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ABSTRACT

In contemporary agriculture, intelligent computational models are becoming increasingly popular in
analysing land suitability to achieve greater precision and scale. The paper is a comparison of hybrid and
advanced Multilayer Perceptron (MLP) architectures with rich Internet of Things (IoT) sensor data on a large,
real-world data set (10,000+ samples, 50. The purpose is to rigorously test the robustness, accuracy, and
computational speed of both MLP-based IoT systems in a practical agricultural environment. In high-
dimensional, information-rich settings, the advanced MLP coupled with advanced IoT sensors (which
comprises drone-acquired Normalised Difference Vegetation Index (NDVI)) achieves 92.4% accuracy, a
0.91 F1 score, and a 0.88 Matthews Correlation Coefficient (MCC), surpassing the hybrid model. The Hybrid
MLP + Hybrid IoT Sensor, on the other hand, has a robustness score of 0.9 and operates well in handling
noisy circumstances, real-time inference, and quick deployment. Both models facilitate practical and context-
sensitive benchmarking so that the appropriate system can be chosen by the stakeholders. The study
contributes to methodological practices in land suitability assessment and provides recommendations to scale
to additional crops, areas, and sensors to promote data-informed and robust agricultural decision support.

Keywords: Land suitability, Multilayer Perceptron, IoT sensors, Agriculture, Normalised Difference

Vegetation Index (NDVI)
1. INTRODUCTION agricultural data drives the adoption of intelligent
techniques. While IoT platforms, such as ground-

Land suitability analysis has advanced beyond
mere agronomic surveys and resource management
policies to modern contemporary demands of food
insecurity and scarcity of resources and climate
change impacts [1], [2]. Traditionally, the process of
identifying optimal land use in agriculture involved
manual field inspection and human expertise, but
they have been unable to keep up with the
requirements of fast-moving environments, vast
amounts of data, and the need to be able to provide
accurate, location-editable recommendations.

The proven ability of MLPs combined with
advanced IoT sensors to model nonlinear
interactions  in  complex,  multidimensional

based and aerial (drone) systems, supply the detailed,
real-time data needed for comprehensive land
assessment, MLPs are powerful tools for identifying
subtle patterns from various sensor inputs [3], [4].
The integration of these computational and sensing
technologies presents a way to automate, scale, and
conduct context-specific land suitability analyses,
providing actionable recommendations that may not
be achievable with manual or conventional methods.

Particularly, this research identifies the extent to
which integrating hybrid and advanced MLP models
with IoT sensors can enhance the accuracy of a land
suitability analysis, its efficiency, and its relevance
to the performance of ground operations. The
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problem addressed is developing and comparatively
benchmarking such intelligent model-sensor
pairings to create robust, situationally-adaptive
classification of over a variety of agricultural
conditions and data conditions [5].

Whether advanced MLPs, given deep and varied
sensor data, can excel over hybrid MLP variants,
both in terms of overall accuracy and in critical real-
world circumstances like noisy or information-rich
contexts, is the main research question driving this
work. The main hypothesis is that intelligent, data-
driven, MLP and sensor combinations will lead to
substantial increases in the quality of classification,
robustness and deployment predisposition of land
suitability analysis [6].

This study is important as it advances the
methodological horizon for intelligent land
suitability ~modelling with realistic, useful
benchmarks employing hybrid and advanced MLPs,
rather than comparing with old or legacy systems.
With visible, actionable output from massive,
complicated datasets, the results directly address
significant problems in contemporary agriculture,
including optimising resource efficiency and
facilitating scaled, site-specific planning [7].

The novelty of this study is its systematic
comparison of hybrid and advanced MLP
architectures that are trained and gauged on a
synchronised, high-volume IoT sensor data,
including multispectral drone data and on an
extraordinarily large and diverse agricultural dataset.
The primary objectives are to evaluate and compare
the predictive strength, computational efficiency,
and operational robustness of these model-sensor
systems, provide a holistic framework for risk-

aware, context-driven deployment and derive
practical  deployment recommendations and
empirical  insights based on comparative

performance and robustness findings of hybrid and
advanced MLP-IoT land suitability systems [8].

The primary objectives are to assess and compare
predictive power, calculational efficiency, and
operational robustness of these model-sensor
systems, offer a holistic framework to formulate risk-
aware and context-specific deployment, and draw
actionable = recommendations and  empirical
understanding on the deployment of these MLP-IoT
land suitability systems through comparative
performance and robustness finding of hybridised
and advanced models. The paper's structure includes
the following sections: survey of literature, materials
and techniques, model construction, results with
comparative  analysis, discussion considering

existing literature and practical implications and a
conclusion that offers important insights and
directions for further study.

2. LITERATURE SURVEY

The advent of digital agriculture has led to
land suitability analysis becoming a rapidly
developing field, as it uses machine learning (ML)
and IoT sensors to address issues of efficiency,
robustness, and scale of data [9]. Early approaches
involved expert-centred and geospatial mapping,
although more recently, an apparent transition to
data-driven frameworks that combine sensor time-
series, satellite imaging, and multi-criteria
evaluation has become apparent [10]. In practical
applications, although parametric and rule-based
methods remain an essential element in crop and
agro-climatic classification, ML approaches (such as
Random Forests, Support Vector Machines, and
neural networks) still show better accuracies,
adaptations, and generalisations [11].

IoT-enabled smart agriculture platforms
have become the providers of abundant
environmental data streams of soils, climates, and
crops. The existing studies prove the idea that a
strategic combination of IoT and ML wires real-time
decision making, risk management, and optimised
resource use in the field [12]. In agricultural datasets,
hybrid models combining deep learning, such as
MLPs, with a variety of sensor inputs are particularly
effective at inducing nonlinear phenomena,
improving classification performance and scaling
strength. NDVI-based remote sensing using drones
builds further on these methods by offering high-
resolution data, which directly increases land
suitability forecasting and precision agriculture
management [13]. Nevertheless, the literature still
has critical constraints, even after the advances.
Several studies have been made that use small or
local data, which have the negative effects of
limiting generalisation and the danger of overfitting.
Noise recording, missing values, and ambiguous
data toleration, although repeatedly described as an
essential requirement it remain rarely tested in
active, real-world conditions [14].

In some cases, robustness-aware modelling
methods (e.g. drop-out, batch normalisation) are
introduced, though they are often tested on
artificially clean data, which do not reflect real-
world complexities [15]. Comparative analyses on
various model-sensor combinations specific to
applications are still not common, although their
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importance in real-world implementation is well-
known. Finally, deep neural models may lack
interpretability, which reduces user trust and the
ability to receive regulatory and stakeholder
approval [16].

Overall, the latest research highlights
several important points: the efficacy of machine
learning and IoT sensing in determining land
suitability, the power of multi-layer perceptrons and
hybrid neural networks in managing intricate agro-
environmental interactions, the value of integrating
sensors from both drones and the ground to improve
spatial and temporal analytics, and the ongoing
requirement for broader and more varied datasets,
practical benchmarking, and evaluation frameworks
that take context into account [17], [18]. This
research comprehensively compares hybrid and
advanced MLP-IoT systems on a large, complex
dataset, utilising robust and practical assessment
methodologies that are in line with the newest best
practices. It explicitly tackles these suggestions and
shortcomings.

3. METHODOLOGY
3.1. Research Design and Study Area Description

The study design is in the form of a
comparative, cross-sectional experiment over an
area that is diverse enough in soil type, topography,
and crop diversity. The approach facilitates the
assessment of sensor and model-specific
performance in multi-crop land suitability
prediction. The distribution of field plots ensures the
robustness and generalizability of the findings by
reflecting all significant environmental gradients in
the research region. To manage massive, varied data
more  accurately and  efficiently, recent
developments have lifted land suitability analysis
above traditional methods by emphasising the
combination of high-resolution sensing technologies
with advanced MLP models.

3.2. Data Collection Using IoT Sensors

The foundation of this work is multi-
parametric, high-resolution, and accurate data,
which allows for a direct and comprehensive
comparison of advanced and hybrid models and
Sensors.

3.2.1. Hybrid IoT Sensor

Long Range (LoRa) probes based on the
Raspberry Pi and Arable Mark are used to gather
important agricultural data, including temperature,
pH, electrical conductivity, and soil moisture. The
Raspberry Pi system offers a versatile, affordable
option with customisable sensor integration, while
Arable Mark offers an integrated, solar-powered
solution with integrated wireless data transfer. Both
systems transmit their data remotely using different
methods (Arable using cellular connection and
Raspberry Pi through the LoRa technology), which
provides a possibility to continuously track data and
conduct analysis. The combination of the two makes
them very robust, scalable and flexible to collect data
on precision agriculture usage and for classical MLP
and fuzzy logic analyses. The proposed system of
architecture of land suitability, which combines
hybrid and advanced models of MLP with multi-
source loT sensors information, is shown in Figure

1.
(Advanced loT Sensors)

Data Preprocessing

Advanced MLP Model
+ Deep MLP + Dropout +
BatchNorm

Hybrid loT Sensors Environmental Sensors

Hybrid MLP Model
+ MLP + Fuzzy Logic

Model-Sensor Integration

Evaluation & Validation

Comparative Performance
Analysis

Figure 1 Proposed Architecture for MLP-
Based Land Suitability Analysis

3.2.2. IoT Sensor: NDVI via Multispectral Drone
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Agricultural plots are routinely surveyed by
drones fitted with multispectral sensors, such as the
Parrot Sequoia, which record the NDVI and other
important spectral bands. These sensors provide
information on crop vigour and health changes
across space, canopy temperature, extra vegetation
indicators, and NDVI. High-resolution, field-scale
information that is harder to get with ground-based
sensors alone are provided by such aerial sensing.
This information improves predicted accuracy in
deep MLP-based studies and is essential for
geographically specific crop suitability modelling. It
enables high-dimensional data applications and
precision agriculture by supporting large-scale
monitoring.

SHT31 Sensor, Tipping Bucket Rain
Gauge and Apogee SQ-110 are the additional
sensors used to record ambient temperature,
humidity, rainfall, and light intensity throughout the
year.

3.2.3. Data sources and sample size

Primary Dataset: Over 10,000
distinct, time-stamped observations matched to both
model types were obtained using time-series sensor
and drone data acquired in situ from 50 geo-tagged
field plots, sampled at least twice a week for a
minimum of 12 months.

Public Supplementary Data: With
complete alignment to in-field observed variables
(such as soil pH, EC, NDVI, and rainfall), data from
the Open Soil Data Portal
(https://www.data.gov.in/keywords/soil) and
comparable sources provide history and validation
information while guaranteeing cross-compatibility
with all model and sensor inputs.

3.3. Data Preprocessing and Feature Selection

The data is combined, synchronised with
time, and georeferenced from all sources, including
probes, drones, and public databases. The following
is the preprocessing protocol:

e Outlier Detection: Sensor abnormalities are
eliminated, and missing data are filled in
using appropriate statistical interpolation.

e Normalisation: To guarantee constant
amplitude for neural network inputs, input
elements are subjected to min-max
normalisation.

e Feature Selection: All model pipelines
employ a combination of L1 regularisation,
recursive feature elimination (RFE), and
correlation analysis. By balancing the
complexity of the model with the
informativeness of the data, this process
ensures that only the most predictive
variables for land suitability are retained.

3.4. Multilayer Perceptron Model Design and
Training

This section covers each of the
mathematical modelling procedures used in the
implementation of the Deep
MLP+Dropout+BatchNorm and Hybrid
MLP+Fuzzy Logic models:

3.4.1. Hybrid MLP model: MLP + Fuzzy logic

The study uses hybrid MLP+Fuzzy Logic,
as MLP offers classification based on nonlinear
interactions, and fuzzy rules are employed to handle
ambiguity in soil and environment characteristics.

Input to Hidden Layer Transformation: This process
aggregates weighted, normalised input features like
sensor variables and fuzzified inputs as per the
hidden neuron. It is used to combine all input feature
effects for subsequent nonlinear transformation.

n
® _ (€] @
2= wdx + b 1)
i=1

Where, Wj(il) Is the weight, x; Is the feature, b].(l)Is
the bias for the neuron j.

Activation Function: This function introduces
nonlinearity via Rectified Linear Unit (ReLU) to
model complex soil-crop-climate relationships. It
enables the detection of nonlinear interactions
between environmental variables.

a].(l) = ¢(Zj(1)) 2

Where, ¢ Is the activation function, Zj(l) Is the input
to the neuron.
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Figure 2 Hybrid MLP Model Architecture

Figure 2 shows the architecture of the hybrid MLP
model of land suitability classification, which
depicts the major steps in classification from the
entry of sensor data to output prediction.

Hidden Layer to Output Transformation: It is used to
aggregate abstracted hidden layer information to the
output layer for crop suitability classification. This
transformation also integrates information across

hidden neurons into class scores for final
predictions.
m
) _ (2) (@) (2)
22 = wiPa® + b 3)
j=1

Where, W,EJZ.) is the hidden-output weight; aj(l) is the

activation; b,EZ) Is the bias.

Softmax Probability Output: Employed to convert
raw scores into probabilities for each suitability
class. It ensures outputs lie in probability space
summing to 1, supporting multiclass classification.

P
e
Yk =—& €))
z:{(=1ezl
2 .. .
WhereZ,E )Is the class k activation, and K is the

number of classes.

Cross-Entropy Loss: This function measures the
difference between predicted and true suitability
classes, guiding model training. It is used to properly
penalise prediction errors, leading to optimal class
separation.

K
L=— z ylgtrue) log(ylgpred)) (5)
k=1

Where, y,gtme) Is the ground truth? y,gpred) Is the

predicted probability.

Fuzzy Logic Overlay: For parameters with
ambiguous or unclear limits, such as soil pH or
rainfall, this module works in conjunction with the
MLP to apply rule-based categorisation.

3.4.2. Advanced MLP model: deep MLP with
dropout and batch normalisation

This advanced model is designed for high-
dimensional, fused multispectral and IoT data to
learn complex nonlinear relationships. In this
architecture, all five steps of hybrid MLP are used,
with batch normalisation added before the activation
function and dropout added after the activation
function. Both models (Hybrid and Deep MLP) are
trained on the identical preprocessed and feature-
selected data for fair comparison. Key layers from
input to output are shown in the architecture of the
advanced MLP used for classifying land suitability
(Figure 3).
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Figure 3: Advanced MLP Architecture for Land
Suitability Classification

Batch Normalisation: Normalises layer outputs
during training, supporting faster, more stable
learning with varied inputs.

0 _

5(1) (68 J H
27 =BN(z; = v+ 6
/ ( / ) Vo2 +e ( )

Where, U is the batch mean, O 2 Is the batch
variance, € is the small constant (prevents division
by 0), and ¥, § There are learnable parameters to
scale and shift.

Dropout Layers: This layer randomly deactivates
neurons during training to prevent overfitting from
correlated or redundant inputs.

s _ @),
a" =aq;

T, Ty~ Bernoulli(p) (7

€Y

Where, a; Is the activated output from the hidden

neuron j, 7j Is the random mask (0 or 1) drawn from

a Bernoulli distribution with probability p and ﬁ}l)

Is the output after dropout, with some neurons set to
0?

3.5. Application Context Performance Metrics

Application context metrics provide
composite ratings based on weighted and averaged
normalised base metrics, as well as qualitative
variables, to summarise the suitability of model-
sensor pairs for practical usage. High-dimensional
data handling is evaluated by improvements in
accuracy and F1 on fused, high-dimensional inputs;
interpretability is based on expert evaluation of
decision logic clarity and model transparency; speed
is measured by inference and training time; and
robustness is represented by the approximate
minimum class F1 under added noise or ambiguity.
When  combined, these metrics enhance
conventional assessment techniques and provide a
more useful viewpoint on the suitability of the model
in various operational contexts.

3.6. Model-Sensor Integration & Comparative
Protocol

Two main combinations are used to
structure model-sensor integration: Hybrid MLP in
conjunction with a Hybrid IoT sensor and advanced
MLP in conjunction with an advanced IoT sensor.
Every pair conforms to the same experimental
methodology and is assessed using the same time-
synchronised datasets. K-fold cross-validation is
used for all combinations to provide fair and
dependable benchmarking, enabling performance
comparison under consistent settings.

3.7. Validation Protocol and Evaluation Metrics

The metrics in Table 1 serve as the main
quantitative assessment criteria, carefully measuring
model resilience and classification quality.

7834



Journal of Theoretical and Applied Information Technology ~
15 October 2025. Vol.103. No.19 N

© Little Lion Scientific A ma——

-;l'\lll

ISSN: 1992-8645

www jatit.org

E-ISSN: 1817-3195

Table 1. Metrics Mapped To Key Application Attributes

For Model Evaluation
Evalgat1on Attribute Measured
Metric
Accuracy General model correctness
Robustness  under  class
F1 Score . :
imbalance and noise
Matthews
Correlation Balanced performance across
Coefficient all classes
MCC)
) Agreement and
Cohen’s Kappa in%erpretability
Sensitivity to class
discrimination
ROC-AUC (binary/multiclass)  supports
robustness and high-

dimensional input evaluation.

The comparative findings of hybrid and
advanced MLP systems across several performance
aspects are shown in the next part, which is based on
the suggested models, sensors, and testing
methodologies.

4. RESULTS

4.1. Data Overview and Quality Assessment

The primary data attributes gathered for land
suitability modelling are compiled in Table 2 below.

Table 2: Dataset Overview For Model Evaluation

Metric Value
Total samples 10,000+
Number of plots 50
Duration 12 months
Missing values <2% (handled)
Features kept 70%

This table presents the 10,000+ data points
collected from 50 field plots over one year. There
was minimal missing data, and the critical aspects
like soil, climatic, and vegetation properties were
retained by careful feature selection. The robust and
fair evaluation of both advanced and hybrid models
is guaranteed by the dataset's size and thorough
preprocessing.

4.2. Performance Metrics: Hybrid vs Advanced
Model-Sensor Pairs

Table 3 shows that the advanced MLP with an
advanced [oT sensor produces an accuracy of 92.4%,
an F1 score of 0.91 and a Matthews correlation
coefficient of 0.88. Comparatively, the Hybrid MLP
model, with Hybrid IoT Sensor, yields the results
with 88.3% accuracy, F1 score of 0.86 and Matthews
correlation of 0.82. These statistics indicate that the
advanced model-sensor system is more competent
than the hybrid one in all aspects, in that it is better
at modelling complex and multi-modal data as well
as providing better land suitability classification.

Table 3 Model-Sensor Fusion Performance Metrics

Metric Hybrid MLP | Advanced MLP
+ Hybrid IoT | + Advanced
Sensor IoT Sensor

Accuracy

(%) 88.3 92.4

F1 Score 0.86 0.91

MCC 0.82 0.88

In contrast to the Hybrid MLP + Hybrid IoT
Sensor, which attains an AUC of 0.91, the Advanced
MLP + Advanced IoT Sensor provides better
discrimination between appropriate and
inappropriate land classes with an AUC of 0.95. The
advanced system's ROC curve continuously remains
above the hybrid system, demonstrating a greater
true positive rate at every false positive level,
making this distinction visually apparent (Figure 4).

084

o
o

True Positive Rate

o
s

024

Hybrid MLP + Hybrid loT (AUC = 0.91)
- Advanced MLP + Advanced loT (AUC = 0.95)

0.0

0.0 0.2 04 0.6 [+X] 1.0
False Positive Rate

Figure 4: ROC Curve Comparison of Model-Sensor
Performance
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With Advanced MLP and Advanced IoT
Sensor, there is a better, precise land suitability
classification. It has superior ROC-AUC, which
illustrates a consistent, acceptable performance in
determining the right areas of interest on land in
diverse threshold settings. As a result, when
maximal classification quality is essential, the
advanced system is the better option.

4.3. Confusion Matrix and Class-Wise Analysis

Featuring fewer misclassifications of just 25 and
15 errors for Highly Suitable and 20 and 10 for Not
Suitable, the Advanced MLP + Advanced IoT
Sensor matrix shows a greater count of true positives
for all classes: 450 (Highly Suitable), 430
(Moderately Suitable), and 470 (Not Suitable).
(Figure 5).

Actual
Not Suitable Moderately Suitable Highly Suitable
' h
Count

-200

-100

Highly Suitable Moderately Suitable Not Suitable
Predicted

Figure 5: Confusion Matrix: Advanced MLP +
Advanced loT Sensor

The Hybrid MLP + Hybrid IoT Sensor, by
contrast, returns 420, 410 and 440 true positives and
a far larger volume of off-diagonal errors,
particularly to the categories of Highly Suitable and
Moderately Suitable (40 and 30, and 45 and 35,
respectively) (Figure 6).

Actual
Not Suitable Moderately Suitable Highly Suitable
&
&
IS
2
5]
w
&

35 25 440 - 100

Highly Suitable Moderately Suitable Not Suitable
Predicted

Figure 6: Confusion Matrix: Hybrid MLP + Hybrid
IoT Sensor

The advanced model minimises
misclassifications, particularly in crucial land
suitability groups, by achieving more accurate and
consistent class predictions. With greater rates of
predicting neighbouring classes, the hybrid method
is more likely to confuse borderline situations. When
reducing false positives and negatives and achieving
high individual class accuracy are critical for
decision-making, the advanced model is the better
option from an operational standpoint.

4.4. Computational Efficiency

The quickest training scenario is represented by
the Hybrid MLP + Hybrid IoT Sensor, which is used
as the baseline with a relative training time of 1.0x.
In order to adequately represent the higher level of
model complexity and depth, the Advanced MLP +
Advanced IoT Sensor takes 1.3 times as long to train
as the hybrid system. Both methods are effective for
real-time applications since their inference times are
less than one second. Robustness scores (0.70
advanced, 0.90 hybrid) measure performance in the
presence of unclear or noisy data (Table 4).

Table 4. Computational Efficiency Comparison of

Model-Sensor Systems
Model- Relative Inference | Robustness
Sensor Training Time (Noise/Ambiguity)
Combo Time (sec)
Hybrid
MLP + 1 ox
Hybrid ' . <1 0.9
IoT (Baseline)
Sensor
Advanced
MLP + 13
Advanced (].Sa);eline <1 0.7
IoT
Sensor

The hybrid system works well in settings where
robustness is crucial and for quick deployment.
When more classification accuracy is required and
longer training durations are permitted, the advanced
system is the better choice.

Performance

4.5. Application  Contexts

Comparison

Each model-sensor combination's performance
under certain, realistic circumstances is described in
depth in Figure 7. The Hybrid MLP + Hybrid IoT
Sensor performs very well in low-resource or real-
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time scenarios (0.95 versus 0.60) and excels at
managing noisy or unclear data (0.90 vs 0.70). The
Advanced MLP + Advanced IoT Sensor, on the
other hand, performs better in precision agriculture
(0.92 vs. 0.80) and leads in high-dimensional data
contexts (0.95 vs. 0.75).

2 Precision
g Agriculture
§ High-dimensional
2 Data I
2 Low-resource/Real-
3 time I
_% Noisy/Ambiguous
< Data |
0 0.5 1

Advanced MLP + Advanced loT Sensor

M Hybrid MLP + Hybrid loT Sensor

Figure 7 Model-Sensor Performance in Diverse
Operational Scenarios

The hybrid system is the better option for
situations that demand resilience to noisy inputs or
require fast, reliable operation in resource-
constrained settings. The advanced system excels in
analytical, data-intensive applications and precision
agricultural activities because of its capacity to
analyse complicated, information-rich data and
provide very accurate outputs.

Key trade-offs comparing the two systems are
revealed by the observed outcomes, and they are
further interpreted in the discussion that follows to
comprehend their practical consequences.

5. DISCUSSION

This paper developed and benchmarked
intelligent land suitability models through a rich and
mixed set of data based on a hybrid Multilayer
Perceptron (MLP) with fuzzy logic (and classic
sensors), of a more complex Multilayer Perceptron
(MLP) with deep sensing capabilities, such as drone
NDVI. With 92.4% accuracy, 0.91 F1 score, and
0.88 MCC, the advanced MLP + Advanced IoT
Sensor continuously outperformed its competitors in
key classification parameters. It performed well in
high-dimensional, complicated scenarios like
precision agriculture. The hybrid model, on the other
hand, showed distinct benefits in terms of training
speed (baseline 1.0x), resistance to ambiguity or
noise (score: 0.90), and low-resource or real-time

circumstances (score: 0.95) [19]. These results
reflect well with the research objectives that aimed
to explain the trade-offs that exist between the
predictive power, computational efficiency and
operational robustness [20] [21].

This work used more than 10,000 samples, 50
field plots, and extensive preprocessing—including
normalisation and feature selection—to assure
reliability and comparability, addressing previous
problems of small sample numbers and limited
sensor/model variation. To guarantee equitable
benchmarking, the method made advantage of robust
k-fold cross-validation and synchronised, multi-
source data [22]. Significant advancements over
earlier research include the use of NDVI drone data
to improve feature richness, the inclusion of specific
application context criteria (such as interpretability
and computational efficiency), and the clear
reporting of useful operational metrics rather than
just important accuracy [23].

Its major downsides are its geographic and crop-
specific orientation, limited to two relevant model-
sensor pairs, and the practicality of itself simply
always assuming constant label and hardware
quality [24]. The sensor types, machine learning
models and wider deployment considered in this
study could be expanded upon to provide further
insight in future studies; however, the current
options represent resource limitations considering
physical location and current agricultural technology
norms [25].

6. CONCLUSION

The article shows that the Advanced MLP +
Advanced IoT Sensor combination has the highest
level of accuracy and is a successful solution in
complicated, data-rich scenarios, and thus, is
effective in environments where the classification
accuracy and precision agriculture are the main
goals. The hybrid MLP + hybrid 10T sensor, on the
other hand, continues to be particularly useful for
real-time applications, quick deployment, and
situations where resistance to noise or ambiguity is
crucial. It offers strong benefits in terms of resilience
and operating speed.

This study gives stakeholders the tools to
choose the appropriate technology for their unique
objectives by offering a useful, context-aware
assessment process for intelligent land suitability
models. Future developments in model architectures
and the extension to larger areas, crops, and sensor
kinds will assist in optimising these systems' utility
and dependability for a range of real-world
agricultural problems.
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