in the evaluation of the automatically 
generated analysis model [38], [4] and compare it 
with a manual model developed by human experts 
to determine how closely the automated analysis 
model matches the expert solution. The models 
created by human experts are precise; therefore, 
they act as standards for comparison. The use of 
human experts to create benchmark class diagrams 
is important because it ensures a high-quality and 
accurate representation of the required classes, 
relationships, and attributes. Their expertise 
established a solid standard for evaluating 

Table 2. Illustrative Traceability Report generated by TRAM. 

NLR 
Construct 

SOMI Element UML Element 
Requirement 

ID 

mark STATIVE_INV.hasnonAgent.mark CLASS.Mark 8 

card COMMUNICATION.haskeyObject.card ATTRIBUTE.Section.mark, CLASS.Card 4, 5 

section STATIVE_IN.haskeyObject.section CLASS.Section 8 

customer COMMUNICATION.hasobject.customer CLASS.Customer 2, 3 

item COMMUNICATION.haskeyObject.item, 
POSSESSION.haskeyObject.item, 
CREATION.haskeyObject.item, 
MOTION.haskeyObject.item 

CLASS.Item 1, 9, 14, 15, 16, 
17, 18, 22, 23, 24 

extend CHANGE.hasAction.extend METHOD.Item.extendLoan() 17 

address STATIVE.haskeyObject.address CLASS.Address 2 

code STATIVE_INV.haskeyObject.code, 
COGNITION.haskeyObject.code, 
MOTION.haskeyObject.code 

ATTRIBUTE.Item.code, CLASS.Code 9, 20, 21 

library COMMUNICATION.hasrcAgent.library, CLASS.Library 1, 7, 25 

loan CHANGE.haskeyObject.loan CLASS.Loan 17 

read COGNITION.hasAction.read METHOD.BarcodeReader.readCode(), 
ASSOCIATION.BarcodeReader-to-Code 

26 

reserve POSSESSION.hasAction.reserve METHOD.Library.reserveItem() 15 

have STATIVE.haskeyObject.have CLASS.Name 10, 11, 12, 13 

author POSSESSION.haskeyObject.author ATTRIBUTE.Book.author 13 

issue COMMUNICATION.hasAction.issue METHOD.Library.issueItem(), 
METHOD.Library.issueCard(), 
METHOD.Library.issueNumber() 

1, 3, 4, 18, 19, 
22, 24 

customer COMMUNICATION.hasdtAgent.customer, 
CREATION.hasnonAgent.customer, 
MOTION.hasAgent.customer 

CLASS.Customer 1, 4, 14, 15, 16, 
18, 19, 21, 22, 24 

librarian MOTION.hasAgent.librarian CLASS.Librarian 23 

borrow POSSESSION.hasAction.borrow METHOD.Library.borrowItem() 14, 27 

 



 Journal of Theoretical and Applied Information Technology 
31st March 2025. Vol.103. No.6 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
2199 

 

automated tools. Experts effectively handle real-
world complexities and interpret requirements and 
constraints, leading to more adaptable solutions. 
Manually created benchmarks also help identify the 
limitations of automated tools that lead to 
improvements in their performance.  

 

8.1 Selection of Critique Criteria 
The effectiveness of the TRAM tool was 

evaluated using a set of criteria chosen to reflect the 
core goals of the study: ensuring accurate and 
comprehensive traceability between NLRs and 
class diagrams. The selected criteria are as follows: 

Precision is an important metric in assessing 
how accurately the tool generates relevant elements 
within class diagrams. When human experts create 
software artifacts from NLRs, they establish 
connections between the requirement constructs 
and elements of the class diagram. For each 
element of the created class diagram, a 
corresponding link exists for each construct in the 
NLRs. To evaluate the accuracy of the traceability 
links produced by TRAM in comparison to those 
crafted manually by experts, a precision metric was 
used. This metric evaluates the accuracy and 
relevance of elements within a TRAM-constructed 
class diagram, highlighting how closely the model 
aligns with the real world or domain. The precision 
was calculated using the following formula: 

 

                                  

(1) 

Recall measures the completeness of the 
traceability process. The completeness criterion 
evaluates the ability of TRAM to identify all model 
elements that align with those created by human 
experts, thus confirming its traceability links. The 
recall metric was used to assess the completeness of 
the class diagrams generated by TRAM. Recall 
evaluates the proportion of accurately identified 
relevant items compared to the total count of 
relevant items in the benchmark. Specifically, it 
focuses on how well the generated model captures 
all relevant information defined in the 
requirements. The recall measure was expressed as 
follows: 

 

                                    

(2) 

Both precision and recall are well-established 
metrics in information retrieval systems and have 
been widely adopted in software engineering to 
evaluate tools that generate software artifacts from 
natural language requirement specifications (NLRs) 
[39], [40], [41]. Given the importance of balancing 
accuracy and completeness, the F1 score is used, a 
metric that combines precision and recall into a 
single value. The F1 score provides the harmonic 
mean of precision and recall, offering a 
comprehensive measure of the model’s overall 
performance. This score is particularly valuable 
when it is necessary to consider both the accuracy 
of the retrieved elements and the completeness of 
the generated software artifacts, ensuring a robust 
evaluation of the tool’s effectiveness. 

 

                       (3) 

 

These criteria—precision, recall, and the F1 
score—are widely adopted in the software 
engineering domain for evaluating the effectiveness 
of traceability tools, ensuring a thorough 
assessment of TRAM's performance in generating 
reliable traceability links. 

 

8.2 Constructing Class Diagrams 
The evaluation used a dataset comprising five 

NLRs sourced from peer-reviewed studies, which 
are well-regarded for assessing requirement 
engineering tools. A full description of the data set 
is provided in Supplementary Material Section 2. 

 NLRs-1: originated from the domain of library 
information systems and was discussed and 
used in [41]. 

 NLRs-2: provides a high-level overview of the 
library system, as used in [42] and [43]. 

 NLRs-3: The site centers on an online 
footwear retailer that offers shoes to customers 
through a website. 

 NLRs-4: outlines the interaction between a 
fictional salesperson and a sales order system. 
This specification was published and 
referenced in [44]. 

 NLRs-5: describes a theoretical specification 
related to an in-flight missile control system. 
This specification was introduced and applied 
in [45]. 

Two experts in requirements engineering were 
involved in developing benchmark class diagrams 
for the five NLRs. Expert 1 (E1) had more than 25 



 Journal of Theoretical and Applied Information Technology 
31st March 2025. Vol.103. No.6 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
2200 

 

years of experience in requirements engineering, 
education and research, while Expert 2 (E2) had 
more than 15 years of experience in the same fields. 
The two experts received the same data set and the 
following instructions. 

Create a class diagram or identify 
components (e.g., classes, properties, methods, 
and associations) required to develop a class 
diagram based on each NLR specification. A class 
element can be textually represented as Class 
[Attribute] (Operation), and a relationship can be 
represented as a class –verb phrase– class. 

 

Table 3 presents the total number of elements 
(including classes, operations, and relationships) 
identified by experts for each NLR specification. 
This analysis was performed by counting the 
individual classes, operations, and binary 
relationships within the benchmark diagrams 
produced by the experts. For verification purposes, 
the benchmark class diagram elements are 
presented in Appendix A and Appendix B to allow 
the reader to independently review the number of 
elements. Table 4 shows the total number of 
elements identified or constructed using the TRAM 
approach of the five NLRs. The generated TRAM 
class diagrams are presented in Supplementary 
Material, Section 3. 

 

8.3 Comparison Strategy 
In the class diagram generated by TRAM from 

an identical NLR specification, each component 
was aligned with a corresponding element in the 
benchmark. When a match is identified, the counter 
for the number of relevant elements correctly 
identified by TRAM increases by one, thus 
categorizing an element as relevant if it corresponds 
accurately to a benchmark element. Due to limited 
resources, the comparison was executed by the 
author and independently corroborated by two 
graduate students. The author instructed the 
students on how to implement the comparison 
strategy. 

The matching process was carried out in two 
stages according to the methodology described in 
[41]. Initially, the names of the elements to be 
matched must exhibit a sufficient level of 

similarity; for example, loan items can 
appropriately match items but not with loans. The 
context in which each element was used was then 
evaluated to verify that it complied with the 
meanings associated with its name. Classes are 
matched using approximate name matching, and 
contextual relevance is evaluated by analyzing their 
attributes, operations, and interrelationships. 
Although attributes are not quantitatively assessed, 
they play a role in the contextual evaluation of class 
elements. In cases where a single key class could 
potentially correspond to two response classes, or 
conversely, the matching score remains constant, 
irrespective of the chosen configuration. The 
matching of operations was solely based on name 
similarity; consequently, parameters, return types, 
and data types were excluded from the analysis. It 
is essential for an operation to have a name that 
matches exactly that of the benchmark and to exist 
within the correct class. The relationships were 
evaluated through contextual comparisons, focusing 
on binary relationships. A relationship is considered 
relevant between classes A and B if it exists in their 
respective benchmark classes. In this study, 
associations, aggregations, compositions, and 
generalizations are counted as relationships. 

 

8.4 Results 
Although experts used the same data set and 

instructions, they identified different numbers of 
elements. This shows that a single benchmark class 
diagram for any NLR specification is not definitive, 
because different experts often produce varying 
diagrams. The same NLR can be represented in 
various ways by different experts, or even by the 
same expert at different moments. This element of 
subjectivity implies that class diagrams cannot be 
classified as right or wrong, but rather as adequate 
or inadequate. Consequently, TRAM performance 
was evaluated against the benchmark diagrams of 
both experts. This method recognizes the intrinsic 
variability in how humans interpret requirements 
and underscores the need for adaptability when 
evaluating automated tools. By incorporating 
diverse expert points of view, the assessment 
becomes more resilient, facilitating a more 
thorough understanding of the strengths of TRAM 
and potential areas for improvement. 



 Journal of Theoretical and Applied Information Technology 
31st March 2025. Vol.103. No.6 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
2201 

 

As presented in Table 5, TRAM has a strong 
recall in all NLRs, consistently capturing most 
relevant elements, with values remaining above 
0.60 and peaking at 0.96 for NLRs-4. However, the 
precision is significantly lower, falling between 
0.25 and 0.51, which indicates that a considerable 
number of irrelevant or inaccurate elements are also 
included. A contributing factor to this outcome is 
the use of SOM patterns by TRAM that contain 
predefined elements. This significantly increases 

the number of elements identified, affecting 
precision by including many elements that may not 
be as relevant as per human experts. F1 scores, 
which balance both precision and recall, reflect 
moderate achievement and range from 0.34 to 0.66. 
These results imply that while TRAM effectively 
maintains coverage, there is a need to improve its 
accuracy in recognizing relevant elements. 
Enhancing precision would result in better overall 
performance, as evidenced by higher F1 scores. 

Table 3. Number of elements identified by experts for each NLR (Benchmarks). 

 NRL-1 NRL-2 NRL-3 NRL-4 NRL-5 

Expert 1 

Classes 10 10 6 6 9 

Operations 12 10 16 17 12 

Relations 5 5 5 4 7 

Total 27 25 27 27 28 

Expert 2 

Classes 8 8 7 7 8 

Operations 11 12 16 18 15 

Relations 5 6 6 6 7 

Total 24 26 29 31 30 

 

Table 4. Number of elements produced by TRAM for each NLR. 

 NRL-1 NRL-2 NRL-3 NRL-4 NRL-5 

Classes 18 10 17 18 22 

Operations 23 21 39 45 22 

Relations 17 16 20 23 25 

Total 58 47 76 86 69 

 

Table 5. TRAM’s performance results. 

 NRL-1 NRL-2 NRL-3 NRL-4 NRL-5 

Expert 1 

Precision 0.33 0.49 0.25 0.30 0.35 

Recall 0.70 0.92 0.70 0.96 0.86 

F1-score 0.45 0.64 0.37 0.46 0.49 

Expert 2 

Precision 0.29 0.51 0.24 0.27 0.32 

Recall 0.71 0.92 0.62 0.74 0.73 

F1-score 0.41 0.66 0.34 0.39 0.44 

 

 



 Journal of Theoretical and Applied Information Technology 
31st March 2025. Vol.103. No.6 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
2202 

 

8.5 Threats to Validity 
Regarding internal validity, it is important to 

note that the approach used to compare TRAM-
generated class diagrams with benchmark diagrams 
may be biased. To address this concern, a 
comparison strategy was explicitly defined. This 
strategy was previously used by other scholars in 
the domain and was applied systematically 
throughout this study. The comparison was 
conducted by the author and independently verified 
by two post-graduate students. Students enlisted by 
the author were provided with guidelines to execute 
the comparison strategy. Additionally, there is 
potential for subjective bias by human experts 
during the manual creation of benchmark diagrams, 
as these may reflect individual expert opinions 
rather than actual system requirements. To mitigate 
this, the experts involved in generating the 
benchmark diagrams for this study have substantial 
experience and specialization in requirements 
engineering. 

Regarding external validity, the data set 
employed may not encapsulate the entire spectrum 
of complexity and variability characteristics of real-
world software engineering projects, thereby 
constraining the generalizability of the results. To 
address this limitation, the data set used in this 
study comprised five NLR specifications from 
various problem domains derived from peer-
reviewed publications and renowned for their use in 
assessing NLP4RE tools. 

Construct validity concerns can arise from 
definitions and perceptions of precision and 
completeness in the evaluation of class diagrams. 
Definitions that are too narrow or too vague may 
fail to capture all relevant aspects, potentially 
leading to a partial evaluation of class-diagram 
quality. In addition, differing interpretations can 
cause inconsistencies, which undermines the 
validity of the results. Such definitions must align 
with real-world demands to ensure that the 
evaluation mirrors practical applications. The 
consistent application of these definitions 
throughout the evaluations is crucial to avoid 
misleading comparisons and to accurately represent 
the potential of the tool in this study. The 
definitions used in this study came from literature 
and were initially developed to assess information 
retrieval systems, which are now widely used to 
assess the performance of NLP4RE tools. 

 

9. CONCLUSION 

This study introduces a structured traceability 
approach to transform NLRs into class diagrams, 

enhancing requirement traceability in the software 
development process. Using NLP and SOM 
patterns, the TRAM tool automates class diagram 
generation, facilitating comprehensive traceability 
between NLRs and class diagrams. The evaluation 
results demonstrate TRAM's high recall in 
capturing relevant elements; however, its precision 
is affected by the inclusion of predefined elements 
within SOM patterns, leading to irrelevant details. 
Despite this, the results highlight TRAM’s 
robustness in achieving complete traceability and 
suggest further opportunities to improve accuracy. 

From my perspective, TRAM represents a 
meaningful step forward in bridging the gap 
between natural language requirements and formal 
software design models. While the tool effectively 
establishes traceability links, refining its precision 
remains an important challenge. In my view, this 
trade-off between recall and precision reflects a 
broader challenge in requirements engineering, 
where automation must balance completeness with 
correctness. I believe that integrating advanced 
NLP techniques and machine learning models 
could significantly mitigate these limitations, 
potentially leading to more adaptive and intelligent 
traceability solutions. 

Furthermore, I recognize the broader 
implications of this approach. The structured nature 
of SOM patterns suggests that TRAM’s 
methodology can be extended beyond class 
diagram generation to other software artifacts, such 
as sequence diagrams or even architectural models. 
This adaptability opens new avenues for research, 
reinforcing my belief that structured traceability 
techniques can play a transformative role in 
software engineering. 

Future research should focus on refining the 
implementation of SOM patterns and exploring 
strategies to optimize the trade-off between recall 
and precision. Additionally, incorporating Large 
Language Models (LLMs) presents an exciting 
opportunity to enhance the transformation process 
by enabling a deeper contextual understanding of 
NLRs. Leveraging LLMs will significantly improve 
TRAM’s ability to generate accurate and 
comprehensive traceability links, thereby 
broadening its impact within the field. 

Overall, while TRAM demonstrates promising 
results, further refinement is necessary to enhance 
its precision and adaptability. Nevertheless, my 
contributions lay a strong foundation for future 
advancements in automated requirements 
traceability, ultimately driving more efficient and 
intelligent software development practices. 



 Journal of Theoretical and Applied Information Technology 
31st March 2025. Vol.103. No.6 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
2203 

 

REFERENCES 

[1] I. Sommerville, Software Engineering, 9th 
ed.  Boston, Massachusetts, USA: Pearson 
Education Inc, 2011. 

[2] O. Gotel and C. Finkelstein, ‘‘An analysis of 
the requirements traceability problem,’’ in 
Proceedings of IEEE International 
Conference on Requirements Engineering. 
Colorado Springs, CO, USA: IEEE, 1994, 
pp. 94–101.  
https://doi.org/10.1109/ICRE.1994.292398 

[3] I. Galvao and A. Goknil, ‘‘Survey of 
traceability approaches in model-driven 
engineering,’’ in 11th IEEE International 
Enterprise Distributed Object Computing 
Conference (EDOC 2007). Annapolis, MD, 
USA: IEEE, 2007, pp. 313–324.  
https://doi.org/10.1109/EDOC.2007.42 

[4] T. Yue, L. Briand, and Y. Labiche, ‘‘A 
systematic review of transformation 
approaches between user requirements and 
analysis models,’’ Requirements 
Engineering, vol. 16, pp. 75–99, 2011.  
https://doi.org/10.1007/s00766-010-0111-y 

[5] D. Siahaan, R. Fauzan, A. Widyadhana, D. B. 
Firmawan, R. R. Putri, Y. Desnelita, 
Gustientiedina, and R. N. Putrian, ‘‘A 
scoping review of auto-generating 
transformation between software 
development artifacts,’’ Frontiers in 
Computer Science, vol. 5, p. 1306064, 2024.  
https://doi.org/10.3389/fcomp.2023.1306064 

[6] G. Spanoudakis, A. Zisman, E. Pérez-
Miñana, and P. Krause, ‘‘Rule-based 
generation of requirements traceability 
relations,’’ Journal of Systems and Software, 
vol. 72, no. 2, pp. 105–127, 2004.  
https://www.sciencedirect.com/science/articl
e/pii/S0164121203002425 

[7] P. Dai, L. Yang, Y. Wang, D. Jin, and Y. 
Gong, ‘‘Constructing traceability links 
between software requirements and source 
code based on neural networks,’’ 
Mathematics, vol. 11, no. 2, p. 315, 2023.  
https://www.mdpi.com/2227-7390/11/2/315 

[8] S. Winkler and J. von Pilgrim, ‘‘A survey of 
traceability in requirements engineering and 
model-driven development,’’ Software & 
Systems Modeling, vol. 9, pp. 529–565, 
2010.  https://doi.org/10.1007/s10270-009-
0145-0 

[9] R. Torkar, T. Gorschek, R. Feldt, M. 
Svahnberg, U. A. Raja, and K. Kamran, 
‘‘Requirements traceability: A systematic 
review and industry case study,’’ 

International Journal of Software 
Engineering and Knowledge Engineering, 
vol. 22, no. 03, pp. 385–433, 2012.  
https://doi.org/10.1142/S021819401250009X 

[10] K. J. Letsholo, ‘‘TRAM: Transforming 
textual requirements to support the earliest 
stage of model driven development,’’ Ph.D. 
dissertation, The University of Manchester, 
United Kingdom, 2014.  
https://pure.manchester.ac.uk/ws/files/15633
1363/FULL_TEXT.PDF 

[11] C. Larman, Applying UML and patterns: an 
introduction to object-oriented analysis and 
design and iterative development, 3rd ed.  
USA: Prentice Hall, 2005. 

[12] M. Fowler, UML Distilled: A brief guide to 
the standard object modeling language, 3rd 
ed.  USA: Addison-Wesley Professional, 
2004. 

[13] K. J. Letsholo, L. Zhao, and E. V. Chioasca, 
‘‘TRAM: A tool for transforming textual 
requirements into analysis models,’’ in 
Automated Software Engineering (ASE), 
2013 IEEE/ACM 28th International 
Conference on. Silicon Valley, CA, USA: 
IEEE, 2013, pp. 738–741.  
https://doi.org/10.1109/ASE.2013.6693146 

[14] R. A. Pierce, ‘‘A requirements tracing tool,’’ 
SIGMETRICS Perform. Eval. Rev., vol. 7, 
no. 3–4, p. 53–60, 1978.  
https://doi.org/10.1145/1007775.811100 

[15] W. Jirapanthong and A. Zisman, ‘‘Xtraque: 
traceability for product line systems,’’ 
Software & Systems Modeling, vol. 8, pp. 
117–144, 2009.  
https://doi.org/10.1007/s10270-007-0066-8 

[16] J. P. A. Almeida, M.-E. Iacob, and P. Van 
Eck, ‘‘Requirements traceability in model-
driven development: Applying model and 
transformation conformance,’’ Information 
Systems Frontiers, vol. 9, no. 4, pp. 327–342, 
2007.  https://doi.org/10.1007/s10796-007-
9038-3 

[17] J. Cleland-Huang, C. Chang, and M. 
Christensen, ‘‘Event-based traceability for 
managing evolutionary change,’’ IEEE 
Transactions on Software Engineering, vol. 
29, no. 9, pp. 796–810, 2003.  
https://doi.org/10.1109/TSE.2003.1232285 

[18] IBM, ‘‘IBM engineering requirements 
management doors documentation,’’ 2024.  
https://www.ibm.com/docs/en/engineering-
lifecycle-management-suite/doors    

[19] J. H. Hayes, A. Dekhtyar, S. K. Sundaram, E. 
A. Holbrook, S. Vadlamudi, and A. April, 



 Journal of Theoretical and Applied Information Technology 
31st March 2025. Vol.103. No.6 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
2204 

 

‘‘Requirements tracing on target (retro): 
improving software maintenance through 
traceability recovery,’’ Innovations in 
Systems and Software Engineering, vol. 3, 
pp. 193–202, 2007.  
https://doi.org/10.1007/s11334-007-0024-1  

[20] I. Ozkaya and Ö. Akin, ‘‘Tool support for 
computer-aided requirement traceability in 
architectural design: The case of 
designtrack,’’ Automation in Construction, 
vol. 16, no. 5, pp. 674–684, 2007.  
https://doi.org/10.1016/j.autcon.2006.11.006  

[21] F. Pinheiro and J. Goguen, ‘‘An object-
oriented tool for tracing requirements,’’ IEEE 
Software, vol. 13, no. 2, pp. 52–64, 1996.  
https://doi.org/10.1109/52.506462  

[22] J. Devlin, M. W. Chang, K. Lee, and K. 
Toutanova, ‘‘Bert: Pre-training of deep 
bidirectional transformers for language 
understanding,’’ in North American Chapter 
of the Association for Computational 
Linguistics. Minneapolis, Minnesota: 
Association for Computational Linguistics, 
2019, pp. 4171–4186.  
https://api.semanticscholar.org/CorpusID:529
67399  

[23] A. Radford, K. Narasimhan, T. Salimans, and 
I. Sutskever, ‘‘Improving language 
understanding by generative pre-training,’’ 
OpenAI, San Francisco, CA, USA, Tech. 
Rep., 2018.  
https://www.mikecaptain.com/resources/pdf/
GPT-1.pdf  

[24] J. Guo, J. Cheng, and J. Cleland-Huang, 
‘‘Semantically enhanced software traceability 
using deep learning techniques,’’ in 2017 
IEEE/ACM 39th International Conference on 
Software Engineering (ICSE). Buenos Aires, 
Argentina: IEEE, 2017, pp. 3–14.  
https://doi.org/10.1109/ICSE.2017.9  

[25] S. J. Ali, V. Naganathan, and D. Bork, 
‘‘Establishing traceability between natural 
language requirements and software artifacts 
by combining rag and llms,’’ in Conceptual 
Modeling.  "Cham": Springer Nature 
Switzerland, 2024, pp. 295–314.  
https://doi.org/10.1007/978-3-031-75872-
0_16  

[26] J. Lin, Y. Liu, Q. Zeng, M. Jiang, and J. 
Cleland-Huang, ‘‘Traceability transformed: 
Generating more accurate links with pre-
trained bert models,’’ in 2021 IEEE/ACM 
43rd International Conference on Software 
Engineering (ICSE). Madrid, ES: IEEE, 
2021, pp. 324–335.  

https://doi.org/10.1109/ICSE43902.2021.000
40  

[27] N. Marques, R. R. Silva, and J. Bernardino, 
‘‘Using chatgpt in software requirements 
engineering: A comprehensive review,’’ 
Future Internet, vol. 16, no. 6, p. 180, 2024.  
https://doi.org/10.3390/fi16060180  

[28] I. Ozkaya, ‘‘Application of large language 
models to software engineering tasks: 
Opportunities, risks, and implications,’’ IEEE 
Software, vol. 40, no. 3, pp. 4–8, 2023.  
https://doi.org/10.1109/MS.2023.3248401  

[29] S.-C. Necula, F. Dumitriu, and V. Greavu-S, 
erban, ‘‘A systematic literature review on 
using natural language processing in software 
requirements engineering,’’ MDPI, 
Electronics, vol. 13, no. 11, p. 2055, 2024.  
https://www.mdpi.com/2079-
9292/13/11/2055  

[30] Z. Pauzi and A. Capiluppi, ‘‘Applications of 
natural language processing in software 
traceability: A systematic mapping study,’’ 
Journal of Systems and Software, vol. 198, p. 
111616, 2023.  
https://www.sciencedirect.com/science/articl
e/pii/S0164121223000110  

[31] A. Marcus, X. Xie, and D. Poshyvanyk, 
‘‘When and how to visualize traceability 
links?’’ in Proceedings of the 3rd 
International Workshop on Traceability in 
Emerging Forms of Software Engineering, 
ser. TEFSE ’05. New York, NY, USA: 
Association for Computing Machinery, 2005, 
p. 56–61.  
https://doi.org/10.1145/1107656.1107669  

[32] E.-v. Chioasca, K. J. Letsholo, and L. Zhao, 
‘‘Transforming natural language requirement 
descriptions into analysis models,’’ Oct. 13 
2016, uS Patent App. 15/035,682.  

[33] C. Fellbaum, ‘‘English verbs as a semantic 
net,’’ International journal of Lexicography, 
vol. 3, no. 4, pp. 278–301, 1990.  
https://doi.org/10.1093/ijl/3.4.278  

[34] D. Klein and C. Manning, ‘‘Accurate 
unlexicalized parsing,’’ in Proceedings of the 
41st Annual Meeting on Association for 
Computational Linguistics-Volume 1. 
Sapporo, Japan: Association for 
Computational Linguistics, 2003, pp. 423–
430. 

[35] M. C. de Marneffe, C. D. Manning, J. Nivre, 
and D. Zeman, ‘‘Universal dependencies,’’ 
Computational Linguistics, vol. 47, no. 2, pp. 
255–308, 07 2021.  
https://doi.org/10.1162/coli_a_00402  



 Journal of Theoretical and Applied Information Technology 
31st March 2025. Vol.103. No.6 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
2205 

 

[36] G. A. Miller, R. Beckwith, C. Fellbaum, D. 
Gross, and K. J. Miller, ‘‘Introduction to 
wordnet: An on-line lexical database*,’’ 
International Journal of Lexicography, vol. 3, 
no. 4, pp. 235–244, 12 1990.  
https://doi.org/10.1093/ijl/3.4.235  

[37] N. Aizenbud-Reshef, B. T. Nolan, J. Rubin, 
and Y. Shaham-Gafni, ‘‘Model traceability,’’ 
IBM Systems Journal, vol. 45, no. 3, pp. 
515–526, 2006.  
https://doi.org/10.1147/sj.453.0515  

[38] L. Zhao, W. Alhoshan, A. Ferrari, K. J. 
Letsholo, M. A. Ajagbe, E. V. Chioasca, and 
R. T. Batista-Navarro, ‘‘Natural language 
processing for requirements engineering: A 
systematic mapping study,’’ ACM Comput. 
Surv., vol. 54, no. 3, Apr. 2022.  
https://doi.org/10.1145/3444689  

[39] V. Sagar, V. B. R, and S. Abirami, 
‘‘Conceptual modeling of natural language 
functional requirements,’’ Journal of Systems 
and Software, vol. 88, pp. 25–41, 2014.  
https://doi.org/10.1016/j.jss.2013.08.036  

[40] M. Elbendak, P. Vickers, and N. Rossiter, 
‘‘Parsed use case descriptions as a basis for 
object-oriented class model generation,’’ 
Journal of Systems and Software, vol. 84, no. 
7, pp. 1209–1223, 2011.  
https://doi.org/10.1016/j.jss.2011.02.025  

[41] H. Harmain and R. Gaizauskas, ‘‘Cm-
builder: A natural language-based case tool 
for object-oriented analysis,’’ Automated 
Software Engineering, vol. 10, no. 2, pp. 
157–181, 2003. 

[42] M. Ibrahim and R. Ahmad, ‘‘Class diagram 
extraction from textual requirements using 
natural language processing (nlp) 
techniques,’’ in Computer Research and 
Development, 2010 Second International 
Conference on. Kuala Lumpur, Malaysia: 
IEEE, 2010, pp. 200–204.  
https://doi.org/10.1109/ICCRD.2010.71  

[43] S. K. Shinde, V. Bhojane, and P. Mahajan, 
‘‘Nlp based object oriented analysis and 
design from requirement specification,’’ 
International Journal of Computer 
Applications, vol. 47, no. 21, pp. 30–34, June 
2012.  https://doi.org/10.5120/7475-0574  

[44] P. Harmon and M. Watson, Understanding 
UML: The Developer’s Guide: with a Web-
based Application in Java. Massachusetts, 
United States: Morgan Kaufmann Publishers 
Inc., 1997. 

[45] V. Ambriola and V. Gervasi, ‘‘On the 
systematic analysis of natural language 
requirements with circe,’’ Automated 
Software Engineering, vol. 13, no. 1, pp. 
107–167, 2006. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 Journal of Theoretical and Applied Information Technology 
31st March 2025. Vol.103. No.6 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
2206 

 

 

NLRs 1: Library Information Systems I 

Class [Attribute](Operation):  
 
Library [] (issuesItem(), issuesCard()) 
Item [barCode, name] (reserveItem(), renewItem(), 
returnItem()) 
Customer [name, address, dateOfBirth] (login(), 
borrowItem(),returnItem()) 
MembershipCard [memberNo] () 
Subject_Section [classificationMark] () 
Book [title, author]()  
Language_Tape [title, level] ()  
BarCode_Reader [title, author] (scanBarCode(), 
enterBarCode()) 
Current_Loan [] (extendLoan()) 
Record [] (updateRecords())  
  
Relationships: 
Library -issues- Loan Items 
Customer -issued- Membership Card 
Library -made of- Subject Sections 
Customer -borrow- Items 
Membership card -scanned by- BarCode_Reader 
 
Time spent: 16 mins 

NLRs 2: Library Information Systems II 

Class[Attribute](Operation):  
 
Library_System [] (searchItem()) 
Student [] (borrowItem(), returnItem())  
Faculty [] (borrowItem(), returnItem())  
Item [status] (getStatus()) 
Book [isbn, title, author, year, publisher] () 
Journal [title, author] ()  
Librarian [] (issueItem())  
Deputy_Librarian [] (receiveItem()) 
Accountant [] (calculateFine())  
Fine [] (checkoverdueItems() ) 
 
Relationships: 
Students -can borrow- Books 
Faculty -can borrow- Books & Journals 
Librarian -issues- Items 
Deputy Librarian ---receives- Items 
Accountant -charges- Fines 
 
Time spent: 10 mins 

NLRs 3: Online Shoe Company 

Class [Attribute] (Operation):  
 
Customer [name, address, payment_details, shoe_size, 
gender] (register(), login(), makeOrder(), 
trackOrder(), cancelOrder()),  
OddShoeCompany [] (checkStock(), deliverOrder(), 
dispatchOrder(), sendStatement()),  
Order [customer, status, shoe, date] 
(getOrderStatus()) 
Shoe [picture, price, stock_level] (findShoe(), 
getShoeList(), updateStockLevel()) 
Weekly_Report [Customers, ShoeSizes, Orders, 
StockLevels, cancelledOrders] 
(generateWeeklyReport())  
Statement [] (getOffers(), sendEmail()) 

Relationships: 
Customer -makes- Order 
Customer -registers with- OddShoeCompany 
OddShoeCompany -creates- Weekly_Report 
OddShoeCompany -sends- Statement 
Order -contains- Shoes 
 
Time spent: 17 mins 

NLRs 4: Sales Report Application 

Class [Attribute] (Operation):  
 
Salesperson [name,employee_number,ID] (login(), 
submitCustInfo(), checkCustInfo(), printOrder(), 
checkOrder(), submitOrder() ) 
Order [availability, price, shipping, tax] 
(checkSalesPerson(), checkAvailability(), 
checkPricing()) 
Customer [name, address, status] 
(checkCreditLimit()) 
Item [name, price] (addItem())  
Inventory [date, price, shipping, 
tax](approvePrice(), addShipping(), addTaxes(), 
totalOrder()) 
Accounting [] (approveCustInfo(), 
supplyCustomerCreditLimit()),  

 
Relationships: 
Salesperson ---submits--- Order 
Order ---includes--- Items 
Inventory ---checks--- Order 
Accounting ---approves--- Order 
 
Time spent: 23 mins 

NLRs 5: Missile Control System 

Class [Attribute] (Operation):  
 
Missile [mode] ()  
FMCS [command, height, position] (enterMode(), 
 setMainEngineMode(), readHeight(), readHeading(), 
 readPosition(), sendNavigationCommand(), 
 computeCommand() )  
Main_Engine [mode: on, off] ()  
Navigation_Engine [command] () 
Gyroscope [] (getHeading())  
Altimeter [] (getHeight())  
GPS [](getPosition())  
Command [token] (getCommand() )  
Launch_Control_Center [] (setTarget()) 

 
Relationships: 
Launch_Control_Center -manages- Missiles 
FMCS_Unit -controls- Missile 
Missile -has- Main_Engine 
Missile -has- Navigation_Engine 
Missile -has- Gyroscope 
Missile -has- GPS 
Missile -has- Altimeter 
 
 
Time spent: 25 mins 

 

 

APPENDIX A - EXPERT 1 BENCHMARK CLASS DIAGRAM ELEMENTS  



 Journal of Theoretical and Applied Information Technology 
31st March 2025. Vol.103. No.6 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
2207 

 

 

NLRs 1: Library Information Systems I 
 
Class [Attribute](Operation):  
Customer [name, address, dateOfBirth] (login(), 
borrowItem(),returnItem()) 
Library [] (searchItem(), updateRecords()) 
Section [classificationMark]() 
LoanItem [barCode, name] (issueItem(), 
reserveItem(), renewItem(), extendLoan()) 
types of LoanItem: Book [title, author](); 
LanguageTape[title, level]() 
MembershipCard [memberNo] () 
BarCodeReader [title, author] (scanBarCode(); 
enterBarCode())  
   
Relationships: 
Customer -issued- MembershipCard 
Library -made up- Section 
Customer -borrows- LoanItem 
BarCodeReader -scans- MembershipCard 
Section -contain- LoanItem 
 
Time spent: 18 mins 
 

NLRs 2: Library Information Systems II 
 
Class [Attribute](Operation):  
Book [isbn, title, author, year] (updateStatus()) 
Journal [title, author, year](updateStatus())  
Student [id, name, major] (borrowBook(), 
returnBook())  
Faculty [id, name, position] (borrowBook(), 
borrowJournal())  
Librarian [id, name] (issueBook(), issueJournal())  
DeputyLibrarian[id, name](receiveReturns()) 
Accountant [id, name] (receivePayment())  
Fine [amount, date] (payAmount(), calculateAmount()) 
 
Relationships: 
Books -issued to- Students. 
Books -issued to- Faculty. 
Journals -issued to- Faculty. 
Librarian -issues- Books. 
Librarian -issues- Journals. 
Accountant -receives- Fines 
 
Time spent: 14 mins 
 

NLRs 3: Online Shoe Company 
 
Class [Attribute] (Operation):  
Customer [cust_number, name, address, 
payment_details, shoe_sizes, gender, age] 
(register(), placeOrder(), trackOrder(), 
cancelOrder()) 
Order [order_id, status] (getStatus(), 
updateStatus()) 
Stock/Shoe [shoe_id, size, price, quantity, picture, 
status] (checkStatus(),  updateQuantity() ) 
Report [cust_number, order_id, shoe-id] 
(generateReport(), sendReport()) 
Supplier [name, address] (fulfilOrder()) 
ShoeCompanySys [] (createPurchaseOrder(), 
receiveGoods(), cancelPurchaseOrder()) 
SpecialOffer [shoe_id, price, shoe_size] 
(getOffers(), sendOffers())  
  
Relationships: 
Customer -makes- Order 
Order -contains- Stock/Shoes 
Supplier -supplies- Stock/Shoes 
ShoeCompanySys -order from- Supplier 
ShoeCompanySys -generates- Report 
Stock/Shoe -have- SpecialOffer 
 
Time spent: 25 mins 
 

NLRs 4: Sales Report Application 
 
Class [Attribute] (Operation):  
Salesperson [emp_number, name, ID] (login(), 
createOrder(), printOrder(), submitOrder())  
SaleWebProgram [] (checkLoginDetails(), 
checkCustInfo() ) 
Customer [name, address, status](checkCustStatus ()) 
Accounting [] (approveCustInfo(), approveOrder()) 
SalesOrder [id, date, totalPrice] (addItem(), 
checkItemAvailabity (), calculateTotalPrice()) 
Inventory [] (checkItemAvailabity(), 
checkItemPricing(), checkDeliveryDate(), 
calculateShipping(), updateInventory()) 
Item [item_id, name, price] (searchItem()) 
 
Relationships: 
Saleperson -uses- SaleWebProgram  
SaleWebProgram -creates- SalesOrder 
SalesOrder -includes- Items 
Inventory -contains- Items 
SalesWebProgram -checks- Customer 
Accounting -approves- SalesOrder 
 

Time spent: 28 mins 

NLRs 5: Missile Control System 
 
Class [Attribute] (Operation):  
LaunchControlCenter [] (setTarget()) 
Missile [status] () 
FMCS_Unit [height, heading, tartgetPosition]  
(receiveCommand(), updateStatus(), turnOnEngine(),  
readAltimeter(), readGyroscope(), turnOffEngine(),  
readGPS()), computeNavCommand() ) 
MainEngine [mode] (receiveCommand(), updateMode()) 
NavigationEngine [currentPosition, targetPosition]  
(receiveNavCommand()) 
Gyroscope [] (getHeading()) 
GPS_Device [] (getCurrentPosition()) 
Altimeter [] (getHeight()) 

 
Relationships: 
LaunchControlCenter -manages- Missiles 
FMCS_Unit -controls- Missile 
Missile -has- MainEngine 
Missile -has- NavigationEngine 
Missile -has- Gyroscope 
Missile -has- GPS_Device 
Missile -has- Altimeter 
 
 
Time spent: 21 mins 
 

 

APPENDIX B - EXPERT 2 BENCHMARK CLASS DIAGRAM ELEMENTS  

 


