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ABSTRACT

Current technologies using BCl-assistance tend to be confined within simulation settings or are not very
usable or responsive to allow real-time practical usages of them. This paper fills this gap by introducing a
non-invasive brain-computer interface (BCI) system based on the electroencephalogram (EEG) that allows
individuals with motor deficits to operate the wheelchair, as well as smart home appliances, using motor
imagery-based signals. The machine employs the Emotive EPOC++ + (14-channel) electroencephalogram
signal collection headset. Preprocessing consists of bandpass filtering (8-30 Hz), 50 Hz notch filtering, and
the correction of artefacts with the help of the Independent Component Analysis (ICA). Power Spectral
Density (PSD) and Common Spatial Pattern (CSP) feature extraction, and a Convolutional Neural Network
(CNN) as an implementation on PyTorch are used when classifying these features. The UART protocol is
used to send the classified mental commands to an Arduino microcontroller that triggers the devices used.
The system was proven to have large accuracy in classification and small latency, only proving the
effectiveness of the system in real-time operations. Usability tests with participants yielded highly positive
feedback on comfort, ease of use, and minimal training required. The novelty of this work lies in the fact that
the EEG classification based on the deep neural network is incorporated into the functional assistive hardware
integrated within the natural environment and can be deployed. The study adds a validated, real-time, end-
to-end BCI system that links intent recognition through EEG to physical device use with a higher level of
usability, performance, and practical feasibility than current state-of-the-art solutions.
Keywords: Assistive Technology, EEG, Motor Imagery, Neural Signal Processing, Brain-Computer
Interface

find it very difficult to use the traditional input
1. INTRODUCTION devices. [2]. Assistive technologies are essential
prostheses, which, in many ways, can give the
beneficiary a degree of autonomy and a much better
quality of life since they allow communication,
movement, and control over the environment. [3].
Brain-Computer Interfaces (BCIs) have been
presented in recent years as a potential way forward
to fill the communication gap between the mental
intention of an individual and an external device, and

This research has its roots in the increasing demand
for assistive technologies, which would enable
individuals with severe motor impairments and
allow them to take control of their surroundings. [1].
Disabilities like spinal cord injuries, muscular
dystrophy, amyotrophic lateral sclerosis (ALS), or
stroke may cause a loss of voluntary muscular
control, whether in part or wholly, and thus,
individuals having one or more of these conditions

e
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allow direct control based on neural signals,
primarily via EEG (electroencephalogram) data. [4].
A Brain-Computer Interface is a device that helps to
communicate directly between the brain and an
external device without involvement of muscular
movement [5]. This idea can be considered even
more important in assistive applications, where
control over the body is not always possible. The
main purpose of the work paper is to develop an
effective solution for a practical BCI system that will
be able to control real-world assistive applications,
such as a wheelchair, and smart home devices using
non-invasive EEG signals [6]. This study uses motor
imagery (MI)-based EEG signals and employs a
deep learning algorithm (Convolutional Neural
Network (CNN), in particular, to identify patterns in
the brain activity to perform desired actions (i.e.
classify the activity into actionable commands) [7].
The relevance of the work lies in the idea of the
opportunity to offer a scalable, real-time, and cost-
effective solution that can substantively implement
independence among individuals with physical
disabilities [8].

Many obstacles stand in the way of people with
motor impairments, such as restricted movement,
reliance on caretakers, and access to both real and
digital spaces. [9]. People with severe disabilities
often observe that traditional control interfaces like
joysticks, mechanical switches, or even eye-tracking
devices are inadequate or completely useless. Many
situations do not allow for the assumption of motor
function or steady eye movement, which is required
by these interfaces. [10]. Not to mention that these
kinds of technologies aren't very flexible, so they
can't always deliver on promises of intuitive or
fatigue-free engagement. The emergence of BCls
has demonstrated the potential for mind-driven
control, radically changing the landscape of assistive
technology. [11]. Because of their low cost, mobility,
and lack of invasiveness, EEG-based BCIs have
garnered a lot of interest. They make it possible to
operate external gadgets only by contemplating
certain actions or concentrating one's thoughts.
Problems with computational complexity, usability,
signal variability between users, and real-time
performance persist in current BCI systems.
[12].The issue that the current paper aims to solve is
that there is no such comprehensive solution
available yet, trying to incorporate efficient signal
processing and classic deep learning-based
classification with the practical use of assistive

devices like wheelchairs and smart home appliances.
[13]. Most related research is restricted to simulation
or fails to prove the usability and latency factors in
practice. An urgent solution to this challenge is to not
only identify EEG signals efficiently, but also
convert the signals smoothly and effortlessly into
real-time commands, so that such applications can
be practically applicable in the field. [14].

The threefold goals of this study are as follows: (1)
to design a robust EEG signal acquisition and
processing pipeline, (2) adapting a CNN-based
classifier to overcome potential obstacles to robust
and accurate decoding of motor imagery EEG
signals, and (3) within a framework of low-latency
and comfortable user experience, integrating the
system with real world assistive devices such as
wheelchair and smart home automation. [15]. This
paper is concerned with the results of the non-
invasive, EEG-based Brain-Computer Interface
localisation that is designed to perform motor
imagery applications. The technologies are restricted
to the use of consumer-level EEG and specifically
the Emotiv EPOC+ and mental command
classification to control various  assistive
technologies, e.g. wheelchairs and smart home
appliances. The system is not involved in or
analysing invasive BCls, hybrid BCIs (e.g. EEG
with  EMG or EOG) or other cognitive-state
monitoring, e.g. attention or workload monitoring.
There are also assumptions applied, such as the
correct positioning of the electrodes, no fluctuation
of mental activity when dealing with tasks, and
limited body mobility during functioning. The
existing limitations are the inconsistency of EEG
signals among users and constraints in the comfort
level of prolonged use of headsets, and the
computing requirements of deep learning algorithms
(such as CNNis) to classify people in real-time. These
restrictions and their consequences are also outlined
elsewhere in Section 6.3. The rest of the paper will
be structured as follows: Section 2 will discuss
related work in assistive technologies in BCI,
Section 3 will detail the proposed methodology,
Section 4 will present system implementation and
integration, Section 5 will present performance
evaluation details, and, lastly, Section 6 will discuss
the findings and future scope.
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2. RELATED WORK:

Various studies under the Brain-Computer Interface
(BCI) framework through EEG have been carried
on; these studies revolve mainly around the possible
application of the BCI to implement control that
does not involve body motion. [16]. Statistical
features and machine learning classifiers (to be more
specific, Support Vector Machines (SVM) and
Linear Discriminant Analysis (LDA)) were the
major components used in traditional systems,
which, although quite effective to some extent, were
found not to be robust and did not generalise well
across different users. [17]. More recently, deep
learning models, especially Convolutional Neural
Networks (CNNs), have been used as they may learn
sophisticated spatial and temporal patterns in EEG
signals that may boost classification accuracy to a
very high degree. [18].

Assistive technologies- whose use in BCI is mostly
centred around wheelchairs and smart homes- have
also increased in development levels. [19]. Various
researchers are proffering systems based on the use
of motor imagery (MI)-based EEG signal to control
the wheelchair, or indeed the lights and fans in smart
homes. Nevertheless, most of these systems are only
applied in simulation settings or are not validated in
real-time. [20]. Furthermore, the vast majority of
previous studies lack a thorough usability
assessment, which could have been provided by way
of determining the comfort of the EEG headset, ease
of operation, or the ability of the user to adjust to it.
[21].

BCI systems are normally structured in a certain
pipeline which can be described as signal acquisition
system based on electroencephalograph headsets,
some form of pre-processing through uses of the yet
mentioned signal bandpass and notch filters, artifact
removal through spatial filtering techniques such as
the Independent Component Analysis (ICA) and
feature extraction either of the form of Power
Spectral Density (PSD) or Common Spatial Pattern
(CSP) among others [22]. These techniques have
been around quite some time, but the more recent
incorporation of deep learning techniques like CNNs
has enabled more accurate motor imagery tasks to be
classified at a cost in terms of increased
computational demands. [23].Commercial systems
that have been prepared so far have obvious
limitations. Most of them do not have real-time

performance analysis or user trials, and the utilised
classifiers tend to have difficulties in generalising
across subjects because of the EEG signals.
Although very powerful, deep learning models are
computationally expensive and are not necessarily
designed to run on an embedded or low-power
device [24]. Also, non-invasive electrode sets of
electroencephalography, such as dry -electrode
headsets, can be characterised by poor contact and
discomfort with the user wearing the device,
especially over prolonged periods.

The presented work is innovative because it
demonstrates the full and feasible realisation of the
EEG-based BCI system to manage the various types
of assistive devices, including wheelchairs and smart
homes, in real-time using both hardware and
software. Spatial-temporal EEG feature learning is
effective and efficient with the adoption of a CNN
classifier, and the actuation is in real-time, making
the current system very practical and responsive.
[25]. In addition, a usability study with real users has
been conducted to validate the system, considering
comfort, intuitive nature, and user satisfaction,
which has not been present in previous studies (Table
1). Latency analysis, together with a feedback
interface, is also a very important development
towards the viability of such systems in real-world
deployment.

Table 1. SOTA Comparison Table (2019-2023)
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3. METHODOLOGY:

The methodological pipeline used to create an
assistive system utilising Brain-Computer Interface
(BCI) technology is described in this part. It includes
preprocessing, extraction of features, categorisation,
control interface with assistive hardware, and data
gathering from EEG signals.

3.1. Construction of the System Summary:

The presented Brain-Computer Interface (BCI)
system is based on a layered architecture integrating
both hardware and software parts that transforms
EEG brain signals into the real-time control
commands of assistive devices, e.g. wheelchairs and
smart home appliances. The physical configuration
consists of the Emotiv EPOC+ headset that can be
used to generate 14-channel EEG signals according

to the international 10-20 system, an Arduino Uno
microcontroller to process and send commands, and
actuators (motor drivers and relays to control
devices.

Development The software part is based on the
following stack of software, written in Python using
the MNE and SciPy packages, signal preprocessing
to implement bandpass filtering (830 Hz), 50 Hz
notch filtering, and Independent Component
Analysis (ICA) as an artefact remover. Extraction of
features is carried out with the creation of Power
Spectral Density (PSD) and Common Spatial Pattern
(CSP). A Convolutional Neural Network (CNN) in
the PyTorch framework creates classes of the EEG
patterns of motor imagery and recognises separate
control commands. These orders are, then, relayed to
the Arduino through the UART protocol to trigger a
desired effect to take place (e.g., powering a
wheelchair or turning on a smart device). The user
can take an end-to-end system with effective control
that is scalable and in real-time, especially in cases
of motor impairments.

3.2. Signal Acquisition:

EEG data were obtained utilising the Emotiv EPOC+
headset, adjusted for 14-channel collection by the
10-20 international standard. The electrode
placements consisted of AF3, F7, F3, FCS5, T7, P7,
01, 02, P8, T8, FC6, F4, F8, & AF4.

Sampling Rate: f; = 128Hz

Time Window: T = lsecond - N=f,.T =
128 samples

Let the raw EEG signal be denoted by:
x; (0),

3.3. Preprocessing:

i=12,..14; t=1,..,N (1)

To improve signal quality and eliminate artefacts, the
raw EEG data collected from the headset went
through a series of preprocessing procedures. To
begin, the mu & beta bands, which are involved in
motor imagery activities, were contained inside the
8-30 Hz range by use of a bandpass filter. For every
channel i, the mathematically produced filtered
signal x; (t) Is obtained through:

x{(t) = Fyanalx;(t)],  where8<f
< 30Hz 2)
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A notch filter that operates at 50 Hz was used as well
to get rid of interference from power lines.
Independent Component Analysis (ICA) was
utilised to get rid of artefacts, especially those that
were caused by eye and muscle noise. The feature
extraction module got the clean signal matrix. X €
R*N, Where C is the number of EEG channels, as
well as N is the number of time samples.

3.4. Extracting Features:

The pre-processed EEG data were used to extract
characteristics from the time domain as well as the
frequency domain. For the purpose of estimating the
power distribution across various frequency bands,
Power Spectral Density (PSD) analysis was carried
out. The formula for calculating the PSD of a
channel i is:

PSD;i(f) = |F[xi(O11*  (3)

This was used to determine the band power in the
beta (13-30 Hz) and mu (8—12 Hz) bands using:

12
P =f PSD()Af,  Proca
8

30
= [ esonar @
13
Common Spatial Pattern (CSP) evaluation was used
to elucidate spatial patterns linked to various motor
imagery tasks. The ideal projection matrix W is
obtained by maximising the variance ratio of the
covariance matrices X1 and X2 for two distinct
classes.

wTs,w
W = arg max

w WT(Z, + 3,)W ®)

Feature: The vector fERd was built using signals
that were filtered spatially.

3.5. Classification Algorithm:

A Convolutional Neural Network (CNN) was
utilised to sort the recovered features because it can
pick up on both spatial and temporal patterns in EEG
readings. The input section X € R¢*T, Went through
convolutional layers, where each change happened
in the following way:

With K being the kernel and b being the bias.
Researchers used ReL.U activation algorithms and
then pooling layers to make the data less complex.

The last characteristic representation 4 was
transmitted to a completely connected layer with a
Softmax output to find out what class it was
predicted to be:

y = arg max(Softmax(Wf. h+ bf) 6)

An approach known as cross-entropy loss was used
to train the model.

K
L@, == ) yilog®) ()
i=1

Where y represents the actual label and y” is the
anticipated probability distribution. The Adam
optimiser was used with a learning rate of 0.001, and
the dataset was partitioned into 80% for training and
20% for validation.

3.6. Interface for Control and Actuation:

The categorised output was linked to certain control
actions: For class C1: Push the wheelchair forward,
for class C2: stop moving.

The researcher sent the control command u(t) using
serial communication:

u(t)
= f(9(t))e{FORWARD, STOP, LEFT, RIGHT} (8)

Protocol for Communication with the Arduino Uno:
UART (9600 baud rate). Interface with the Actuator:
When an Arduino receives a command, it decodes it
and then sends signals to the motor drivers.

4. IMPLEMENTATION:

During the implementation phase, a workable
prototype was built that combined hardware and
software to create a functional assistive system. The
prototype was made to show how the Brain-
Computer Interface (BCI) may be used in real life to
operate things like smart home appliances or a
wheelchair. The first step in putting the plan into
action was to build the prototype, which included
putting together the hardware that was needed. The
build process included setting up the EEG headgear
to pick up signals in real time and connecting the
microcontroller (Arduino Uno) to the actuators, as
well as setting up wireless communication modules
as needed. Python was used to write the software for
signal processing along with machine learning tasks,
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and the Arduino was programmed to read and carry
out control instructions

The technology was subsequently connected with a
real wheelchair & a simulated smart home setting.
Motor drivers were interfaced with the Arduino to
regulate the wheelchair's movement according to
categorised EEG signals. Likewise, in the smart
house configuration, relays and Internet of Things
(IoT) modules were utilised to automate devices
such as lighting and fans, illustrating the system's
adaptability in many supportive scenarios. A user
interface was created to offer real-time feedback to
the users. This interface exhibited the present EEG
signal status, categorisation results, and associated
device responses. The feedback loop enabled users
to observe system behaviour and modify their mental
instructions, hence enhancing interaction efficiency
& user trust.

Finally, the system's performance was assessed in a
controlled setting. A simulated home environment
was created for testing purposes, complete with a
wheelchair, smart gadgets, and controlled lighting.
By running the system through a battery of tests, we
were able to evaluate its responsiveness, precision,
and dependability in turning EEG data into useful
gestures.

S. RESULTS AND
EVALUATION:

PERFORMANCE

5.1. Accuracy of Classification:

During both training and testing, we looked at how
well the CNN-based classifier worked. Figure 1
shows how accurate the CNN model was over time.
At first, it got better, but at the end, it started to level
out. This shows that the CNN algorithm was able to
learn how to tell the difference between different
patterns in EEG data for motor imaging tasks.

0.75
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Figure 1. CNN Model with Accuracy vs. Training Epoch

Additionally, Figure 2 displays the matrix of
confusion for the CNN classification algorithm,
offering a comprehensive overview of the accuracy
in identifying various motor imagery classes. The
findings demonstrate good accuracy across the
majority of classes, confirming the model's
resilience in differentiating user intentions.
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Figure 2. Confusion Matrix for CNN Classification

Figure 3 also displays the motor imagery signals'
Power Spectral Density (PSD). Confirming the
efficacy of the frequency-domain characteristics
used for categorisation, the mu (8-12 Hz) and beta
(13-30 Hz) bands exhibit notable peaks.

— Left Imagery

1.0 — Right Imagery
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Frequency (Hz)

Figure 3. Power Spectral Density of Motor Imagery
5.2. Latency Analysis:

The time it took for the EEG signal to be picked up
and the assistive device to be turned on was an
important measure of performance. Researchers
assessed the latency at every step of the BCI
pipeline, from gathering data to preprocessing it,
extracting features, classifying them, and sending
them. Figure 4 shows how the delay is divided
among these parts. Preprocessing and categorisation
were found to be the most time-consuming steps,
which means that improving these areas might make
real-time performance better.
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Figure 4. Latency Breakdown of BCI Pipeline

Figure 5 shows a real-time record of order
processing to test how fast something is in the real
world. The system worked well and showed low
delay from detecting brain signals to carrying out
actions. This proved that it could be used to help
handle devices in real-time situations.
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Figure 5. Real Time Command Execution Timeline
5.3. Usability Feedback:

Besides consideration of the technical parameters of
the performance, which would be accuracy, latency,
and reliability, user experience was evaluated in a
broad way. During testing sessions, five subjects
tried to use the BCI-controlled assistive system and
were instructed to offer both qualitative and
quantitative feedback about several aspects of
usability. These were the cost of learning, the
responsiveness of the system, physical comfort
during wearing the EEG headset, and the
intuitiveness of the interface.

The respondents were asked to rate every category
using a 5-point Likert scale with a range of 1-5: 1 =
strongly disagree and 5 = strongly agree. The mean
scores were: ease of use (4.6), responsiveness (4.4),
comfort (4.5), and interface intuitive (4.7). The ease
with which the dry electrodes did not continuously
intrude and the simple visual interface users were
accustomed to making precepts was easy to read and

control. Very little training was needed to learn how
to operate the system, and this once again supports
the claim that it is accessible to users with lower
levels of technical education or those who lack the
ability to move freely.

There was also open-ended feedback given by the
participants, which highlighted how empowering the
control of the devices can be when it is done through
thought only. Other improvement ideas were to have
voice confirmation feedback in the device and the
stability of the device in terms of the headset after
longer use over time. The usability outcomes were
very promising overall, justifying the potential
practical implementation of the system, including in
the application of people with severe disabilities,
mobility aids, and home automation.

6. DISCUSSION
6.1. Results Interpretation

The outcomes of the experimental assessment
confirm the practice of the suggested BCI-based
helping tool. The training curves and the confusion
matrix have ascertained that the CNN-based
classifier was always very accurate in predicting the
motor imagery patterns based on the EEG data.
Spectral peakiness in the mu and beta bands also
confirms the importance of the frequency-domain
feature that was selected. Also, low latency of
command delivery in the system shows that the
system can be responsive in real time, as this is a
requirement in assistive technologies where
responding is quite crucial.

The usability testing propounded that the system was
intuitive and responsive to the users and comfortable
to use. It supports the convergence between technical
performance and human factor, which is commonly
a gap in most of the scholarly BCI demonstrations.
Combined, the quantitative and qualitative data
confirm the effectiveness and usability of the given
solution.

6.2. Comparison to Existing Solutions:

The proposed EEG-based BCI system is beneficial
over traditional assistive controls like joysticks or
voice-controlled systems, as the system better suits
users with severe motor limitations or speech-
impaired systems. Unlike simpler methods of EEG
classification (e.g., SVM or LDA), the system was
able to utilise both spatial and temporal
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representations in the EEG data, which provided
superior classification results compared to simpler
methods.

Earlier works on BCI sometimes did not have any
practical application but were rather theoretical. This
is one way of closing that gap by this work that
shows a complete realisation of a hardware-software
solution. In addition, the usability assessment
included in this study gives this research a
competitive advantage over technologically biased
studies by providing the overall picture of
deployment.

6.3. Strengths and Limitations:
6.3.1. Strengths of the system include:

EEG acquisition, preprocessing, and deep learning-
based classification and control actuation are
performed end-to-end. Low latency, real-time
performance verified in a testbed of a simulated
smart home. Good reviews regarding the ease of use
and the simple training nature.

6.3.2. Restrictions
experiment:

discovered during the

Classification consistency can be substandard
because of signal variance due to dry electrode and
individual physiological distinctions. Although the
CNN model works, it would take computational
resources that would not suit the low-power
embedded systems. Long periods of use can cause an
uncomfortable condition on headsets or loss of
signal without calibration.

The limitations mentioned suggest that future
limitations include the possibility of hybrid BCI
models, adaptive learning processes, and hardware
design with ergonomics.

6.4. Influence on Practical Real-World

Applications to Assistive Technology:

The study has very far-reaching connotations to the
sphere of assistive technologies. The system also
represents an avenue through which those who have
impaired mobility or who cannot express themselves
can receive back some autonomy, given that the
methods through which it works are non-invasive
and do not require the same individual to undergo
any kind of instruction in order to learn how to use
it. Its application in various fields of assistive

technology is evident through its use in wheel part
control and smart home automation. Besides, the
architecture is scalable, and it is possible to expand
it with new control classes or devices involving
minimal retraining, which is appropriate when it is
necessary to use the solution in personalised
rehabilitation or home care. This work lays the
foundation for providing BCI-based assistive
systems to a broader audience for use in the medical
field, geriatric treatment, and inclusive smart living.

7. CONCLUSION AND FUTURE WORK

This work introduces a full-fledged, non-invasive
Brain-Computer Interface (BCI) system that can
help people with severe motor disabilities manage
wheelchairs and smart home appliances using EEG
signals that represent motor imagery. We achieve
accurate and low-latency EEG data classification by
integrating a complete signal processing pipeline
with a Convolutional Neural Network (CNN)
classifier. Filtering, artefact removal, and feature
extraction are all part of this pipeline. The
deciphered instructions are then sent via a control
interface based on Arduino to carry out actuation in
real-time. An end-to-end assistive system was
developed and shown to achieve high classification
accuracy & responsiveness in a real-world setting.
This solution represents the primary contribution of
this study. The responses from participants, which
confirm high satisfaction regarding the simplicity of
use, minimal learning requirements, and comfort,
validate the importance of system usability, a key
lesson learned from the implementation. Improved
control efficiency is another benefit of including a
feedback interface, which lets users adjust their
mental processes. Even though it has been
successful, the system has a number of limitations.
EEG interuser variation, the computational burden
of CNNs required to deploy them in embedded
devices, and the possibility of discomfort due to
wearing a headset long-term are aspects that need to
be optimised. Future improvements on the same will
be centred on the integration of hybrid BCI models,
including the combination of EEG with
electromyography (EMG) or -electrooculography
(EOG) to enhance signal reliability and the diversity
in control. Also, it can be extended to deal with
multi-command classifications, which could also
enhance the area of application. Research will also
be aimed at decreasing training time, improving
signal robustness, and completing clinical trials,
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which will gauge long-term use and success. They
strive to open the way towards more widespread use
in inclusive environments of smart living and
individualised rehabilitation environments.

REFERENCE:

[1] C. Zickler et al., “A Brain-Computer Interface as
Input Channel for a Standard Assistive
Technology Software,” Clin. EEG Neurosci.,
vol. 42, no. 4, pp. 236244, Oct. 2011, doi:
10.1177/155005941104200409.

[2] S. Martin et al., “A qualitative study adopting a
user-centred approach to design and validate a
brain computer interface for cognitive
rehabilitation for people with brain injury,”
Assist. Technol., vol. 30, no. 5, pp. 233-241,
Oct. 2018, doi:

10.1080/10400435.2017.1317675.

[3] B. Peters, B. Eddy, D. Galvin-McLaughlin, G.
Betz, B. Oken, and M. Fried-Oken, “A
systematic review of research on augmentative
and alternative communication brain-computer
interface  systems for individuals with

disabilities,” Front. Hum. Neurosci., vol. 16, p.
952380, 2022.

[4] F. Schettini et al.,, “Assistive device with
conventional, alternative, and brain-computer
interface inputs to enhance interaction with the
environment for people with amyotrophic lateral
sclerosis: a feasibility and usability study,” Arch.
Phys. Med. Rehabil., vol. 96, no. 3, pp. S46-S53,
2015.

[5] C. Carmichael and P. Carmichael, “BNCI
systems as a potential assistive technology:
ethical issues and participatory research in the
BrainAble project,” Disabil. Rehabil. Assist.
Technol., vol. 9, no. 1, pp. 41-47, Jan. 2014, doi:
10.3109/17483107.2013.867372.

[6] L. Mayaud et al., “Brain-computer interface for
the communication of acute patients: a feasibility
study and a randomised controlled trial
comparing  performance  with  healthy
participants and a traditional assistive device,”
Brain-Comput. Interfaces, vol. 3, no. 4, pp. 197—
215, Oct. 2016, doi:
10.1080/2326263X.2016.1254403.

[7] C. Wegemer, “Brain-computer interfaces and
education: the state of technology and
imperatives for the future,” Int. J. Learn.
Technol., vol. 14, no. 2, p. 141, 2019, doi:
10.1504/1JLT.2019.101848.

[8] B. J. Lance, S. E. Kerick, A. J. Ries, K. S. Oie,
and K. McDowell, “Brain—computer interface
technologies in the coming decades,” Proc.
IEEE, vol. 100, no. Special Centennial Issue, pp.
1585-1599, 2012.

[91 B. H. Dobkin, “Brain—computer interface
technology as a tool to augment plasticity and
outcomes for neurological rehabilitation,” J.
Physiol., vol. 579, no. 3, pp. 637-642, Mar.
2007, doi: 10.1113/jphysiol 2006.123067.

[10]R. Rupp, S. C. Kleih, R. Leeb, J. Del R. Millan,
A. Kiibler, and G. R. Miiller-Putz, “Brain—
Computer Interfaces and Assistive Technology,”
in Brain-Computer-Interfaces in their ethical,
social and cultural contexts, vol. 12, G. Griibler
and E. Hildt, Eds., in The International Library
of Ethics, Law and Technology, vol. 12. ,
Dordrecht: Springer Netherlands, 2014, pp. 7—
38. doi: 10.1007/978-94-017-8996-7 2.

[117J. d R. Millén et al., “Combining brain—computer
interfaces and assistive technologies: state-of-
the-art and challenges,” Front. Neurosci., vol. 4,
p. 161, 2010.

[12]G. Kucukyildiz, H. Ocak, S. Karakaya, and O.
Sayli, “Design and Implementation of a Multi-
Sensor Based Brain Computer Interface for a
Robotic Wheelchair,” J. Intell. Robot. Syst., vol.
87, no. 2, pp. 247-263, Aug. 2017, doi:
10.1007/s10846-017-0477-x.

[13]F. Nijboer, D. Plass-Oude Bos, Y. Blokland, R.
Van Wijk, and J. Farquhar, “Design
requirements and potential target users for brain-
computer interfaces — recommendations from
rehabilitation professionals,” Brain-Comput.
Interfaces, vol. 1, no. 1, pp. 5061, Jan. 2014,
doi: 10.1080/2326263X.2013.877210.

[14]E. G. M. Pels, E. J. Aarnoutse, N. F. Ramsey, and
M. J. Vansteensel, “Estimated Prevalence of the
Target Population for Brain-Computer Interface
Neurotechnology in  the  Netherlands,”
Neurorehabil. Neural Repair, vol. 31, no. 7, pp.
677-685, Jul. 2017, doi:
10.1177/1545968317714577.

[15]7J. L. Collinger, M. L. Boninger, T. M. Bruns, K.
Curley, W. Wang, and D. J. Weber, “Functional
priorities, assistive technology, and brain-
computer interfaces after spinal cord injury,” J.
Rehabil. Res. Dev., vol. 50, no. 2, p. 145, 2013.

[16]S. P. Yadav and S. Yadav, “Image fusion using
hybrid methods in multimodality medical
images,” Med. Biol. Eng. Comput., vol. 58, no.
4, pp. 669—687, Apr. 2020, doi: 10.1007/s11517-
020-02136-6.

7827



Journal of Theoretical and Applied Information Technology
15 October 2025. Vol.103. No.19 N

d

© Little Lion Scientific

SATIT

ISSN: 1992-8645

www jatit.org

E-ISSN: 1817-3195

[17]M. A. Alkhawaldeh and M. A. Saleem
Khasawneh, ‘“Neurofeedback-Based Brain-
Computer Interfaces: Revolutionising Assistive
Technology For Learning Disabilities,” J.
Namib. Stud., vol. 37, 2023, Accessed: Aug. 07,
2025. [Online]. Available:
https://search.ebscohost.com/login.aspx?direct=
true&profile=ehost&scope=site&authtype=craw
ler&jrnl=18635954& AN=179290182&h=UX%
2BAvi6Tocflz2S18113VpR2WBhuUdSnGgX %2
BGxB79jj7FD6fEFium3nrEaKZKtC9dM 1uFW
L2T9xCteykF1KOEQ%3D%3Dé&crl=c

[18]F. Cincotti et al., “Non-invasive brain—computer
interface system: towards its application as
assistive technology,” Brain Res. Bull., vol. 75,
no. 6, pp. 796-803, 2008.

[19]N. Jamil, A. N. Belkacem, S. Ouhbi, and A.
Lakas, “Noninvasive electroencephalography
equipment for assistive, adaptive, and
rehabilitative brain—computer interfaces: a
systematic literature review,” Sensors, vol. 21,
no. 14, p. 4754, 2021.

[20]M. M. Moore, “Real-world applications for
brain-computer interface technology,” IEEE
Trans. Neural Syst. Rehabil. Eng., vol. 11, no. 2,
pp. 162-165, 2003.

[21]S. Mewada et al., “Smart Diagnostic Expert
System for Defect in Forging Process by Using
Machine Learning Process,” J. Nanomater., vol.
2022, no. 1, p. 2567194, Jan. 2022, doi:
10.1155/2022/2567194.

[22]P. Diez, Smart wheelchairs and brain-computer

interfaces: mobile assistive technologies.
Academic Press, 2018. Accessed: Aug. 07,2025.
[Online]. Available:

https://books.google.com/books?hl=en&lr=&id
=bBheDwAAQBAJ&oi=fnd&pg=PP1&dq=Des
ign+and+Implementation+of+Assistive+Techno
logies+Utilizing+Brain-
Computer+Interfaces&ots=DoY OxrwH8w&sig
=g5trMwi5ycKH9OBcpn-cLf Sja0

[23]F. Nijboer, “Technology transfer of brain-
computer interfaces as assistive technology:
barriers and opportunities,” Ann. Phys. Rehabil.
Med., vol. 58, no. 1, pp. 35-38, 2015.

[24] A. Riccio et al., “Usability of a hybrid system
combining P300-based brain-computer interface
and commercial assistive technologies to
enhance communication in people with multiple
sclerosis,” Front. Hum. Neurosci., vol. 16, p.
868419, 2022.

[25]M. Schreuder et al., “User-centred design in
brain—computer interfaces—A case study,”
Artif. Intell. Med., vol. 59, no. 2, pp. 71-80,
2013.

7828



