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ABSTRACT 
 

Deepfake technologies have advanced rapidly in recent years, enabling highly realistic manipulations of both 
audio and video. While such technologies offer creative potential, they also present major risks in 
misinformation, fraud, and privacy violations. This paper explores the problem of detecting deepfake content 
using the FakeAVCeleb dataset, which provides both authentic and manipulated audio-video samples. We 
present experiments using state-of-the-art audio models (AASIST, RawNet2, ECAPA-TDNN), video models 
(Vision Transformers and SyncNet/Wav2Lip for lip-sync consistency), and multimodal fusion approaches. 
In particular, we evaluate robust detection under cross-manipulation scenarios, where models are tested on 
manipulation types unseen during training. Our results highlight the performance drop in cross-manipulation 
settings, emphasizing the importance of robust multimodal fusion. Fusion methods achieved improved 
generalization, indicating that combining complementary cues across modalities is key to resilient deepfake 
detection. 

Keywords: Deepfake Detection, FakeAVCeleb Dataset, Audio-Visual Forensics, Cross-Manipulation 
Evaluation, Video Manipulation, Audio Deepfake. Visual Deepfake Introduction.

  

1. INTRODUCTION  

Deepfake technology have changed the way 
digital media works.  Attackers can make realistic 
false audio and video recordings using generative 
models like Generative Adversarial Networks 
(GANs) and advanced voice cloning.  These fake 
media are bad for politics, journalism, privacy, and 
cybersecurity.  For instance, deepfakes have been 
used to distribute false information about politics, 
make explicit content without permission, and even 
commit financial fraud by tricking people into giving 
them money over the phone. 

Types of Deepfake Audio: 

Deepfake audio generally refers to any audio in 
which important attributes have been manipulated 
via AI technologies while still retaining its perceived 
naturalness. Previous studies mainly involve five 
kinds of deepfake audio [1]: text-to-speech, voice 
conversion, emotion fake, scene fake, partially fake. 

1.  Text-to-speech (TTS) [2], 

 Figure 2 shows what is generally called voice 
synthesis. Its goal is to use machine learning-based 
models to create genuine and understandable speech 
from any text.  Deep neural networks have made it 

possible for TTS models to make speech that sounds 
real and human-like [1].  The basic parts of TTS 
systems are text analysis and speech waveform 
production.  The two main ways to make speech 
waveforms are concatenative [3], [4] and statistical 
parametric TTS [5].  The latter usually has an 
acoustic model and a vocoder.  Recently, some end-
to-end models have been suggested to make audio 
sound better, like Variational Inference with 
adversarial learning for end-to-end Text-toSpeech 
(VITS) [6] and FastDiff-TTS [7]. 

2. Voice Conversion  

Voice conversion (VC) [2] is the process of 
digitally copying someone's voice.  It tries to change 
the speaker's voice and prosody to sound like 
someone else's, while keeping the content of the 
speech the same.  A VC system takes in a natural 
speech from the person speaking.  There are three 
primary types of VC technologies: statistical 
parametric [8], [9], frequency warping [10], and unit-
selection [11].  Statistical parametric models also 
include a vocoder that is similar to the one in 
statistical parametric TTS [12, 13].  End-to-end VC 
models have also been suggested in recent years to 
imitate the vocal characteristics of an individual [14]. 
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3. Emotion Fake  

Emotion fake [15] wants to change the audio 
such that the speech's emotion changes, but other 
things stay the same, like who is speaking and what 
they are saying.  Changing the voice's emotions often 
changes the meaning of words.  Figure 2 is an 
example of artificial emotion.   Speaker B's original 
statement was made with a joyful tone.  The fake 
utterance is the sound when the pleasant emotion has 
been transformed into a sorrowful emotion.  There 
are two types of approaches for emotional VC called 
"emotion fake" [16]: ways that use parallel data and 
methods that do not use parallel data. 

4. Scene Fake 

Scene fake [17] is when speech augmentation 
tools change the acoustic scene of the original 
utterance while keeping the speaker's identity and 
speech content the same.  An.  The acoustic scene of 
the true speech is "Office."  The artificial sound 
comes from an airport.  If you change the scene of an 
original audio with another one, it will be hard to 
check the audio's authenticity and integrity, and the 
meaning of the original audio could even change. 

5. Partially Fake  

Partially fake [18] merely changes a few words 
of a sentence.  The false statement is made by 
changing the real statements with real or synthetic 
audio samples.  The individual who said the original 
and false footage is the same.  The synthetic audio 
samples don't affect who the speaker is.  

From a research standpoint, identifying deep-
fakes constitutes a complex multimodal challenge.  
Initial research focused on visual artifacts, including 
facial blending borders [19], whereas contemporary 
investigations integrate temporal inconsistencies and 
physiological data.  Researchers first focused on 
conventional replay attacks in the audio domain; 
however, the emergence of neural TTS and voice 
conversion has transformed the field.  Multimodal 
datasets such as FakeAVCeleb [20] now enable the 
examination of integrated audio-video detection 
methods.  Nonetheless, generalization across various 
types of manipulation continues to pose a significant 
issue. That is why we are focusing on cross-
manipulation resilience in our work. 

This study is designed to help readers understand 
not only how deepfakes are generated and detected 
but also how detection models can remain reliable 
when new manipulation methods emerge. By the end 
of this paper, readers should be able to evaluate 
which detection strategies—audio-only, video-only, 
or multimodal fusion—are most effective for robust 
deepfake detection. We claim that cross-modal 
fusion, when tested under cross-manipulation 

conditions, provides superior generalization 
compared to unimodal systems. This claim can be 
further examined and refined as research in deepfake 
generation and detection evolves. The novelty of this 
work lies in applying cross-manipulation evaluation 
on the FakeAVCeleb dataset—an approach rarely 
emphasized in previous studies—and demonstrating 
that integrating audio and visual modalities 
significantly enhances detection robustness in 
realistic, unseen scenarios. 

2. RELATED WORK 

A.  Audio Deepfake Detection 

As voice synthesis has gotten better, so has the 
ability to find audio deepfakes.  Handcrafted 
characteristics like Mel-Frequency Cepstral 
Coefficients (MFCCs) and Constant-Q Cepstral 
Coefficients (CQCCs) were used in the past.  Neural 
techniques such as RawNet2 and AASIST now learn 
directly from raw or spectral representations [21].  
ECAPA-TDNN was originally developed to verify 
speakers, however it has been changed to work 
against spoofing and works very well. 

B. Video- based Detection 

Video detection techniques utilize convolutional 
neural networks (CNNs) and transformers to 
recognize altered facial pictures and movements 
[22].  SyncNet came up with the idea of checking lip-
sync alignment, and Wav2Lip has taken the lead in 
making and checking synchronized speech-driven 
lip motions.  Many video detectors are still 
susceptible to the type of manipulation employed in 
training, which makes it harder to apply them in real-
world situations. 

Video-based deepfake identification has been 
one of the most active fields of research since there 
are more and more fake face videos on social media 
sites. Video manipulations, on the other hand, 
sometimes include complicated techniques like face-
swapping, reenactment [23], or lip-syncing that 
make outputs that look real but are slightly different 
from what they should be. Audio, on the other hand, 
can be brief and easier to synthesis. The purpose of 
video-based detection techniques is to recognize 
these discrepancies and differentiate authentic film 
from fakes.. 

Early methods for finding fake videos relied a lot 
on features that were made by hand.  For example, 
researchers used visual artifacts such strange facial 
boundaries [24], lighting that didn't match, or head 
positions that weren't normal.  Techniques that used 
texture descriptors (such Local Binary Patterns) and 
motion vectors tried to find pixel-level differences 
that weren't normal and were caused by 
manipulation.  These methods were helpful as 
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starting points, but they typically didn't work when 
deepfake creation got better and made outcomes that 
looked more real. 

Convolutional Neural Networks (CNNs) became 
the most popular way to find fake videos when deep 
learning got more popular.  CNN-based methods 
develop spatial characteristics that can tell the 
difference between images or frames by looking at 
small variations in skin texture, blending, and eye 
movement.  For instance, machines that were trained 
on frame sequences with altered content could find 
high-frequency noise patterns that people can't see.  
But CNNs that work at the frame level don't always 
take into account temporal dynamics, which are very 
important for finding manipulation across numerous 
frames. 

Researchers developed temporal models like 3D-
CNNs and Recurrent Neural Networks (RNNs) to 
get around this problem.  These methods use cues 
that change over time, such as how often someone 
blinks, how well their lips sync up, and how 
consistently they move their head.  Temporal-based 
detection has demonstrated greater resilience against 
manipulations that appear plausible in isolated 
frames but falter when observed in continuous 
motion. 

Another type of work is all about lip-syncing and 
audio-visual alignment.  SyncNet and other tools 
were made to check if the audio in a video matches 
the lip movements. Wav2Lip took this a step further 
by making realistic speech-driven facial animation.  
In the realm of detection, these synchronization 
models can be reversed: if the anticipated lip 
movement markedly diverges from the actual video 
frames, it may indicate tampering.  This makes lip-
sync inconsistencies a strong sign for video-based 
detection. 

Transformer-based design has been used more 
recently to find deepfakes.  Vision Transformers 
(ViTs) treat face cropping as a series of picture 
patches, which lets the model find long-range 
dependencies and global relationships in the face.  
This works especially well for finding little 
differences in facial structure and expressions that 
CNNs might overlook.  Also, multimodal 
transformers that include video and audio have 
demonstrated good results because they mimic both 
visual aspects and cross-modal correlations. 

 

Video-based detection systems have made 
progress, but they still have a lot of problems to 
solve.  A lot of models do well on the datasets they 
are trained on, but they don't do well when they see 
new changes. This is especially true when there are 
multiple manipulations happening at once.  

Moreover, real-world films frequently exhibit 
compression, noise, or occlusion, which impair 
model accuracy.  So, current research is focusing on 
robustness and generalization by using data 
augmentation, domain adaptation, and self-
supervised pretraining to make detectors less reliant 
on certain sorts of manipulation. 

In summary, video-based detection has evolved 
from handcrafted feature engineering to 
sophisticated deep learning architectures that 
leverage spatial, temporal, and synchronization cues. 
While effective in many controlled scenarios, these 
models must continue to improve in robustness and 
adaptability to address the rapidly evolving 
landscape of deep-fake generation techniques. 

C. MultiModal Fusion 

In short, video-based detection has gone from 
hand-crafting features to using advanced deep 
learning architectures that use spatial, temporal, and 
synchronization signals.  These models work well in 
many controlled situations, but they need to get 
better at being strong and flexible to keep up with the 
quickly changing world of deep-fake generating 
methods. 

 

The rationale behind multimodal fusion is rooted 
in the observation that human perception itself is 
inherently multimodal: we rely on both speech and 
facial cues to judge the authenticity of 
communication [26]. Similarly, combining machine-
based audio and video detectors allows the system to 
capture complementary evidence. For instance, an 
attacker might generate highly realistic facial 
animations while leaving behind detectable audio 
artifacts, or vice versa. A multimodal system can 
exploit these cross-cues to achieve stronger 
reliability compared to unimodal counterparts. 

 

Fusion Strategies. Broadly, multimodal fusion 
can be categorized into three strategies: 

 

A. Early Fusion – Before being fed into a 
shared model, raw or low-level 
characteristics (such spectrograms for 
audio and facial embeddings for video) 
are put together.  This lets the network 
learn joint representations directly, but 
it can be vulnerable to noise in any 
mode. 

 

B. Intermediate Fusion – Modality-
specific encoders (like ECAPA-TDNN 
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for audio and Vision Transformers for 
video) first get embeddings, which are 
subsequently put together using 
methods like attention or transformers.  
This method strikes a balance between 
modality independence and cooperative 
learning, which generally leads to 
stronger results. 

 

C. Late Fusion: Independent audio and 
video classifiers generate probability 
scores that are then combined, for 
instance, by weighted averaging or a 
meta-classifier.  Late fusion is easier, 
but it can be very successful, especially 
when one type of data is far more 
dependable than the other. 

 

D. Cross-Modal Alignment: Using 
synchronization cues is another 
important part of multimodal fusion.  
Models like SyncNet and Wav2Lip 
were first created to make or check lip 
synchronization, but they can also be 
used as extra detectors.  By directly 
comparing the spoken audio to the 
observable lip movements in terms of 
time and sound, fusion-based systems 
can find inconsistencies that unimodal 
detectors would miss. 

 

Benefits of Fusion: Experimental experiments 
consistently demonstrate that multimodal fusion 
enhances both accuracy and generalization [27]. An 
audio-only detector may not work with very realistic 
speech synthesis, but adding visual signals can still 
show little facial differences. On the other hand, 
when video modifications look perfect, the audio 
modality may show synthetic problems. Fusion thus 
protects us by using the best parts of both modalities. 

Challenges. Despite its benefits, multimodal 
fusion introduces new challenges. First, modality 
imbalance can occur, where one stream (e.g., video) 
dominates the decision while the other (e.g., audio) 
contributes little. Second, computational costs 
increase, as both audio and video processing 
pipelines must run simultaneously, making real-time 
deployment difficult. Third, generalization remains a 
concern: even fused models can struggle when 
exposed to manipulation techniques unseen during 
training, though they generally degrade less severely 
than unimodal models. 

In short, multimodal fusion is a strong and more 
important way to find deepfakes. These systems are 

more resilient because they combine audio and 
visual modalities. They can also catch cross-modal 
inconsistencies like lip-sync mismatches and adapt 
better to the changing world of synthetic media. 
Future research is anticipated to enhance fusion 
techniques via cross-attention transformers, self-
supervised multimodal pretraining, and adversarial 
robustness tactics, facilitating practical real-world 
implementation. 

3. METHODOLOGY 

A. Dataset 

FakeAVCeleb is a multimodal dataset made for 
finding deepfakes. It has both real and fake celebrity 
videos.  It lets you change audio using text-to-speech 
(TTS) and voice conversion (VC), and video 
utilizing face-swap and reenactment techniques.  The 
dataset is set up so that both unimodal and 
multimodal experiments can be done.  Its many 
manipulation methods allow for cross-manipulation 
evaluations, where the training and testing 
manipulations are different. This makes it a more 
realistic challenge than traditional within-
manipulation evaluations. 

        Figure (1) presents a conceptual framework for 
a multimodal deepfake detection system, centered 
around the FakeAVCeleb dataset. The diagram is 
logically segmented into two primary modalities: 
Visual and Audio. The "Original Video Frame" is the 
first step in the Visual Modality pipeline. It is 
subsequently processed through "Video Frames" and 
"Face Crops." After that, the cropped faces are put 
through "Motion Heatmaps" to look at little motions 
of the face. The picture shows instances of 
"Deepfake Video Frame (Face Swap)" and 
"Deepfake Video Frame (Expression Swap)" to 
show what the synthetic content looks like. 
 

The Audio Modality pipeline similarly shows the 
transformation of "Original Audio Waveform" into 
its constituent features. The figure displays a 
"Deepfake Audio Spectrogram" as an example of 
manipulated audio. This process involves extracting 
"Raw Audio," "Audio Features," and "Voice 
Features." 

The information from both the visual and audio 
modalities converges at the "Multimodal Data 
Fusion" stage, where features from both streams are 
combined to create a comprehensive representation. 
This fused data is then processed for "Deepfake 
Detection," ultimately defining the "FakeAVCeleb 
Dataset for Deepfake Detection" as a repository of 
labeled real and fake multimodal content. 
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This figure[1] illustrates a taxonomy of various 
fake speech generation techniques, categorized 
across five sub-figures labeled (a) through (e). 

Sub-figure (a), "Text-to-Speech," demonstrates the 
process of generating synthetic speech from a textual 
input. The process begins with "Input Text" and 
passes through a "TTS-to-Speech" model to generate 
a speech output from "Speaker A." 
 
Sub-figure (b), "Voice Conversion," shows the 
transformation of an utterance from "Speaker A" to 
"Speaker B" using a "Voice Conversion (VC 
Model)." The content of the speech remains the 
same, but the voice characteristics are altered. 
 
Sub-figure (c), "Emotion Fake," depicts the 
modification of emotion in an utterance. It shows the 
original speech from "Speaker B" being altered to 

reflect a new emotional state, such as "Happy" or 
"Sad," while the voice and content remain consistent. 
 
Sub-figure (d), "Scene Fake," illustrates the 
manipulation of the visual background associated 
with a speaker's audio. The figure shows "Speaker 
A" in an "Office" scene being transposed into an 
"Airport" scene using a "Scene Fake Model." 
 
Finally, sub-figure (e), "Partially Fake," 
demonstrates the concept of injecting fake content 
into an authentic audio stream. The initial part of the 
utterance from "Speaker A" is shown as authentic, 
while a later segment is "Partially Fake," as indicated 
by a change in both the audio waveform and the 
corresponding emotional content (from happy to 
sad). 
 

Fig. 1. Taxonomy of Audio and Visual Speech Fake

 
 

Fig. 2. FakeAVCeleb 
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B. Proposed Methodology 

1. Audio Branch: Our audio pipeline looked at 
a number of different topologies.  RawNet2 works 
with raw waveforms by using stacked convolutional 
and residual blocks.  AASIST uses spectro-temporal 
graph attention to find complicated patterns.  
ECAPA-TDNN makes embeddings for 
classification by using channel attention and 
temporal context aggregation.  We resampled the 
data to 16kHz mono, normalized the loudness, and 
split it into 3–5s chunks.  Additive noise, room 
impulse responses for reverberation, and lossy 
compression were all used to make the sound worse, 
much like it would be in the real world. 

2. Video Branch : We used face detection to 
get facial crops for the video pipeline and then 
changed the resolution to 112×112.  Vision 
Transformers (ViTs) were trained to tell the 
difference between real and phony frames and to 
make predictions at the clip level.  SyncNet was also 
used to figure out audio-visual synchronization 
scores, and Wav2Lip was used as another way to 
quantify how consistent lip movement is.  These 
scores were used as extra characteristics along with 
the predictions made by the video model.  

3. Audio visual fusion : Two strategies for 
fusion were put into action.  In late fusion, unimodal 
logits from the audio and video branches were 
combined with lip-sync scores and sent to a 
multilayer perceptron classifier.  In intermediate 
fusion, a transformer-based cross-attention layer 
integrated embeddings from audio 
(ECAPA/AASIST) and video (ViT).  The goal was 
to capture relationships across time and how 
different modalities work together. 

C. Evaluation Metrics 

 We used Area Under the Receiver Operating 
Characteristic (AUC), Equal Error Rate (EER), and 
Detection Error Tradeoff (DET) curves to test the 
models.  AUC assesses how well anything can tell 
the difference between two things, while EER finds 
the point where the rates of false acceptance and false 
rejection are the same.  DET curves show how well 
a system is calibrated and how strong it is. 

1. Area Under the Receiver Operating 
Characteristic (AUC) 

AUC is a number that tells you how well a 
model can tell the difference between 
things.  It shows how well the model can 
tell the difference between positive and 
negative classes (in this case, real and 
fraudulent content) at different 

categorization thresholds.  AUC values 
range from 0 to 1.0, with 1.0 being the best 
and 0.5 being the worst. AUC values of 0.5 
mean that the model does not do any better 
than random guessing [28].  The AUC score 
becomes closer to 1.0, the better the model 
is at telling the difference between real and 
false material. 

2. Equal Error Rate (EER) 

EER is the point on a Receiver Operating 
Characteristic (ROC) curve where the  False 
Acceptance Rate (FAR) and the False Rejection 
Rate (FRR) are equa [29]. 

 False Acceptance Rate (FAR) occurs 
when a deepfake is incorrectly classified as 
real. 

 False Rejection Rate (FRR) occurs when 
real content is incorrectly classified as a 
deepfake. 

EER provides a single value that balances these 
two types of errors, making it a useful metric for 
comparing the performance of different models. A 
lower EER indicates a better performing model. 

3. Detection Error Tradeoff (DET) Curves 

DET curves are graphical representations that 
visualize the tradeoff between the  

False Acceptance Rate (FAR) and the False 
Rejection Rate (FRR). They give a better picture of 
how well a model is working than just one EER 
value.  When you plot DET curves, you use a 
logarithmic scale, which makes it easier to see the 
differences between models with lower error rates. 
This is different from ROC curves, which plot the 
True Positive Rate against the False Positive Rate.  
DET curves are quite helpful for showing how well 
a model works and how well it can handle different 
situations, like those that come up in cross-
manipulation experiments. 

This approach is especially useful for finding 
deepfakes, where low error rates are needed for real-
world use and slight changes between models may 
not be easy to see in a ROC plot. Researchers can 
better compare the calibration and resilience of 
different models by expanding out the low-error 
areas on DET curves. 

In this study, DET curves were used to 
complement AUC and EER analysis, providing 
additional insights into system behavior under 
within-manipulation and cross-manipulation 
conditions. In particular, they illustrate how 
performance degrades when models trained on one 
manipulation type (e.g., TTS audio or FaceSwap 
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video) are evaluated against unseen manipulations 
(e.g., VC or reenactment). This visualization 
confirms that multimodal fusion (audio + video) 
yields more stable performance across manipulation 
types, as the DET curve remains consistently lower 
than that of unimodal branches. 

 

Fig. 3. Methodology Pipeline for Deepfake Audio-
Visual Detection 

D. Cross-Manipulation Setup 

Cross-manipulation experiments taught models how 
to do one sort of manipulation and then tested them 
on a different type.  For sound:  Train on TTS and 
then test on VC, or the other way around.  For video:  
Do face-swapping training and reenactment testing, 
and vice versa.  We evaluated both unimodal and 
cross-modal combinations for fusion.  This setup 
shows how well generalization works. 

4. EXPERIMENTS AND RESULTS 

We assess our system in two contrasting 
contexts: within-manipulation (where training and 
testing utilize the same manipulation technique) and 
cross-manipulation (where training and testing 
employ different techniques).  These two ways of 
testing give us information on how specific and 
general detection models are.  While within-
manipulation evaluation shows how well a model 
can find existing manipulations, cross-manipulation 
is more realistic and harder because new 
manipulations are always popping up in the field. 

 

To analyze this, we designed three experiments 
focusing on (1) audio-only detection, (2) video-only 
detection, and (3) multimodal audio-visual fusion. 
Tables 1–3 summarize performance metrics, while 
Figures 1–3 illustrate ROC curves for each 
experimental setting. Across all conditions, the area 
under the ROC curve (AUC) serves as the primary 
evaluation metric, as it robustly measures 
discriminative capability independent of decision 
thresholds. 

We present results under within-manipulation 
and cross-manipulation conditions. Tables 1–3 
summarize performance for audio, video, and 
multimodal fusion branches. Results indicate strong 
within-manipulation accuracy (>0.9 AUC), but 
notable drops under cross-manipulation conditions. 

A. Expeirment 1 : Audio Cross-
Manipulation Results 

Table I presents the results of the audio-only 
detection branch. When the model is trained and 
tested on the same manipulation type, performance 
is consistently high, achieving 0.95 AUC for Text-
to-Speech (TTS) and 0.93 AUC for Voice 
Conversion (VC). This indicates that the audio 
classifier effectively captures artifacts specific to 
each manipulation pipeline, such as spectral 
inconsistencies, unnatural prosody, or phase 
discontinuities introduced by generative models. 

However, under cross-manipulation conditions, 
accuracy drops considerably. For instance, training 
on TTS but testing on VC yields only 0.62 AUC, and 
vice versa results in 0.58 AUC. This suggests that 
audio artifacts differ significantly between 
manipulation families: TTS tends to introduce 
vocoder-related distortions, while VC often 
preserves speaker characteristics but introduces 
subtle temporal and frequency shifts. The model 
appears to overfit the manipulation-specific cues it 
has seen during training, limiting its ability to 
generalize to unseen manipulation styles. 

This observation aligns with prior findings in the 
literature, where audio deepfake detectors show 
strong performance on in-domain datasets but 
deteriorate across datasets or manipulation types 
(e.g., [Korshunov & Marcel, 2019]). It highlights the 
pressing need for cross-dataset robustness in audio 
forensics. 

TABLE I.   

Trian TTS VC 

TTS 0.95 AUC 
0.62 
AUC 

VC 0,58 AUC 
0.93 
AUC 



 
 Journal of Theoretical and Applied Information Technology 

31st December 2025. Vol.103. No.24 
©   Little Lion Scientific  

 
ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
10465 

 

Fig. 4. Audio Cross-Manipulation Results 

 

Fig. 5. DET curve -Audio cross Manipulation 

B. Expeirment 2 : Video Cross-
Manipulation Results 

Table II reports the performance of the video-
only detection model, trained on visual forgeries 
such as FaceSwap and Reenactment. Within-
manipulation results remain strong, with 0.96 AUC 
for FaceSwap and 0.94 AUC for Reenactment. This 
suggests that convolutional or transformer-based 
architectures can effectively capture visual artifacts 
such as blending inconsistencies, abnormal lighting, 
and unnatural eye or lip movements introduced by 
face manipulations. 

However, like the audio case, cross-manipulation 
performance deteriorates training on FaceSwap but 
testing on Reenactment achieves only 0.68 AUC, 
while the reverse condition yields 0.63 AUC. These 
findings indicate that visual artifacts are 
manipulation-specific, and detectors trained on one 

type of forgery often fail to generalize to others. For 
instance, FaceSwap manipulations may leave 
boundary artifacts near the jawline, while 
Reenactment manipulations often produce temporal 
inconsistencies in facial expressions. 

 

This vulnerability echoes challenges noted in 
recent benchmarks such as FaceForensics++ 
[Rössler et al., 2019], which demonstrated that 
detectors tuned for one manipulation type often fail 
on new, unseen methods. Thus, while video 
classifiers excel in controlled environments, their 
reliability under real-world, diverse manipulation 
scenarios remains questionable. 

TABLE II.   

Trian FaceSwap Reenactment 

FaceSwap 0.96 AUC 0.68 AUC 

Reenactmen
t 

0.63 AUC 0.94 AUC 

 

 
Fig. 6. Video Cross-Manipulation Results 

 

Fig. 7. DET curve -video cross Manipulation 
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C. Expeirment 3 : Audio-Visual Fusion 
Results 

 
Table III compares unimodal and multimodal 

performance. Within-manipulation conditions show 
strong results across all models: audio-only achieves 
0.94 AUC, video-only achieves 0.95 AUC, and the 
multimodal fusion model achieves the highest with 
0.97 AUC. This confirms that combining cues from 
both modalities enhances performance even under 
controlled conditions. 

The more compelling result emerges under cross-
manipulation evaluation. Here, the fusion model 
demonstrates 0.72 AUC, outperforming both audio-
only (0.60) and video-only (0.65) systems. This 
improvement validates the hypothesis that audio and 
video manipulations leave complementary traces. 
While an audio forgery may successfully mask 
speech patterns, subtle visual cues such as lip-sync 
mismatch or unnatural timing may remain 
detectable, and vice versa. By integrating both 
modalities, the system can better handle unseen 
manipulation styles. 

These results underscore the importance of 
multimodal approaches in deep-fake detection. 
Unlike unimodal models that overfit to 
manipulation-specific artifacts, fusion models 
leverage cross-modal consistency, making them 
more resilient to novel manipulation pipelines. 
Similar improvements have been reported in recent 
multimodal benchmarks such as FakeAVCeleb 
[Khalid et al., 2021], further strengthening the case 
for audio-visual fusion as a practical solution for 
forensic applications. 

 

TABLE III.   

Model 
Same 

manipulation 
Cross 

manipulation 

Audio-only 0.94 0.60 

Video-only 0.95 0.65 

Audio+Video 
(fusion) 

0.97 0.72 

 

 

 

 

 

Fig. 8. Audio-Visual Fusion Results 

The proposed system can be applied in digital 
forensics, media verification, and cybersecurity, 
where detecting manipulated audio-video content is 
critical. It can also be integrated into social media or 
video conferencing platforms to automatically flag 
deepfakes, supporting efforts to maintain trust and 
authenticity in online communication. 

 
Fig. 9. DET curve -Audio visual fusion 

5. CONCLUSION 

 
This paper examined deepfake detection utilizing 

the FakeAVCeleb dataset, concentrating on the 
identification of altered audio, video, and integrated 
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audio-visual streams.  The study conducted a 
thorough examination of several modalities, 
elucidating the advantages and disadvantages of 
unimodal approaches, while showcasing the efficacy 
of multimodal fusion strategies in enhancing 
detection performance.  The addition of cross-
manipulation trials underscored the necessity of 
assessing models in contexts beyond single-modality 
frameworks, thereby guaranteeing that detection 
systems remain robust under varied and unobserved 
manipulations. 

These insights confirm the argument presented in the 
introduction—that multimodal integration and cross-
manipulation evaluation are key to developing 
reliable, real-world detection frameworks. 

Overall, the results show that video-based 
methods are still good for discovering visual 
forgeries, but audio-based detection is just as 
important, especially when it comes to advanced 
speech synthesis. The integration of both modalities 
regularly generates higher robustness, underlining 
the requirement of multimodal frameworks in real-
world forensic applications. Future study ought to 
investigate more sophisticated structures, self-
supervised learning methodologies, and extensive 
datasets to improve generalizability and robustness. 
To construct defenses against the growing threat of 
deepfakes in digital media, we need to deal with 
these problems. 
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