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ABSTRACT

Deepfake technologies have advanced rapidly in recent years, enabling highly realistic manipulations of both
audio and video. While such technologies offer creative potential, they also present major risks in
misinformation, fraud, and privacy violations. This paper explores the problem of detecting deepfake content
using the FakeAVCeleb dataset, which provides both authentic and manipulated audio-video samples. We
present experiments using state-of-the-art audio models (AASIST, RawNet2, ECAPA-TDNN), video models
(Vision Transformers and SyncNet/Wav2Lip for lip-sync consistency), and multimodal fusion approaches.
In particular, we evaluate robust detection under cross-manipulation scenarios, where models are tested on
manipulation types unseen during training. Our results highlight the performance drop in cross-manipulation
settings, emphasizing the importance of robust multimodal fusion. Fusion methods achieved improved
generalization, indicating that combining complementary cues across modalities is key to resilient deepfake
detection.

Keywords: Deepfake Detection, FakeAVCeleb Dataset, Audio-Visual Forensics, Cross-Manipulation
Evaluation, Video Manipulation, Audio Deepfake. Visual Deepfake Introduction.

possible for TTS models to make speech that sounds

L INTRODUCTION real and human-like [1]. The basic parts of TTS

Deepfake technology have changed the way
digital media works. Attackers can make realistic
false audio and video recordings using generative
models like Generative Adversarial Networks
(GANs) and advanced voice cloning. These fake
media are bad for politics, journalism, privacy, and
cybersecurity. For instance, deepfakes have been
used to distribute false information about politics,
make explicit content without permission, and even
commit financial fraud by tricking people into giving
them money over the phone.

Types of Deepfake Audio:

Deepfake audio generally refers to any audio in
which important attributes have been manipulated
via Al technologies while still retaining its perceived
naturalness. Previous studies mainly involve five
kinds of deepfake audio [1]: text-to-speech, voice
conversion, emotion fake, scene fake, partially fake.

1. Text-to-speech (TTS) [2],

Figure 2 shows what is generally called voice
synthesis. Its goal is to use machine learning-based
models to create genuine and understandable speech
from any text. Deep neural networks have made it

systems are text analysis and speech waveform
production. The two main ways to make speech
waveforms are concatenative [3], [4] and statistical
parametric TTS [5]. The latter usually has an
acoustic model and a vocoder. Recently, some end-
to-end models have been suggested to make audio
sound better, like Variational Inference with
adversarial learning for end-to-end Text-toSpeech
(VITS) [6] and FastDiff-TTS [7].

2. Voice Conversion

Voice conversion (VC) [2] is the process of
digitally copying someone's voice. It tries to change
the speaker's voice and prosody to sound like
someone else's, while keeping the content of the
speech the same. A VC system takes in a natural
speech from the person speaking. There are three
primary types of VC technologies: statistical
parametric [8], [9], frequency warping [10], and unit-
selection [11]. Statistical parametric models also
include a vocoder that is similar to the one in
statistical parametric TTS [12, 13]. End-to-end VC
models have also been suggested in recent years to
imitate the vocal characteristics of an individual [14].
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3. Emotion Fake

Emotion fake [15] wants to change the audio
such that the speech's emotion changes, but other
things stay the same, like who is speaking and what
they are saying. Changing the voice's emotions often
changes the meaning of words. Figure 2 is an
example of artificial emotion. Speaker B's original
statement was made with a joyful tone. The fake
utterance is the sound when the pleasant emotion has
been transformed into a sorrowful emotion. There
are two types of approaches for emotional VC called
"emotion fake" [16]: ways that use parallel data and
methods that do not use parallel data.

4. Scene Fake

Scene fake [17] is when speech augmentation
tools change the acoustic scene of the original
utterance while keeping the speaker's identity and
speech content the same. An. The acoustic scene of
the true speech is "Office." The artificial sound
comes from an airport. If you change the scene of an
original audio with another one, it will be hard to
check the audio's authenticity and integrity, and the
meaning of the original audio could even change.

5. Partially Fake

Partially fake [18] merely changes a few words
of a sentence. The false statement is made by
changing the real statements with real or synthetic
audio samples. The individual who said the original
and false footage is the same. The synthetic audio
samples don't affect who the speaker is.

From a research standpoint, identifying deep-
fakes constitutes a complex multimodal challenge.
Initial research focused on visual artifacts, including
facial blending borders [19], whereas contemporary
investigations integrate temporal inconsistencies and
physiological data. Researchers first focused on
conventional replay attacks in the audio domain;
however, the emergence of neural TTS and voice
conversion has transformed the field. Multimodal
datasets such as FakeAVCeleb [20] now enable the
examination of integrated audio-video detection
methods. Nonetheless, generalization across various
types of manipulation continues to pose a significant
issue. That is why we are focusing on cross-
manipulation resilience in our work.

This study is designed to help readers understand
not only how deepfakes are generated and detected
but also how detection models can remain reliable
when new manipulation methods emerge. By the end
of this paper, readers should be able to evaluate
which detection strategies—audio-only, video-only,
or multimodal fusion—are most effective for robust
deepfake detection. We claim that cross-modal
fusion, when tested under cross-manipulation

conditions, provides superior generalization
compared to unimodal systems. This claim can be
further examined and refined as research in deepfake
generation and detection evolves. The novelty of this
work lies in applying cross-manipulation evaluation
on the FakeAVCeleb dataset—an approach rarely
emphasized in previous studies—and demonstrating
that integrating audio and visual modalities
significantly enhances detection robustness in
realistic, unseen scenarios.

2. RELATED WORK

A. Audio Deepfake Detection

As voice synthesis has gotten better, so has the
ability to find audio deepfakes. = Handcrafted
characteristics  like = Mel-Frequency  Cepstral
Coefficients (MFCCs) and Constant-Q Cepstral
Coefficients (CQCCs) were used in the past. Neural
techniques such as RawNet2 and AASIST now learn
directly from raw or spectral representations [21].
ECAPA-TDNN was originally developed to verify
speakers, however it has been changed to work
against spoofing and works very well.

B. Video- based Detection

Video detection techniques utilize convolutional
neural networks (CNNs) and transformers to
recognize altered facial pictures and movements
[22]. SyncNet came up with the idea of checking lip-
sync alignment, and Wav2Lip has taken the lead in
making and checking synchronized speech-driven
lip motions. Many video detectors are still
susceptible to the type of manipulation employed in
training, which makes it harder to apply them in real-
world situations.

Video-based deepfake identification has been
one of the most active fields of research since there
are more and more fake face videos on social media
sites. Video manipulations, on the other hand,
sometimes include complicated techniques like face-
swapping, reenactment [23], or lip-syncing that
make outputs that look real but are slightly different
from what they should be. Audio, on the other hand,
can be brief and easier to synthesis. The purpose of
video-based detection techniques is to recognize
these discrepancies and differentiate authentic film
from fakes..

Early methods for finding fake videos relied a lot
on features that were made by hand. For example,
researchers used visual artifacts such strange facial
boundaries [24], lighting that didn't match, or head
positions that weren't normal. Techniques that used
texture descriptors (such Local Binary Patterns) and
motion vectors tried to find pixel-level differences
that weren't normal and were caused by
manipulation. These methods were helpful as
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starting points, but they typically didn't work when
deepfake creation got better and made outcomes that
looked more real.

Convolutional Neural Networks (CNNs) became
the most popular way to find fake videos when deep
learning got more popular. CNN-based methods
develop spatial characteristics that can tell the
difference between images or frames by looking at
small variations in skin texture, blending, and eye
movement. For instance, machines that were trained
on frame sequences with altered content could find
high-frequency noise patterns that people can't see.
But CNNs that work at the frame level don't always
take into account temporal dynamics, which are very
important for finding manipulation across numerous
frames.

Researchers developed temporal models like 3D-
CNNs and Recurrent Neural Networks (RNNs) to
get around this problem. These methods use cues
that change over time, such as how often someone
blinks, how well their lips sync up, and how
consistently they move their head. Temporal-based
detection has demonstrated greater resilience against
manipulations that appear plausible in isolated
frames but falter when observed in continuous
motion.

Another type of work is all about lip-syncing and
audio-visual alignment. SyncNet and other tools
were made to check if the audio in a video matches
the lip movements. Wav2Lip took this a step further
by making realistic speech-driven facial animation.
In the realm of detection, these synchronization
models can be reversed: if the anticipated lip
movement markedly diverges from the actual video
frames, it may indicate tampering. This makes lip-
sync inconsistencies a strong sign for video-based
detection.

Transformer-based design has been used more
recently to find deepfakes. Vision Transformers
(ViTs) treat face cropping as a series of picture
patches, which lets the model find long-range
dependencies and global relationships in the face.
This works especially well for finding little
differences in facial structure and expressions that
CNNs might overlook. Also, multimodal
transformers that include video and audio have
demonstrated good results because they mimic both
visual aspects and cross-modal correlations.

Video-based detection systems have made
progress, but they still have a lot of problems to
solve. A lot of models do well on the datasets they
are trained on, but they don't do well when they see
new changes. This is especially true when there are
multiple manipulations happening at once.

Moreover, real-world films frequently exhibit
compression, noise, or occlusion, which impair
model accuracy. So, current research is focusing on
robustness and generalization by using data
augmentation, domain adaptation, and self-
supervised pretraining to make detectors less reliant
on certain sorts of manipulation.

In summary, video-based detection has evolved
from  handcrafted feature engineering to
sophisticated deep learning architectures that
leverage spatial, temporal, and synchronization cues.
While effective in many controlled scenarios, these
models must continue to improve in robustness and
adaptability to address the rapidly evolving
landscape of deep-fake generation techniques.

C. MultiModal Fusion

In short, video-based detection has gone from
hand-crafting features to using advanced deep
learning architectures that use spatial, temporal, and
synchronization signals. These models work well in
many controlled situations, but they need to get
better at being strong and flexible to keep up with the
quickly changing world of deep-fake generating
methods.

The rationale behind multimodal fusion is rooted
in the observation that human perception itself is
inherently multimodal: we rely on both speech and
facial cues to judge the authenticity of
communication [26]. Similarly, combining machine-
based audio and video detectors allows the system to
capture complementary evidence. For instance, an
attacker might generate highly realistic facial
animations while leaving behind detectable audio
artifacts, or vice versa. A multimodal system can
exploit these cross-cues to achieve stronger
reliability compared to unimodal counterparts.

Fusion Strategies. Broadly, multimodal fusion
can be categorized into three strategies:

A. Early Fusion — Before being fed into a
shared model, raw or low-level
characteristics (such spectrograms for
audio and facial embeddings for video)
are put together. This lets the network
learn joint representations directly, but
it can be vulnerable to noise in any
mode.

B. Intermediate Fusion — Modality-
specific encoders (like ECAPA-TDNN
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for audio and Vision Transformers for
video) first get embeddings, which are
subsequently put together using
methods like attention or transformers.
This method strikes a balance between
modality independence and cooperative
learning, which generally leads to
stronger results.

C. Late Fusion: Independent audio and
video classifiers generate probability
scores that are then combined, for
instance, by weighted averaging or a
meta-classifier. Late fusion is easier,
but it can be very successful, especially
when one type of data is far more
dependable than the other.

D. Cross-Modal Alignment: Using
synchronization cues is another
important part of multimodal fusion.
Models like SyncNet and Wav2Lip
were first created to make or check lip
synchronization, but they can also be
used as extra detectors. By directly
comparing the spoken audio to the
observable lip movements in terms of
time and sound, fusion-based systems
can find inconsistencies that unimodal
detectors would miss.

Benefits of Fusion: Experimental experiments
consistently demonstrate that multimodal fusion
enhances both accuracy and generalization [27]. An
audio-only detector may not work with very realistic
speech synthesis, but adding visual signals can still
show little facial differences. On the other hand,
when video modifications look perfect, the audio
modality may show synthetic problems. Fusion thus
protects us by using the best parts of both modalities.

Challenges. Despite its benefits, multimodal
fusion introduces new challenges. First, modality
imbalance can occur, where one stream (e.g., video)
dominates the decision while the other (e.g., audio)
contributes little. Second, computational costs
increase, as both audio and video processing
pipelines must run simultaneously, making real-time
deployment difficult. Third, generalization remains a
concern: even fused models can struggle when
exposed to manipulation techniques unseen during
training, though they generally degrade less severely
than unimodal models.

In short, multimodal fusion is a strong and more
important way to find deepfakes. These systems are

more resilient because they combine audio and
visual modalities. They can also catch cross-modal
inconsistencies like lip-sync mismatches and adapt
better to the changing world of synthetic media.
Future research is anticipated to enhance fusion
techniques via cross-attention transformers, self-
supervised multimodal pretraining, and adversarial
robustness tactics, facilitating practical real-world
implementation.

3. METHODOLOGY

A. Dataset

FakeAVCeleb is a multimodal dataset made for
finding deepfakes. It has both real and fake celebrity
videos. It lets you change audio using text-to-speech
(TTS) and voice conversion (VC), and video
utilizing face-swap and reenactment techniques. The
dataset is set up so that both unimodal and
multimodal experiments can be done. Its many
manipulation methods allow for cross-manipulation
evaluations, where the training and testing
manipulations are different. This makes it a more
realistic  challenge than traditional within-
manipulation evaluations.

Figure (1) presents a conceptual framework for
a multimodal deepfake detection system, centered
around the FakeAVCeleb dataset. The diagram is
logically segmented into two primary modalities:
Visual and Audio. The "Original Video Frame" is the
first step in the Visual Modality pipeline. It is
subsequently processed through "Video Frames" and
"Face Crops." After that, the cropped faces are put
through "Motion Heatmaps" to look at little motions
of the face. The picture shows instances of
"Deepfake Video Frame (Face Swap)" and
"Deepfake Video Frame (Expression Swap)" to
show what the synthetic content looks like.

The Audio Modality pipeline similarly shows the
transformation of "Original Audio Waveform" into
its constituent features. The figure displays a
"Deepfake Audio Spectrogram" as an example of
manipulated audio. This process involves extracting
"Raw Audio," "Audio Features," and "Voice
Features."

The information from both the visual and audio
modalities converges at the "Multimodal Data
Fusion" stage, where features from both streams are
combined to create a comprehensive representation.
This fused data is then processed for "Deepfake
Detection," ultimately defining the "FakeAVCeleb
Dataset for Deepfake Detection" as a repository of
labeled real and fake multimodal content.
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This figure[1] illustrates a taxonomy of various
fake speech generation techniques, categorized
across five sub-figures labeled (a) through (e).

Sub-figure (a), "Text-to-Speech," demonstrates the
process of generating synthetic speech from a textual
input. The process begins with "Input Text" and
passes through a "TTS-to-Speech" model to generate
a speech output from "Speaker A."

Sub-figure (b), "Voice Conversion," shows the
transformation of an utterance from "Speaker A" to
"Speaker B" wusing a "Voice Conversion (VC
Model)." The content of the speech remains the
same, but the voice characteristics are altered.

Sub-figure (c), "Emotion Fake," depicts the
modification of emotion in an utterance. It shows the
original speech from "Speaker B" being altered to

reflect a new emotional state, such as "Happy" or
"Sad," while the voice and content remain consistent.

Sub-figure (d), "Scene Fake," illustrates the
manipulation of the visual background associated
with a speaker's audio. The figure shows "Speaker
A" in an "Office" scene being transposed into an
"Airport" scene using a "Scene Fake Model."

Finally, sub-figure (e), "Partially Fake,"
demonstrates the concept of injecting fake content
into an authentic audio stream. The initial part of the
utterance from "Speaker A" is shown as authentic,
while a later segment is "Partially Fake," as indicated
by a change in both the audio waveform and the
corresponding emotional content (from happy to
sad).

Input Text TIS-to-Speech ' ‘
° Speaker A

Text ° Speaker A

() (b)

G
ul
! Q) —(oieeconversion :
5 - =

° Speaker A . Speaker A
(Office)

(Airport)

(d)

Q0@

0 Speaker B ‘ Speaker B

(Happy) (Sad)

@y
O

° Speaker B

(c)

‘ Partially Fake @
° Speaker A ° Speaker A

)

(e)

Fig. 1. Taxonomy of Audio and Visual Speech Fake
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categorization thresholds. AUC values

B. Proposed Methodology range from 0 to 1.0, with 1.0 being the best

1. Audio Branch: Our audio pipeline looked at and 0.5 being the worst. AUC values of 0.5

a number of different topologies. RawNet2 works
with raw waveforms by using stacked convolutional
and residual blocks. AASIST uses spectro-temporal
graph attention to find complicated patterns.
ECAPA-TDNN makes embeddings for
classification by wusing channel attention and
temporal context aggregation. We resampled the
data to 16kHz mono, normalized the loudness, and
split it into 3-5s chunks. Additive noise, room
impulse responses for reverberation, and lossy
compression were all used to make the sound worse,
much like it would be in the real world.

2. Video Branch : We used face detection to
get facial crops for the video pipeline and then
changed the resolution to 112x112.  Vision
Transformers (ViTs) were trained to tell the
difference between real and phony frames and to
make predictions at the clip level. SyncNet was also
used to figure out audio-visual synchronization
scores, and Wav2Lip was used as another way to
quantify how consistent lip movement is. These
scores were used as extra characteristics along with
the predictions made by the video model.

3. Audio visual fusion : Two strategies for
fusion were put into action. In late fusion, unimodal
logits from the audio and video branches were
combined with lip-sync scores and sent to a
multilayer perceptron classifier. In intermediate
fusion, a transformer-based cross-attention layer
integrated embeddings from audio
(ECAPA/AASIST) and video (ViT). The goal was
to capture relationships across time and how
different modalities work together.

C.  Evaluation Metrics

We used Area Under the Receiver Operating
Characteristic (AUC), Equal Error Rate (EER), and
Detection Error Tradeoff (DET) curves to test the
models. AUC assesses how well anything can tell
the difference between two things, while EER finds
the point where the rates of false acceptance and false
rejection are the same. DET curves show how well
a system is calibrated and how strong it is.

1. Area Under the
Characteristic (AUC)

Receiver  Operating

AUC is a number that tells you how well a
model can tell the difference between
things. It shows how well the model can
tell the difference between positive and
negative classes (in this case, real and
fraudulent content) at different

mean that the model does not do any better
than random guessing [28]. The AUC score
becomes closer to 1.0, the better the model
is at telling the difference between real and
false material.

2. Equal Error Rate (EER)

EER is the point on a Receiver Operating
Characteristic (ROC) curve where the False
Acceptance Rate (FAR) and the False Rejection
Rate (FRR) are equa [29].

e False Acceptance Rate (FAR) occurs
when a deepfake is incorrectly classified as
real.

¢ False Rejection Rate (FRR) occurs when
real content is incorrectly classified as a
deepfake.

EER provides a single value that balances these
two types of errors, making it a useful metric for
comparing the performance of different models. A
lower EER indicates a better performing model.

3. Detection Error Tradeoff (DET) Curves

DET curves are graphical representations that
visualize the tradeoff between the

False Acceptance Rate (FAR) and the False
Rejection Rate (FRR). They give a better picture of
how well a model is working than just one EER
value. When you plot DET curves, you use a
logarithmic scale, which makes it easier to see the
differences between models with lower error rates.
This is different from ROC curves, which plot the
True Positive Rate against the False Positive Rate.
DET curves are quite helpful for showing how well
a model works and how well it can handle different
situations, like those that come up in cross-
manipulation experiments.

This approach is especially useful for finding
deepfakes, where low error rates are needed for real-
world use and slight changes between models may
not be easy to see in a ROC plot. Researchers can
better compare the calibration and resilience of
different models by expanding out the low-error
areas on DET curves.

In this study, DET curves were used to
complement AUC and EER analysis, providing
additional insights into system behavior under
within-manipulation and cross-manipulation
conditions. In particular, they illustrate how
performance degrades when models trained on one
manipulation type (e.g., TTS audio or FaceSwap
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video) are evaluated against unseen manipulations
(e.g., VC or reenactment). This visualization
confirms that multimodal fusion (audio + video)
yields more stable performance across manipulation
types, as the DET curve remains consistently lower
than that of unimodal branches.

Preprocessing
Dataset
(FakeAVCeleb)
Preprocessing
y *
Audio Features Viudio Features /Videa
(MFCs, Specturgrams) (Face Embeddings, Temporal
Temporal Cues)

Yy

Feature Extraction

v '3
Audio Model Video Modal
(CNN-LSTM) (CNN ResNet-50)

Fusion Layer
(Audio + Video)

(AUC, EER,
DET, DET, Confusion Matrix)

Fig. 3. Methodology Pipeline for Deepfake Audio-
Visual Detection

D. Cross-Manipulation Setup

Cross-manipulation experiments taught models how
to do one sort of manipulation and then tested them
on a different type. For sound: Train on TTS and
then test on VC, or the other way around. For video:
Do face-swapping training and reenactment testing,
and vice versa. We evaluated both unimodal and
cross-modal combinations for fusion. This setup
shows how well generalization works.

4. EXPERIMENTS AND RESULTS

We assess our system in two contrasting
contexts: within-manipulation (where training and
testing utilize the same manipulation technique) and
cross-manipulation (where training and testing
employ different techniques). These two ways of
testing give us information on how specific and
general detection models are.  While within-
manipulation evaluation shows how well a model
can find existing manipulations, cross-manipulation
is more realistic and harder because new
manipulations are always popping up in the field.

To analyze this, we designed three experiments
focusing on (1) audio-only detection, (2) video-only
detection, and (3) multimodal audio-visual fusion.
Tables 1-3 summarize performance metrics, while
Figures 1-3 illustrate ROC curves for each
experimental setting. Across all conditions, the area
under the ROC curve (AUC) serves as the primary
evaluation metric, as it robustly measures
discriminative capability independent of decision
thresholds.

We present results under within-manipulation
and cross-manipulation conditions. Tables 1-3
summarize performance for audio, video, and
multimodal fusion branches. Results indicate strong
within-manipulation accuracy (>0.9 AUC), but
notable drops under cross-manipulation conditions.

A. Expeirment 1 : Audio Cross-
Manipulation Results

Table I presents the results of the audio-only
detection branch. When the model is trained and
tested on the same manipulation type, performance
is consistently high, achieving 0.95 AUC for Text-
to-Speech (TTS) and 0.93 AUC for Voice
Conversion (VC). This indicates that the audio
classifier effectively captures artifacts specific to
each manipulation pipeline, such as spectral
inconsistencies, unnatural prosody, or phase
discontinuities introduced by generative models.

However, under cross-manipulation conditions,
accuracy drops considerably. For instance, training
on TTS but testing on VC yields only 0.62 AUC, and
vice versa results in 0.58 AUC. This suggests that
audio artifacts differ significantly between
manipulation families: TTS tends to introduce
vocoder-related  distortions, while VC often
preserves speaker characteristics but introduces
subtle temporal and frequency shifts. The model
appears to overfit the manipulation-specific cues it
has seen during training, limiting its ability to
generalize to unseen manipulation styles.

This observation aligns with prior findings in the
literature, where audio deepfake detectors show
strong performance on in-domain datasets but
deteriorate across datasets or manipulation types
(e.g., [Korshunov & Marcel, 2019]). It highlights the
pressing need for cross-dataset robustness in audio
forensics.

TABLE I.
Trian TTS vVC
0.62
TTS 0.95 AUC AUC
0.93
vC 0,58 AUC AUC
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15 Audio Cross-Manipulation Results

0.9

0.8F

AUC

0.7

0.6
Test on TTS
Test on VC

TS vC

0.5

Fig. 4. Audio Cross-Manipulation Results

DET Curve - Audio Cross-Manipulation

Audio-TTS
- Audio-VC

type of forgery often fail to generalize to others. For
instance, FaceSwap manipulations may leave
boundary artifacts near the jawline, while
Reenactment manipulations often produce temporal
inconsistencies in facial expressions.

This vulnerability echoes challenges noted in
recent benchmarks such as FaceForensics++
[Rossler et al., 2019], which demonstrated that
detectors tuned for one manipulation type often fail
on new, unseen methods. Thus, while video
classifiers excel in controlled environments, their
reliability under real-world, diverse manipulation
scenarios remains questionable.

TABLE II.

Trian FaceSwap Reenactment

2x10*

FaceSwap

0.96 AUC

0.68 AUC

Reenactmen
t

0.63 AUC

0.94 AUC

10!

False Rejection Rate (FRR) [%]

6 x 10°

101 10° 107
False Acceptance Rate (FAR) [%]

Fig. 5. DET curve -Audio cross Manipulation

B. Expeirment 2 : Video Cross-
Manipulation Results

Table II reports the performance of the video-
only detection model, trained on visual forgeries
such as FaceSwap and Reenactment. Within-
manipulation results remain strong, with 0.96 AUC
for FaceSwap and 0.94 AUC for Reenactment. This
suggests that convolutional or transformer-based
architectures can effectively capture visual artifacts
such as blending inconsistencies, abnormal lighting,
and unnatural eye or lip movements introduced by
face manipulations.

However, like the audio case, cross-manipulation
performance deteriorates training on FaceSwap but
testing on Reenactment achieves only 0.68 AUC,
while the reverse condition yields 0.63 AUC. These
findings indicate that visual artifacts are
manipulation-specific, and detectors trained on one

. Video Cross-Manipulation Results

0.9+

0.8+

AUC

0.7

0.6
Test on FaceSwap
Test on Reenactment

oI—SaceSwap Reenactment

Fig. 6. Video Cross-Manipulation Results
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C. Expeirment 3 : Audio-Visual Fusion
Results

Table III compares unimodal and multimodal
performance. Within-manipulation conditions show
strong results across all models: audio-only achieves
0.94 AUC, video-only achieves 0.95 AUC, and the
multimodal fusion model achieves the highest with
0.97 AUC. This confirms that combining cues from
both modalities enhances performance even under
controlled conditions.

The more compelling result emerges under cross-
manipulation evaluation. Here, the fusion model
demonstrates 0.72 AUC, outperforming both audio-
only (0.60) and video-only (0.65) systems. This
improvement validates the hypothesis that audio and
video manipulations leave complementary traces.
While an audio forgery may successfully mask
speech patterns, subtle visual cues such as lip-sync
mismatch or unnatural timing may remain
detectable, and vice versa. By integrating both
modalities, the system can better handle unseen
manipulation styles.

These results underscore the importance of
multimodal approaches in deep-fake detection.
Unlike unimodal models that overfit to
manipulation-specific artifacts, fusion models
leverage cross-modal consistency, making them
more resilient to novel manipulation pipelines.
Similar improvements have been reported in recent
multimodal benchmarks such as FakeAVCeleb
[Khalid et al., 2021], further strengthening the case
for audio-visual fusion as a practical solution for
forensic applications.

TABLE I11.
Model Same Cross
manipulation | manipulation
Audio-only 0.94 0.60
Video-only 0.95 0.65
Audm-i.-Vldeo 097 072
(fusion)

DET Curve - Video Cross-Manipulation

Video-FaceSwap
Video-Reenactment
2x 10!

10?

False Rejection Rate (FRR) [%]

6 x 10°

4x10°

1071 10° 10!
False Acceptance Rate (FAR) [%]

Fig. 8. Audio-Visual Fusion Results

The proposed system can be applied in digital
forensics, media verification, and cybersecurity,
where detecting manipulated audio-video content is
critical. It can also be integrated into social media or
video conferencing platforms to automatically flag
deepfakes, supporting efforts to maintain trust and
authenticity in online communication.

DET Curve - Audio-Visual Fusion

Audio Only
. Video Only
2% 10%[ — Audio+Video Fusion

101 k

6 x 10°

False Rejection Rate (FRR) [%]

4x10°

3x10°

101 100 107
False Acceptance Rate (FAR) [%]

Fig. 9. DET curve -Audio visual fusion

5. CONCLUSION

This paper examined deepfake detection utilizing

the FakeAVCeleb dataset, concentrating on the
identification of altered audio, video, and integrated
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audio-visual streams. The study conducted a
thorough examination of several modalities,
elucidating the advantages and disadvantages of
unimodal approaches, while showcasing the efficacy
of multimodal fusion strategies in enhancing
detection performance. The addition of cross-
manipulation trials underscored the necessity of
assessing models in contexts beyond single-modality
frameworks, thereby guaranteeing that detection
systems remain robust under varied and unobserved
manipulations.

These insights confirm the argument presented in the
introduction—that multimodal integration and cross-
manipulation evaluation are key to developing
reliable, real-world detection frameworks.

Overall, the results show that video-based
methods are still good for discovering visual
forgeries, but audio-based detection is just as
important, especially when it comes to advanced
speech synthesis. The integration of both modalities
regularly generates higher robustness, underlining
the requirement of multimodal frameworks in real-
world forensic applications. Future study ought to
investigate more sophisticated structures, self-
supervised learning methodologies, and extensive
datasets to improve generalizability and robustness.
To construct defenses against the growing threat of
deepfakes in digital media, we need to deal with
these problems.

REFERENCES

[1] T. Wang, R. Fu, J. Yi, J. Tao, and S. Wang,
“Prosody and voice factorization for few-shot
speaker adaptation in the challenge m2voc
2021,” in Proc. of ICASSP), 2021.

[2] Z.Wu,N. Evans, T. Kinnunen, J. Yamagishi, F.
Alegre, and H. Li, “Spoofing and
countermeasures for speaker verification: A
survey,” Speech Communication, vol. 66, pp.
130-153, 2015.

[3] A.J. Hunt and A. W. Black, “Unit selection in
a concatenative speech synthesis system using
a large speech database,” in IEEE International
Conference on Acoustics, 1996

[4] Y. Stylianou, “Applying the harmonic plus
noise model in concatenative speech synthesis,”
Speech & Audio Processing IEEE Transactions
on, vol. 9, no. 1, pp. 21-29, 2001

[5] H. Zen, A. W. Senior, and M. Schuster,
“Statistical parametric speech synthesis using
deep neural networks,” 2013 IEEE
International Conference on Acoustics, Speech
and Signal Processing, pp. 7962-7966, 2013

[6] J. Kim, J. Kong, and J. Son, “Conditional
variational autoencoder with adversarial
learning for end-to-end text-to-speech,” in
ICML, 2021.

[71 1R. Huang, M. W. Y. Lam, J. Wang, D. Su, D.
Yu, Y. Ren, and Z. Zhao, “Fastdiff: A fast
conditional diffusion model for highquality
speech synthesis,” in International Joint
Conference on Artificial Intelligence, 2022.

[8] B. Sisman, J. Yamagishi, S. King, and H. Li,
“An overview of voice conversion and its
challenges: From statistical modeling to deep
learning,” IEEE/ACM Transactions on Audio,
Speech, and Language Processing, vol. 29, pp.
132-157,2020

[91 JH.-S. Choi, J. Lee, W. Kim, J. Lee, H. Heo, and
K. Lee, “Neural analysis and synthesis:
Reconstructing speech from selfsupervised
representations,”  Advances in  Neural
Information Processing Systems, vol. 34, pp. 16
251-16 265, 2021

[10]E. Godoy, O. Rosec, and T. Chonavel, “Voice
conversion using dynamic frequency warping
with amplitude scaling, for parallel or
nonparallel corpora,” IEEE Transactions on
Audio, Speech, and Language Processing, vol.
20, no. 4, pp. 1313-1323, 2011

[11]] Z. Jin, A. Finkelstein, S. DiVerdi, J. Lu, and
G. J. Mysore, “Cute: A concatenative method
for voice conversion using exemplar-based unit
selection,” in 2016 IEEE International
Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 2016, pp. 5660—
5664.

[12]] A. v. d. Oord, S. Dieleman, H. Zen, K.
Simonyan, O. Vinyals, A. Graves, N.
Kalchbrenner, A. Senior, and K. Kavukcuoglu,
“Wavenet: A generative model for raw audio,”
arXiv preprint arXiv:1609.03499, 2016.

[13]] J. Kong, J. Kim, and J. Bae, “Hifi-gan:
Generative adversarial networks for efficient
and high fidelity speech synthesis,” Advances
in Neural Information Processing Systems, vol.
33, pp. 17 022-17 033, 2020.

[14]S. Dahmani, V. Colotte, V. Girard, and S. Ouni,
“Conditional variational auto-encoder for text-
driven  expressive  audiovisual  speech
synthesis,” in INTERSPEECH 2019-20th
Annual Conference of the International Speech
Communication Association, 2019.

[15] Y. L. Zhao, J. Yi, J. Tao, C. Wang, C. Y.
Zhang, T. Wang, and Y. Dong, “Emofake: An

10467



Journal of Theoretical and Applied Information Technology ~
31 December 2025. Vol.103. No.24 N

© Little Lion Scientific

SATIT

ISSN: 1992-8645

www jatit.org

E-ISSN: 1817-3195

initial dataset for emotion fake audio
detection,” ArXiv, vol. abs/2211.05363, 2022.

[16] K. Zhou, B. Sisman, R. Liu, and H. Li,
“Emotional  voice conversion: Theory,
databases and esd,” Speech Commun., vol. 137,
pp. 1-18, 2021.

[17] J. Yi, C. Wang, J. Tao, Z. Tian, C. Fan, H. Ma,
and R. Fu, “Scenefake: An initial dataset and
benchmarks for scene fake audio detection,”
ArXiv, vol. abs/2211.06073, 2022.

[18]]). Y1, Y. Bai, J. Tao, H. Ma, Z. Tian, C. Wang,
T. Wang, and R. Fu, “Half-truth: A partially
fake audio detection dataset,” in Proc. of
INTERSPEECH, 2021.

[19] Z. Wu, T. Kinnunen, N. Evans, J. Yamagishi,
C. Hanilc i, and et al., “Asvspoof 2015: the first
automatic speaker verification spoofing and
countermeasures challenge,” in Proc. of
INTERSPEECH, 2015.

[20]T. Kinnunen, M. Sahidullah, H. Delgado, N. E.
M. Todisco, and et al., “The asvspoof 2017
challenge: Assessing the limits of replay
spoofing attack detection,” in Proc. of
INTERSPEECH, 2017.4

[21] M. Todisco, X. Wang, V. Vestman, M.
Sahidullah, and K. Lee, “Asvspoof 2019:
Future horizons in spoofed and fake audio
detection,” in Proc. of INTERSPEECH, 2019.

[22] J. Yamagishi, X. Wang, M. Todisco, M.
Sahidullah, J. Patino, A. Nautsch, X. Liu, K. A.
Lee, T. Kinnunen, and N. Evans, “Asvspoof
2021: accelerating progress in spoofed and
deepfake speech detection,” in The ASVspoof
2021 Workshop, 2021.

[23] J. Yi, R. Fu, J. Tao, S. Nie, H. Ma, C. Wang,
T. Wang, Z. Tian, Y. Bai, C. Fan, S. Liang, S.
Wang, S. Zhang, X. Yan, L. Xu, Z. Wen, and
H. Li, “Add 2022: the first audio deep synthesis
detection  challenge,” in 2022 IEEE
International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, 2022.

[24] J. Yi,J. Tao, R. Fu, X. Yan, C. Wang, T. Wang,
C.Y. Zhang, X. Zhang, Y. Zhao, Y. Ren, L. Xu,
J. Zhou, H. Gu, Z. Wen, S. Liang, Z. Lian, S.
Nie, and H. Li, “Add 2023: the second audio
deepfake detection challenge,” 2023

[25]Kukanov, 1., & Ng, J. W. (2025). KLASSify to
Verify: Audio-Visual Deepfake Detection
Using SSL-based Audio and Handcrafted
Visual Features. arXiv preprint
arXiv:2508.07337.

[26] Zhang, K., Pei, W., Lan, R., Guo, Y., & Hua, Z.
(2025). Lightweight Joint Audio-Visual
Deepfake Detection via Single-Stream Multi-
Modal Learning Framework. arXiv preprint
arXiv:2506.07358.

[27]Chandra, N. A., Murtfeldt, R., Qiu, L.,
Karmakar, A., Lee, H., Tanumihardja, E., ... &
Etzioni, O. (2025). Deepfake-eval-2024: A
multi-modal  in-the-wild  benchmark  of
deepfakes circulated in 2024. arXiv preprint
arXiv:2503.02857.

[28]Khalid, H., Tariqg, S., Kim, M., & Woo, S. S.
(2021). FakeAVCeleb: A novel audio-video
multimodal deepfake dataset. arXiv preprint
arXiv:2108.05080.

[29]Kheir, Y. E., Das, A., Erdogan, E. E., Ritter-
Guttierez, F., Polzehl, T., & Mdller, S. (2025).
Two Views, One Truth: Spectral and Self-
Supervised Features Fusion for Robust Speech
Deepfake Detection. arXiv preprint
arXiv:2507.20417.

10468



