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ABSTRACT 
 

In contemporary agriculture, intelligent computational models are becoming increasingly popular in 
analysing land suitability to achieve greater precision and scale. The paper is a comparison of hybrid and 
advanced Multilayer Perceptron (MLP) architectures with rich Internet of Things (IoT) sensor data on a large, 
real-world data set (10,000+ samples, 50. The purpose is to rigorously test the robustness, accuracy, and 
computational speed of both MLP-based IoT systems in a practical agricultural environment. In high-
dimensional, information-rich settings, the advanced MLP coupled with advanced IoT sensors (which 
comprises drone-acquired Normalised Difference Vegetation Index (NDVI)) achieves 92.4% accuracy, a 
0.91 F1 score, and a 0.88 Matthews Correlation Coefficient (MCC), surpassing the hybrid model. The Hybrid 
MLP + Hybrid IoT Sensor, on the other hand, has a robustness score of 0.9 and operates well in handling 
noisy circumstances, real-time inference, and quick deployment. Both models facilitate practical and context-
sensitive benchmarking so that the appropriate system can be chosen by the stakeholders. The study 
contributes to methodological practices in land suitability assessment and provides recommendations to scale 
to additional crops, areas, and sensors to promote data-informed and robust agricultural decision support. 

Keywords: Land suitability, Multilayer Perceptron, IoT sensors, Agriculture, Normalised Difference 
Vegetation Index (NDVI)  

 
1. INTRODUCTION  
 

Land suitability analysis has advanced beyond 
mere agronomic surveys and resource management 
policies to modern contemporary demands of food 
insecurity and scarcity of resources and climate 
change impacts [1], [2]. Traditionally, the process of 
identifying optimal land use in agriculture involved 
manual field inspection and human expertise, but 
they have been unable to keep up with the 
requirements of fast-moving environments, vast 
amounts of data, and the need to be able to provide 
accurate, location-editable recommendations. 

The proven ability of MLPs combined with 
advanced IoT sensors to model nonlinear 
interactions in complex, multidimensional 

agricultural data drives the adoption of intelligent 
techniques. While IoT platforms, such as ground-
based and aerial (drone) systems, supply the detailed, 
real-time data needed for comprehensive land 
assessment, MLPs are powerful tools for identifying 
subtle patterns from various sensor inputs [3], [4]. 
The integration of these computational and sensing 
technologies presents a way to automate, scale, and 
conduct context-specific land suitability analyses, 
providing actionable recommendations that may not 
be achievable with manual or conventional methods. 

Particularly, this research identifies the extent to 
which integrating hybrid and advanced MLP models 
with IoT sensors can enhance the accuracy of a land 
suitability analysis, its efficiency, and its relevance 
to the performance of ground operations. The 
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problem addressed is developing and comparatively 
benchmarking such intelligent model-sensor 
pairings to create robust, situationally-adaptive 
classification of over a variety of agricultural 
conditions and data conditions [5]. 

Whether advanced MLPs, given deep and varied 
sensor data, can excel over hybrid MLP variants, 
both in terms of overall accuracy and in critical real-
world circumstances like noisy or information-rich 
contexts, is the main research question driving this 
work. The main hypothesis is that intelligent, data-
driven, MLP and sensor combinations will lead to 
substantial increases in the quality of classification, 
robustness and deployment predisposition of land 
suitability analysis [6]. 

This study is important as it advances the 
methodological horizon for intelligent land 
suitability modelling with realistic, useful 
benchmarks employing hybrid and advanced MLPs, 
rather than comparing with old or legacy systems. 
With visible, actionable output from massive, 
complicated datasets, the results directly address 
significant problems in contemporary agriculture, 
including optimising resource efficiency and 
facilitating scaled, site-specific planning [7]. 

The novelty of this study is its systematic 
comparison of hybrid and advanced MLP 
architectures that are trained and gauged on a 
synchronised, high-volume IoT sensor data, 
including multispectral drone data and on an 
extraordinarily large and diverse agricultural dataset. 
The primary objectives are to evaluate and compare 
the predictive strength, computational efficiency, 
and operational robustness of these model-sensor 
systems, provide a holistic framework for risk-
aware, context-driven deployment and derive 
practical deployment recommendations and 
empirical insights based on comparative 
performance and robustness findings of hybrid and 
advanced MLP-IoT land suitability systems [8]. 

The primary objectives are to assess and compare 
predictive power, calculational efficiency, and 
operational robustness of these model-sensor 
systems, offer a holistic framework to formulate risk-
aware and context-specific deployment, and draw 
actionable recommendations and empirical 
understanding on the deployment of these MLP-IoT 
land suitability systems through comparative 
performance and robustness finding of hybridised 
and advanced models. The paper's structure includes 
the following sections: survey of literature, materials 
and techniques, model construction, results with 
comparative analysis, discussion considering 

existing literature and practical implications and a 
conclusion that offers important insights and 
directions for further study. 

2. LITERATURE SURVEY  

The advent of digital agriculture has led to 
land suitability analysis becoming a rapidly 
developing field, as it uses machine learning (ML) 
and IoT sensors to address issues of efficiency, 
robustness, and scale of data [9]. Early approaches 
involved expert-centred and geospatial mapping, 
although more recently, an apparent transition to 
data-driven frameworks that combine sensor time-
series, satellite imaging, and multi-criteria 
evaluation has become apparent [10]. In practical 
applications, although parametric and rule-based 
methods remain an essential element in crop and 
agro-climatic classification, ML approaches (such as 
Random Forests, Support Vector Machines, and 
neural networks) still show better accuracies, 
adaptations, and generalisations [11]. 

IoT-enabled smart agriculture platforms 
have become the providers of abundant 
environmental data streams of soils, climates, and 
crops. The existing studies prove the idea that a 
strategic combination of IoT and ML wires real-time 
decision making, risk management, and optimised 
resource use in the field [12]. In agricultural datasets, 
hybrid models combining deep learning, such as 
MLPs, with a variety of sensor inputs are particularly 
effective at inducing nonlinear phenomena, 
improving classification performance and scaling 
strength. NDVI-based remote sensing using drones 
builds further on these methods by offering high-
resolution data, which directly increases land 
suitability forecasting and precision agriculture 
management [13]. Nevertheless, the literature still 
has critical constraints, even after the advances. 
Several studies have been made that use small or 
local data, which have the negative effects of 
limiting generalisation and the danger of overfitting. 
Noise recording, missing values, and ambiguous 
data toleration, although repeatedly described as an 
essential requirement it remain rarely tested in 
active, real-world conditions [14]. 

In some cases, robustness-aware modelling 
methods (e.g. drop-out, batch normalisation) are 
introduced, though they are often tested on 
artificially clean data, which do not reflect real-
world complexities [15]. Comparative analyses on 
various model-sensor combinations specific to 
applications are still not common, although their 
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importance in real-world implementation is well-
known. Finally, deep neural models may lack 
interpretability, which reduces user trust and the 
ability to receive regulatory and stakeholder 
approval [16]. 

Overall, the latest research highlights 
several important points: the efficacy of machine 
learning and IoT sensing in determining land 
suitability, the power of multi-layer perceptrons and 
hybrid neural networks in managing intricate agro-
environmental interactions, the value of integrating 
sensors from both drones and the ground to improve 
spatial and temporal analytics, and the ongoing 
requirement for broader and more varied datasets, 
practical benchmarking, and evaluation frameworks 
that take context into account [17], [18]. This 
research comprehensively compares hybrid and 
advanced MLP-IoT systems on a large, complex 
dataset, utilising robust and practical assessment 
methodologies that are in line with the newest best 
practices. It explicitly tackles these suggestions and 
shortcomings. 

 
3. METHODOLOGY  

3.1. Research Design and Study Area Description 

The study design is in the form of a 
comparative, cross-sectional experiment over an 
area that is diverse enough in soil type, topography, 
and crop diversity. The approach facilitates the 
assessment of sensor and model-specific 
performance in multi-crop land suitability 
prediction. The distribution of field plots ensures the 
robustness and generalizability of the findings by 
reflecting all significant environmental gradients in 
the research region. To manage massive, varied data 
more accurately and efficiently, recent 
developments have lifted land suitability analysis 
above traditional methods by emphasising the 
combination of high-resolution sensing technologies 
with advanced MLP models.  

3.2. Data Collection Using IoT Sensors 

The foundation of this work is multi-
parametric, high-resolution, and accurate data, 
which allows for a direct and comprehensive 
comparison of advanced and hybrid models and 
sensors. 

 

3.2.1. Hybrid IoT Sensor  

Long Range (LoRa) probes based on the 
Raspberry Pi and Arable Mark are used to gather 
important agricultural data, including temperature, 
pH, electrical conductivity, and soil moisture. The 
Raspberry Pi system offers a versatile, affordable 
option with customisable sensor integration, while 
Arable Mark offers an integrated, solar-powered 
solution with integrated wireless data transfer. Both 
systems transmit their data remotely using different 
methods (Arable using cellular connection and 
Raspberry Pi through the LoRa technology), which 
provides a possibility to continuously track data and 
conduct analysis. The combination of the two makes 
them very robust, scalable and flexible to collect data 
on precision agriculture usage and for classical MLP 
and fuzzy logic analyses. The proposed system of 
architecture of land suitability, which combines 
hybrid and advanced models of MLP with multi-
source IoT sensors information, is shown in Figure 
1. 

 

 

Figure 1 Proposed Architecture for MLP-
Based Land Suitability Analysis 

3.2.2. IoT Sensor: NDVI via Multispectral Drone 
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Agricultural plots are routinely surveyed by 
drones fitted with multispectral sensors, such as the 
Parrot Sequoia, which record the NDVI and other 
important spectral bands. These sensors provide 
information on crop vigour and health changes 
across space, canopy temperature, extra vegetation 
indicators, and NDVI. High-resolution, field-scale 
information that is harder to get with ground-based 
sensors alone are provided by such aerial sensing. 
This information improves predicted accuracy in 
deep MLP-based studies and is essential for 
geographically specific crop suitability modelling. It 
enables high-dimensional data applications and 
precision agriculture by supporting large-scale 
monitoring. 

SHT31 Sensor, Tipping Bucket Rain 
Gauge and Apogee SQ-110 are the additional 
sensors used to record ambient temperature, 
humidity, rainfall, and light intensity throughout the 
year. 

3.2.3. Data sources and sample size 

 Primary Dataset: Over 10,000 
distinct, time-stamped observations matched to both 
model types were obtained using time-series sensor 
and drone data acquired in situ from 50 geo-tagged 
field plots, sampled at least twice a week for a 
minimum of 12 months. 

 Public Supplementary Data: With 
complete alignment to in-field observed variables 
(such as soil pH, EC, NDVI, and rainfall), data from 
the Open Soil Data Portal 
(https://www.data.gov.in/keywords/soil) and 
comparable sources provide history and validation 
information while guaranteeing cross-compatibility 
with all model and sensor inputs. 

3.3. Data Preprocessing and Feature Selection 

The data is combined, synchronised with 
time, and georeferenced from all sources, including 
probes, drones, and public databases. The following 
is the preprocessing protocol: 

 Outlier Detection: Sensor abnormalities are 
eliminated, and missing data are filled in 
using appropriate statistical interpolation. 

 Normalisation: To guarantee constant 
amplitude for neural network inputs, input 
elements are subjected to min-max 
normalisation. 

 Feature Selection: All model pipelines 
employ a combination of L1 regularisation, 
recursive feature elimination (RFE), and 
correlation analysis. By balancing the 
complexity of the model with the 
informativeness of the data, this process 
ensures that only the most predictive 
variables for land suitability are retained. 

3.4. Multilayer Perceptron Model Design and 
Training 

This section covers each of the 
mathematical modelling procedures used in the 
implementation of the Deep 
MLP+Dropout+BatchNorm and Hybrid 
MLP+Fuzzy Logic models: 

3.4.1. Hybrid MLP model: MLP + Fuzzy logic 

The study uses hybrid MLP+Fuzzy Logic, 
as MLP offers classification based on nonlinear 
interactions, and fuzzy rules are employed to handle 
ambiguity in soil and environment characteristics.  

Input to Hidden Layer Transformation: This process 
aggregates weighted, normalised input features like 
sensor variables and fuzzified inputs as per the 
hidden neuron. It is used to combine all input feature 
effects for subsequent nonlinear transformation. 

𝑧௝
(ଵ)

= ෍ 𝑤௝௜
(ଵ)

𝑥௜ + 𝑏௝
(ଵ)

௡

௜ୀଵ

                                (1) 

Where, 𝑤௝௜
(ଵ) Is the weight, 𝑥௜ Is the feature, 𝑏௝

(ଵ)Is 

the bias for the neuron 𝑗. 

Activation Function: This function introduces 
nonlinearity via Rectified Linear Unit (ReLU) to 
model complex soil-crop-climate relationships. It 
enables the detection of nonlinear interactions 
between environmental variables. 

𝑎௝
(ଵ)

= 𝜙൫𝑧௝
(ଵ)

൯                (2) 

Where, 𝜙 Is the activation function, 𝑧௝
(ଵ) Is the input 

to the neuron.  
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Figure 2 Hybrid MLP Model Architecture 

Figure 2 shows the architecture of the hybrid MLP 
model of land suitability classification, which 
depicts the major steps in classification from the 
entry of sensor data to output prediction. 

Hidden Layer to Output Transformation: It is used to 
aggregate abstracted hidden layer information to the 
output layer for crop suitability classification. This 
transformation also integrates information across 
hidden neurons into class scores for final 
predictions. 

𝑧௞
(ଶ)

= ෍ 𝑤௞௝
(ଶ)

𝑎௝
(ଵ)

+ 𝑏௞
(ଶ)

௠

௝ୀଵ

              (3)                          

Where, 𝑤௞௝
(ଶ) is the hidden-output weight; 𝑎௝

(ଵ) is the 

activation; 𝑏௞
(ଶ) Is the bias. 

Softmax Probability Output: Employed to convert 
raw scores into probabilities for each suitability 
class. It ensures outputs lie in probability space 
summing to 1, supporting multiclass classification. 

𝑦௞ =
௘

೥
ೖ
(మ)

∑ ௘
೥

೗
(మ)

಼
೗సభ

                         (4)  

Where𝑧௞
(ଶ)

Is the class k activation, and K is the 
number of classes. 

Cross-Entropy Loss: This function measures the 
difference between predicted and true suitability 
classes, guiding model training. It is used to properly 
penalise prediction errors, leading to optimal class 
separation. 

𝐿 = − ෍ 𝑦௞
(௧௥௨௘)

log(𝑦௞
(௣௥௘ௗ)

)

௄

௞ୀଵ

                      (5) 

Where, 𝑦௞
(௧௥௨௘) Is the ground truth? 𝑦௞

(௣௥௘ௗ) Is the 
predicted probability. 

Fuzzy Logic Overlay: For parameters with 
ambiguous or unclear limits, such as soil pH or 
rainfall, this module works in conjunction with the 
MLP to apply rule-based categorisation. 

3.4.2. Advanced MLP model: deep MLP with 
dropout and batch normalisation 

This advanced model is designed for high-
dimensional, fused multispectral and IoT data to 
learn complex nonlinear relationships. In this 
architecture, all five steps of hybrid MLP are used, 
with batch normalisation added before the activation 
function and dropout added after the activation 
function. Both models (Hybrid and Deep MLP) are 
trained on the identical preprocessed and feature-
selected data for fair comparison. Key layers from 
input to output are shown in the architecture of the 
advanced MLP used for classifying land suitability 
(Figure 3). 
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Figure 3: Advanced MLP Architecture for Land 
Suitability Classification 

Batch Normalisation: Normalises layer outputs 
during training, supporting faster, more stable 
learning with varied inputs.  

𝑧̂௝
(ଵ)

= 𝐵𝑁൫𝑧௝
(ଵ)

൯ =
𝑧௝

(ଵ)
− 𝜇

√𝜎ଶ + 𝜖
∙ 𝛾 + 𝛽         (6) 

Where, 𝜇 is the batch mean, 𝜎ଶ Is the batch 
variance, ϵ is the small constant (prevents division 
by 0), and 𝛾, 𝛽 There are learnable parameters to 
scale and shift. 

Dropout Layers: This layer randomly deactivates 
neurons during training to prevent overfitting from 
correlated or redundant inputs. 

𝑎෤௝
(ଵ)

= 𝑎௝
(ଵ)

∙ 𝑟௝ , 𝑟௝ ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝)                    (7) 

Where, 𝑎௝
(ଵ) Is the activated output from the hidden 

neuron 𝑗, 𝑟௝ Is the random mask (0 or 1) drawn from 

a Bernoulli distribution with probability 𝑝 and 𝑎෤௝
(ଵ)

 

Is the output after dropout, with some neurons set to 
0? 

3.5. Application Context Performance Metrics 

Application context metrics provide 
composite ratings based on weighted and averaged 
normalised base metrics, as well as qualitative 
variables, to summarise the suitability of model-
sensor pairs for practical usage. High-dimensional 
data handling is evaluated by improvements in 
accuracy and F1 on fused, high-dimensional inputs; 
interpretability is based on expert evaluation of 
decision logic clarity and model transparency; speed 
is measured by inference and training time; and 
robustness is represented by the approximate 
minimum class F1 under added noise or ambiguity. 
When combined, these metrics enhance 
conventional assessment techniques and provide a 
more useful viewpoint on the suitability of the model 
in various operational contexts. 

3.6. Model-Sensor Integration & Comparative 
Protocol 

Two main combinations are used to 
structure model-sensor integration: Hybrid MLP in 
conjunction with a Hybrid IoT sensor and advanced 
MLP in conjunction with an advanced IoT sensor. 
Every pair conforms to the same experimental 
methodology and is assessed using the same time-
synchronised datasets. K-fold cross-validation is 
used for all combinations to provide fair and 
dependable benchmarking, enabling performance 
comparison under consistent settings. 

3.7. Validation Protocol and Evaluation Metrics 

The metrics in Table 1 serve as the main 
quantitative assessment criteria, carefully measuring 
model resilience and classification quality. 
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Table 1. Metrics Mapped To Key Application Attributes 
For Model Evaluation 

Evaluation 
Metric 

Attribute Measured 

Accuracy General model correctness 

F1 Score 
Robustness under class 
imbalance and noise 

Matthews 
Correlation 
Coefficient 
(MCC) 

Balanced performance across 
all classes 

Cohen’s Kappa 
Agreement and 
interpretability 

ROC-AUC 

Sensitivity to class 
discrimination 
(binary/multiclass) supports 
robustness and high-
dimensional input evaluation. 

The comparative findings of hybrid and 
advanced MLP systems across several performance 
aspects are shown in the next part, which is based on 
the suggested models, sensors, and testing 
methodologies.  

4. RESULTS 

4.1. Data Overview and Quality Assessment 
 

The primary data attributes gathered for land 
suitability modelling are compiled in Table 2 below. 

 
Table 2: Dataset Overview For Model Evaluation 

 
Metric Value 

Total samples 10,000+ 

Number of plots 50 

Duration 12 months 

Missing values <2% (handled) 

Features kept 70% 

 
This table presents the 10,000+ data points 

collected from 50 field plots over one year. There 
was minimal missing data, and the critical aspects 
like soil, climatic, and vegetation properties were 
retained by careful feature selection. The robust and 
fair evaluation of both advanced and hybrid models 
is guaranteed by the dataset's size and thorough 
preprocessing. 

 

4.2. Performance Metrics: Hybrid vs Advanced 
Model-Sensor Pairs 

Table 3 shows that the advanced MLP with an 
advanced IoT sensor produces an accuracy of 92.4%, 
an F1 score of 0.91 and a Matthews correlation 
coefficient of 0.88. Comparatively, the Hybrid MLP 
model, with Hybrid IoT Sensor, yields the results 
with 88.3% accuracy, F1 score of 0.86 and Matthews 
correlation of 0.82. These statistics indicate that the 
advanced model-sensor system is more competent 
than the hybrid one in all aspects, in that it is better 
at modelling complex and multi-modal data as well 
as providing better land suitability classification. 

 
Table 3 Model-Sensor Fusion Performance Metrics 
 

Metric Hybrid MLP 
+ Hybrid IoT 
Sensor 

Advanced MLP 
+ Advanced 
IoT Sensor 

Accuracy 
(%) 

88.3 92.4 

F1 Score 0.86 0.91 

MCC 0.82 0.88 

 
In contrast to the Hybrid MLP + Hybrid IoT 

Sensor, which attains an AUC of 0.91, the Advanced 
MLP + Advanced IoT Sensor provides better 
discrimination between appropriate and 
inappropriate land classes with an AUC of 0.95. The 
advanced system's ROC curve continuously remains 
above the hybrid system, demonstrating a greater 
true positive rate at every false positive level, 
making this distinction visually apparent (Figure 4). 

 

 
 
Figure 4: ROC Curve Comparison of Model-Sensor 

Performance 
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With Advanced MLP and Advanced IoT 
Sensor, there is a better, precise land suitability 
classification. It has superior ROC-AUC, which 
illustrates a consistent, acceptable performance in 
determining the right areas of interest on land in 
diverse threshold settings. As a result, when 
maximal classification quality is essential, the 
advanced system is the better option. 

 
4.3. Confusion Matrix and Class-Wise Analysis 
 

Featuring fewer misclassifications of just 25 and 
15 errors for Highly Suitable and 20 and 10 for Not 
Suitable, the Advanced MLP + Advanced IoT 
Sensor matrix shows a greater count of true positives 
for all classes: 450 (Highly Suitable), 430 
(Moderately Suitable), and 470 (Not Suitable). 
(Figure 5). 

 
  

Figure 5: Confusion Matrix: Advanced MLP + 
Advanced IoT Sensor 

The Hybrid MLP + Hybrid IoT Sensor, by 
contrast, returns 420, 410 and 440 true positives and 
a far larger volume of off-diagonal errors, 
particularly to the categories of Highly Suitable and 
Moderately Suitable (40 and 30, and 45 and 35, 
respectively) (Figure 6). 

  
Figure 6: Confusion Matrix: Hybrid MLP + Hybrid 

IoT Sensor 

The advanced model minimises 
misclassifications, particularly in crucial land 
suitability groups, by achieving more accurate and 
consistent class predictions. With greater rates of 
predicting neighbouring classes, the hybrid method 
is more likely to confuse borderline situations. When 
reducing false positives and negatives and achieving 
high individual class accuracy are critical for 
decision-making, the advanced model is the better 
option from an operational standpoint. 

 
4.4. Computational Efficiency 
 

The quickest training scenario is represented by 
the Hybrid MLP + Hybrid IoT Sensor, which is used 
as the baseline with a relative training time of 1.0x. 
In order to adequately represent the higher level of 
model complexity and depth, the Advanced MLP + 
Advanced IoT Sensor takes 1.3 times as long to train 
as the hybrid system. Both methods are effective for 
real-time applications since their inference times are 
less than one second. Robustness scores (0.70 
advanced, 0.90 hybrid) measure performance in the 
presence of unclear or noisy data (Table 4). 

 
Table 4. Computational Efficiency Comparison of 

Model-Sensor Systems 
 

Model-
Sensor 
Combo 

Relative 
Training 
Time 

Inference 
Time 
(sec) 

Robustness 
(Noise/Ambiguity) 

Hybrid 
MLP + 
Hybrid 
IoT 
Sensor 

1.0x 
(Baseline) 

< 1 0.9 

Advanced 
MLP + 
Advanced 
IoT 
Sensor 

1.3x 
(Baseline 

< 1 0.7 

 
The hybrid system works well in settings where 

robustness is crucial and for quick deployment. 
When more classification accuracy is required and 
longer training durations are permitted, the advanced 
system is the better choice. 

 
4.5. Application Contexts Performance 

Comparison 
 

Each model-sensor combination's performance 
under certain, realistic circumstances is described in 
depth in Figure 7. The Hybrid MLP + Hybrid IoT 
Sensor performs very well in low-resource or real-
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time scenarios (0.95 versus 0.60) and excels at 
managing noisy or unclear data (0.90 vs 0.70). The 
Advanced MLP + Advanced IoT Sensor, on the 
other hand, performs better in precision agriculture 
(0.92 vs. 0.80) and leads in high-dimensional data 
contexts (0.95 vs. 0.75). 

 

 
 

Figure 7 Model-Sensor Performance in Diverse 
Operational Scenarios 

 
The hybrid system is the better option for 

situations that demand resilience to noisy inputs or 
require fast, reliable operation in resource-
constrained settings. The advanced system excels in 
analytical, data-intensive applications and precision 
agricultural activities because of its capacity to 
analyse complicated, information-rich data and 
provide very accurate outputs. 

Key trade-offs comparing the two systems are 
revealed by the observed outcomes, and they are 
further interpreted in the discussion that follows to 
comprehend their practical consequences. 

 
5. DISCUSSION 
 

This paper developed and benchmarked 
intelligent land suitability models through a rich and 
mixed set of data based on a hybrid Multilayer 
Perceptron (MLP) with fuzzy logic (and classic 
sensors), of a more complex Multilayer Perceptron 
(MLP) with deep sensing capabilities, such as drone 
NDVI. With 92.4% accuracy, 0.91 F1 score, and 
0.88 MCC, the advanced MLP + Advanced IoT 
Sensor continuously outperformed its competitors in 
key classification parameters. It performed well in 
high-dimensional, complicated scenarios like 
precision agriculture. The hybrid model, on the other 
hand, showed distinct benefits in terms of training 
speed (baseline 1.0x), resistance to ambiguity or 
noise (score: 0.90), and low-resource or real-time 

circumstances (score: 0.95) [19]. These results 
reflect well with the research objectives that aimed 
to explain the trade-offs that exist between the 
predictive power, computational efficiency and 
operational robustness [20] [21]. 

This work used more than 10,000 samples, 50 
field plots, and extensive preprocessing—including 
normalisation and feature selection—to assure 
reliability and comparability, addressing previous 
problems of small sample numbers and limited 
sensor/model variation. To guarantee equitable 
benchmarking, the method made advantage of robust 
k-fold cross-validation and synchronised, multi-
source data [22]. Significant advancements over 
earlier research include the use of NDVI drone data 
to improve feature richness, the inclusion of specific 
application context criteria (such as interpretability 
and computational efficiency), and the clear 
reporting of useful operational metrics rather than 
just important accuracy [23].  

Its major downsides are its geographic and crop-
specific orientation, limited to two relevant model-
sensor pairs, and the practicality of itself simply 
always assuming constant label and hardware 
quality [24]. The sensor types, machine learning 
models and wider deployment considered in this 
study could be expanded upon to provide further 
insight in future studies; however, the current 
options represent resource limitations considering 
physical location and current agricultural technology 
norms [25]. 

 
6. CONCLUSION 
 

The article shows that the Advanced MLP + 
Advanced IoT Sensor combination has the highest 
level of accuracy and is a successful solution in 
complicated, data-rich scenarios, and thus, is 
effective in environments where the classification 
accuracy and precision agriculture are the main 
goals. The hybrid MLP + hybrid IoT sensor, on the 
other hand, continues to be particularly useful for 
real-time applications, quick deployment, and 
situations where resistance to noise or ambiguity is 
crucial. It offers strong benefits in terms of resilience 
and operating speed. 

This study gives stakeholders the tools to 
choose the appropriate technology for their unique 
objectives by offering a useful, context-aware 
assessment process for intelligent land suitability 
models. Future developments in model architectures 
and the extension to larger areas, crops, and sensor 
kinds will assist in optimising these systems' utility 
and dependability for a range of real-world 
agricultural problems. 
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