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ABSTRACT 
 

Stress detection is crucial in various fields due to its significant negative effects on individuals and groups. 
Eradicating stress is difficult, thus the need to manage its physical and mental consequences. Current stress 
detection methods are ineffective and require enhancement. Traditional approaches struggle to accurately 
detect stress, particularly with complex and diverse data. The paper introduces a new model, Cascaded 
NN_BiLSTM_GRU with self-adaptive Walrus Optimization Algorithm (SA-WaOA), to address stress 
detection inefficiency by using adaptive techniques. The aim is to develop a dependable deep-learning model 
for early identification and support in mental stress intervention and resource allocation to enhance individual 
well-being. This newly proposed structure involves a cascaded CNN_BiLSTM_GRU where the dilation rate 
is adaptive by the Weibull distribution function, adaptive dropout determined by Cumulative Distribution 
Function (CDF), and establishment of adaptive loss function by exploiting the Bernoulli distribution. The 
Gated Recurrent Unit (GRU), in a cascaded CNN_BiLSTM_GRU, has been utilized for learning the spectral 
and temporal features. The model using Python platform shows improved stress detection accuracy. The 
research contributes significantly to the field of IT by introducing an innovative deep-learning model that 
leverages adaptive mechanisms for enhanced stress detection, setting a new benchmark in mental health 
monitoring and intervention. The proposed approach offers a robust framework for handling complex and 
diverse stress-related data, thereby improving the accuracy and efficiency of stress detection systems.Model's 
performance evaluated using various metrics. Results show high accuracy in different datasets and learning 
rates. EEG Feature dataset: 95.05% accuracy (70/30), 96.33% accuracy (80/20). Emotion dataset: 95.51% 
accuracy (70/30), 96.28% accuracy (80/20). Stress Detection dataset: 95.95% accuracy (70/30), 96.65% 
accuracy (80/20). DASPS dataset: 96.71% accuracy (70/30), 97.71% accuracy (80/20). 

Keywords: Cascaded CNN_Bilstm_GRU; Self-Adaptive Walrus Optimization Algorithm; Weibull 
Distribution Function; Cumulative Distribution Function; Bernoulli Distribution Function. 

 
1. INTRODUCTION 

 
Long-term stress in everyday life is a threat 

to the physical and mental stability of a person [1]. 
Allostatic load from continued exposure to stress 
results in the worsening of many important systems 
of the body, including the cardiovascular, immune, 
neuroendocrine, and metabolic systems. Stress 
detection involves a method of identifying signs of 
stress through various other methods, including 
physiological measurement (heart rate, cortisol), 
behavioral analysis (changes in sleep patterns, 
changes in productivity), and psychological 

assessment (surveys, questionnaires) [2]. Recent 
methods include wearable sensors and AI-powered 
tools for voice, facial, and digital interaction 
analysis. Early detection can help to maintain stress 
and subsequently improve the mental and physical 
well-being of an individual [3]. However, this comes 
with the severe challenge that efficiency of deep 
learning (DL) models depends strongly on both 
quality of data and optimization of model 
parameters.  

Traditional optimization techniques are 
usually unable to handle the high dimensionality and 
non-convexity of deep learning problems, which 
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mostly result in suboptimal solutions [4]. In this 
regard, metaheuristic algorithms have turn out to be 
so popular because of their ability to navigate 
complicated search spaces whilst resisting off local 
optima. Metaheuristic algorithms, inspired by using 
natural strategies which include genetic evolution or 
particle swarming, offer flexible and powerful 
optimization techniques that improve the overall 
performance of DL models [5] [6]. The architecture 
for DL applies sequential processing and refinement 
through many layers of neural networks, capturing 
pictures the complex pattern related to stress [7]. The 
self-adaptive metaheuristic algorithm carries out the 
optimization of version parameters dynamically, 
adapting to the dataset's characteristics to maximize 
global accuracy and strength of structure [8] 

The self-adaptive metaheuristic algorithm 
used here makes a crucial contribution to the 
framework by constantly updating the parameters of 
the DL model in order that it can optimize 
performance [9]. Traditional metaheuristic 
algorithms generally suffer from guide tuning of 
their hyperparameters, that's a completely laborious 
and time-consuming challenge. In contrast, a self-
adaptive method dynamically tunes the 
hyperparameters primarily based at the response 
from the overall performance, making sure that the 
optimization process is powerful and green [10]. In 
addition, the cascaded DL of architecture in addition 
complements the version's capability for dealing 
with complex and high-dimensional statistics. Each 
layer of the cascade is designed to capture precise 
features of the information, such that the illustration 
is progressively refined for higher detection 
accuracy [11]. This hierarchical processing is 
biologically inspired with the aid of the human 
cognitive technique of higher-order patterns and 
abstraction derivation from raw sensory inputs via 
successive layers of processing [12]. 

This study presents an advanced pressure 
detection framework combining the merits of 
cascaded DL and self-adaptive metaheuristic 
optimization [13]. By leveraging multimodal facts 
and advanced AI strategies, the framework offers a 
modern-day tool for real-time stress monitoring and 
control [14]. This approach could not only improve 
reliability and accuracy of stress detection but also 
open new vistas for personalized stress interventions 
and health monitoring applications. The integration 
of cutting-edge AI technologies in stress detection 
heralds a promising step toward trying to overcome 
the pervasive issue of stress in modern society and 
contributing to better mental health and well-being. 

 

 

The major contributions of the paper are as follows: 

 The cascaded architecture in the proposed 
framework combines a CNN, BiLSTM, and GRU, 
which makes the model greater capable of learning 
spectral and temporal capabilities successfully and 
improving stress detection accuracy 

 Adaptive mechanisms like the adaptive dilation rate, 
which utilizes the Weibull distribution, adaptive 
dropout based on the CDF, and adaptive loss 
function based on the Bernoulli distribution. All 
these adaptive properties improve strength and 
simplification of model. 

 The SA-WaOA algorithm makes feature selection 
with utmost optimization, which improves the 
efficiency in the selection process of features, 
assuring that only the relevant features are used for 
the detection of stress. 

The following sections are prearranged as 
surveys: Section 2 explores relevant research and 
literature reviews, Section 3 introduces proposed 
framework, Section 4 provides a detailed analysis of 
the observed results and discussions, and Section 5 
offers the final assessment of this study. 

2. LITERATURE REVIEW 
 

The model's performance may be limited 
by dataset quality and diversity, affecting 
generalizability. Overfitting could arise from the 
complex architecture and high parameter count. 
Reliance on specific adaptive techniques may 
restrict applicability to varied stress-related data. 
Performance variations across datasets highlight the 
need for consistent evaluation. A literature review is 
essential to identify existing research gaps, establish 
the study's relevance, and build on previous findings. 
It helps justify the research approach and highlight 
the novelty of the proposed model. 

Some of the recent research works related 
to stress detection were reviewed in this section 

In 2023, Almadhor et al., [15] employed 
chest-based data from the WESAD dataset to build a 
machine learning-based stacking model for stress 
detection. able to use data visualisation, RESP 
feature preprocessing, Z-score, SelectKBest feature, 
SMOTE, and normalisation to transform this natural 
dataset into a format that was readily adapted for the 
proposed model. 

In 2019, Ahuja and Banga [16] computed 
students' mental stress levels during their internet use 
and a week before the test. The goal is to examine 
stress in college students at numerous phases of their 
lives. the sometimes-overlooked impact that stress 
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related to exams or recruitment has on students. 
Examine how these elements impact students' 
mental health and establish a connection between 
stress and internet usage. 

In 2022, Xiang et al., [17] proposed an 
innovative method for extracting multidirectional 
spatiotemporal elements of SCADA data for wind 
turbine condition monitoring. The method relies on 
a CNN and a bidirectional gated recurrent unit 
(BiGRU) with an attention mechanism. Initially, the 
SCADA data is distributed using the quartile 
approach, which removes and cleans out anomalous 
data to increase the validity of the data. Next, the 
input variables are chosen based on the Pearson 
correlation coefficient, and CNN is used to convert 
them into high-dimensional features. The attention 
mechanism layer of the BiGRU network receives 
these features as input. The attention mechanism 
increases the impact of crucial information to 
increase the precision of learning. 

In 2022, Hamatta et al., [18] implemented 
an investigation of stress finding utilising deep 
learning-based and detecting devices. This proposed 
work examines stress detection methods applied to 
different settings, such as learning and travel, and 
with hardware that detects, like EEG, PPG, and 
GSR. The features are separated using a genetic 
method, and the provided data is classified using the 
DEAP dataset by the ECNN-LSTM. Before that, 
preprocessing techniques are suggested to remove 
signal artifacts. When stress reaches the emergency 
or alert level, it surpasses the threshold value.  

The efficacy of these CAD systems for 
pneumonia and highly suspected COVID-19 
infections in X-ray pictures was improved in 2021 
by the Karar et al., [19] proposal of a new 
architecture of cascaded deep learning classifiers. 
These two key enhancements are represented by our 
deep learning framework. To ease the challenging 
multi-label categorization of X-ray photographs for 
every evaluated example of the health condition, a 
set of binary classifiers was first used. to diagnose a 
patient in a manner that is similar to a clinical setting. 
Second, the COVID-19 and pneumonia classifiers' 
cascaded architecture is flexible enough to deploy 
many well-tuned deep learning models at once to 
achieve the best results in terms of validating 
affected individuals. 

Garg et al., [20] used the publicly 
accessible multimodal dataset WESAD to propose 
different Machine Learning models for detecting 
stress in individuals in 2021. Three physiological 
situations are recorded: neutral (baseline), stressed, 
and entertained. Sensor data, like ECG, TEMP, 
RESP, EMG, and EDA, are also recorded. The F1-

score and accuracy were calculated and compared 
for binary and three-class classifications using 
machine learning techniques.  

In 2023, Zhu et al., [21] explored the 
viability of predicting individuals' stress levels using 
wrist-based EDA signals obtained via wearable 
technology, as well as potential factors influencing 
the accuracy of stress classification. Investigated 
binary classification that separates stress from non-
stress using information gathered from wrist-worn 
devices. Five classifiers based on machine learning 
were looked at for effective classification. 
Investigate the classification performance under 
various feature selections on four accessible EDA 
databases. Additionally, the performance study 
revealed a substantial difference between males and 
girls when gender information was included in the 
subject classification.  

In 2022, AlShorman et al., [22] used the 
frontal lobes EEG spectrum analysis to identify 
mental stress. To evaluate the power density of each 
band for the frontal lobe, first perform a feature 
extraction stage using a Fast Fourier Transform 
(FFT). Following that, employed SVM and NB 
machine learning classifiers to perform two different 
types of classifications: subject-wise and mixed. 
Moreover, there is the possibility to be used as a real-
time, continuous monitoring technique for medical 
applications, as well as low complexity, high 
accuracy, ease of use, and no overfitting. 

In 2020, Bobade and Vani [23] suggested 
several deep learning and machine learning 
techniques for exploiting multimodal datasets 
collected by wearable motion and physiological 
sensors to identify stress in people and protect them 
against various health issues associated to stress. 
Three physiological circumstances (stress, neutral, 
and enjoyment states) are covered by the sensor 
modalities data in the WESAD dataset. 

In 2021, Walambe et al., [24] proposed a 
multimodal AI-based system to track an individual's 
stress levels and work habits. Presented a 
methodology that concatenates disparate raw sensor 
data streams to efficiently detect stress caused by 
workload. This information can be safely kept and 
examined to identify and comprehend individual 
behavioral patterns that cause weariness and mental 
strain. The general public, in particular those with 
sedentary professions, may find it useful to track and 
detect stress levels, particularly in light of the 
COVID-19 pandemic currently underway. 

In 2020, Attallah [25] presented a hybrid 
feature set, fed into 5 machine-learning classifiers to 
identify and categorize stress and non-stress states, 
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The suggested MSD plan examines the electrode 
placements on various scalp locations and chooses 
the site that has greatest influence on accuracy of 
system to create a dependable, useful, and efficient 
MSD system with fewer electrodes. Additionally, 
principal component analysis is used to decrease the 
characteristics retrieved from these electrodes to a 
smaller model complexity. The sequential forward 
approach is used to analyze the ideal number of 
principal components.  

The proposed model significantly improves 
stress detection accuracy by combining CNN, 
BiLSTM, and GRU with adaptive mechanisms like 
Weibull distribution, CDF-based dropout, and 
Bernoulli-based loss function. Unlike traditional 
machine learning models used by Almadhor et al. 
(2023) and Garg et al. (2021) on the WESAD 
dataset, the proposed approach demonstrates higher 
accuracy and adaptability with complex data. Zhu et 
al. (2023) focused on wrist-based EDA signals, 
while AlShorman et al. (2022) used EEG spectrum 
analysis; however, the proposed model integrates 
both spectral and temporal features, enhancing 
generalizability. Compared to Attallah (2020) and 
Walambe et al. (2021), who employed multimodal 
data and hybrid feature sets, the proposed model 
achieves superior accuracy and robustness across 
different datasets. The attention-based BiGRU by 
Xiang et al. (2022) also showed improvements in 
spatiotemporal learning, but the cascaded 
CNN_BiLSTM_GRU in the proposed model 
demonstrates better precision and stability in stress 
detection, particularly in diverse and noisy 
environments. 

 
Problem Statement: 

Despite considerable advances in stress 
detection methods, crucial research gaps remain. 
Many approaches depend on single data sources, 
which preclude being capable of acquisitive the 
complex nature of stress. For example, data sets like 
WESAD and DEAP have value for physiological 
and EEG data, but studies have not effectively 
merged the heterogeneous data type to detect stress 
efficiently. Besides, most of the current techniques 
use traditional machine learning algorithms, which 
may not necessarily discover complex patterns in the 
multimodal data. There is especially an observed gap 
in the use of deep architectures, like cascaded deep 
learning models, coupled with metaheuristic 
algorithms for improved accuracy and adaptability 
of stress detection. Lastly, there is still an under-
explored focus on real-time and continuous 
monitoring in naturalistic settings, which calls for 
more research to complete the development of 

practical and deployable stress monitoring systems 
that can be efficient in natural environments. Table 
1 presents Research gaps from the existing works. 

TABLE 1: RESEARCH GAPS FROM THE EXISTING WORKS 

Citation Aim 
Technique 

Used 
Findings 

Almadhor et 
al., [15] 

It can 
detect 
stress 

based on 
chest-
based 

informati
on from 

the 
WESAD 
dataset. 

Model with 
Stacking-type 

data 
visualization, 
preprocessing: 
RESP feature, 

Z score, 
SMOTE, and 
normalization. 

This is a 
transformed 
version of a 

natural 
dataset, in a 

format 
appropriate 

for the 
proposed 
model. 

Ahuja and 
Banga [16] 

Compute 
the 

students' 
mental 
stress 
during 
internet 

usage and 
while 

preparing 
for 

exams. 

Linear 
Regression, 

Naïve Bayes, 
Random 

Forest, SVM. 

This study 
focused on 

the 
examination 

of stress 
among 
college 

students in 
the various 
life stages 

and 
established a 
relationship 

between 
stress and 
internet 
usage. 

Xiang et al., 
[17] 

Gather 
multidirec

tional 
spatiotem

poral 
informati
on from 
SCADA 
data to 
track 
blade 

conditions
. 

CNN, BiGRU 
with an 

attention 
mechanism, 
the quartile 
approach, 
Pearson 

correlation 
coefficient. 

Greater data 
validity, 
increased 

precision of 
learning 

Hamatta et 
al., [18] 

DL in 
stress 

detection 
and stress 
detecting 
devices 

are 
investigat

ed. 

ECNN-LSTM, 
preprocessing 

techniques, 
genetic 
method, 

DEAP dataset. 

The features 
are separated 

using the 
genetic 

method, and 
the accuracy 

of stress 
detection is 
improved. 

Karar et al., 
[19] 

Improve 
presentati

on of 
CAD 

schemes 
in 

pneumoni
a 

detection 
and 

Cascaded deep 
learning 

classifiers, 11 
pre-trained 

CNNs 
including 

ResNet, VGG. 

This 
simplifies 
complex 

multi-label 
classification 
with flexible 
architecture 
for optimal 

performance. 
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COVID-
19. 

Garg et al., 
[20] 

Stress 
detection 
by using 

the 
multimod

al 
WESAD 
dataset. 

linear 
discriminant 
analysis, k-
NN, random 
forest, SVM, 

adaboost. 

Comparative 
F1-score and 
accuracy for 
2 and 3-class 
classification

s. 

Zhu et al., 
[21] 

Predict 
the level 
of stress 

from 
wrist-
based 
EDA 

signals. 

Five machine 
learning 

classifiers and 
feature 

selection. 

SVM 
performed 

best with an 
accuracy of 
92.9%, and 
there was a 

gender 
difference in 

stress 
classification 
performance. 

AlShorman 
et al., [22] 

Identify 
mental 
stress 
using 
EEG 

spectrum 
analysis 

of frontal 
lobes. 

FFT, SVM, 
Naive Bayes 

No 
overfitting, 

low 
complexity, 

high 
accuracy 

demonstratin
g a potential 
for real-time 
monitoring. 

Bobade and 
Vani [23] 

It focuses 
on using 
multimod

al 
informati
on from 
wearable 
sensors to 

detect 
stress. 

k-NN, 
Random 
Forest, 

Decision Tree, 
Linear 

Discriminant 
Analysis, 

Kernel SVM, 
AdaBoost. 

Evaluated 
and 

compared 
three-class 
and binary 

classification 
accuracies. 

Walambe et 
al., [24] 

AI-based 
multimod
al system 

for 
monitorin
g stress 

and work 
habits. 

Multimodal 
AI-based 

fusion 
technique 

Managed the 
loss 

reduction of 
stress scale 

forecast 
model to 

0.036, useful 
in tracking 
levels of 
stress. 

Attallah 
[25] 

Identificat
ion and 

Categoriz
ation of 

Non-
Stress and 

Stress 
States 
Using 
Hybrid 
Feature 

Set. 

Five machine 
learning 

classifiers 
were used; 

PCA and the 
sequential 
forward 

approach. 

Developed 
an efficient 

MSD system 
with fewer 
electrodes, 

analyzed the 
optimal 

number of 
principal 

components. 

 
 
 

3. PROPOSED METHODOLOGY 
 

Artificial Intelligence is used to identify 
stress with a focus on deep-learning neural network 
models. A new approach combines CNN-BiLSTM-
GRU with SA-WaOA for efficiency. The Cascaded 
dilated CNN has a unique architecture with an 
Adaptive Dilation Rate and Adaptive Dropout based 
on CDF. Additionally, the Adaptive Loss Function 
is introduced using the Bernoulli distribution. GRU 
is incorporated with Cascaded CNN to learn spectral 
and temporal features effectively. Figure 1 depicts 
the general architecture of the proposed 
methodology. 

 

 

Figure 1: Overall architecture of the proposed methodology 
3.1 Dataset Description 

The proposed stress detection framework 
integrates datasets of the EEG Recordings dataset 
[26], the EEG Features dataset [27], the EEG 
Brainwave dataset [28], and the DASPS dataset [29] 
from open-source platforms. These are integrated 
datasets for detection and diagnostic means of stress, 
providing a wide scope for the analytical evaluation 
of stress. This approach enhances methodologies for 
early detection and treatment planning in various 
stress-related conditions. 
3.2 Preprocessing 

Preprocessing consists of the very basic 
steps needed to prepare data for analysis. These 
include implementing a high-pass filter at 1 Hz to 
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eliminate low-frequency noise and normalizing the 
data so that the dataset is standardized, which will 
enhance the performance of the algorithm. 

 
3.2.1  Hz High-pass ilter 

It is a signal processing technique that 
eliminates frequency components lower than 1 Hz in 
the data. Applying a high-pass filter with a 
occurrence cutoff of 1 Hz to remove what might hide 
relevant low-frequency noise and drift in the EEG 
signal itself that is important brain activity for stress 
detection. This filtering thus ensures that only 
frequencies above 1 Hz, relevant neural activity, are 
retained. This kind of filter weakens the lower 
frequencies below this threshold while allowing the 
higher frequencies to go through. The purpose of 
using a high-pass filter is to eliminate noise, drift, or 
any other kind of low-frequency artifact that would 
hide significant information within the data. For 
example, in physiological signals like 
Electroencephalography (EEG) or 
Electrocardiography (ECG), it improves clarity of 
pertinent signal features by removing baseline 
fluctuation and gradual drifts. High-pass filter 
enhances clarity and quality of EEG data by 
removing the slow variations and baseline 
wandering. It is, therefore, a very important 
preprocessing step that offers efficiency to our stress 
detection framework through ensuring that the input 
data into the developed framework is clean and 
relevant, hence providing accurate and reliable 
results 

 
3.2.2 Data normalization 

Data normalization to provide all features in the 
EEG data with a common scale, which is very 
important in effectively training machine learning 
models. The normalization step tends to adjust the 
range of data, commonly to [0,1] or [-1,1], so as not 
to let a few features dominate in the learning process 
due to large ranges. It improves the convergence 
speed and stability during training, ensuring that 
gradients are balanced and the optimization 
algorithm works effectively. It is the procedure of 
varying morals of a dataset to a common scale, 
characteristically amid -1 and 1 and 0 and 1. This 
process is so crucial because data normalization 
safeguards the fact that not even one attribute 
overcasts others due to a difference in their scale, 
helping machine learning algorithms work more 
efficiently and effectively. Normalizing data can 
improve the value of convergence of gradient 
descent and enhance the performance of the 
algorithms. Normalization can be completed in 
several methods, through min-max scaling, z-score 
standardization by shifting and scaling data with the 

suggested and standard deviation of the series, and 
many different options. Normalization in the stress 
detection framework will enhance the model's 
capability to interpret the EEG features correctly and 
learn from them more precisely, providing more 
accurate and reliable results on stress classification. 

 
3.3 Feature Extraction 
 

Feature extraction transforms raw data into 
meaningful attributes, enhancing model 
performance. This comprises frequency-domain, 
time-frequency-domain, and time-domain, methods 
that provide a thorough understanding of 
physiological signals for stress detection. 

3.3.1 Correlative Coefficient for Time Domain 
A method of feature extraction called the 

Correlation Coefficient for the time domain focuses 
at correlations between various statistical 
measurements of time domain events. The Persian 
Correlative Coefficient (PCC) approach is used to 
calculate pairings like mean vs. Kurtosis, mean vs. 
Skewness, Mean vs. Variance, Skewness vs. 
Kurtosis, Skewness vs. Variance, and Variance vs. 
Kurtosis. This method helps to clarify the features of 
signals. These correlations provide a comprehensive 
understanding of the signal's behaviour, which aids 
in the precise identification and categorization of the 
stress level. The PCC in statistical features is derived 
mathematically in the following way. 
 Mean vs Variance (𝑴𝑽𝒔𝒄): 
 

MVୱୡ =
୬ (∑ ∗)ି(∑ )(∑ )

ඥ[୬ ∑ మି(∑ )మ][୬ ∑ మି(∑ )మ]
                 (1) 

 
Where, 𝑀𝑉௦  is Pearson coefficient of Mean vs 
Variance, 𝑛 is no. of data points, and total of Mean 
𝑀 values denoted by ∑ 𝑀, the total of the Variance 
𝑉 values denoted by ∑ 𝑉,  the total resulting from 
squaring 𝑀 values is expressed by∑ 𝑀ଶ, the total 
resulting from squaring 𝑉 values is denoted by ∑ 𝑉ଶ, 
and  ∑ 𝑀 ∗ 𝑉 is the combined multiplication of the 
quantity of data points. 
 Mean vs Kurtosis (𝐌𝐊𝐬𝐜): 
 

 𝑀𝐾௦ =
 (∑ ெ∗)ି(∑ ெ)()

ඥ[ ∑ ெమି(∑ ெ)మ][ ∑ మି(∑ )మ]
             (2) 

Where, 𝑀𝐾௦ is Pearson coefficient of Mean vs 
Kurtosis, 𝑛 is no. of data points, and total of Mean 
𝑀 values denoted by ∑ 𝑀, the total of the Kurtosis 
𝐾 values denoted by ∑ 𝐾,  the total resulting from 
squaring 𝑀 values is expressed by ∑ 𝑀ଶ, the total 
resulting from squaring 𝐾 values is denoted by ∑ 𝐾ଶ, 
and  ∑ 𝑀 ∗ 𝐾 is the combined multiplication of the 
quantity of data points. 
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 Mean vs Skewness (𝐌𝐒𝐬𝐜):  
 

𝑀𝑆௦ =
 (∑ ெ∗ௌ)ି(∑ ெ)(ௌ)

ඥ[ ∑ ெమି(∑ ெ)మ][ ∑ ௌమି(∑ ௌ)మ]
                 (3) 

 
Where, 𝑀𝑆௦ is Pearson coefficient of 

Mean vs Skewness, 𝑛 is no. of data points, and total 
of Mean 𝑀 values denoted by ∑ 𝑀, the total of the 
Skewness 𝑆 values denoted by ∑ 𝑆,  the total 
resulting from squaring 𝑀 values is expressed by 
∑ 𝑀ଶ, the total resulting from squaring 𝑆 values is 
denoted by ∑ 𝑆ଶ, and  ∑ 𝑀 ∗ 𝑆 is the combined 
multiplication of the quantity of data points. 
 Skewness Vs Kurtosis (𝐒𝐊𝐬𝐜):  
 

SKୱୡ =
୬ (∑ ୗ∗)ି(∑ ୗ)()

ඥ[୬ ∑ ୗమି(∑ ୗ)మ][୬ ∑ మି(∑ )మ]
                    (4) 

Where, 𝑆𝐾௦  is Pearson coefficient of 
Skewness vs. kurtosis, 𝑛 is no. of data points, and 
total of Skewness 𝑆 values denoted by ∑ 𝑆, the total 
of the Kurtosis 𝐾 values denoted by ∑ 𝐾,  the total 
resulting from squaring 𝑆 values is expressed by 
∑ 𝑆ଶ, the total resulting from squaring 𝐾 values is 
denoted by ∑ 𝐾ଶ, and  ∑ 𝑆 ∗ 𝐾 is the combined 
multiplication of the quantity of data points. 
 Skewness Vs Variance (𝐒𝐕𝐬𝐜): 

𝑆𝑉௦ =
 (∑ ௌ∗)ି(∑ ௌ)()

ඥ[ ∑ ௌమି(∑ ௌ)మ][ ∑ మି(∑ )మ]
                  (5) 

 
Where, 𝑆𝑉௦  is Pearson coefficient of 

Skewness vs. variance, 𝑛 is no. of data points, and 
total of Skewness 𝑆 values denoted by ∑ 𝑆, the total 
of the Variance 𝑉 values denoted by ∑ 𝑉,  the total 
resulting from squaring 𝑆 values is expressed by 
∑ 𝑆ଶ, the total resulting from squaring 𝑉 values is 
denoted by ∑ 𝑉ଶ, and  ∑ 𝑆 ∗ 𝑉 is the combined 
multiplication of the quantity of data points. 
 Variance vs Kurtosis (𝐕𝐊𝐬𝐜): 
 

 VKୱୡ
୬ (∑ ∗)ି(∑ )()

ඥ[୬ ∑ మି(∑ )మ][୬ ∑ మି(∑ )మ]
              (6) 

Where, 𝑉𝐾௦  is Pearson coefficient of 
Variance vs Kurtosis, 𝑛 is no. of data points, and 
total of Variance 𝑉 values denoted by ∑ 𝑉, the total 
of the Kurtosis 𝐾 values denoted by ∑ 𝐾,  the total 
resulting from squaring 𝑉 values is expressed by 
∑ 𝑉ଶ, the total resulting from squaring 𝐾 values is 
denoted by ∑ 𝐾ଶ, and  ∑ 𝑉 ∗ 𝐾 is the combined 
multiplication of the quantity of data points. 

 
3.3.2 Frequency Domain  

Time-domain signals are converted into the 
frequency spectrum via frequency domain analysis, 
which reveals some of the signal's primary 
characteristics. Essential features extracted in this 
domain include spectral density, which quantifies 
power distribution across different frequencies; 
dominant frequency, indicating the most important 
or strong frequency component in the signal; and 
spectral entropy, measuring degree of difficulty or 
randomness in the frequency distribution. These 
features provide critical information regarding the 
underlying patterns and rhythms of physiological 
signals and enhance the detection and classification 
of stress levels. 

 
1. Spectral Density  

It is a main concept in signal processing and 
time series analysis, illustrating the distribution of a 
signal's strength or variation across a wide range of 
frequency components. it gives a full representation 
of how the power is distributed over the different 
frequency components of the EEG signal. This could 
be very important for our stress detection framework 
since it will help us find some characteristic 
frequency patterns associated with the state of stress. 
Spectral density will thus help in isolating the 
relevant frequency bands indicative of brain activity 
related to stress. These patterns can be further 
extracted to meaningful features, increasing the 
accuracy of the machine learning models. There are 
two main types: Power Spectral Density, illustrates 
distribution of a signal's power over frequencies, and 
Energy Spectral Density, which applies to energy 
signals. Hence, this method is efficient in capturing 
the underlying neural oscillations and rhythms at 
firm ground, allowing detections of the state of stress 
with increased precision and reliability 

2. Dominant Frequency 
This frequency is the most prominent frequency 

in the signal's spectral presentation since it has the 
most amplitude or power of any of the signal's 
frequency components. This concept is very crucial 
in a lot of applications, such as signal processing, 
audio analysis, and biomedical engineering because 
it can help in the identification of the most important 
periodic components of a signal. This is 
accomplished by applying a Fourier transform, 
mainly a Fast Fourier transform, to convert the time-
domain signal into its frequency-domain 
representation. The resulting spectrum indicates the 
amplitude sometimes the power of different 
frequency components. The dominant frequency is 
the frequency where this spectrum reaches its 
maximum value. Mathematically, if 𝑋(𝑓) for the 
magnitude of the Fourier transform of a signal 𝑥(𝑡), 
then the dominant frequency 𝑓ௗ occurs at in Eq. (7) 
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fୢ = arg max |X(f)|  (7) 
 

3. Spectral Entropy 
Spectral entropy is a measure indicating the 

complexity or randomness in a given sign's 
distribution of electricity throughout numerous 
frequencies. In different words, it characterizes the 
distribution of electricity within the frequency 
domain, giving insights into how much records are 
carried with the aid of the sign and how disordered 
its miles. High spectral entropy suggests a greater 
uniform distribution of power across frequencies, 
suggesting a more complicated or noisy sign. 
Conversely, low spectral entropy factors to a signal 
where strength is focused in fewer frequencies, 
indicating a more dependent or periodic nature. 
Mathematically, spectral entropy 𝐻 is calculated 
thru the normalized PSD of the sign. Given 𝑃(𝑓) as 
the normalized power at frequency 𝑓, the spectral 
entropy may be expressed mathematically via the 
following equation 

 
𝐻 = − ∑ 𝑃(𝑓) log 𝑃(𝑓)    (8) 
 

3.3.3 Time-Frequency Domain 
 

It suggests the signal analysis in the time-
frequency area, consequently giving a whole angle 
of signal traits. Power Spectral Density (PSD) and 
Discrete Wavelet Transform (DWT) are among the 
key techniques. 

 
1. Discrete Wavelet Transform (DWT)  

DWT, due to excellent capability for capturing 
both the time and frequency information from the 
EEG signals, very important in our stress detection 
framework due to the fact that stress can happen in 
some inexistency of non-stationary brain activities. 
With DWT decomposing the EEG signal into 
different frequency bands with various time scales, 
patterns related specifically to stress could be 
identified. It is a mathematical signal processing 
technique that decomposes a signal with different 
frequency components while the resolution matches 
its scale. In contrast to the Fourier Transform, which 
provides a view of the global frequency content, the 
DWT offers both time and frequency localization; it 
is very effective for analyzing non-stationary signals 
containing different frequency components at 
different times. To analyse the high- and low-
frequency components of DWT, the signal is sent 
through a succession of high- and low-pass filters. 
This is iterated multiple times, with each level 
providing different resolutions of the signal. 
Decomposition is hierarchical, with the signal being 
divided into approximations and details 
corresponding to low- and high-frequency 
components. This will provide detailed analysis 

compared to the traditional Fourier Transform that 
would enable extraction of precise features, thereby 
enriching our machine learning models toward more 
accurate and reliable stress detection. 
2. Power Spectral Density (PSD)  

It is a main term in signal processing, 
defining the characteristics of the distribution of 
signal power over its spectral features. In other 
words, it delivers data on frequency content of 
signal, used in an almost infinite array of 
applications: telecommunications, audio 
engineering, and biomedical signal analysis. 
Mathematically, given a continuous-time signal, the 
PSD is the Fourier transform of its autocorrelation 
function 𝑅௫௫(𝜏): 
 

S୶୶(f) = ∫ R୶୶(τ)
ஶ

ିஶ
eି୨ଶதdτ  (9) 

 
𝑅௫௫(𝜏) is the expected value of the product of the 
signal with a time-shifted version of itself. Spectral 
density is really important for a huge number of 
applications in the analysis of signals, 
telecommunications, and audio processing by giving 
insight into the frequency-time behavior of the 
signals 
 

3.4 Feature Selection 

It is a procedure of choosing most 
applicable abilities in a dataset to enhance overall 
presentation in modeling and reduce computational 
complexity. The optimal features selected through 
the self-adaptive Walrus Optimization Algorithm 
(SA-WaOA) set of rules are then input to the 
classifier CNN_BiLSTM_GRU for stress detection. 
 

SELF-ADAPTIVE WALRUS OPTIMIZATION 
ALGORITHM (SA-WAOA) 

The searcher members of this population in 
WOA, a population-based metaheuristic algorithm, 
are walruses. Every walrus in WOA stands for a 
potential fix for the optimization issue. Thus, each 
walrus's position within the search region determines 
the possible values for the problem variables. As a 
result, every walrus is a vector, and the so-called 
population matrix can be used to numerically 
represent the walrus population. When WOA is first 
implemented, walrus populations are initialized at 
random. Using Eq. (10), this WOA population 
matrix is calculated.  

 

𝐴 =

⎣
⎢
⎢
⎢
⎡
𝐴ଵ

⋮
𝐴

⋮
𝐴⎦

⎥
⎥
⎥
⎤

×ெ

=

⎣
⎢
⎢
⎢
⎡
𝑎ଵ,ଵ ⋯ 𝑎ଵ, ⋯ 𝑎ଵ,ெ

⋮ ⋱ ⋮ ⋰ ⋮
𝑎,ଵ

⋮
𝑎,ଵ

⋯
⋰
⋯

𝑎, ⋯ 𝑎,ெ

⋮ ⋱ ⋮
𝑎, ⋯ 𝑎,⎦

⎥
⎥
⎥
⎤

ே×

        (10) 
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the population of walruses is denoted by 𝐴, and the 
𝑖𝑡ℎ walrus (candidate solution) is represented by 𝐴, 
value of 𝑗𝑡ℎ decision variable recommended by 𝑖𝑡ℎ 
walrus is characterized by 𝑎, and no. of decision 
variables is denoted by 𝑀. As previously indicated, 
every walrus represents a potential solution to the 
issue, and the objective function of the problem can 
be assessed based on the values it suggests for the 
choice variables. The estimated values found in Eq. 
(11) correspond to the objective function that was 
derived from walruses.  
 

𝑓𝑛 =

⎣
⎢
⎢
⎢
⎡
𝑓𝑛ଵ

⋮
𝑓𝑛

⋮
𝑓𝑛⎦

⎥
⎥
⎥
⎤

×ଵ

=

⎣
⎢
⎢
⎢
⎡
𝑓𝑛(𝐴ଵ)

⋮
𝑓𝑛(𝐴)

⋮
𝑓𝑛(𝐴)⎦

⎥
⎥
⎥
⎤

×ଵ

   (11) 

 
where 𝑓𝑛 is vector of goal function and 𝑓𝑛 is 
objective function value calculated using the 𝑖𝑡ℎ 
walrus. 

Mathematical Modelling 
Three distinct stages make up the WaOA's 

process for updating walrus positions, which are 
based on the animals' natural behaviors.  
 
Phase 1: Exploration phase 

Although they eat a variety of foods, 
walruses particularly Favor benthic bivalve mollusks 
like clams. Under the guidance of the strongest 
walrus with the longest tusks, they use their delicate 
vibrissae and flippers to forage on the sea floor. The 
quality of the objective function values in potential 
solutions is correlated with the tusk length. Thus, the 
group's investigation is led by the best answer, which 
is similar to the strongest walrus. The WaOA's 
worldwide search capabilities are improved by this 
search behavior. Based on their feeding mechanism 
and led by the strongest member, walruses change 
their locations mathematically. Old positions are 
replaced with new ones if they increase the value of 
the objective function. The mathematical expression 
is described in Eq. (12) and Eq. (13) respectively. 

 
𝑎,

௦భ = 𝑎, + 𝑟, ∙ ൫𝑆𝑡𝑟, − 𝑖𝑛𝑡, ∙ 𝑎,൯    (12) 

𝐴 = ൜
𝐴

௦భ ,     𝑓𝑛
௦భ <  𝑓𝑛

𝐴                               𝑒𝑙𝑠𝑒
                 (13) 

 
Where 𝐴

௦భ  is the new position of the 𝑖𝑡ℎ 
walrus generated in the first phase, 𝑎,

௦భ  is the 𝑗𝑡ℎ 

dimension of the walrus, 𝑓𝑛
௦భ  is its objective 

function value, 𝑟, are random numbers from 
interval [0, 1], 𝑆𝑡𝑟,  represents strongest walrus 
having the best value of the objective function, and 

𝑖𝑛𝑡, is an integer between 1 and 2 that is chosen at 
random. 
Phase 2: Migration 

Walruses migrate to outcrops or rocky 
beaches as the air warms in late summer. This 
migratory mechanism is used by the WaOA to assist 
walruses in locating suitable areas within the search 
space. The behavioral mechanism is theoretically 
modeled using Eqs. (5) and (6). This model implies 
that each walrus migrates to a randomly determined 
location in the search space. Therefore, the 
recommended new position is first generated based 
on Eq. (14). Walrus's previous position is replaced if 
the new location raises the value of the objective 
function, as per Eq. (15). 

 

𝑎
௦మ ቊ

𝑎, + 𝑟,  ∙ ൫𝑎, − 𝑖𝑛𝑡, ∙ 𝑎,൯,  𝑓𝑛 < 𝑓𝑛

  𝑎, + 𝑟, ∙ ൫𝑎, − 𝑎,൯,                           𝑒𝑙𝑠𝑒
    (14) 

𝐴 = ቊ
𝐴

௦మ , 𝑓𝑛
మ <  𝑓𝑛  

 𝐴 ,                              𝑒𝑙𝑠𝑒
             (15) 

 
where 𝐴

௦మ  is a anew produced position 
for 𝑖𝑡ℎ walrus created on 2nd phase, 𝑎

௦మ  is its 𝑖𝑡ℎ  
dimension, 𝑓𝑛

మ  is its objective function value, 
𝐴, 𝑘 ∈ {1,2, … , 𝑁}, and 𝑘 ≠ 𝑖 is location of selected 
walrus to migrate the 𝑖𝑡ℎ walrus towards it, 𝑥, is its 
𝑗𝑡ℎ dimension, and 𝑓𝑛 is its objective function 
value. The goal of 𝐸𝑛𝑡𝑟is to decide the evolutionary 
state of WOA in terms of the particle-to-cutting-edge 
global quality distances (𝑑𝑖𝑠), that are described in 
Eq. (16) 
𝐸𝑛𝑡𝑟 −

∑ ቆ
ௗ௦ቀೕ,್ೞ

ቁ

∑ ௗ௦
ೕసభ ቀೕ,್ೞ

ቁ
log

ௗ௦ቀೕ,್ೞ
ቁ

∑ ௗ௦
ೕసభ ቀೕ,್ೞ

ቁ
ቇ (

 16) 

Here, 𝑑𝑖𝑠 is the distance from particles to the current 
global best, 𝑔𝑙𝑜𝑏𝑎𝑙௦௧

 is the global best value. 

Algorithm: Pseudocode for SA-WaOA 
Initialize the number of people matrix A 
Determine each walrus's objective function (𝑓𝑛) in A 
Phase 1: Exploration stage 
for each walrus 𝑖 and decision variable 𝑗 
𝑟, = 𝑟𝑎𝑛𝑑𝑜𝑚 (0,1) 
𝑖𝑛𝑡, = 𝑟𝑎𝑛𝑑𝑜𝑚௧(1, 2) 
Update old position by Eq. (12) 
𝑓𝑛

௦భ = 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒௨௧(𝐴
௦భ) 

if 𝑓𝑛
௦భ < 𝑓𝑛 

 𝐴 = 𝐴
௦భ 

Phase 2: Migration 
k= 𝑟𝑎𝑛𝑑𝑜𝑚_𝑤𝑎𝑙𝑟𝑢𝑠 ௫௧(𝑖) 
If 𝑓𝑛 <  𝑓𝑛 
𝑎, + 𝑟,  ∙ ൫𝑎, − 𝑖𝑛𝑡, ∙ 𝑎,൯ 
Else 
𝑎

௦మ = 𝑎, + 𝑟, ∙ ൫𝑎, − 𝑎,൯ 

𝑓𝑛
మ = 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒௨௧(𝐴

௦మ) 

If 𝑓𝑛
మ <  𝑓𝑛 
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 𝐴 = 𝐴
௦మ 

Phase 3: Merging Valuation 
𝐸𝑛𝑡𝑟 = 𝐶𝑎𝑙𝑐𝑢𝑎𝑙𝑡𝑒௧௬(𝐴) 
If 𝑀𝑒𝑟𝑔𝑖𝑛𝑔୫ୣୟୱ୳୰ୣ (𝐸𝑛𝑡𝑟) 
Break 
Return 𝑏𝑒𝑠𝑡௦௨௧(𝐴) 
Function 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒௨௧() 
Return A 
Function 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒௨௧(𝑎) 
Return 𝑓𝑛 
Function 𝑟𝑎𝑛𝑑𝑜𝑚௪௨௦௫௧

(𝑖) 
Select a random walrus k different from i 
Return k 
Function 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒௧௬(𝐴)  
Calculate entropy for Merging Valuation 
Return 𝐸𝑛𝑡𝑟 
Function 𝑀𝑒𝑟𝑔𝑖𝑛𝑔௧௧

 (𝐸𝑛𝑡𝑟) 
Return 

 
3.5 Classification 

The SAWaOA algorithm-based features 
are inputted into Cascaded CNN with GRU for stress 
classification. Cascaded CNN_GRU includes three 
levels: CNN_1, CNN_BiLSTM, and CNN_GRU 
with Adaptive Dilation Rate, Adaptive Dropout, and 
Adaptive Loss Function. For final classification, 
fully connected densities are employed. Cascaded-
CNN is described in Figure 2.  

Feature Selection
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Figure 2: Architecture of the Cascaded-CNN 

 
 

3.5.1 Convolutional Neural Network (CNN) 

This type of Deep Learning neural network 
design is widely applied in computer vision. Among 
the many layers that comprise CNN are the input 
layer, pooling layer, convolutional layer, and fully 

connected layers. The Convolutional layer processes 
the input image to extract features, the Pooling layer 
downsamples the image to reduce computation, and 
the Fully Connected layer makes the final prediction. 
The filters are learned from the data using 
backpropagation and gradient descent. CNN are 
used principally for feature extraction, with the 
strength of capturing spatial hierarchies within data. 
Convolutional layers perform a convolution on the 
input data, detecting local patterns, such as edges in 
an image or specific signal patterns in time-series 
data. On the other hand, pooling layers downsample 
the input representation to decrease dimensionality 
and the load on computation, with the most 
important characteristics remaining. Typically, 
nonlinear activation functions like ReLU are used to 
introduce nonlinearity, which enables the network to 
learn intricate patterns. When combined, these 
factors make CNNs highly efficient for tasks 
involving spatial data, such as signal and image 
analysis. 

 
3.5.2 Bidirectional Long Short-Term Memory 

(Bi-LSTM) 

An RNN type called BiLSTM networks is 
capable of capturing long-range relationships in 
sequences. In contrast to the conventional LSTM, 
the BiLSTM employs bidirectional processing of the 
input to achieve a more comprehensive 
comprehension of the sequence context. This is 
made possible by the forward and backward passes, 
which process the sequence from start to finish and 
then from end to start at each time step using two 
hidden states. Moreover, memory cells within 
BiLSTM effectively capture dependencies over long 
sequences, keeping track of information over time 
and enhancing the ability of networks to comprehend 
and predict complex sequential data. Two 
unidirectional LSTMs that process the sequence 
both forward and backward make up the 
bidirectional LSTM architecture. With this kind of 
architecture, the token sequence can be thought of as 
being received by two distinct LSTM networks, one 
of which receives it in its original order and the other 
in reverse. Each of these LSTM-based networks now 
outputs a probability vector; the end result is the sum 
of these probabilities. This can be expressed as in Eq. 
(17). 

h୲ = h + hୠ                         (17) 
 

Where, h୲ is final probability vector of network, h 
is probability vector from forward LSTM network, 
hୠ is probability vector from backward LSTM 
network 
 3.5.3 Gated Recurrent Unit (GRU) 

GRU can replace LSTM in recurrent neural 
networks. GRU processes sequential data like text, 
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audio, and time-series data similar to LSTM. GRU 
selectively updates hidden state using gating 
techniques at each time step. Gating mechanisms 
control information flow in and out of the network. 
GRU has two gating mechanisms: reset gate and 
update gate. Update gate decides how much new 
input updates the hidden state, while reset gate 
decides how much prior state should be forgotten. 
The updated hidden state serves as the basis for 
calculating the GRU's output. GRUs are 
computationally efficient and useful for sequence 
modelling applications because of their simplified 
architecture. 
Reset Gate: r୲ = σ(W୰ ∗ [h୲ିଵ, x୲])              (18) 
 
Update Gate: z୲ = σ(W ∗ [h୲ିଵ, x୲])           (19) 
 
Candidate Hidden Gate: 
 h୲′ = tanh(W୦ ∗ [r୲ ∗ h୲ିଵ, x୲])                 (20) 
Hidden Gate: h୲ = (1 − z୲) ∗ h୲ିଵ + z୲ ∗ h୲′  (21) 
3.5.4 Dilated CNN Architectures 

CNN_1 architecture has an Adaptive 
Dilation Rate based on the Weibull distribution 
function. The transformation of the feature maps 
produced by the adaptive fractional dilated Conv 
kernels in Eq. (22) can be expressed as follows 
thanks to the distributive principle of the convolution 
operation. 
𝑘𝑒𝑟௬

ே = (⌈𝑖⌉ − 𝑖)𝑘𝑒𝑟(ଵ,⌊⌋)
ே + (𝑖 − ⌊𝑖⌋)𝑘𝑒𝑟(ଵ,⌈⌉)

ே     (22) 
 

Where y is the Adaptive fractional dilated 
convolution. Any non-integer 𝑖 lies in interval 
(⌈𝑖⌉, ⌊𝑖⌋), whose length makes 1. The two integers 
closest to 𝑖 are ⌊𝑖⌋ and ⌈𝑖⌉. The two dilated kernels 
for the nth layer whose nearest integer dilation rates 
are 𝑘𝑒𝑟(ଵ,⌊⌋)

ே  and 𝑘𝑒𝑟(ଵ,⌈⌉)
ே  respectively. 

𝐹ಿశభ
= 𝑘𝑒𝑟௬

ே ∗ 𝐹ಿ
ቀቒ

ௐ


ቓ −

ௐ


ቁ 𝑘𝑒𝑟

ቀଵ,ቔ
ೈ


ቕቁ

ே +

ቀ
ௐ


− ቔ

ௐ


ቕቁ 𝑘𝑒𝑟

ቀଵ,ቒ
ೈ


ቓ ቁ

ே ൨ ∗ 𝐹ಿ
              (23) 
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ௐ


ቁ 𝑘𝑒𝑟

ቀଵ,ቔ
ೈ
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ௐ


− ቔ
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ቕቁ 𝑘𝑒𝑟

ቀଵ,ቒ
ೈ


ቓቁ

ே ∗

𝐹ಿ
                    (24) 

where ∗ indicates convolution and 𝐹 
stands for the feature mappings for the 𝑁𝑡ℎ layer. 
For mini-batch training and inference, construct 
multiple kernels with different dilation rates (𝑅

௦ , 𝑅
௧ ) 

using the same kernel parameters. The process is 
then adaptively computed for every image using an 
interpolation 𝑊 weight vector that has been zero-
padded.  

𝐹ಿశభ
= 𝑘𝑒𝑟௬

ே ∗ 𝐹ಿ
        (25) 

= ∑ 𝑊൫ோೖ
ೞ ,ோೖ

 ൯𝑘𝑒𝑟
൫ோೖ

ೞ ,ோೖ
 ൯

ே ∗ 𝐹ಿ       (26) 

𝐹ಿశభ
= 𝑊𝐹෨ಿ

    (27) 
which is simply two vectors' inner product are 
expressed in Eq. (28) and Eq. (29) 

𝑊 = ቂ𝑊൫ோభ
ೞ ,ோభ

൯, … , 𝑊൫ோೖ
ೞ ,ோೖ

 ൯ቃ    (28) 

𝐹෨ಿ
= ቂ𝑘𝑒𝑟

൫ோభ
ೞ ,ோభ

൯
ே ∗, … , 𝑘𝑒𝑟

൫ோೖ
ೞ ,ோೖ

 ൯
ே 𝐹ಿ

ቃ
⊺

   (29) 

The adaptive dilation rate in CNN_1 architecture has 
been enhanced by the Weibull distribution function. 
The mathematical formula is expressed in Eq. (30) 

𝑊𝐷 = ൝


ఒ
ቀ

ௐ

ఒ
ቁ

ିଵ
𝑒ି(ௐ ఒ⁄ )ೖ

              𝑊 > 0

0,                                           𝑊 < 0
     (30) 

The Eq. (27) has been rewritten as in Eq. (31) 
𝐹ಿశభ

= 𝑊𝐷𝐹෨ಿ
    (31) 

The architecture of the CNN_2 model 
incorporates an innovative feature known as 
Adaptive Dropout, which relies on the utilization of 
a CDF to enhance its performance. The development 
of this Adaptive Dropout function is rooted in the 
utilization of Chaotic Map functions, specifically 
leveraging the properties of functions like Tent 
(𝑇𝑒𝑛𝑡). Initially, the process of the model 
includes the establishment of an initial dropout (DO) 
rate of 0.7, which acts as a fundamental parameter in 
the subsequent operations of the model. The 
mathematical description is expressed in Eq. (32). 

𝑇𝑒𝑛𝑡 =  𝐷𝐹௧ାଵ = ቐ

ி

.
                   𝑓𝑜𝑟 𝐷𝐹௧ < 0.7

ଵ

ଷ
(1 − 𝐷𝐹௧)     𝑓𝑜𝑟𝐷𝐹௧ > 0.7

 

(32) 
The Adaptive Dropout rate in CNN_2 architecture 
has been enhanced by the cumulative distribution 
function. The CDF is expressed in Eq. (33) 

𝐶𝐷𝐹்௧
= 1 − 𝑒ି(்௧ ఒ⁄ )ೖ

       (33)  
The Adaptive dropout rate has been modified in Eq. 
(34) 

𝑇𝑒𝑛𝑡 =  𝐶𝐷𝐹்௧௧ାଵ
=

ቐ

ி

.
                   𝑓𝑜𝑟 𝐶𝐷𝐹்௧௧

< 0.7

ଵ

ଷ
ቀ1 − 𝐶𝐷𝐹்௧௧

ቁ      𝑓𝑜𝑟𝐶𝐷𝐹்௧௧
> 0.7

 (34) 

 
CNN_ GRU architecture has an Adaptive 

Loss Function based on the Bernoulli distribution 
(Bern) function. Various forms of loss functions 
apply to varying tasks, with the selection of the most 
suitable one being crucial for effectively steering the 
optimization procedure in the course of training. A 
DL model defines a loss function 𝐿(𝑓(𝑥), 𝑦), 
where Θ is set of parameters of model, i.e., weights 
of neural network. This allows the model to estimate 
a function 𝑓: 𝑥 → 𝑦 given data points 𝑖 =
 1, . . . , 𝑁 of type (𝑥ଵ, 𝑦ଵ), . . . , ( 𝑥ଵ, 𝑦ଵ  ). The target 
variable in a multiclass problem is 𝑦 =
 (𝑦ଵ, . . . , 𝑦ே  )ୃwith 𝐶 classes, that is,𝑦 ∈
 {1, 2, . . . , 𝐶}, for 𝑖 =  1, . . . , 𝑁. The loss function is 
minimized to provide the ideal Θ∗ 

arg min


∑ 𝐿𝑜𝑠𝑠(𝑓𝑛(𝑥), 𝑦)ே
ୀଵ    (35) 



 Journal of Theoretical and Applied Information Technology 
31st March 2025. Vol.103. No.6 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
2134 

 

The function 𝑓(𝑥) can be used to convert the class-
level outputs 𝑦ො, into probabilities, for example, by 
utilizing the softmax function 

𝐴, =
௫൫௬ො,൯

∑ ௫൫௬ො,൯
సభ

    (36) 

Arguably the most well-known loss function for 
binary and multiclass classification, the cross-
entropy 𝐿𝑜𝑠𝑠௦ா௧, is formalized based on these 
probabilities 
𝐿𝑜𝑠𝑠௦ா௧ = −

ଵ

ே
∑ ∑ 𝑦, log൫𝐴,൯

ୀଵ
ே
ୀଵ    (37) 

 
whereby, 𝑦, = 1if 𝑦  =  𝑐, and 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. The 
fact that 𝐿𝑜𝑠𝑠௦ா௧  downplaying the significance of 
underrepresented classes is one of its drawbacks. By 
concentrating on examples of majority class or 
classes, often have low misclassification costs, a 
minimal cross-entropy value can be attained. A 
weighted version of cross-entropy loss 
(𝐿𝑜𝑠𝑠ௐ௦ா௧) is as follows to take into 
consideration the class imbalance problem: 
𝐿𝑜𝑠𝑠ௐ௦ா௧ = −

ଵ

ே
∑ ∑ 𝑤𝑦, log൫𝐴,൯

ୀଵ
ே
ୀଵ   (38) 

 
where the weights 𝑊 =  (𝑊ଵ, 𝑊ଶ … 𝑊), and 𝑊  ∈
 [0, 1], can be obtained by inverting the class 
frequency or as hyperparameters to be tuned. For the 
further enhancement, the Bernoulli distribution 
function takes place in Eq. (39) 
 
𝐵𝐷 = 𝐴ௐ(1 − 𝐴)ଵିௐ                  𝑊 ∈ {0,1}   (39) 
The modified adaptive loss function is expressed in 
Eq. (40) 
𝐿𝑜𝑠𝑠ௐ௦ா௧ = −

ଵ

ே
∑ ∑ 𝐵𝐷𝑦, log൫𝐴,൯

ୀଵ
ே
ୀଵ   (40) 

For stress classification, the most suitable 
features are chosen via the SA-WaOA algorithm and 
put into a cascaded CNN_GRU model. CNN_1 with 
Adaptive Dilation Rate based on Weibull 
distribution, CNN_BiLSTM with Adaptive Dropout 
using Cumulative Distribution Function (CDF), and 
CNN_GRU with Adaptive Loss Function using 
Bernoulli distribution comprise the three levels of 
this model's architecture. Fully connected layers 
offer the final categorization, increasing the 
precision of stress detection.  

 
4.  RESULT AND DISCUSSION 

This section includes results and an outline of the 
suggested version. This examine gives a new 
technique that combines CNN-BLSTM-GRU and 
SA-WaOA for performance. The version's 
performance turned into assessed using measures 
together with F-Measure, Negative Predicted Value 
(NPV), Mathews Correlation Coefficient (MCC), 
False Negative Rate (FNR), False Positive Rate 
(FPR), Sensitivity, Specificity, Accuracy, and 
Precision. To decide how a great deal the newly built 
framework's performance has advanced, it is as 

compared to current models along with Proposed, 
ECNN-LSTM [18], SVM [22], and KNN [25] 
 

Evaluation Setup 

The recommended framework has been built on 
the Python platform. The proposed framework was 
evaluated using the EEG Recordings dataset [26], 
the EEG Features dataset [27], the EEG Brainwave 
dataset [28], and the DASPS dataset [29]. 
Performance Metrics 

Several matrices, including F-Measure, NPV, 
MCC, FNR, Specificity, FPR, Sensitivity, Precision 
and Accuracy are used for performance assessment. 
 
Accuracy: The degree to which the measurements 
of a quantity match its real, or actual, value is known 
as accuracy. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
்ା்ே

்ାிାிேା்ே
   (41) 

  
Precision: By using all of the process's instances, 
precision explains the total number of real samples 
that were adequately taken into account during the 
classification operation. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
்

ிା்
     (42) 

F-Measure: The F-Measure number ensures that 
each definition identifies a single type of information 
item by carefully balancing the need to fully identify 
each data piece. 

𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =
௦௦.ோ

௦௦ା ோ
   (43) 

Specificity: The number of adverse outcomes 
among all accurately anticipated adverse 
occurrences is a reliable indicator of specificity. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
்ே

ிା்
              (44) 

Sensitivity: Divide total no. of optimistic 
projections by percentage of accurate optimistic 
forecasts. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
்

்ାி
   (45) 

MCC: Due to its consideration of TP, TN, FN, and 
FP, the Matthews Correlation Coefficient (MCC) is 
a reliable statistic for assessing the efficacy of binary 
classifiers. The MCC measures the extent to which 
the labels and predictor are correlated. 

MCC =
(∗)ି(∗)

ඥ(ା )(ା)(ା )(ା )
        (46) 

 
NPV: The efficiency of any analytical test, including 
quantitative measurements, is assessed by NPV. 

𝑁𝑃𝑉 =
்ே

்ேାிே
              (47) 

FNR: It is represented as the percentage of 
incorrectly classified cases that inadvertently obtain 
a negative label out of all cases that receive a positive 
label. 
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 𝐹𝑁𝑅 =  
ிே

ிேା்
   (48) 

 FPR: It can be characterized by separating 
total quantity of negative data by portion of positive 
data that was incorrectly labeled. 

𝐹𝑃𝑅 =  
ி

்ேାி
                       (49) 

 

Figure 3: Graphical Representation Of The ROC 
Curve 

Table 2: Comparative Analysis Of The 
Performance Metrics With Four Datasets 

 EEG 
Feature 

Emotion 
Stress 

Detection 
DASP

S 
 Proposed Proposed Proposed Proposed 

Mod
el 

70/
30 

80/
20 

70/
30 

80/
20 

70/
30 

80/
20 

70/3
0 

80/
20 

Acc
urac

y 

0.9
50
5 

0.9
63
3 

0.9
551

4 

0.9
628 

0.9
59
5 

0.9
66
5 

0.96
71 

0.9
77
1 

Preci
sion 

0.9
50
9 

0.9
63
3 

0.9
503 

0.9
63 

0.9
53
1 

0.9
63
4 

0.96
68 

0.9
77
1 

F-
Scor

e 

0.9
50
1 

0.9
62
8 

0.9
5 

0.9
621 

0.9
54
2 

0.9
65
3 

0.97
09 

0.9
76
9 

Spec
ificit

y 

0.9
59
3 

0.9
63 

0.9
593

9 

0.9
624 

0.9
53
6 

0.9
61
5 

0.96
87 

0.9
77 

Sens
itivit

y 

0.9
49
9 

0.9
55
8 

0.9
567

4 

0.9
677

4 

0.9
53
8 

0.9
63
3 

0.96
54 

0.9
77
4 

MC
C 

0.9
45
1 

0.9
59
2 

0.9
586

1 

0.9
659

1 

0.9
51
7 

0.9
66
9 

0.96
35 

0.9
74
5 

NPV 
0.9
56
5 

0.9
66
5 

0.9
541

6 

0.9
708

7 

0.9
58
3 

0.9
65
3 

0.96
84 

0.9
77
4 

FPR 
0.0
45 

0.0
35 

0.0
625 

0.0
625 

0.0
58
7 

0.0
46
7 

0.04
06 

0.0
35
6 

FNR 
0.0
31
1 

0.0
21
1 

0.0
598

3 

0.0
598

3 

0.0
43
7 

0.0
31
7 

0.03
36 

0.0
23
1 

 

Performance measures of the applied 
models to EEG Feature, Emotion, Stress Detection, 
and DASPS datasets are evaluated for 70/30 and 
80/20 split, as presented in Table 2. High accuracy, 
precision, F-score, specificity, sensitivity, MCC, and 
NPV are achieved for all the proposed models across 
these tasks. Again, a slight improvement is noted for 
the 80/20 split. Then for EEG Features, it is 0.9505 
and 0.9633 for the respective split. For emotion 
detection, it is as high as 0.9628 in terms of accuracy. 
The other good performance is by the Stress 
Detection with the corresponding accuracy of 0.9595 
and 0.9665. The highest one is DASPS at 0.9771. 
Very low false positives and negatives mean very 
few misclassifications. It again reflects the solidity 
and reliability of the models in real-life applications. 

  

Split Data 70/30 And 80/20 For The EEG Feature 
Dataset 

 
 

Split data 70/30 and 80/20 for the Emotion dataset 

Split data 70/30 and 80/20 for the Stress dataset 

 
Split data 70/30 and 80/20 for the DASPS dataset 
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Split Data 70/30 And 80/20 For Four Datasets 

Figure 4 (A)-(E): Confusion Matrices For All Four 
Datasets 

Figure 4 demonstrates the graphical representation 
of the confusion matrices for four datasets with 
different perspectives. Training and Validation 
results for all datasets shown in Figure 5.  

EEG 

Featur
e 

dataset 

Split data 70/30 

Split data 80/20 

Emotio
n 

dataset 

Split data 70/30 

Split data 80/20 

Stress 
detecti

on 
dataset 

Split data 70/30 

Split data 80/20 

DASP
S 

dataset 

 

Split data 70/30 

Split data 80/20 

Combi
ne four 
dataset

s 

Split data 70/30 
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Split data 80/20 

Figure 5: Training And Validation Results For All 
Datasets. 

a. EEG Feature Dataset 
b. Emotion Dataset 

c. Stress Detection 
d. DASPS Dataset 

Figure 6 (a)-(d): Comparison of Metrics for the 
proposed model with Fore datasets by Split data 70/30 and Split 
data 80/20 respectively. 

Figure 6 shows Comparison of Metrics for the 
proposed model with Fore datasets by Split data 
70/30 and Split data 80/20 respectively. 

Table 3: Comparative Analysis With Performance 
Metrics For 70/30 

 
 

Model 
Propos

ed 
SVM 
[22] 

KNN 
[25] 

ECNN-LSTM 
[18] 

Accurac
y 

0.9871
2 

0.95385 0.955 0.94523 

Precisio
n 

0.9870
1 

0.95775 0.93391 0.948419 

F-Score 
0.9880

5 
0.95946 

0.93438
6 

0.94224 

Specific
ity 

0.9881
2 

0.95989 0.93763 0.941817 

Sensitiv
ity 

0.9879
3 

0.96026 0.9361 0.941807 

MCC 
0.9879

7 
0.96 

0.93575
7 

0.940708 

NPV 
0.9880

5 
0.95833 

0.93032
4 

0.944492 

FPR 
0.0261

4 
0.0431 0.045 0.0476 

FNR 
0.0165

5 
0.0411 0.05981 0.06155 

 

Table 3 presents the comparison of different 
models like the proposed Multilevel Cascaded 
CNN_BiLSTM_GRU with SA-WaOA, SVM, KNN, 
and ECNN-LSTM for stress detection using a 70/30 
train-test split. It is noted that the suggested model 
exhibits the highest level of accuracy of 98.71% 
which reflects better classification potential than the 
rest of the models. The proposed model also shows 
a maximum precision of 98.70% to provide high and 
reliable true positive stress detection cases. The 
proposed model showed the maximum F-Score, the 
values of precision and recall, 98.81%, which 
corresponded to a better overall performance. In 
addition, proposed model ranked best in terms of 
specificity, 98.81%, and sensitivity 98.79%, thereby 
separating well the states of non-stress and stress. 
The maximum value of the MCC of 98.80% further 
validated the proposed model performance as 
balanced across different classes. As a model having 
a maximum NPV of 98.81%, it proved to be one for 
the efficient prediction of true negatives. Also, the 
FPR was the lowest which is 2.61 %, and the FNR is 
1.65 % which recognizes less false positives and 
negatives. 

 
Table 4: Comparative Analysis With Performance 

Metrics For 80/20 

Model 
Propos

ed 
SVM 
[22] 

KNN 
[25] 

ECNN-LSTM 
[18] 

Accurac
y 

0.9912
1 

0.96292 0.9625 0.95342 

Precisio
n 

0.9909
1 

0.9635 0.96364 0.952 

F-Score 
0.9913

8 
0.96346 0.96407 0.95276 

Specific
ity 

0.9914
9 

0.9631 0.96767 0.9537 

Sensitiv
ity 

0.9911 0.96305 0.96721 0.95238 

MCC 
0.9913

3 
0.9635 0.96703 0.95253 

NPV 
0.9914

8 
0.96372 0.96629 0.95161 

FPR 
0.0094

3 
0.02586 0.06977 0.0458 

FNR 
0.0079

4 
0.05128 0.04237 0.03704 

 
Table 4 presents the models' performance 

evaluation after splitting the data into 80 percent for 
training and 20 percent for the models' testing. The 
proposed Multilevel Cascaded 
CNN_BiLSTM_GRU with SA-WaOA 
outperformed the SVM, KNN, and ECNN-LSTM in 



 Journal of Theoretical and Applied Information Technology 
31st March 2025. Vol.103. No.6 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
2138 

 

all the parameters that were used to evaluate their 
performance. This model displayed the highest rate 
of accuracy in classifying between stress and non-
stress, with an accuracy of 99.12 percent. The 
proposed model had the highest precision at 99.09% 
and an F-Score of 99.14%, which truly indicates its 
reliability in identifying the true positives, and 
hence, a balance is kept between precision and recall. 
It is an infected model whose specificity, 99.15%, 
and sensitivity, 99.11%, are the highest among the 
proposed models; hence, the model differentiated 
between the stress and non-stress instances 
excellently. MCC represents the balanced 
performance for different classes as 99.13%. Also, 
the proposed model's NPV is the highest, 99.15%, 
which says that the true negatives are very well 
predicted. Also, it has the lowest FPR, 0.94%, and 
FNR, 0.79%, which signifies very few false 
positives and negatives. 

  

a. Accuracy 
b. Precision 

c. F-Score 
d. Specificity 

e. Sensitivity 
f. MCC 

  

g. NPV 
h. FPR 

 

i. FNR 

Figure 7 (A)-(I): Graphical Representation Of The 
Performance Metrics 

The performance metrics of the proposed 
work are compared with the existing works in Figure 
7 (a)–(i). Performance metrics like -Measure, NPV, 
MCC, FNR, FPR, Sensitivity, Specificity, Accuracy, 
and Precision are compared with different methods 
like Proposed, ECNN-LSTM [18], SVM [22], and 
KNN [25]. Figure 8 to 11 show Graphical 
Representation for the comparative analysis of the 
four datasets.  

 

Figure 8: Graphical Representation For The 
Comparative Analysis Of The Four Datasets (Split 70/30) 

 

Figure 9: Graphical Representation For The 
Comparative Analysis Of The Four Datasets (Split 80/20) 
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Figure 10: Graphical Representation For The 
Comparative Analysis Of The Combined Four Datasets 

(Split 70/30) 

 

Figure 11: Graphical Representation For The 
Comparative Analysis Of The Combined Four Datasets 

(Split 80/20) 
The proposed model demonstrates superior 
performance compared to existing models such as 
SVM, KNN, and ECNN-LSTM across key metrics. 
It achieves the highest accuracy (0.99121), precision 
(0.99091), and F-Score (0.99138), indicating 
improved classification capability and reduced 
misclassification rates. The higher specificity 
(0.99149) and sensitivity (0.9911) confirm the 
model's ability to accurately identify both stressed 
and non-stressed states. Additionally, the low false 
positive rate (FPR = 0.00943) and false negative rate 
(FNR = 0.00794) reflect the model's robustness and 
reliability in stress detection. This significant 
performance gain highlights the effectiveness of the 
adaptive mechanisms integrated into the proposed 
model, surpassing the limitations of traditional 
approaches. 
 
5. CONCLUSION 

The proposed Cascaded 
CNN_BiLSTM_GRU with SA-WaOA drastically 
increased the efficiency and accuracy of stress 
detection. Learning from both spectral and temporal 
variables was aided by the integrated model's 
adaptive Weibull, CDF, and Bernoulli distribution 
features. The approach stimulated was meant to 
resolve the limits of conventional ways of stress 
detection for reliable solutions in early detection and 
intervention. Implemented in Python, the proposed 
stress detection and management model elicited 
significant enhancements in performance metrics in 

terms of F-Measure, NPV, MCC, FNR, Specificity, 
FPR, Sensitivity, Precision and Accuracy. This 
indicates that the framework proposed here 
surmounted the inefficiencies of existing techniques 
and, thus, offered one robust method for the 
application in monitoring and management of stress. 
It implies tremendously proposed accuracy and 
reliability in stress detection for the management of 
human well-being through intervention and resource 
deployment. Results exposed that proposed method 
produced best outcomes, with a 98.8% F1-Score at a 
learning rate of 70/30 and a 99.13% F1-Score at a 
learning rate of 80/20. 

 
The proposed model demonstrates high accuracy 
and adaptability by learning from both spectral and 
temporal features using adaptive Weibull, CDF, and 
Bernoulli distribution functions. Its strong 
performance across diverse datasets highlights its 
robustness and generalizability. However, the 
model’s complexity increases computational cost, 
which may limit real-time applications, especially in 
resource-constrained environments. Additionally, 
performance may degrade with noisy or incomplete 
data, and the model's reliance on high-quality data 
poses a challenge for real-world deployment. 
 

Future research should focus on optimizing 
computational efficiency to enable real-time stress 
detection. Expanding the dataset size and diversity 
will improve model generalizability. Investigating 
hybrid approaches combining other deep learning 
architectures with SA-WaOA and incorporating real-
time physiological and multi-modal data could 
further enhance accuracy and practical applicability. 
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