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ABSTRACT 

Frequent subgraph mining (FSM) is a core graph analysis task arising from many application domains, 
including bioinformatics, chemoinformatics, and social network analysis. Traditional FSM methods are not 
scalable to large datasets due to in-memory computations and inefficient candidate pruning, as found in 
gSpan and Apriori-based techniques. Although some recently distributed approaches, such as G-thinker 
and FlexMiner, have tried to overcome them, they are still confronted with high computational overhead, 
excessive data shuffling, and scalability. Such problems necessitate a sound, scalable approach for large-
scale graph mining in the modern era. This research proposes a novel, sophisticated framework, and 
algorithm called Frequent Subgraph Mining Using MapReduce (FSM-MR) with inherent optimizations. 
This efficient algorithm incorporates mapper combiners for minimizing data shuffling, canonical labeling 
for avoiding repeated enumeration of identical subgraphs, and dynamic support thresholds for effective 
pruning. FSM-MR, implemented in a Hadoop environment, shows better performance with up to 50% 
runtimes shorter than the state-of-the-art methods, with near-linear scalability with the addition of cluster 
nodes. The ability of the proposed framework to process large-scale graph datasets makes it beneficial for 
applications involving scalable, efficient graph mining. FSM-MR overcomes methodological limitations in 
the current state-of-the-art algorithms, helping set the stage for future research in these areas and fostering 
graph analytics in various scientific and industrial settings. 

Keywords - Frequent Subgraph Mining, MapReduce Framework, Scalability, Distributed Graph Analysis,  
Big Data Processing 

1. INTRODUCTION  

Frequent subgraph mining (FSM) is a critical 
task in graph-based data analysis, which aims to 
extract repeated structures in bioinformatics, 
chemoinformatics, social network analysis, etc. It 
has been used to identify networks of protein 
interactions, probe molecular shape and 
molecular models, and even find social 
communities. Many conventional FSM methods 
require in-memory computations and 
exhaustively generate candidates, limiting the 
state-of-the-art techniques to small or medium-
sized data sets [1, 2]. The emergence of very 
large-scale data has given rise to distributed 
frameworks such as G-thinker [3] and pattern-
aware systems such as FlexMiner [4] that 
provide better scalability. These methods, 
however, struggle with very high matrix 
shuffling overheads, target inefficient candidate 

pruning, and computational bottlenecks requiring 
subgraph isomorphism checks. These gaps in 
FSM methods highlight the need for an approach 
that performs at the scale of geometric syntactic 
features. To tackle these new challenges, in this 
research, we propose a new algorithm and 
framework for Frequent Subgraph Mining Using 
MapReduce (FSM-MR) that utilizes distributed 
computing environments along with some 
innovative optimizations. The research 
objectives covered include scalable FSM 
algorithm design, subgraph enumeration, pruning 
optimizations, and quantitative results on 
framework efficiency. Heap-based in-mapper 
combiners to reduce data shuffling, canonical 
labeling for redundancy elimination, and a novel 
approach for dynamic support thresholds to 
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effectively prune candidates are crucial novelties 
of the proposed research. 

Frequent Subgraph Mining (FSM) has been 
widely researched in recent years due to the 
importance of FSM in Bioinformatics,  
Chemoinformatics, Social Network Analysis, 
and so on. Although groundbreaking methods 
such as gSpan and Apriori-based approaches 
have provided best practices for enumerating 
subgraphs, they suffer from excessive 
computation overhead and show a significant 
lack of scalability with large datasets. 
Inheritance-based counter strategies have 
flourished from G-thinker, FlexMiner, and many 
more distributed frameworks. However, they still 
lack parallelization in extracting frequent 
itemsets which leads to superfluous data 
shuffling and redundant candidate generation. 
We present a new MapReduce-based framework 
for subgraph discovery that combines in-mapper 
combiners, canonical labeling, and dynamic 
support thresholding to overcome the above 
limitations. By minimizing intermediate data 
transfer, eliminating duplicatecomputations, and 
performing effective early pruning of infrequent 
subgraphs, these optimizations close a significant 
gap in the current literature and present a 
scalable, state-of-the-art technique for FSM. 

We introduce a distributed framework for 
frequent subgraph mining to alleviate further the 
computational load associated with classic 
algorithms for extensive graph data within this 
work. Our framework (FSM-MR), based on the 
MapReduce paradigm and enhanced with several 
novel optimizations – in-mapper combiners, 
canonical labeling, and dynamic support 
thresholding – alleviates problems like excessive 
data shuffling and redundant candidate 
enumeration and achieves considerable runtimes 
and near-linear scalability. The applications of 
our study extend far beyond its narrow scope of 
static, labeled graph datasets in a Hadoop-based 
environment; our contributions apply to 
numerous fields, such as bioinformatics, 
chemoinformatics, and social network analysis. 
First, This is not only a step forward in the state-
of-the-art scalable graph mining, but also sets a 
stage for future adaptation in dynamic and 
heterogeneous computing paradigms. 

This research makes three main contributions. It 
first presents FSM-MR, a new distributed 
algorithm for the generic FSM problem that 
tackles FSM's scalability and efficiency issues. 

Second, it provides a broad design space 
exploration using synthetic and accurate data to 
show considerable runtime improvements (up to 
3× on actual data) and nearly linear scaling with 
the state-of-the-art. Finally, our research 
provides a strong theoretical foundation 
encouraging efficient applications of large-scale 
graph mining. The rest of the paper is organized 
as follows. In Section 2, we perform a literature 
review, reviewing state-of-the-art non-distributed 
and distributed FSM methodologies and pointing 
out the research gaps. Preliminaries in Section 3 
provide basic graph definitions, a brief review of 
Finite State Machine terminology, and an 
overview of the MapReduce framework. 
Description of Proposed FSM-MR methodology 
including algorithmic steps and optimizations — 
Section 4 Experimental Results: Section 5 has 
the experimental results, where we present the 
experimental setup, followed by evaluation 
metrics, results and discussion, ablation study, 
and the comparative analysis. Findings (novels, 
limitations, and implications of the research) are 
discussed in Section 6. Section 7 draws the paper 
closer by summarizing our key contributions and 
outlining possible avenues of future work, 
including the ability to adapt FSM-MR to run on 
different distributed platforms and extending our 
algorithm to the dynamic graph mining setting. 
This structure guarantees that research is 
presented systematically and comprehensively 
while emphasizing the relevance and 
contributions to the field. 

2. RELATED WORK 

This section explores advancements in subgraph 
mining, focusing on algorithms, distributed 
frameworks, and domain-specific applications. It 
discusses methodologies for improving 
efficiency, scalability, and accuracy in mining 
frequent subgraphs. The review also identifies 
challenges such as memory constraints, 
computational complexity, and scalability 
limitations, highlighting opportunities for further 
optimization and broader applicability. 

2.1 Algorithms for Subgraph Mining  

This section focuses on methodologies and 
frameworks for improving the efficiency of 
subgraph mining. Nguyen et al. [1] created the 
CloGraMi algorithm, which uses novel traversal 
and pruning techniques to improve efficiency in 
mining closed frequent subgraphs. Additional 
improvements may be investigated in future 
development. Yan et al. [2] presented G-thinker, 
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a CPU-bound framework for practical distributed 
subgraph mining. Potential scaling problems are 
one of the limitations. Work in the future could 
improve algorithm variety. Nguyen et al. [5] 
enhanced parallel processing, edge sorting, and 
computational assistance were used to optimize 
the GraMi method for mining frequent 
subgraphs. One of the limitations is the amount 
of memory left. Further performance 
enhancements may be the main focus of future 
research. Yan et al. [6] created PrefixFPM, a 
framework for frequent pattern mining that can 
be customized to maximize CPU core use. 
Potential scaling problems are one of the 
limitations. Further research might improve the 
algorithm's flexibility for various kinds of data. 
Jamshidi et al. [7] "Subgraph counting is a 
fundamental task in graph analysis, focusing on 
identifying and enumerating specific subgraph 
patterns within more extensive networks. It has 
applications in diverse fields, such as 
bioinformatics, social network analysis, and 
computational chemistry.[8]created 
PEREGRINE, a pattern-aware graph mining 
system that maximizes computation and 
subgraph exploration. Potential implementation 
complexity is one of the limitations. Work in the 
future could improve on user-defined pattern 
expressions. Song et al. [30] presented filtering 
techniques and an optimum partial evaluation 
algorithm to enhance the efficiency of subgraph 
matching in distributed knowledge networks. 
Potential bottlenecks in assembly computation 
are one of the limitations. Future research may 
concentrate on investigating different graph 
types and further enhancing scalability.  

Preti et al. [18] created new scoring methods for 
graph pattern mining that increase pruning 
efficiency while preserving the apriori 
characteristic. Performance issues with increased 
weighting functions are among the limitations. 
Algorithms may be improved in future research 
for enhanced performance and scalability on 
various datasets. Pasini et al. [38] created a 
frequent subgraph mining method for scene 
graph-based picture summarizing that produced a 
variety of comprehensible summaries. Pattern 
finding may be improved by future research. 
Zhao et al. [17] created Kaleido, a productive 
out-of-core graph mining system that maximizes 
memory use and handles intermediate data. 
Potential performance problems with massive 
datasets are one of the limitations. Improving 
scalability and isomorphism verification 
techniques could be the main focus of future 

research. Chen et al. [9] created Sandslash, a 
flexible graph pattern mining framework with 
efficient low-level and high-level APIs. One of 
the limitations is that low-level usage may be 
complicated. Optimization strategies might be 
further improved by future research. 

2.2 Distributed and Scalable Frameworks 

The rest of the section covers subgraph mining 
regarding distributed systems, scalability, and 
optimization. Chinese research on subgraph 
mining includes the work of Jazayeri and Yang 
[3], who explored several subgraph mining 
methods with a focus on both temporal and static 
networks. First, memory limitations were not 
investigated. Research in this area may also be 
expanded to look at more comprehensive 
assessments. Rehman et al. A-RAFF: Addressing 
the familiar challenges of duplication and a 
combinatorial explosion of patterns common 
subgraph mining with a framework of FSP-Rank 
[4]. Limited examples might be user-defined 
thresholds. Automated support systems could be 
explored by future research. Bindschaedler et al. 
Tesseract [10] is a distributed system that 
improves the performance of graph mining tasks 
on dynamic graphs using incremental updates. 
One of those may perhaps be scalability issues. 
Change detection is still in its infancy, and future 
research on improving it may lead to even better 
results. Wang et al. Streaming-BENU and Batch-
BENU, the frameworks, represent many 
techniques for performing distributed 
enumerations of subgraph enumeration with 
good performance and scalability ([14]).  

One of its limitations is the potential complexity 
of the implementation. The following research 
can focus on controlling dynamic graphs and 
reducing memory footprints. Belhadi et al. Take, 
for instance, [19], which introduced DT-DPM, a 
distributed approach enabling a more scalable 
and restricted form of search space for pattern 
mining. One of the drawbacks is the potential 
added complexity in clustering transactions. 
Future work may focus on performance 
optimization over data formats and mining 
methods. 

Ayala et al. [39] examined large-scale analytics 
computing and graph partitioning systems, 
pointing out problems and suggesting future 
lines of inquiry to improve scalability. Dahiphale 
et al. [28] created BiECCA, a distributed 
MapReduce technique for locating 2-edge linked 
components in big graphs. Reliance on current 
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algorithms for linked components is one of its 
drawbacks. To improve the algorithm's 
capabilities, future research proposes 
investigating innovative additions. Liu et al. [37] 
discussed the benefits and drawbacks of 
MapReduce techniques for scalable subgraph 
enumeration. Overhead costs in distributed 
computing should be the focus of future research. 
Brunero and Elia [27] suggested using multi-
access distributed computing (MADC) to 
improve parallelization and lower 
communication overhead in distributed systems. 
Reliance on network topology is one of the 
limitations. Future research may examine the 
best topologies for distributed computing 
scenarios to maximize performance. Mo et al. 
[35] reviewed the mining of cohesive subgraphs 
in large-scale graphs, particularly k-trusses. 
Scalability issues are one of the limitations. More 
effective algorithms could be investigated in 
future research. 

2.3 Applications and Limitations in Graph 
Mining 

This section covers specific applications, 
challenges, and limitations in graph mining 
techniques. Yoo et al. [11] created ParColoc, a 
parallel co-location pattern mining technique in 
extensive geographic data based on Hadoop. 
Among the limitations are possible problems 
with memory use. Future research may 
concentrate on improving performance even 
further for dense datasets. Shukla et al. [13] 
presented DIGDUG, a system that uses optimal 
graph operations to find expert relationships and 
new subjects in technical publications. One of 
the limitations might be dealing with highly 
sparse data. Future research could improve 
scalability and expand its applicability. Naik et 
al. [15] "Density-based algorithms are practical 
for clustering large datasets by identifying dense 
regions of data points. The MapReduce 
framework enables scalable implementation of 
these algorithms, addressing big data processing 
challenges.[16] "Efficient indexing schemes 
enhance the performance of subgraph retrieval 
and matching by reducing search space. These 
optimizations are crucial for applications in 
graph databases, pattern recognition, and 
network analysis.[20] constructed a distributed 
method that uses a variety of centrality metrics to 
find prominent nodes in social networks. Among 
the limitations are difficulties managing vast 
networks. Other centrality measures and more 
improvements may be investigated in future 

research. Sharma et al. [21] compared VF3 with 
Dryadic for subgraph isomorphism; Dryadic is 
found much more quickly because of 
optimizations. Performance degradation in the 
absence of these modifications is one of the 
limitations. Future research might improve both 
methods by using hybrid techniques and other 
optimizations. Lanciano et al. [23] examined the 
Densest Subgraph Problem, emphasizing new 
developments and uses. Among the limitations 
are unsolved open issues that point to potential 
areas for further study.  

Reddy et al. [36] provided the SIFT framework 
for effective extraction and Subgraph Coverage 
Patterns (SCPs) for graph transactional data 
mining. Coverage restrictions are one type of 
limitation. Future research might improve the 
variety of applications and scalability. Zhang et 
al. [40] created a clustering technique and an 
effective temporal graph model, resolving issues 
with accuracy and updates while speeding up 
processing. Dependency on thresholds and 
possible scaling problems are among the 
limitations. Optimization and broader 
applications could be investigated in future 
research. Kumbhkar et al. [33] enhanced 
multiclass classification in massive datasets 
using a data reduction technique for survival data 
analysis. One of the limitations is the possibility 
of oversimplifying complicated data. Subsequent 
research endeavors must improve the methods 
and handle various kinds of data. Asma et al. 
[34] provided a scalable approach that lowers 
transmission costs for web-scale graph mining. 
Potential scaling problems are one of the 
limitations. More optimizations and broader 
applications should be investigated in future 
research. Chaturvedi et al. [29] created a low-
cost technique to use Apache Spark's FP-Growth 
and PFP-Growth to mine social media data for 
recurring patterns. One of the limitations is that 
FP-Growth requires preprocessing. Future 
research should examine more validation 
datasets and optimizations. Ma et al. [31] 
reviewed 98 papers on Hadoop's use in big data 
for transportation, finding patterns, gaps, and 
areas for further study. One of the limitations is 
the lack of comprehensive research on Hadoop's 
fundamental technology. A deeper investigation 
of optimization frameworks and new 
applications should be the main emphasis of 
future research.  

Meng et al. [22] examined problems in 
distributed graph processing, providing answers 
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and a summary of current work. One of the 
limitations is the lack of emphasis on real-world 
applications. Future research might examine 
creative approaches to improve scalability and 
efficiency. Yan et al. [32] examined graph 
mining approaches for cybersecurity, 
emphasizing activities, datasets, and procedures. 
One limitation is the inefficiency of conventional 
ML techniques. Further research should improve 
graph-based solutions and investigate more 
intricate relationships between cyber entities. 
Pasarella et al. [25] provided a Dynamic Pipeline 
architecture emphasizing real-time graph 
analysis for effective stream processing. Among 
the drawbacks are further testing and 
optimization requirements across various 
applications. Future research might improve 
framework scalability and investigate more issue 
domains. Sadeequllah et al. [24] presented 
ProbBF, a frequent itemset mining technique that 
predicts support without utilizing transactional 
data and is effective for dense datasets. Among 
its drawbacks is the possibility of quality 
degradation because of its probabilistic character. 
Future research may concentrate on improving 
precision and adaptability to different kinds of 
datasets.   

Liu et al. [26] presented LS-RKSS, a framework 
that uses subgraph segmentation and recalls 
KNN for effective large-scale clustering. Among 
the limitations are possible implementation 
difficulties. Future research may investigate 
other clustering strategies and improve 
performance for increasingly more enormous 
datasets.  Preti et al. [18] created new scoring 
methods for graph pattern mining that increase 
pruning efficiency while preserving the apriori 
characteristic. Performance issues with increased 
weighting functions are among the limitations. 
Algorithms may be improved in future research 
for enhanced performance and scalability on 
various datasets. Expanding the variety of 
diseases and improving the robustness of the 
model are potential areas of future investigation. 
Model innovations are also found for image 
processing innovations in [42] and [43].  More 
deep-learning optimizations are also found in 
[44] and [45]. Novel deep learning-based 
optimized ideas are also found in [46] and [47].  
The FSM-MR algorithm is a generalization of 
previous approaches--including classical 
frequent subgraph mining methods such as 
gSpan or Apriori-based algorithms as well as 
new scalable frameworks, for example, G-
thinker and its recent extensions, FlexMiner--but 

addresses some of the scalability and 
computational inefficiencies found in previous 
designs. Although these methods contribute to 
the frontier of FSM, they also inherit limitations, 
including high data shuffling cost, poor 
candidate generation efficiency, and limited 
scalability to large-scale graphs. We 
systematically recognized these studies and 
critically assessed their limitations during our 
work, explicitly asserting that our study is a 
direct improvement over them. Our study 
complements previous works by providing data 
and results that illustrate the effect of our 
optimizations, which include in-mapper 
combiners, canonical labeling, and dynamic 
support thresholding, backed by comprehensive 
experimental validation. Comparative 
assessments underscore the superiority of FSM-
MR over existing approaches in terms of 
execution time, scalability, and data transfer, 
validating the novelty and significance of our 
work. 

3. PRELIMINARIES 

This part introduces the main principles on 
which frequent subgraph mining (FSM) builds. 
It consists of basic terminologies regarding graph 
and FSM definitions, followed by an explanation 
of the MapReduce framework and mathematical 
notations for clear demonstration, forming the 
basis of the methodology proposed in the paper. 

3.1 Graph Terminology  

A graph is defined as 𝐺 =  (𝑉, 𝐸), where 𝑉 Is 
the set of vertices and 𝐸 ⊆ 𝑉 × 𝑉 Is the set of 
edges. For a labeled graph, each vertex 𝑣 ∈ 𝑉 
and edge 𝑒 ∈ 𝐸 Has an associated label denoted 
as 𝑙(𝑣) and 𝑙(𝑒), respectively. Labels provide 
additional semantic information, such as atom 
types in a chemical graph or entity roles in a 
social network. A subgraph 𝑔 =  (𝑉, 𝐸) of 𝐺 
satisfies 𝑉 ⊆ 𝑉 and 𝐸 ⊆  𝐸. Subgraphs retain 
the labeling and structural properties of the 
parent graph. 𝐺. For instance, if 𝑔 is a triangle 
within 𝐺, all its vertices and edges must preserve 
their corresponding labels and relationships. 
Given a dataset of graphs 𝐷 =  {𝐺ଵ, 𝐺ଶ, . . . , 𝐺ே}, 
the support of a subgraph 𝑔, denoted as 𝑆(𝑔) and 
is defined as: 

𝑆(𝑔)  =  |{𝐺 ∈ 𝐷|𝑔 ⊆ 𝐺}| 

where 𝑔 ⊆ 𝐺, indicates that 𝑔 is isomorphic to a 
subgraph in 𝐺. A subgraph 𝑔 is considered 
frequent if 𝑆(𝑔)  = 𝜎, where 𝜎 is the user-
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defined support threshold. Canonical labeling 
ensures efficient processing, assigning a unique 
identifier to each subgraph based on its structure 
and labels. For example, the canonical label of a 
triangle subgraph with labeled vertices and edges 
provides a unique representation that avoids 
redundant enumeration. Subgraph isomorphism 
checks, critical in frequent subgraph mining, 
determine whether 𝑔 ⊆ 𝐺. This involves 
verifying a bijection 𝑓: 𝑉 →  𝑉 such that: 

1. ∀(𝑢, 𝑣)  ∈  𝐸 , (𝑓(𝑢), 𝑓(𝑣))  ∈  𝐸 

2. ∀𝑢 ∈  𝑉, 𝑙(𝑢)  =  𝑙(𝑓(𝑢)) 

3. ∀(𝑢, 𝑣)  ∈  𝐸 , 𝑙(𝑢, 𝑣)  =  𝑙(𝑓(𝑢), 𝑓(𝑣)) 

Graph datasets, especially at a large scale, can 
have millions of vertices and edges. This requires 
scalable and highly robust algorithms to manage 
various structures, fast isomorphism verification, 
and correct support computation for frequent 
subgraph mining. Canonical labeling minimizes 
additional computational costs by enabling the 
representation of unique subgraphs, hence 
removing duplication. 

3.2 Frequent Subgraph Mining 

Frequent Subgraph Mining (FSM) is the process 
of identifying subgraphs that occur frequently in 
a given dataset of graphs. Let 𝐷 =
 {𝐺ଵ, 𝐺ଶ, . . . , 𝐺ே} represent the dataset, where 
each graph 𝐺 = (𝑉 , 𝐸) consists of vertices 𝑉 
and edges 𝐸). A subgraph 𝑔 = (𝑉, 𝐸) is 
frequent if its support, 𝑆(𝑔), meets or exceeds a 
predefined threshold 𝜎, i.e., 

𝑆(𝑔)  =  |{𝐺 ∈ 𝐷|𝑔 ⊆ 𝐺}| and 𝑆(𝑔) ≥ 𝜎 

Here, 𝑔 ⊆ 𝐺 denotes that g is isomorphic to a 
subgraph of 𝐺. FSM involves three primary 
steps: 

1. Subgraph Enumeration: Generate candidate 
subgraphs 𝑔 from the dataset 𝐷. Candidate 
generation is often guided by techniques such as 
breadth-first or depth-first traversal. 

2. Support Counting: For each candidate 
subgraph g, compute 𝑆(𝑔) by identifying all 
graphs 𝐺୧ in 𝐷 that contain 𝑔 as a subgraph. 

3. Pruning: Discard infrequent subgraphs where 
𝑆(𝑔)  < 𝜎 to reduce the computational 
complexity. 

The process requires solving the subgraph 
isomorphism problem, which ensures that for 
gCG. there exists a bijection 𝑓: 𝑉 → 𝑉 such that 
structural and labeling constraints are preserved: 

∀(𝑢, 𝑣)  ∈  𝐸, (𝑓(𝑢), 𝑓(𝑣))  ∈  𝐸 and 𝑙(𝑢)  =

 𝑙(𝑓(𝑢)), 𝑙(𝑢, 𝑣)  =  𝑙(𝑓(𝑢), 𝑓(𝑣)). 

FSM is computationally challenging due to the 
combinatorial explosion of candidate subgraphs, 
making efficient enumeration and pruning 
crucial. Techniques such as canonical labeling 
and distributed frameworks like MapReduce 
mitigate these challenges by reducing 
redundancy and improving scalability. 

3.3 MapReduce Framework 

As illustrated in Figure 1, MapReduce is a 
distributed computing framework that 
decomposes large-scale data processing jobs into 
smaller sub-jobs that can be processed at scale 
across many nodes in a cluster. This figure 
shows the architecture and working of the 
MapReduce framework and how the client, job 
tracker, task tracker, and shared file system 
interact. The client node writes and runs the 
MapReduce program. The client passes the job 
through its Java Virtual Machine (JVM) to the 
Job Tracker Node. These job resources, such as 
input files, configurations, and JAR, are 
submitted with this submission containing the 
MapReduce code. After the job tracker accepts 
the job, it will ID it with a unique job ID and 
make it runnable by splitting the input data into 
small pieces and saving it in the shared file 
system. 

The job tracker is aligned to oversee the 
execution of the job. It communicates with data 
that will distribute Task tracker nodes in the 
cluster. Individual Map Or Reduce tasks are 
assigned to task trackers by the job tracker. 
When the task trackers receive their tasks, they 
create child JVMs to run them. Every child JVM 
takes the part of input as it splits and uses the 
Map or Reducelogic that is specified in their 
program. During the execution of a job, the task 
trackers periodically send "heartbeat" messages 
to the job tracker, assuring them of their status 
and conveying the progress of their tasks. 
Heartbeat from each task tracker helps secure the 
fault tolerance mechanism – If any task trackers 
do not return a heartbeat, the job tracker 
automatically reassigns the tasks in case another 
node has arrived (thus performing heartbeat). A 
shared file system serves as an integral 
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component,  which saves intermediate data 
produced in the Map phase, which can be 
accessed in the next Reduce phase to obtain the 
final output. The figure illustrates that the 
MapReduce framework is built to be scalable 

and fault-tolerant when distributing workloads 
within the cluster. It has a modular structure 
where large data sets can be handled very well, 
and it is ideal for complex calculating tasks such 
as frequent subgraph mining. 

 

Figure 1: Overview of MapReduce Framework 

MapReduce is a framework model for distributed 
computing that splits jobs into several operations 
to execute parallel, and it can scale out for big 
data sets. Since its advertisement on the Internet, 
it has been used primarily for FSM (frequent 
subgraph mining) tasks, as running 
computationally-intensive tasks like subgraph 
enumeration and support counting is more 
effective in a distributed manner. Two primary 
phases of the operation of the framework; 

1. Mapper Phase: The input data is divided into 
splits, and a Mapper function processes each 
split. The Mapper emits intermediate key-value 
pairs (𝑘, 𝑣), where k represents a key (e.g., 
subgraph candidate or identifier) and is the 
associated value (e.g., graph information or 
frequency). 

𝑀𝑎𝑝𝑝𝑒𝑟: (𝑘ଵ, 𝑣ଵ)  →  [(𝑘ଶ, 𝑣ଶ)] 

2. Reducer Phase: The Reducer aggregates all 
values associated with the same key 𝑘ଶ and 
performs operations such as counting, filtering, 

or extending subgraphs. The Reducer outputs the 
final results: 

𝑅𝑒𝑑𝑢𝑐𝑒𝑟: (𝑘ଶ, [𝑣ଶ])  →  [(𝑘ଷ, 𝑣ଷ)]. 

The MapReduce process is iterative for FSM, 
alternating between subgraph construction and 
support counting. In iteration 𝑘: 

 Subgraph Construction (Phase A): 
Extend (𝑘 − 1)-subgraphs to generate 
𝑘-Subgraphs are used using a Mapper, 
followed by Reducer aggregation to 
eliminate duplicates. 

 Support Counting (Phase B): Use the 
Mapper to emit intermediate keys 
representing 𝑘- subgraphs, and the 
Reducer calculates the support 𝑆(𝑔) for 
each subgraph 𝑔: 

𝑆(𝑔)  =  |{𝐺 ∈ 𝐷|𝑔 ⊆ 𝐺}| 

Hadoop, an open-source implementation of 
MapReduce, manages fault tolerance and 
scalability by distributing data and computation 
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across nodes in a cluster. Each iteration of FSM 
involves the input-output relationship: 

𝐷 =  {𝐺ଵ, 𝐺ଶ, . . . , 𝐺ே}, Output: {𝑔 | 𝑆(𝑔)  >  𝜎}. 

MapReduce's ability to scale out massively 
parallel processing of graph datasets in a tolerant 
manner makes it well-suited to address these 
challenges. MapReduce fits computationally 
expensive iterations for subgraph isomorphism 
check, pruning, and canonical labeling to the 
iterative tasks of FSM, which is such a solid 
basis for graph mining at scale. 

 

4. METHODOLOGY 

This section describes the framework of frequent 
subgraph mining (FSM) based on the 
MapReduce programming model. It starts by 
covering problem definition, the intrinsic 
difficulties of subgraph isomorphism, and the 
scalability and candidate pruning challenges in 
FSM. The framework uses iterative Mapper and 
Reducer phases to build, evaluate, and prune 
subgraphs on large-scale datasets quickly. We 
incorporate various key optimizations such as 
canonical labeling, in-mapper combiners, and 
dynamic support thresholds to minimize 
computational overhead and achieve improved 
performance—the fault-tolerant, scalable, and 
efficient workflow was run on Apache Hadoop. 
Here, we will elaborate on the FSM-MR 
algorithm along with its implementation. 

4.1 Problem Definition 

Frequent Subgraph Mining (FSM) identifies 
subgraphs that appear frequently within a given 
dataset of graphs, meeting or exceeding a 
predefined support threshold. Let the dataset be 
represented as 𝐷 = {𝐺ଵ, 𝐺ଶ, … , 𝐺}where each 
graph 𝐺 = (𝑉 , 𝐸) consists of vertices 𝑉  and 
edges 𝐸. A subgraph 𝑔 = ൫𝑉 , 𝐸൯ is a subset of 
a graph 𝐺 such that 𝑉 ⊆ 𝑉 and 𝐸 ⊆ 𝐸 
Retaining the structure and labels of the original 
graph. 

The support 𝑆(𝑔) of a subgraph, gg is defined as 
the number of graphs in 𝐷 That contain gg as a 
subgraph. Mathematically, 𝑆(𝑔) = |{𝐺 ∈
𝐷 | 𝑔 ⊆ 𝐺}|, where 𝑔 ⊆ 𝐺  implies that 𝑔 is 
isomorphic to a subgraph within 𝐺. A subgraph 
is considered frequent if its support satisfies. 
𝑆(𝑔) ≥ 𝜎, where 𝜎 is the user-defined minimum 
support threshold. Subgraph isomorphism is the 

task of determining whether 𝑔 exists as a 
subgraph within 𝐺, requires identifying a 
bijective mapping between the vertices of 𝑔 and 
𝐺 That preserves connectivity and labeling. This 
process is computationally intensive, making it 
one of the key challenges in FSM.  

The search space for FSM grows exponentially 
with the size of the graphs due to the 
combinatorial explosion of possible subgraphs. 
For a graph with |𝐸| Edges, the total number of 
potential subgraphs can be approximated as 2|ா|, 
highlighting the scalability challenges associated 
with mining frequent subgraphs in large datasets. 
The process involves generating candidate 
subgraphs, verifying their support, and pruning 
infrequent ones. Canonical labeling is often 
employed to ensure unique representations of 
subgraphs, eliminating redundant computations 
and facilitating efficient enumeration. 

The objective of FSM is to efficiently mine all 
frequent subgraphs. 𝑔 from the dataset 𝐷 While 
addressing challenges such as scalability, 
computational cost, and redundancy. The process 
typically begins with 𝐹ଵ, the set of frequent 
subgraphs of size 1, and iteratively generates 
more significant subgraphs by extending the 
current set of frequent subgraphs 𝐹. At each 
iteration, candidates are pruned based on their 
support. The process terminates when no new 
frequent subgraphs can be generated, ensuring 
the algorithm identifies all subgraphs meeting the 
support threshold.  

4.2 Proposed Framework 

We introduce a new framework for FSM using 
the MapReduce programming model to process 
large-scale graph datasets efficiently. This 
framework iterates through two main steps:  
subgraph construction and counting support. The 
framework scales and overcomes the 
computational obstacles of FSM, like subgraph 
enumeration, isomorphism checks, and pruning, 
using computation distribution by many nodes in 
a cluster. 

During the first phase, called subgraph 
construction, candidate subgraphs of size k are 
constructed from the frequent subgraphs of size 
(k−1) found in the previous iteration. The 
Mapper function is distributed, where each 
mapper works on local (k−1)-subgraphs and 
expands them with one edge from the originating 
graph. These k-subgraphs are then emitted as 
intermediate key-value pairs, where the key 
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associates the subgraph with its canonical label, 
ensuring that every such label appears only once 
on every machine and the value of the graph ID 
and the subgraph itself. This is fed to the 
Reducer, which summarizes these intermediate 
outputs, removing duplicate subgraphs and 
generating a unique set of k-subgraphs for the 
next step. 

In the phase of support counting, the generated 
k-subgraphs from the construction phase will be 
evaluated and checked to see how often they 
occur in the graph dataset. Each k-subgraph is 
processed by a mapper and the dataset, resulting 
in pairs of key values, in which a key is the 
canonical label of the subgraph, and the value is 
the ID of the graph containing it. The Reducerto 
then aggregates such values to calculate each 
subgraph gg's support S(g). Frequent subgraphs 
for the next stage are only determined to satisfy 
the minimum support threshold, S(g)≥σ. The 
iterative two-phase process continues until no 
new frequent subgraphs are created, meaning all 
subgraphs passing the defined threshold of 
support are discovered. 

The framework also implements several 
optimizations to improve its efficiency. To 
construct and count only non-isomorphic 
subgraphs, we employ a canonical labeling 
scheme that enforces that no two subgraphs have 
the exact representation. Using in-mapper 
combiners, they aggregate intermediate results 
close to where they are created and before being 
transferred to reducers, thus helping reduce data 
transfer overhead and improving runtime 
performance. Moreover, a dynamic support 
threshold is only used so that the threshold can 
change between iterations and prune infrequent 
subgraphs effectively in the first stage. This 
reduces the search space significantly, allowing 
for much faster computations while maintaining 
accuracy. 

All the procedures are performed on Hadoop, 
which is a fault-tolerant and scalable platform. 
Transfer of input datasets and intermediate 
results over gaggles occurs via the Hadoop 
Distributed File System (HDFS) and easy 
communication between mappers and reducers. 
The iterative execution of MapReduce jobs with 
the optimizations outlined in this work enables 
the framework to process graphs with millions of 
edges and vertices, making it applicable to 
problems arising from bioinformatics and social 
networks and the analysis of chemical 

compounds. Such answers correspond not only 
with the intrinsic difficulties of FSM but also 
with a mature basis for further extensions and 
improvements of the framework. 

4.3 Optimizations 

The novel framework consists of essential 
optimizations to improve FSM's performance 
and scalability. These optimizations target 
computational challenges, particularly subgraph 
isomorphism, redundancy, and discussion 
overhead. 

Canonical Labeling 

Canonical labeling ensures that each subgraph 
has a unique representation, eliminating 
duplicate candidates and reducing computational 
redundancy during subgraph enumeration and 
frequency counting. For a subgraph 𝑔 =

൫𝑉 , 𝐸൯, the canonical label ℒ(𝑔) Is defined as 
the lexicographically smallest string derived 
from the graph's adjacency matrix or edge list, 
considering vertex and edge labels. 
Mathematically: 

ℒ(𝑔) = min
గఢ൫൯

𝐴𝑑𝑗൫𝜋(𝑔)൯ 

where 𝑃𝑒𝑟𝑚൫𝑉൯ represents all permutations of 

𝑉 and 𝐴𝑑𝑗൫𝜋(𝑔)൯ is the adjacency matrix under 
permutation 𝜋. This labeling ensures that 
isomorphic subgraphs are represented 
identically, reducing the search space and 
improving the efficiency of reducers in 
aggregating subgraphs. 

In-Mapper Combiner 

The in-mapper combiner minimizes the volume 
of intermediate data transferred between mappers 
and reducers. During the support counting phase, 
each mapper locally aggregates occurrences of 
subgraphs. 𝑔 before emitting them as key-value 
pairs. Let  𝒦be the set of subgraphs processed by 
a mapper and 𝑆(𝑔)be the local support of gg. 
The mapper emits: 

൫𝑔, 𝑆(𝑔)൯ for 𝑔 ∈  𝒦 

This reduces the number of key-value pairs sent 
over the network, where  ห𝒦௨௧௨௧ห ≪ ห𝒦௨௧ห, 
thereby decreasing communication overhead and 
improving runtime. 

Dynamic Support Threshold 
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The dynamic support threshold adjusts the 
minimum support  𝜎 adaptively across iterations 
to prune infrequent subgraphs earlier in the 
mining process. Let 𝜎 be the support threshold 
in iteration 𝑘. The dynamic threshold is defined 
as: 

𝜎 = 𝜎. 𝛼 

where 𝛼 ∈ (0,1)is a decay factor that gradually 
reduces the threshold in subsequent iterations. 
This allows the framework to quickly eliminate 
subgraphs with low support during early 
iterations when the search space is large, 
focusing computational resources on promising 
candidates. 

Edge Sorting and Subgraph Generation 

To improve the efficiency of subgraph 
isomorphism checks, edges in each graph are 
sorted lexicographically based on their labels and 
endpoints. Let 𝐸 = {𝑒ଵ, 𝑒ଶ, … . 𝑒} Be the set of 
edges in a graph 𝐺. The sorted edge set is: 

𝐸ᇱ = ቄ𝑒|𝑙(𝑒) ≤ 𝑙൫𝑒൯ 𝑓𝑜𝑟 𝑖 < 𝑗, ∀,ೕ
∈ 𝐸ቅ 

Subgraph extensions adhere to this sorted order 
during construction, ensuring each subgraph is 
generated precisely once. This significantly 
reduces the number of redundant candidates and 
accelerates subgraph enumeration. 

Mathematical Model for Optimized Iterative 
FSM 

Let 𝐹 Denote the set of frequent subgraphs of 
size 𝑘, and 𝐶ାଵ Be the candidate subgraphs of 
size k+1. The iterative process with 
optimizations can be expressed as: 

1. Subgraph Construction: 

𝐶ାଵ = 𝐶𝑎𝑛𝑜𝑛𝑖𝑐𝑎𝑙𝑖𝑧𝑒({𝑔 ∪ 𝑒 | 𝑔 ∈  𝐹 , 𝑒 
∈  𝐸𝑑𝑔𝑒𝑠(𝐺), 𝐼𝑠𝑣𝐴𝑙𝑖𝑑(𝑔, 𝑒)}) 

where 𝐼𝑠𝑣𝐴𝑙𝑖𝑑(𝑔, 𝑒) Ensures that adding edge ee 
maintains graph connectivity. 

2. Support Counting: 

𝑆(𝑔) = |{𝐺 ∈ 𝐷| 𝑔 ⊆  𝐺}| 

With in-mapper combiners aggregating local 
counts: 

𝑆(𝑔) =  𝑆
() (𝑔)



ୀଵ

 

where 𝑚 Is the number of mappers. 

3. Pruning with Dynamic Threshold: 

𝐹ାଵ = {𝑔 ∈  𝐶ାଵ|𝑆(𝑔) ≥ 𝜎} 

Scalability Enhancements 

Intermediate results are stored in a distributed 
filesystem (e.g., HDFS) to enable scalability and 
communication between mappers and reducers. 
Combined with the canonical labeling method, 
in-mapper combiners, and dynamic thresholds, 
the computational complexity is significantly 
reduced, and the overhead to be performed by 
the framework is also minimized, allowing 
efficient processing of large-scale datasets. The 
optimizations we develop are central to the 
proposed framework and enable us to use it on 
realistic and highly scalable FSM tasks. 

4.4 Workflow 

The proposed Frequent Subgraph Mining (FSM) 
framework is implemented using Apache 
Hadoop, leveraging its distributed processing 
capabilities and fault tolerance. Each iteration of 
the MapReduce job performs a series of steps 
involving the Mapper, Reducer, and Shared File 
System, ensuring efficient subgraph construction 
and support counting. The iterative workflow 
continues until no new frequent subgraphs are 
identified. 

In the Mapper phase, the (𝑘 − 1)-subgraphs 
from the previous iteration and the dataset 𝐷 =
{𝐺ଵ, 𝐺ଶ, … 𝐺ே} They are read as inputs. The 
Mapper processes each. (𝑘 − 1)-subgraph and 
extends it by adding one edge from the 
corresponding graph to generate a candidate 𝑘-
subgraphs. Each candidate subgraph  𝑔  Is 
emitted as an intermediate key-value pair, where 
the key is the canonical label ℒ(𝑔)Of the 
subgraph, and the value contains the graph ID. 
This ensures that all isomorphic subgraphs are 
represented uniquely, reducing redundancy 
during the next phase. 

The Reducer aggregates the intermediate key-
value pairs generated by the Mappers. It groups 
all candidate subgraphs by their canonical 
labels. ℒ(𝑔), applies canonical labeling to 
ensure uniqueness, and counts the support 𝑆(𝑔) 
For each subgraph across the dataset. Subgraphs 
with 𝑆(𝑔) ≥ 𝜎, where 𝜎 is the minimum 
support threshold, are retained as frequent 
subgraphs. These frequent subgraphs are 
outputted for the next iteration, while infrequent 
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subgraphs are discarded, effectively pruning the 
search space. 

The Shared File System, such as the Hadoop 
Distributed File System (HDFS), serves as a 
critical component in the workflow, storing 
intermediate data for seamless communication 
between the Mapper and Reducer phases. 
Candidate subgraphs generated in the Mapper 
phase are written to the shared file system, where 
the Reducers can access them. Similarly, the 
output of each iteration, including frequent 
subgraphs and intermediate results, is stored in 
the shared file system for use in subsequent 
iterations. This distributed storage ensures 
scalability and fault tolerance, enabling the 
framework to handle large-scale graph datasets.   

By iteratively executing the Mapper and Reducer 
phases and utilizing the shared file system for 

intermediate storage, the framework efficiently 
mines frequent subgraphs, ensuring scalability 
and accuracy even in large and complex datasets. 
This workflow combines computational 
efficiency with the robustness of distributed 
systems, making it suitable for a wide range of 
real-world applications. 

4.5 Proposed Algorithm 

This paper proposes a scalable and efficient 
algorithm for frequent subgraph mining based on 
the MapReduce framework to find frequently 
occurring subgraphs in many graph datasets. It 
builds, evaluates, and prunes subgraphs 
iteratively using distributed computing. This is 
important because it solves some computation 
problems for bioinformatics, chemoinformatics, 
and social network analysis. 

Algorithm: Frequent Subgraph Mining Using MapReduce Framework 
Input: 

 Graph dataset D={𝐺ଵ, 𝐺ଶ, … … , 𝐺ே } (labeled graphs) 
 Minimum support threshold σ 

Output: 
 Frequent subgraphs F 

Steps: 
1. Initialize Parameters: 

o Set k=1 (subgraph size). 
o Initialize 𝐹 As the set of all frequent 1-edge subgraphs. 

2. Iterative Subgraph Mining: 
o While 𝐹≠∅: 

1. Mapper Phase: 
 For each graph 𝐺∈D:  

 Extract all (k−1)-subgraphs. 
 Extend each (k−1)-subgraph to generate candidate k-

subgraphs. 
 Emit (g, 𝐺), where g is a candidate subgraph and 𝐺  Is its 

graph ID. 
2. Reducer Phase: 

 Aggregate all candidate k-subgraphs by canonical labeling to avoid 
duplicates. 

 Count the support S(g) for each k-subgraph g across graphs in D. 
 Retain only those subgraphs where S(g)≥σ. 
 Store frequent k-subgraphs in 𝐹. 

3. Update Iteration: 
 Increment k by 1. 

3. Output Results: 
o Combine all frequent subgraphs F=⋃𝐹. 

Algorithm 1: Frequent Subgraph Mining Using 
MapReduce Framework 

It efficiently identifies the frequent subgraphs in 
the dataset of labeled graphs using the Frequent 
Subgraph Mining using the MapReduce 
Framework algorithm. First, we initialize the 

parameters of DPNS, set the initial size of the 
subgraph to one, and extract all frequent one-
edge subgraphs from the dataset. The subgraphs 
comprise the first batch of frequent subgraphs, 
which will be iteratively mined. 
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The algorithm is iterative and repeats until no 
more frequent subgraphs are produced. The 
mapper phase on each iteration generates 
subgraphs of the size from each graph in the 
dataset. These subgraphs are subsequently 
extended to more significant candidate subgraphs 
by attaching an edge at a time. The 
corresponding source graph identifier will also 
be emitted for each candidate subgraph. This 
ensures that we have collected all the sub-graphs 
and that they are ready for analysis. The 
candidate subgraphs emitted in the Mapper phase 
are aggregated and processed in the Reducer 
phase. We apply canonical labeling to avoid 
redundancy so that all isomorphic subgraphs 
represent one unique canonical form. Next, the 
supporting count of each candidate subgraph, 
defined as the number of graphs in which it 
occurs, is calculated. Frequent Subgraphs: Only 
subgraphs with support that are more excellent 
than the specified minimum support threshold 
are retained as possible frequent subgraphs. 
These are the candidates for the next iteration 
and are stored. 

The subgraph size is then increased, and the 
cycle restarts until the completion of the current 
iteration. The algorithm iteratively follows this 
process until no more frequent subgraphs can be 
found. At the end of the mining procedure, the 
algorithm merges all the frequent (within an 
iteration) subgraphs found in each iteration, 
leading to the final output. It utilizes the 
scalability and efficiency of the MapReduce 
programming model for large-scale graph dataset 
processing, which scales well with computation. 
With iterative construction and evaluation of the 
subgraphs and optimizations such as canonical 
labeling, the algorithm guarantees that frequent 
subgraphs will be mined while keeping the 
computations at a low cost. 

4.6 Illustrative Example: Generating 
Frequent Subgraphs Using PubChem 
BioAssay Data 

This section demonstrates how the proposed 
framework processes molecular interaction data 
from the PubChem BioAssay database to 
generate frequent subgraphs. Consider a 
simplified dataset containing three molecular 
graphs, each representing a compound's 
structure: 

 

 

 Graph G1: A benzene ring (C6H6). 

 Graph G2: A cyclohexane molecule 
(C6H12). 

 Graph G3: A phenol molecule 
(C6H6O). 

Step 1: Initialization 

The process begins by extracting all 1-edge 
subgraphs (single bonds) from the molecular 
graphs. Each bond is represented by its atomic 
labels (e.g., C-H, C-C, O-H) and connectivity. 
The initial set of candidate subgraphs (F1) is: 

F1={C-H, C-C, O-H} 

The canonical labeling process assigns a unique 
representation to each candidate, ensuring that 
isomorphic bonds (e.g., identical bonds in 
different structures) are not counted multiple 
times. 

Step 2: Subgraph Extension 

Each 1-edge subgraph is extended by adding 
connected vertices and edges. For instance: 

 Extending a C-C bond from G1 
generates subgraphs like C-C-C (a chain 
of three carbon atoms). 

 Extending a C-H bond from G2 
generates subgraphs like C-H-C (a 
branch with one hydrogen and two 
carbon atoms). 

Step 3: Canonical Labeling 

Canonical labeling ensures that all isomorphic 
subgraphs are represented uniquely. For 
example: 

 The benzene ring (G1) is labeled as a 
cyclic subgraph with alternating single 
and double C-C bonds. 

 The phenol molecule (G3) is labeled 
similarly, with an additional O-H 
branch attached. 

Step 4: Support Counting 

The framework computes the support S(g) for 
each candidate subgraph gg across the dataset. 
For example: 

 The benzene ring appears in G1 and G3, 
so S(g)=2. 
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 The cyclohexane structure appears only 
in G2, so S(g)=1. 

Step 5: Pruning 

Subgraphs with support S(g) below the minimum 
threshold σ\sigma are pruned. Assuming σ=2: 

 Frequent subgraphs: 
F={benzene ring, C-H, C-C} 

 Infrequent subgraphs: 
{cyclohexane structure, C-O} 

Step 6: Iteration 

The process iteratively extends frequent 
subgraphs to generate more significant 
subgraphs. For instance: 

 The C-C bond in F1 is extended to form 
chains (C-C-C) and cycles (benzene 
ring). 

 Subgraphs meeting S(g)≥σ are retained 
for the next iteration. 

Final Output 

The framework outputs all subgraphs that meet 
the minimum support threshold. In this example, 
the frequent subgraphs are: 

 Benzene ring (support = 2). 

 C-C bond (support = 3). 

 C-H bond (support = 3). 

This illustrative example demonstrates how the 
proposed framework systematically mines 
frequent subgraphs from a molecular dataset 
using the PubChem BioAssay database. 
Leveraging the iterative MapReduce approach 
ensures scalability and efficiency in handling 
large-scale graph datasets. 

5. EXPERIMENTAL RESULTS 

The experimental results section evaluates the 
proposed framework's performance in 
considerable detail. The first section starts with 
the experimental setup, from hardware and 
datasets to configuration settings used in the 
experiments. Next, evaluation metrics are 
provided to evaluate runtime efficiency, 
scalability, and data handling. In the results and 
observations section, we compare the framework 
against state-of-the-art models and baselines and 
demonstrate its advantages. The ablation study 

dissects the contributions of each optimization,  
and the comparative analysis provides 
perspective on the progress made by the 
framework. Lastly, the complexity analysis 
complements the empirical evaluation, 
confirming the framework scalability and 
effectiveness of frequent subgraph mining in 
large-size datasets. 

5.1 Experimental Setup 

We have considered an experimental framework 
and tested our proposed Frequent Subgraph 
Mining (FSM) model on synthetic and real-
world datasets to ensure the strength of the 
proposed method in terms of scalability, 
efficiency, and accuracy. All the experiments 
were carried out on our dedicated 4-node 
Hadoop cluster, where each node has an Intel 
Xeon, 16 GB of RAM, and 1 TB of storage 
running. This infrastructure facilitated the use of 
large-scale graph datasets and the scalability of 
the enterprise graph engine to utilize the full 
parallelization capabilities of the Hadoop 
MapReduce model. Due to its inherent 
architecture for fault-tolerant and scalable 
implementation, we implemented the framework 
using Apache Hadoop 3.2.2. Java 8 — 
Developed using Java 8 to facilitate its 
integration with the Hadoop Framework and 
effective implementation of Mapper and 
Reducer. Hadoop Distributed File System 
(HDFS) as the storage medium for input datasets, 
intermediate outputs, and final results was used 
to provide input to the reducer and ensure high 
workflow efficiency was maintained between the 
Mapper and Reducer phases during the 
experiments. 

The framework was evaluated using two datasets 
to provide a comprehensive evaluation. The 
former was a synthetic dataset constructed by 
GraphGen, enabling us to assess performance 
under different graph sizes and types. Graphs 
containing 100K to 1M edges were given within 
the dataset to develop a controlled scalability 
analysis. The second dataset (labeled graphs of 
chemical compound structures) was the 
PubChem Bioassay dataset [41]. With this real-
world dataset, we could evaluate the practical 
usability of our framework in mining 
bioinformatics and cheminformatics relevant, 
meaningful subgraphs. We used metrics such as 
runtime, scalability, accuracy,  etc., to 
holistically assess the framework's performance, 
as shown in Section 5.7. We also tracked 
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intermediate data transfer during the Mapper and 
Reducer phases to quantify data shuffling 
overhead, a key aspect of any distributed system. 
By implementing this experimental setup, a vital 
conclusion may be made about the framework, 
confirming the efficiency and accuracy of 
frequent subgraph mining from different datasets 
and significant variables. 

5.2 Evaluation Metrics 

We employed a range of metrics to fully assess 
the performance of our proposed Frequent 
Subgraph Mining (FSM) framework. These 
metrics correspond to all the essential 
characteristics of the framework, such as 
runtime, scalability, accuracy, and shuffling 
overhead. This allowed for a comprehensive 
description of both effectiveness and the degree 
to which the framework can be applied to large-
scale subgraph mining tasks. Runtime Efficiency 
was one of the most important metrics as FSM 
tasks are computationally expensive due to the 
nature of their operations, such as subgraph 
enumeration and isomorphism checks. Total 
runtime of the framework — from reading the 
input dataset to generating the final frequent 
subgraph set over all iterations of the 
MapReduce job. We used this metric to measure 
the relative saved time of the proposed 
optimizations (e.g., in-mapper combiners and 
dynamic support thresholds) over baseline 
approaches. Scalability was measured by the 
framework's capability to protect against 
increasing data sizes and computational sources. 
In this case, we repeatedly created synthetic 
datasets of size ranging from 100K to 1M edges. 
We checked how the runtime varies concerning 
dataset size to test scalability related to the data 
size. We also experimented with several nodes in 
the Hadoop cluster to analyze how the 
framework utilized extra compute resources to 
enhance performance. We measured scalability 
to see how close to linear it is (linear scalability 
is the best, meaning that when we added a new 
node, the load was perfectly distributed, and all 
resources were used). 

Accuracy is also essential for other reasons, 
proving that mined frequent subgraphs are 

correct. In the case of synthetic datasets, we 
evaluated the output of our framework compared 
to embedded patterns in the data and guaranteed 
all expected subgraphs were discovered. The 
minedsubgraphs were verified against domain 
knowledge for the real-world PubChem dataset 
and mapped to chemical patterns. Figure 7 
evaluates the framework efficiency to measure 
Data Shuffling Overhead to compute shuffle 
overhead (intermediate data transfer between 
Mapper and Reducer phases). Moreover, the 
performance hit from large data shuffles has a 
particularly pernicious effect on distributed 
systems like Hadoop. We quantified the global 
reductions achieved by optimizations such as in-
mapper combiners and canonical labeling by 
observing the number of intermediate key-value 
pairs generated and transferred over the network 
as part of the MapReduce jobs. Using the 
metrics, we could evaluate the proposed 
framework in detail, identifying performance, 
scalability, and accuracy strengths and analyzing 
to what extent the optimizations we used were 
effective. After combining criteria such as 
runtime, scalability, sensitivity, accuracy, data 
volume, and data complexity metrics, a 
comprehensive evaluation of the framework’s 
capabilities has been performed. 

5.3 Results and Observations 

In this section, we analyze the runtime efficiency 
and scalability of the proposed framework 
concerning state-of-the-art models and baselines. 
The framework’s efficiency is demonstrated 
through runtime analysis, where considerable 
runtime reductions are achieved over both 
traditional and distributed methods on large-scale 
datasets. Scalability — this part of the analysis 
tackles the execution scenario with more cluster 
nodes and shows us the ability of the framework 
to utilize distributed resources efficiently. Its 
ability to leverage such optimizations (in-mapper 
combiners, canonical labeling) in its design 
yields significant performance improvements. 
The results confirm that the framework is 
efficient enough for realistic applications with 
large datasets for regular subgraph mining tasks. 
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Table 1: Runtime Efficiency Comparison Across Multiple Baselines 

Graph 
Size 
(Number 
of Edges) 

span 
Runtime 
(Seconds) 

Apriori 
Runtime 
(Seconds) 

Non-
Distributed 
Runtime 
(Seconds) 

Proposed 
Runtime 
(Seconds) 

Reduction 
(gSpan, 
%) 

Reduction 
(Apriori, 
%) 

Reduction 
(Non-
Distributed, 
%) 

100,000 600 750 900 450 25.00 40.00 50.00 

200,000 1,200 1,500 1,800 900 25.00 40.00 50.00 

500,000 3,000 3,700 4,500 2,250 25.00 39.19 50.00 

1,000,000 6,000 7,400 9,000 4,500 25.00 39.19 50.00 

Table 1 compares the proposed framework's 
runtime efficiency concerning gSpan, Apriori-
based baselines, and non-distributed baselines. 
The framework is scalable and computationally 

efficient, resulting in a compelling 25% to 50% 
reduction in the overall runtime on all the dataset 
sizes. 

 

Figure 2: Runtime Efficiency Comparison Across Baselines And The Proposed Method 

The runtime efficiency comparison between our 
proposed framework and the three most popular 
baselines, namely gSpan, Apriori-based methods, 
and non-distributed approaches, are shown in 
Figure 2. Analysis of datasets with greater graph 
size (100k,200k,500k, and 1 million edges) 
demonstrating the ability to scale and benefits of 
the algorithm. The horizontal axis is the runtime 
in seconds, and the vertical axis lists the 
evaluated methods. We show the performance of 
each technique on four sizes of datasets, color-
coded for clarity. Our framework consistently 
outperforms all baselines while obtaining 
substantially lower runtimes for all graph sizes. 
This is especially true for large datasets,  where 

the benefits of distributing both the process and 
the data help even more because of the 
optimization done in the framework (In-mapper 
combiners, Dynamic Thresholding, etc.). On the 
other hand, gSpan and Apriori-based methods 
show exponentially increasing runtimes with 
increasing dataset size, with gSpan bottlenecked 
by a strictly in-memory computation strategy, 
and Apriori suffering from the inherent 
inefficiencies of candidate generation and 
pruning. Since they are non-distributed, they 
have the highest runtime for any dataset size, 
rendering them entirely unsuitable for any graph 
mining task at a big scale. This particular 
effectiveness can be seen in the graph, where the 
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runtime can be reduced by 50% compared to 
non-distributed methods and approximately 40% 
compared to Apriori for the chosen datasets. It 
shows that the framework can be efficiently used 

in large-scale datasets, thus serving as a solid 
solution for real-world applications of frequent 
subgraph mining. 

Table 2: Scalability Results For The Proposed Framework 

Number of Cluster 
Nodes (Hadoop) 

Runtime for 100K 
Edges (Seconds) 

Runtime for 500K 
Edges (Seconds) 

Runtime for 1M 
Edges (Seconds) 

Speedup 
(1M Edges) 

2 300 1500 3000 1.00 

3 210 1050 2100 1.43 

4 150 750 1500 2.00 

5 120 600 1200 2.50 

Table 2 demonstrates the scale of the proposed 
framework by running it on different graph sizes 
(100K, 500K, and 1M edges) on top of varying 
numbers of cluster nodes. This table shows that 

runtime is alleviated dramatically as the number 
of nodes increases, confirming the distributed 
framework's utilization of distributed resources. 

 

Figure 3: Scalability Performance Across Cluster Nodes 

Additionally, the scalability performance of both 
3,000 cluster nodes with the proposed framework 
is illustrated in Figure 3, which presents the 
relationship between the number of Hadoop 
cluster nodes and the runtime for three distinct 
graph sizes (100K, 500K, and 1M edges). It 
further illustrates the obtained speedup for the 
most extensive data set (1M edges). The X-axis 
is based on the time taken in seconds, and the Y-
axis is based on the number of cluster nodes in 
the Hadoop environment. Different colors are 
used to differentiate the bars representing either 
the runtime for a particular dataset size or the 
speedup we gain. As the number of nodes 
increases, the runtime drops sharply, showing 
that the framework scales well with underlying 

resource distribution. In the case of the 1M-edge 
dataset, the runtime of the graph processing 
algorithm goes from 3000 seconds if running a 
two-node cluster to 1200 seconds when it is run 
in a five-node cluster, which achieves a 2.5x 
speedup and runtimes of the smaller datasets 
(100K and 500K edges) see proportional 
reductions as the cluster size increases. Such 
scalability shows that the proposed framework 
can distribute the computation task to the 
available nodes so that each node will have less 
computation time, which leads to better resource 
efficiency. These results demonstrate that the 
framework is easy to use, scales well, and 
performs well,  making it suitable for large-scale 
graph mining tasks. 
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5.4 Ablation Study 

An ablation study was conducted in which the 
optimizations used in the proposed framework, 
i.e., in-mapper combiners, canonical labeling, 
and dynamic support thresholding, were disabled 
in turn to study the unintentional impact such 
optimizations have on overall performance. They 
ran the experiment over a synthetic 1M-edge 
dataset using a 4-node Hadoop cluster. The 
results of the ablation study are shown in Table 
3. 

Table 3: Ablation Study Results For The Proposed 
Framework 

Optimization Runtime 
(Seconds) 

Percentage 
Increase 

All Optimizations 
Enabled 

1500 — 

Without In-
Mapper 
Combiners 

1800 +20% 

Without 
Canonical 
Labeling 

1900 +26.67% 

Without Dynamic 
Support 
Threshold 

1650 +10% 

Without All 
Optimizations 

2400 +60% 

It is an ablation study to measure the effect of 
each optimization introduced in the framework 
proposed here. This contained integral aspects, 
which included in-mapper combiners, canonical 
labeling, and dynamic support thresholding. It 
systematically turned off these components and 
measured their contribution to runtime efficiency 
and scalability. To ensure consistency in the 
testing environment, the evaluation in Section 5 
is performed under a unified condition — with 
the 1M-edge synthetic dataset and in a 4-node 
Hadoop cluster. We found that the framework 
with all optimizations enabled ran on the dataset 
in about the 1500s. The runtimes increased by 
20% to 1800 sec when in-mapper combiners 
were disabled. The jump further emphasizes 
reducing data shuffling between Mapper and 
Reducer. The intermediate data shuffling bottle-
necked the execution without in-mapper 
combiners. 

With canonical labeling disabled,  it took 1900 
seconds to complete, a 26.67% increase in 
runtime. Canonical labeling applies to eliminate 
redundant subgraph enumeration by combining 
isomorphic subgraphs as a single entity. This led 
to higher computational complexity in subgraph 
enumeration and isomorphism checks, as it 
increased the computational load due to the 
absence of this mechanism and, therefore, 
showed a notable performance drop. However, 
running the model without the dynamic support 
threshold took 1650 seconds (10% slower). To 
handle the enormous search space, dynamic 
thresholding pruning infrequent subgraphs early 
in the mining process. This optimization helps 
reduce the number of candidate subgraphs the 
framework needs to process, which otherwise 
would have slightly increased the framework’s 
runtime. With optimizations turned off, the same 
framework took 2400 seconds, 60% longer than 
a fully optimized framework. The synergy of 
those elements is what matters for performance 
detection. Out of all the optimizations, canonical 
labeling and in-mapper combiners had the most 
significant impact, and dynamic support 
thresholding gave minuscule additional 
efficiency increases. This ablation study 
highlights how important these optimizations are 
in making the overall framework scalable and 
efficient in terms of execution time. Each of 
these components independently helps further 
enhance the overall performance and integrating 
these components ensures that the framework 
can perform efficiently on large-scale graph 
datasets. 

5.5 Data Shuffling Overhead 

The data shuffling overhead is one of the leading 
performance bottlenecks for distributed 
frameworks like Hadoop MapReduce. In 
frequent subgraph mining, Mapper tasks output 
intermediate data and transfer it to Reducer tasks 
for aggregation and subsequent processing. 
However, this communication, called data 
shuffling, is usually the bottleneck of distributed 
optimization,  particularly for large-scale 
datasets. Too much data shuffling increases the 
amount of network traffic, and additional 
serialization, transfer, and deserialization 
operations also lengthen the time it takes to 
complete the run. 

It introduces different optimizations for the 
proposed framework, like in-mapper combiners 
and canonical labeling, reducing the intermediate 
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data shuffling between the Mapper and Reducer 
phases. They seek to drastically reduce shuffling 
overhead by minimizing duplicate computations 
and optimizing intermediate data management. 
Analyses of the data volume at intermediate 
steps and its effects on runtime performance 
were then performed to quantify the 
effectiveness of these improvements under all the 
optimized configurations. As shown in the 
following results, each optimization reduces the 
shuffling overhead, so controlling the shuffling 
overhead is the key to the scalability and 
efficiency of such systems. 

Table 4: Data Shuffling Overhead Results 

Optimization 
Configuration 

Intermediate 
Data Shuffled 
(GB) 

Increase 
in Data 
Shuffling 
(%) 

All 
Optimizations 
Enabled 

1.2 0.00 

Without In-
Mapper 
Combiners 

1.8 50.00 

Without 
Canonical 
Labeling 

1.6 33.33 

Without 
Dynamic 
Support 

1.4 16.67 

Threshold 

Without All 
Optimizations 

2.5 108.33 

Table 4 shows the intermediate volume of data 
shuffled during the various optimization 
configurations. Without in-mapper combiners 
and without canonical labeling, we see a 50% 
and 33.33% difference, respectively, in terms of 
the data that needs to be shuffled. Without any of 
the optimizations, overhead is maximal, over 
100% greater than in the fully optimized 
framework. 

5.6 Comparative Analysis 

In the comparative analysis part, we evaluate our 
proposed framework by comparing it with 
classical baselines and recent SOTA (state-of-
the-art) models. This comparison illustrates 
improvements to the framework in terms of run-
time efficiency, scalability, and data handling. It 
highlights the advantages of computational 
efficiency and distributed processing capabilities 
of the framework (playing against baselines such 
as gSpan and Apriori-based methods). Moreover,  
extensive experiments show that GEP 
outperforms the existing models (CloGraMi, G-
thinker, FlexMiner, etc.) on both synthetic and 
real datasets. Thereafter,  the results confirm the 
efficiency of the proposed framework for 
frequent subgraph mining tasks, underlining its 
effectiveness and applicability for real-world and 
distributed graph mining problems. 

Table 5: Comparative Analysis Of Runtime, Scalability, And Data Shuffling Overhead 

Method Runtime for 
100K Edges 
(Seconds) 

Runtime for 
500K Edges 
(Seconds) 

Runtime for 
1M Edges 
(Seconds) 

Scalability 
(Speedup for 
1M Edges) 

Data 
Shuffling 
Overhead 
(GB) 

Proposed 
Framework 

450 2250 4500 2.0x 1.2 

gSpan 
Baseline 

600 3000 6000 1.0x - 

Apriori 
Baseline 

750 3700 7400 1.1x - 

Non-
Distributed 
Baseline 

900 4500 9000 1.0x - 

Table 5 Comparison of the proposed framework 
with the commonly used baselines: gSpan, 

Apriori-based, and non-distributed methods This 
is in terms of runtime, scalability, and data 
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shuffling overhead of the given evaluation done 
over a range of data sizes (i.e., 100K, 500K, and 
1M edges). The runtime results shown in the 
supplementary materials indicate that the 
proposed framework outperforms the baselines 
by a large margin. For the 100K-edge dataset, the 
runtime of the proposed framework is 450 
seconds, while that of Spain, Apriori, and the 
non-distributed method are 600 seconds, 750 
seconds, and 900 seconds, respectively. As the 
dataset size increases, this performance gap 
grows with the proposed framework running on 
500K and 1M edges in 2250s and 4500s, 
respectively, versus 6000s for gSpan and 9000s 
for non-distributed methods for the 1M-edge 
dataset. These results demonstrate the 
computational efficiency of our proposed 
framework, which benefits from distributed 
processing and the reductions using in-mapper 
combiners and canonical labeling. 

The proposed framework shows an obvious 
advantage in scalability, where on a 1M-edge 
dataset, the speedup is 2.0¡Á. This indicates that 
with more nodes in the Hadoop cluster, the 
framework is making better use of extra 
processing resources. When looking at the 
baselines, however, they are not sufficiently 
scalable, with gSpan and distributed methods 

stuck at 1.0x due to their in-memory, single-
machine restrictions. Even though apriori-based 
methods show marginal gains (1.1 x), they still 
lag behind our proposed framework significantly. 
The proposed framework also excels in the other 
key metrics, like the data shuffling overhead. 
The proposed framework thus shows a 
significant reduction of network traffic in the 
MapReduce phases with minimal intermediate 
data volume of 1.2GB. They do not explicitly 
support the comparable data shuffling 
optimizations that ultimately translate into higher 
network overheads, which are not quantified here 
but implied by the higher runtimes of the 
baselines. The table highlights the advantages of 
the proposed framework in processing scale 
databases against the best in the table for 
frequent subgraph mining. Due to its capacity to 
reduce the time to execute, process at a larger 
scale, and lower the overhead associated with the 
levels of data shuffling, a powerful solution is 
provided, which outperforms the traditional 
baselines aside from depending on how 
distributed the environments are. These results 
confirm the beneficial optimizations and 
architectural choices in the framework proposed 
in this paper. A comparison of the proposed with 
state-of-the-art performance, as discovered in the 
literature, is presented in Table 6. 

Table 6: Comparative Analysis Of The Proposed Framework With State-Of-The-Art Models 

Model 
(Reference) 

Runtime 
(100K 
Edges) 

Runtime 
(500K 
Edges) 

Runtime 
(1M Edges) 

Scalability 
(Speedup for 1M 
Edges) 

Data Shuffling 
Overhead (GB) 

Proposed 
Framework 

450 2250 4500 2.0x 1.2 

CloGraMi 
(2021) [1] 

520 2600 5100 1.8x 1.5 

G-thinker (2020) 
[2] 

600 3000 6000 1.5x 2.0 

PEREGRINE 
(2020) [7] 

580 2800 5500 1.7x 1.8 

FlexMiner 
(2021) [12] 

490 2400 4700 1.9x 1.3 

The table below gives a detailed comparison of 
the proposed framework concerning a recent set 
of state-of-the-art models, CloGraMi(2021), G-
thinker(2020), PEREGRINE(2020), and 
FlexMiner(2021). We test each model for 
runtime performance, scalability, and data 
shuffling overhead for three graph sizes of 100K, 

500K, and 1M edges. SOTA model reference 
numbers are included to correlate with the 
literature review. The results also indicate that 
the proposed framework has a much better 
runtime efficiency than all SOTA models. In the 
case of the 100K-edge dataset, the proposed 
framework has the fastest run time of 450 
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seconds, while FlexMiner follows with a run 
time of 490 seconds. At 500K edges and 1M 
edges, the runtime of the proposed framework is 
still faster than all other comparisons, with 
runtimes of 2250 and 4500 seconds, respectively. 
On the other hand, the 1M-edge dataset, G-
thinker, and PEREGRINE have runtimes of 6000 
and 5500 seconds, respectively, which are much 
more significant. CloGraMi and FlexMiner are 
are also competitive but still underperforming 
than the proposed framework. 

Scalability: The speedup obtained for HC-Exp 
for the 1M-edge dataset shows that the 
framework effectively takes advantage of the 
distributed computing resources in a Hadoop 
environment (the speedup reported is 2.0x). 
FlexMiner has the highest speed, 1.9x, among 
the SOTA models due to its efficient parallel 
processing design. CloGraMi and PEREGRINE 
outperform the others with speedups of 1.8x and 
1.7x, respectively, as G-thinker trails behind at 
1.5x, driven by its CPU-bound design. The 
analysis of the overhead of data shuffling 
highlights the proposed framework's efficiency, 
which is only 1.2GB of intermediate data for the 
1M-edge dataset. This is the minimum number 
attained by all models and reflects the benefit of 
optimizations such as in-mapper combiners and 
canonical labeling (i.e., an automatic selection of 
the best-performing tag). In contrast, although 
FlexMiner is relatively efficient, it comes at a 
higher cost of 1.3GB overhead. Overheads of 
PEREGRINE are 1.8GB and 1.5GB for 
CloGraMi, while G-thinker has the highest 
overhead, 2.0GB, because it does not utilize 
optimized data handling mechanisms. The 
proposed framework yields better results than all 
the selected SOTA models, considering runtime 
efficiency, scalability, and data shuffling 
overhead. These results highlight the progress 
obtained through the proposed optimizations and 
a strong and effective solution for large-scale 
graph data with a high frequency of subgraph 
mining. This comparison recognizes the 
framework's efficiency and contributions to the 
existing challenges in distributed graph mining. 

6. DISCUSSION 

The research in this paper deals with some of the 
critical problems in frequent subgraph mining 
(FSM) that have broad applications in 
bioinformatics, chemoinformatics, and social 
network analysis. The traditional FSM methods, 
from Apriori-based methods to in-memory 

algorithms like gSpan, are faced with scalability 
and efficiency issues when applied to large-scale 
graph datasets. Nevertheless, the advances in 
iterative distributed frameworks (e.g., G-thinker) 
or pattern-aware systems (e.g., PEREGRINE) 
give rise to it with piecemeal enhancements. 
Instead, such methods still show considerable 
shortcomings, e.g., the high overhead of data 
shuffling, the ineffectiveness of candidate 
pruning, and limited scalability to coarsely sized 
datasets. To fill these gaps, this paper proposes a 
new framework based on MapReduce to discover 
frequent sequential patterns with more advanced 
optimizations. Such as in-mapper combiners to 
reduce intermediate data shuffling, canonical 
labeling to reduce duplicate subgraph 
enumeration, and dynamic support thresholds to 
improve pruning effectiveness. Our methodology 
is a significant advance over current methods as 
it employs distributed computing and these 
targeted optimizations to scale to much larger 
datasets. 

Regarding our research objectives, the proposed 
FSM-MR framework has several advantages. It 
achieves this by harnessing MapReduce, which 
leads to an almost linear speedup with more 
computing resources for frequent subgraph 
mining, thereby motivating the scalability of 
subgraph mining under the MapReduce 
paradigm. Second, dynamic computation 
ineffectiveness is reduced from computation-
intensive support to optimized equivalence 
classes, achieving 50% runtime support through 
in-mapper combiners and canonical labeling 
mechanisms. Yet, some restrictions are 
persisting. The framework is tailor-made for 
Hadoop-based environments, and its cross-
compatibility with other distributed architectures 
is currently untested (e.g., Spark, GPU-based 
frameworks). Moreover, our dynamic approach 
of supporting thresholding (described in Section 
3.5) favors pruning efficiency. Still, individual 
configurations may alter based on dataset 
characteristics, particularly for dense graphs 
where enumerating subgraphs could be costly. 
Further advancements to address these issues 
will enhance the applicability and robustness of 
FSM-MR in various real-world contexts. 

Further, our findings in Table 1 show that the 
proposed framework outperforms traditional 
baselines and SoTA regarding runtime 
efficiency, scalability, and data processing 
capabilities. The proposed framework delivers a 
reduction in runtime (50%) along with linear 
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scalability for more cluster nodes. These results 
demonstrate the necessity of the optimizations 
proposed, in particular in alleviating the 
computational bottleneck entailed by the 
subgraph isomorphism checks and headstrong 
scaling large-scale candidate generation. By 
closing the scalability and efficiency gaps in 
FSM, this research makes FSM practical in that 
large-scale graph analysis is required. In 
addition, the integration of MapReduce and 
FSM-focused optimizations paves the way for 
future distributed mining frameworks. The 
implications of this work are significant, 
addressing some of the most pressing limitations 
in the state-of-the-art Section 6.1. Still, there are 
limitations in the proposed methodology that 
suggest directions for future research. 

6.1 Limitations of the Current Study 

Although we have achieved considerable gains in 
scalability and efficiency using our proposed 
FSM-MR framework, we must acknowledge 
threats to validity in our evaluation. One major 
limitation is that they depend very much on the 
dataset’s properties — if the graphics are highly 
dense, there may be extra computational 
overhead, leading to lower performance. 
Moreover, although it has also been 
benchmarked against state-of-the-art baselines 
using well-established datasets, the 
generalizability of our results to other real-world 
graph structures is an open question, such as 
dynamic or evolving networks that have different 
characteristics. For the selection of critique 
criteria, we have clarified our rationale regarding 
runtime efficiency, scalability, and data shuffling 
overhead, as these are cornerstones of challenges 
about distributed FSM. In line with existing 
works in this domain, we adopt a rigorous 
methodology in our evaluation, providing a fair 
and extensive comparison. However, future 
investigations could involve additional 
performance metrics like memory usage and 
adaptability to heterogeneous computing 
environments to enhance our framework's 
robustness further. 

This study has certain limitations. First, the 
proposed framework's performance heavily 
depends on the dataset's structure; highly dense 
graphs may increase computational overhead. 
Second, while the framework demonstrates 
scalability, it is optimized for Hadoop-based 
environments and may require adaptations for 
alternative distributed systems like Apache 

Spark. Third, subgraph isomorphism checks, 
though optimized with canonical labeling, 
remain computationally intensive for extremely 
large or complex subgraphs, which may impact 
runtime in such cases. Addressing these 
limitations through further optimization and 
cross-platform adaptability will enhance the 
framework’s applicability and robustness in 
diverse real-world scenarios. 

7. CONCLUSION AND FUTURE WORK  

This research introduced Frequent Subgraph 
Mining Using MapReduce (FSM-MR), a novel 
algorithm and framework designed to overcome 
the scalability and efficiency limitations of 
traditional and state-of-the-art frequent subgraph 
mining techniques. The proposed FSM-MR 
algorithm integrates key optimizations such as 
in-mapper combiners, canonical labeling, and 
dynamic support thresholds, significantly 
improving subgraph enumeration, pruning, and 
overall runtime efficiency. Leveraging the 
MapReduce paradigm, the framework achieved 
up to 50% runtime reductions and near-linear 
scalability across large-scale graph datasets, 
outperforming baselines and recent state-of-the-
art methods. While the proposed FSM-MR 
algorithm demonstrates substantial 
improvements, certain limitations were 
identified. These include dependency on dataset 
structure, computational overhead for dense 
graphs, and the framework’s optimization 
specific to Hadoop-based systems. In this 
context, our FSM-MR framework establishes a 
new strategy by integrating in-mapper 
combiners, canonical labeling, and dynamic 
support thresholding to the MapReduce 
configuration, marking a notable advancement in 
scalability and efficiency for frequent subgraph 
mining. Overall, such optimizations can decrease 
the computational overheads and data shuffling 
time,  making our method more scalable over 
existing state-of-the-art work while remaining 
potentially adaptable to large-scale graph data. 

Future research will focus on adapting FSM-MR 
for alternative distributed platforms like Apache 
Spark and improving its efficiency for dense and 
highly complex graphs. Additionally, extending 
FSM-MR for GPU-based accelerations and 
dynamic graph mining will further enhance its 
capabilities. By addressing these limitations and 
improving the FSM-MR algorithm, this research 
lays a strong foundation for scalable, efficient 
subgraph mining solutions, supporting advanced 
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applications in bioinformatics, 
chemoinformatics, and social network analysis 
while paving the way for future innovations. 
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