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  ABSTRACT 
 

Current technologies using BCI-assistance tend to be confined within simulation settings or are not very 
usable or responsive to allow real-time practical usages of them. This paper fills this gap by introducing a 
non-invasive brain-computer interface (BCI) system based on the electroencephalogram (EEG) that allows 
individuals with motor deficits to operate the wheelchair, as well as smart home appliances, using motor 
imagery-based signals. The machine employs the Emotive EPOC++ + (14-channel) electroencephalogram 
signal collection headset. Preprocessing consists of bandpass filtering (8-30 Hz), 50 Hz notch filtering, and 
the correction of artefacts with the help of the Independent Component Analysis (ICA). Power Spectral 
Density (PSD) and Common Spatial Pattern (CSP) feature extraction, and a Convolutional Neural Network 
(CNN) as an implementation on PyTorch are used when classifying these features. The UART protocol is 
used to send the classified mental commands to an Arduino microcontroller that triggers the devices used. 
The system was proven to have large accuracy in classification and small latency, only proving the 
effectiveness of the system in real-time operations. Usability tests with participants yielded highly positive 
feedback on comfort, ease of use, and minimal training required. The novelty of this work lies in the fact that 
the EEG classification based on the deep neural network is incorporated into the functional assistive hardware 
integrated within the natural environment and can be deployed. The study adds a validated, real-time, end-
to-end BCI system that links intent recognition through EEG to physical device use with a higher level of 
usability, performance, and practical feasibility than current state-of-the-art solutions. 
Keywords: Assistive Technology, EEG, Motor Imagery, Neural Signal Processing, Brain-Computer 

Interface

1. INTRODUCTION  

 This research has its roots in the increasing demand 
for assistive technologies, which would enable 
individuals with severe motor impairments and 
allow them to take control of their surroundings. [1]. 
Disabilities like spinal cord injuries, muscular 
dystrophy, amyotrophic lateral sclerosis (ALS), or 
stroke may cause a loss of voluntary muscular 
control, whether in part or wholly, and thus, 
individuals having one or more of these conditions 

find it very difficult to use the traditional input 
devices. [2]. Assistive technologies are essential 
prostheses, which, in many ways, can give the 
beneficiary a degree of autonomy and a much better 
quality of life since they allow communication, 
movement, and control over the environment. [3]. 
Brain-Computer Interfaces (BCIs) have been 
presented in recent years as a potential way forward 
to fill the communication gap between the mental 
intention of an individual and an external device, and 
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allow direct control based on neural signals, 
primarily via EEG (electroencephalogram) data. [4]. 
A Brain-Computer Interface is a device that helps to 
communicate directly between the brain and an 
external device without involvement of muscular 
movement [5]. This idea can be considered even 
more important in assistive applications, where 
control over the body is not always possible. The 
main purpose of the work paper is to develop an 
effective solution for a practical BCI system that will 
be able to control real-world assistive applications, 
such as a wheelchair, and smart home devices using 
non-invasive EEG signals [6]. This study uses motor 
imagery (MI)-based EEG signals and employs a 
deep learning algorithm (Convolutional Neural 
Network (CNN), in particular, to identify patterns in 
the brain activity to perform desired actions (i.e. 
classify the activity into actionable commands) [7]. 
The relevance of the work lies in the idea of the 
opportunity to offer a scalable, real-time, and cost-
effective solution that can substantively implement 
independence among individuals with physical 
disabilities [8]. 

Many obstacles stand in the way of people with 
motor impairments, such as restricted movement, 
reliance on caretakers, and access to both real and 
digital spaces. [9]. People with severe disabilities 
often observe that traditional control interfaces like 
joysticks, mechanical switches, or even eye-tracking 
devices are inadequate or completely useless. Many 
situations do not allow for the assumption of motor 
function or steady eye movement, which is required 
by these interfaces. [10]. Not to mention that these 
kinds of technologies aren't very flexible, so they 
can't always deliver on promises of intuitive or 
fatigue-free engagement. The emergence of BCIs 
has demonstrated the potential for mind-driven 
control, radically changing the landscape of assistive 
technology. [11]. Because of their low cost, mobility, 
and lack of invasiveness, EEG-based BCIs have 
garnered a lot of interest. They make it possible to 
operate external gadgets only by contemplating 
certain actions or concentrating one's thoughts. 
Problems with computational complexity, usability, 
signal variability between users, and real-time 
performance persist in current BCI systems. 
[12].The issue that the current paper aims to solve is 
that there is no such comprehensive solution 
available yet, trying to incorporate efficient signal 
processing and classic deep learning-based 
classification with the practical use of assistive 

devices like wheelchairs and smart home appliances. 
[13]. Most related research is restricted to simulation 
or fails to prove the usability and latency factors in 
practice. An urgent solution to this challenge is to not 
only identify EEG signals efficiently, but also 
convert the signals smoothly and effortlessly into 
real-time commands, so that such applications can 
be practically applicable in the field. [14]. 

The threefold goals of this study are as follows: (1) 
to design a robust EEG signal acquisition and 
processing pipeline, (2) adapting a CNN-based 
classifier to overcome potential obstacles to robust 
and accurate decoding of motor imagery EEG 
signals, and (3) within a framework of low-latency 
and comfortable user experience, integrating the 
system with real world assistive devices such as 
wheelchair and smart home automation. [15]. This 
paper is concerned with the results of the non-
invasive, EEG-based Brain-Computer Interface 
localisation that is designed to perform motor 
imagery applications. The technologies are restricted 
to the use of consumer-level EEG and specifically 
the Emotiv EPOC+ and mental command 
classification to control various assistive 
technologies, e.g. wheelchairs and smart home 
appliances. The system is not involved in or 
analysing invasive BCIs, hybrid BCIs (e.g. EEG 
with EMG or EOG) or other cognitive-state 
monitoring, e.g. attention or workload monitoring. 
There are also assumptions applied, such as the 
correct positioning of the electrodes, no fluctuation 
of mental activity when dealing with tasks, and 
limited body mobility during functioning. The 
existing limitations are the inconsistency of EEG 
signals among users and constraints in the comfort 
level of prolonged use of headsets, and the 
computing requirements of deep learning algorithms 
(such as CNNs) to classify people in real-time. These 
restrictions and their consequences are also outlined 
elsewhere in Section 6.3. The rest of the paper will 
be structured as follows: Section 2 will discuss 
related work in assistive technologies in BCI, 
Section 3 will detail the proposed methodology, 
Section 4 will present system implementation and 
integration, Section 5 will present performance 
evaluation details, and, lastly, Section 6 will discuss 
the findings and future scope. 
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2. RELATED WORK: 

Various studies under the Brain-Computer Interface 
(BCI) framework through EEG have been carried 
on; these studies revolve mainly around the possible 
application of the BCI to implement control that 
does not involve body motion. [16]. Statistical 
features and machine learning classifiers (to be more 
specific, Support Vector Machines (SVM) and 
Linear Discriminant Analysis (LDA)) were the 
major components used in traditional systems, 
which, although quite effective to some extent, were 
found not to be robust and did not generalise well 
across different users. [17]. More recently, deep 
learning models, especially Convolutional Neural 
Networks (CNNs), have been used as they may learn 
sophisticated spatial and temporal patterns in EEG 
signals that may boost classification accuracy to a 
very high degree. [18]. 

Assistive technologies- whose use in BCI is mostly 
centred around wheelchairs and smart homes- have 
also increased in development levels. [19]. Various 
researchers are proffering systems based on the use 
of motor imagery (MI)-based EEG signal to control 
the wheelchair, or indeed the lights and fans in smart 
homes. Nevertheless, most of these systems are only 
applied in simulation settings or are not validated in 
real-time. [20]. Furthermore, the vast majority of 
previous studies lack a thorough usability 
assessment, which could have been provided by way 
of determining the comfort of the EEG headset, ease 
of operation, or the ability of the user to adjust to it. 
[21]. 

BCI systems are normally structured in a certain 
pipeline which can be described as signal acquisition 
system based on electroencephalograph headsets, 
some form of pre-processing through uses of the yet 
mentioned signal bandpass and notch filters, artifact 
removal through spatial filtering techniques such as 
the Independent Component Analysis (ICA) and 
feature extraction either of the form of Power 
Spectral Density (PSD) or Common Spatial Pattern 
(CSP) among others [22]. These techniques have 
been around quite some time, but the more recent 
incorporation of deep learning techniques like CNNs 
has enabled more accurate motor imagery tasks to be 
classified at a cost in terms of increased 
computational demands. [23].Commercial systems 
that have been prepared so far have obvious 
limitations. Most of them do not have real-time 

performance analysis or user trials, and the utilised 
classifiers tend to have difficulties in generalising 
across subjects because of the EEG signals. 
Although very powerful, deep learning models are 
computationally expensive and are not necessarily 
designed to run on an embedded or low-power 
device [24]. Also, non-invasive electrode sets of 
electroencephalography, such as dry electrode 
headsets, can be characterised by poor contact and 
discomfort with the user wearing the device, 
especially over prolonged periods. 

The presented work is innovative because it 
demonstrates the full and feasible realisation of the 
EEG-based BCI system to manage the various types 
of assistive devices, including wheelchairs and smart 
homes, in real-time using both hardware and 
software. Spatial-temporal EEG feature learning is 
effective and efficient with the adoption of a CNN 
classifier, and the actuation is in real-time, making 
the current system very practical and responsive. 
[25]. In addition, a usability study with real users has 
been conducted to validate the system, considering 
comfort, intuitive nature, and user satisfaction, 
which has not been present in previous studies (Table 
1). Latency analysis, together with a feedback 
interface, is also a very important development 
towards the viability of such systems in real-world 
deployment. 

Table 1. SOTA Comparison Table (2019-2023) 
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3. METHODOLOGY: 

The methodological pipeline used to create an 
assistive system utilising Brain-Computer Interface 
(BCI) technology is described in this part. It includes 
preprocessing, extraction of features, categorisation, 
control interface with assistive hardware, and data 
gathering from EEG signals. 

3.1. Construction of the System Summary:  

The presented Brain-Computer Interface (BCI) 
system is based on a layered architecture integrating 
both hardware and software parts that transforms 
EEG brain signals into the real-time control 
commands of assistive devices, e.g. wheelchairs and 
smart home appliances. The physical configuration 
consists of the Emotiv EPOC+ headset that can be 
used to generate 14-channel EEG signals according 

to the international 10-20 system, an Arduino Uno 
microcontroller to process and send commands, and 
actuators (motor drivers and relays to control 
devices.  

Development The software part is based on the 
following stack of software, written in Python using 
the MNE and SciPy packages, signal preprocessing 
to implement bandpass filtering (830 Hz), 50 Hz 
notch filtering, and Independent Component 
Analysis (ICA) as an artefact remover. Extraction of 
features is carried out with the creation of Power 
Spectral Density (PSD) and Common Spatial Pattern 
(CSP). A Convolutional Neural Network (CNN) in 
the PyTorch framework creates classes of the EEG 
patterns of motor imagery and recognises separate 
control commands. These orders are, then, relayed to 
the Arduino through the UART protocol to trigger a 
desired effect to take place (e.g., powering a 
wheelchair or turning on a smart device). The user 
can take an end-to-end system with effective control 
that is scalable and in real-time, especially in cases 
of motor impairments. 

3.2. Signal Acquisition: 

EEG data were obtained utilising the Emotiv EPOC+ 
headset, adjusted for 14-channel collection by the 
10-20 international standard. The electrode 
placements consisted of AF3, F7, F3, FC5, T7, P7, 
O1, O2, P8, T8, FC6, F4, F8, & AF4. 

Sampling Rate: 𝑓௦ = 128Hz 

Time Window: 𝑇 =  1 𝑠𝑒𝑐𝑜𝑛𝑑 →  𝑁 = 𝑓௦ . 𝑇 =

128 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 

Let the raw EEG signal be denoted by: 

𝑥௜(𝑡),      𝑖 = 1,2, … ,14;                𝑡 = 1, … , 𝑁      (1) 

3.3. Preprocessing: 

To improve signal quality and eliminate artefacts, the 
raw EEG data collected from the headset went 
through a series of preprocessing procedures. To 
begin, the mu & beta bands, which are involved in 
motor imagery activities, were contained inside the 
8-30 Hz range by use of a bandpass filter. For every 
channel 𝑖, the mathematically produced filtered 
signal 𝑥௜

ᇱ(𝑡) Is obtained through: 

𝑥௜
ᇱ(𝑡) = ℱ௕௔௡ௗ[𝑥௜(𝑡)],        𝑤ℎ𝑒𝑟𝑒 8 ≤ 𝑓

≤ 30𝐻𝑧           (2) 
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A notch filter that operates at 50 Hz was used as well 
to get rid of interference from power lines. 
Independent Component Analysis (ICA) was 
utilised to get rid of artefacts, especially those that 
were caused by eye and muscle noise. The feature 
extraction module got the clean signal matrix. 𝑋 ∈

ℝ஼×ே , Where 𝐶 is the number of EEG channels, as 
well as 𝑁 is the number of time samples. 

3.4. Extracting Features: 

The pre-processed EEG data were used to extract 
characteristics from the time domain as well as the 
frequency domain. For the purpose of estimating the 
power distribution across various frequency bands, 
Power Spectral Density (PSD) analysis was carried 
out. The formula for calculating the PSD of a 
channel 𝑖 is: 

𝑃𝑆𝐷௜(𝑓) = |ℱ[𝑥௜
ᇱ(𝑡)]|ଶ      (3) 

This was used to determine the band power in the 
beta (13–30 Hz) and mu (8–12 Hz) bands using: 

𝑃௠௨ = න 𝑃𝑆𝐷௜(𝑓)𝑑𝑓,           𝑃௕௘௧௔

ଵଶ

଼

= න 𝑃𝑆𝐷௜(𝑓)𝑑𝑓         (4)
ଷ଴

ଵଷ

 

Common Spatial Pattern (CSP) evaluation was used 
to elucidate spatial patterns linked to various motor 
imagery tasks. The ideal projection matrix 𝑊 is 
obtained by maximising the variance ratio of the 
covariance matrices Σ1 and Σ2 for two distinct 
classes. 

𝑊 = 𝑎𝑟𝑔 max
ௐ

𝑊்Σଵ𝑊

𝑊்(Σଵ + Σଶ)𝑊
           (5) 

Feature: The vector 𝑓∈𝑅𝑑 was built using signals 
that were filtered spatially. 

3.5. Classification Algorithm: 

A Convolutional Neural Network (CNN) was 
utilised to sort the recovered features because it can 
pick up on both spatial and temporal patterns in EEG 
readings. The input section 𝑋 ∈ ℝ஼×் ,  Went through 
convolutional layers, where each change happened 
in the following way: 

With 𝐾 being the kernel and 𝑏 being the bias. 
Researchers used ReLU activation algorithms and 
then pooling layers to make the data less complex. 

The last characteristic representation ℎ was 
transmitted to a completely connected layer with a 
Softmax output to find out what class it was 
predicted to be: 

𝑦ො = arg max(𝑆𝑜𝑓𝑡𝑚𝑎𝑥൫𝑊௙ . ℎ + 𝑏௙൯  (6) 

An approach known as cross-entropy loss was used 
to train the model. 

ℒ(𝑦, 𝑦ො) = − ෍ 𝑦௜ log(𝑦ො௜)               (7)

௄

௜ୀଵ

 

Where 𝑦 represents the actual label and 𝑦^ is the 
anticipated probability distribution. The Adam 
optimiser was used with a learning rate of 0.001, and 
the dataset was partitioned into 80% for training and 
20% for validation. 

3.6. Interface for Control and Actuation: 

The categorised output was linked to certain control 
actions: For class 𝐶1: Push the wheelchair forward, 
for class 𝐶2: stop moving. 

The researcher sent the control command 𝑢(𝑡) using 
serial communication: 

𝑢(𝑡)

= 𝑓൫𝑦ො(𝑡)൯𝜖{𝐹𝑂𝑅𝑊𝐴𝑅𝐷, 𝑆𝑇𝑂𝑃, 𝐿𝐸𝐹𝑇, 𝑅𝐼𝐺𝐻𝑇}  (8) 

Protocol for Communication with the Arduino Uno: 
UART (9600 baud rate). Interface with the Actuator: 
When an Arduino receives a command, it decodes it 
and then sends signals to the motor drivers. 

4. IMPLEMENTATION: 

During the implementation phase, a workable 
prototype was built that combined hardware and 
software to create a functional assistive system. The 
prototype was made to show how the Brain-
Computer Interface (BCI) may be used in real life to 
operate things like smart home appliances or a 
wheelchair. The first step in putting the plan into 
action was to build the prototype, which included 
putting together the hardware that was needed. The 
build process included setting up the EEG headgear 
to pick up signals in real time and connecting the 
microcontroller (Arduino Uno) to the actuators, as 
well as setting up wireless communication modules 
as needed. Python was used to write the software for 
signal processing along with machine learning tasks, 
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and the Arduino was programmed to read and carry 
out control instructions 

The technology was subsequently connected with a 
real wheelchair & a simulated smart home setting. 
Motor drivers were interfaced with the Arduino to 
regulate the wheelchair's movement according to 
categorised EEG signals. Likewise, in the smart 
house configuration, relays and Internet of Things 
(IoT) modules were utilised to automate devices 
such as lighting and fans, illustrating the system's 
adaptability in many supportive scenarios. A user 
interface was created to offer real-time feedback to 
the users. This interface exhibited the present EEG 
signal status, categorisation results, and associated 
device responses. The feedback loop enabled users 
to observe system behaviour and modify their mental 
instructions, hence enhancing interaction efficiency 
& user trust.  

Finally, the system's performance was assessed in a 
controlled setting. A simulated home environment 
was created for testing purposes, complete with a 
wheelchair, smart gadgets, and controlled lighting. 
By running the system through a battery of tests, we 
were able to evaluate its responsiveness, precision, 
and dependability in turning EEG data into useful 
gestures. 

5. RESULTS AND PERFORMANCE 
EVALUATION: 

5.1. Accuracy of Classification: 

During both training and testing, we looked at how 
well the CNN-based classifier worked. Figure 1 
shows how accurate the CNN model was over time. 
At first, it got better, but at the end, it started to level 
out. This shows that the CNN algorithm was able to 
learn how to tell the difference between different 
patterns in EEG data for motor imaging tasks. 

 

Figure 1. CNN Model with Accuracy vs. Training Epoch 

Additionally, Figure 2 displays the matrix of 
confusion for the CNN classification algorithm, 
offering a comprehensive overview of the accuracy 
in identifying various motor imagery classes. The 
findings demonstrate good accuracy across the 
majority of classes, confirming the model's 
resilience in differentiating user intentions. 

 

Figure 2. Confusion Matrix for CNN Classification 

Figure 3 also displays the motor imagery signals' 
Power Spectral Density (PSD). Confirming the 
efficacy of the frequency-domain characteristics 
used for categorisation, the mu (8-12 Hz) and beta 
(13-30 Hz) bands exhibit notable peaks. 

 

Figure 3. Power Spectral Density of Motor Imagery 

5.2. Latency Analysis:  

The time it took for the EEG signal to be picked up 
and the assistive device to be turned on was an 
important measure of performance. Researchers 
assessed the latency at every step of the BCI 
pipeline, from gathering data to preprocessing it, 
extracting features, classifying them, and sending 
them. Figure 4 shows how the delay is divided 
among these parts. Preprocessing and categorisation 
were found to be the most time-consuming steps, 
which means that improving these areas might make 
real-time performance better. 
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Figure 4. Latency Breakdown of BCI Pipeline 

Figure 5 shows a real-time record of order 
processing to test how fast something is in the real 
world. The system worked well and showed low 
delay from detecting brain signals to carrying out 
actions. This proved that it could be used to help 
handle devices in real-time situations. 

 

Figure 5. Real Time Command Execution Timeline 

5.3. Usability Feedback: 

Besides consideration of the technical parameters of 
the performance, which would be accuracy, latency, 
and reliability, user experience was evaluated in a 
broad way. During testing sessions, five subjects 
tried to use the BCI-controlled assistive system and 
were instructed to offer both qualitative and 
quantitative feedback about several aspects of 
usability. These were the cost of learning, the 
responsiveness of the system, physical comfort 
during wearing the EEG headset, and the 
intuitiveness of the interface. 

The respondents were asked to rate every category 
using a 5-point Likert scale with a range of 1-5: 1 = 
strongly disagree and 5 = strongly agree. The mean 
scores were: ease of use (4.6), responsiveness (4.4), 
comfort (4.5), and interface intuitive (4.7). The ease 
with which the dry electrodes did not continuously 
intrude and the simple visual interface users were 
accustomed to making precepts was easy to read and 

control. Very little training was needed to learn how 
to operate the system, and this once again supports 
the claim that it is accessible to users with lower 
levels of technical education or those who lack the 
ability to move freely. 

There was also open-ended feedback given by the 
participants, which highlighted how empowering the 
control of the devices can be when it is done through 
thought only. Other improvement ideas were to have 
voice confirmation feedback in the device and the 
stability of the device in terms of the headset after 
longer use over time. The usability outcomes were 
very promising overall, justifying the potential 
practical implementation of the system, including in 
the application of people with severe disabilities, 
mobility aids, and home automation. 

6. DISCUSSION 

6.1. Results Interpretation 

The outcomes of the experimental assessment 
confirm the practice of the suggested BCI-based 
helping tool. The training curves and the confusion 
matrix have ascertained that the CNN-based 
classifier was always very accurate in predicting the 
motor imagery patterns based on the EEG data. 
Spectral peakiness in the mu and beta bands also 
confirms the importance of the frequency-domain 
feature that was selected. Also, low latency of 
command delivery in the system shows that the 
system can be responsive in real time, as this is a 
requirement in assistive technologies where 
responding is quite crucial. 

The usability testing propounded that the system was 
intuitive and responsive to the users and comfortable 
to use. It supports the convergence between technical 
performance and human factor, which is commonly 
a gap in most of the scholarly BCI demonstrations. 
Combined, the quantitative and qualitative data 
confirm the effectiveness and usability of the given 
solution. 

6.2. Comparison to Existing Solutions: 

The proposed EEG-based BCI system is beneficial 
over traditional assistive controls like joysticks or 
voice-controlled systems, as the system better suits 
users with severe motor limitations or speech-
impaired systems. Unlike simpler methods of EEG 
classification (e.g., SVM or LDA), the system was 
able to utilise both spatial and temporal 
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representations in the EEG data, which provided 
superior classification results compared to simpler 
methods. 

Earlier works on BCI sometimes did not have any 
practical application but were rather theoretical. This 
is one way of closing that gap by this work that 
shows a complete realisation of a hardware-software 
solution. In addition, the usability assessment 
included in this study gives this research a 
competitive advantage over technologically biased 
studies by providing the overall picture of 
deployment. 

6.3. Strengths and Limitations: 

6.3.1. Strengths of the system include: 

EEG acquisition, preprocessing, and deep learning-
based classification and control actuation are 
performed end-to-end. Low latency, real-time 
performance verified in a testbed of a simulated 
smart home. Good reviews regarding the ease of use 
and the simple training nature. 

6.3.2. Restrictions discovered during the 
experiment:  

Classification consistency can be substandard 
because of signal variance due to dry electrode and 
individual physiological distinctions. Although the 
CNN model works, it would take computational 
resources that would not suit the low-power 
embedded systems. Long periods of use can cause an 
uncomfortable condition on headsets or loss of 
signal without calibration. 

The limitations mentioned suggest that future 
limitations include the possibility of hybrid BCI 
models, adaptive learning processes, and hardware 
design with ergonomics. 

6.4. Influence on Practical Real-World 
Applications to Assistive Technology: 

The study has very far-reaching connotations to the 
sphere of assistive technologies. The system also 
represents an avenue through which those who have 
impaired mobility or who cannot express themselves 
can receive back some autonomy, given that the 
methods through which it works are non-invasive 
and do not require the same individual to undergo 
any kind of instruction in order to learn how to use 
it. Its application in various fields of assistive 

technology is evident through its use in wheel part 
control and smart home automation. Besides, the 
architecture is scalable, and it is possible to expand 
it with new control classes or devices involving 
minimal retraining, which is appropriate when it is 
necessary to use the solution in personalised 
rehabilitation or home care. This work lays the 
foundation for providing BCI-based assistive 
systems to a broader audience for use in the medical 
field, geriatric treatment, and inclusive smart living. 

7. CONCLUSION AND FUTURE WORK 

This work introduces a full-fledged, non-invasive 
Brain-Computer Interface (BCI) system that can 
help people with severe motor disabilities manage 
wheelchairs and smart home appliances using EEG 
signals that represent motor imagery. We achieve 
accurate and low-latency EEG data classification by 
integrating a complete signal processing pipeline 
with a Convolutional Neural Network (CNN) 
classifier. Filtering, artefact removal, and feature 
extraction are all part of this pipeline. The 
deciphered instructions are then sent via a control 
interface based on Arduino to carry out actuation in 
real-time. An end-to-end assistive system was 
developed and shown to achieve high classification 
accuracy & responsiveness in a real-world setting. 
This solution represents the primary contribution of 
this study. The responses from participants, which 
confirm high satisfaction regarding the simplicity of 
use, minimal learning requirements, and comfort, 
validate the importance of system usability, a key 
lesson learned from the implementation. Improved 
control efficiency is another benefit of including a 
feedback interface, which lets users adjust their 
mental processes. Even though it has been 
successful, the system has a number of limitations. 
EEG interuser variation, the computational burden 
of CNNs required to deploy them in embedded 
devices, and the possibility of discomfort due to 
wearing a headset long-term are aspects that need to 
be optimised. Future improvements on the same will 
be centred on the integration of hybrid BCI models, 
including the combination of EEG with 
electromyography (EMG) or electrooculography 
(EOG) to enhance signal reliability and the diversity 
in control. Also, it can be extended to deal with 
multi-command classifications, which could also 
enhance the area of application. Research will also 
be aimed at decreasing training time, improving 
signal robustness, and completing clinical trials, 
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which will gauge long-term use and success. They 
strive to open the way towards more widespread use 
in inclusive environments of smart living and 
individualised rehabilitation environments. 
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