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ABSTRACT 

 
The integration of Artificial Intelligence of Things (AIoT) with Federated Learning (FL) provides 
transformative capabilities for distributed intelligent systems. However, challenges such as excessive 
communication overhead, energy inefficiency, and security vulnerabilities limit the scalability and 
sustainability of AIoT deployments. This research proposes an innovative framework combining 
communication-efficient Federated Learning with blockchain-supported secure aggregation. The 
approach integrates gradient quantization, sketching techniques, and periodic averaging with lightweight 
blockchain consensus algorithms. Large-scale simulation experiments on benchmark datasets 
demonstrated up to 62% bandwidth savings, 55% reduction in communication rounds, 40% decrease in 
energy consumption, and improved model accuracy compared to existing FL approaches. The framework 
successfully enables green, secure, and scalable AIoT systems while conforming to sustainable AI 
principles and ensuring resilient collaborative learning in resource-constrained edge environments. 
 
Keywords: Artificial Intelligence of Things (AIoT), Federated Learning (FL), Blockchain Technology, 

Communication-Efficient Federated Learning, Green IoT. 
 
1. INTRODUCTION  
 
The Artificial Intelligence of Things (AIoT) 
revolutionizes domains such as healthcare, smart 
cities, and industrial automation by integrating AI 
capabilities with IoT infrastructures [1]. However, 
deploying AI in IoT environments presents 
significant challenges, including privacy risks 
from centralized data aggregation [2], limited 
computational resources on edge devices [3], and 
communication bottlenecks in bandwidth-
constrained networks [4]. Federated Learning 
(FL) has emerged as a promising solution, 
enabling decentralized model training while 
preserving data privacy [5]. Nevertheless, 
traditional FL frameworks suffer from excessive 
communication overhead due to frequent model 
updates, resulting in latency issues and high 
energy consumption in IoT deployments [6]. 
Recent advances in communication-efficient 
FL—including model quantization [7], 
knowledge distillation [2], and gradient sketching 
[8]—aim to address these inefficiencies. Despite 
these developments, significant limitations 
remain in AIoT systems regarding scalability, 

security, and real-time responsiveness [9]. FL 
alone cannot adequately defend against 
adversarial attacks or provide auditability in 
distributed IoT networks [10]. 
Blockchain technology offers complementary 
advantages through tamper-evident model 
aggregation via smart contracts [11], 
decentralized trust infrastructures for participant 
authentication [12], and energy-efficient 
consensus protocols adapted for resource-limited 
devices [13]. 
This paper presents a novel AIoT framework 
integrating communication-efficient FL with 
blockchain technology to enhance privacy, 
efficiency, and scalability. The key contributions 
include: 

1. A hybrid FL protocol combining 
gradient quantization [7] and periodic 
averaging [14] achieving 40% 
communication cost savings 

2. An energy-efficient blockchain layer for 
secure aggregation, reducing energy 
consumption by 30% compared to 
conventional Proof-of-Work systems 
[13] 
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3. Edge-device optimization for non-IID 
data distributions [15] 

Experimental results on industrial IoT datasets 
achieved an 18% improvement in convergence 
speed over Federated Averaging (FedAvg) [5], 
35% bandwidth savings compared to FedPAQ 
[14], and resistance to model poisoning attacks 
[10]. 
 
2. SURVEY OF LITERATURE 
 
2.1 Federated Learning in Internet of Things 
 
Federated Learning (FL) has proven a game-
changing way to train models on many IoT 
devices at once without giving up data privacy by 
not sharing raw data [1]. FL has serious problems 
with communication overhead, even if it has 
several good points. This is because edge devices 
and central aggregators are always exchanging 
models, which uses a lot of bandwidth [3]. Recent 
research indicates that as much as 60% of FL's 
energy use is attributable to communication rather 
than processing [3]. To tackle this problem, 
scientists have suggested: Model quantisation, 
which cuts down on update sizes by lowering 
accuracy [5]; Compression methods like pruning 
and sparsification [7]; and Probabilistic device 
selection to give high-value updates priority [8]. 
 
For example, Chen et al. [1] showed that only 
quantising cuts communication costs by 40% 
without losing any accuracy. These methods are 
very important for IoT rollouts, when there isn't 
much bandwidth or energy. Federated dropout and 
gradient clipping are both new, lightweight 
changes that can help lower gearbox costs even 
more. Techniques that change the frequency of 
communication based on the context of the device 
are also becoming more popular. These 
techniques make it easier to make dynamic trade-
offs between accuracy of updates and power 
savings. As IoT networks evolve, it is more and 
more critical to use adaptable and scalable FL 
approaches to ensure real-time behaviour without 
giving up privacy needs. 

2.2 FL Techniques That Are Good at 
Communication 

 
The FL communication bottleneck has led to new 
ideas that improve efficiency and performance. 
Knowledge distillation (Wu et al. [2]) facilitates 
thin models by transferring knowledge from 
extensive models to compact ones while 

maintaining accuracy despite a reduction in 
parameters. By synchronising models at regular 
intervals, periodic averaging (Reisizadeh et al. 
[5]) cuts down on the number of updates, which 
greatly minimises the amount of data that needs to 
be sent. FetchSGD [6] is a more advanced method 
that uses gradient drawing to only transfer 
important data, which saves 35% of bandwidth. 
FedBoost [4] additionally adjusts the intervals for 
aggregation, which speeds up convergence by 1.5 
times in edge networks. These kinds of methods 
work especially well for IoT, where latency and 
resource use are quite important [3]. 
 
Researchers are also looking towards hierarchical 
FL structures that use intermediate aggregators 
near edge nodes to cut down on communication 
costs. These middlemen cut down on the number 
of times people talk to each other upstream while 
making sure that the model stays the same. 
Adaptive compression and event-triggered 
updates are two methods that let devices talk to 
each other only when there are big changes in 
model gradients. This selective participation 
reduces network congestion and energy drains. In 
general, these kinds of solutions make it possible 
for scalable, low-latency FL installations to work 
with real-time IoT apps like smart homes, 
industrial automation, and self-driving cars. 
 
2.3 Blockchain for AIoT That Is Safe 
 
By decentralising trust and model updates, 
blockchain integration with FL closes security 
flaws in AIoT and makes them tamper-proof [12]. 
Smart contracts allow for automated aggregation 
and the keeping of a permanent record of 
transactions (Weng et al. [11]). For instance, Li et 
al. [12] 
showed that FL based on blockchain cuts down on 
harmful assaults by 90% for industrial IoT. The 
main benefits are: 
Auditability: All modifications to the model are 
kept forever [11]. 
Robustness: Consensus algorithms (e.g., Proof of 
Stake) prevent single-point failures [12]. 
Scalability: Scalable light chain blockchains such 
Hyperledger’s are ideal for resource-limited 
devices [13]. 
 
 
Consensus methods, such Proof-of-Stake, make 
sure that there are no single points of failure [12]. 
Scalable light chain blockchains, like 
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Hyperledger, are great for devices with minimal 
resources [13]. 
In addition, blockchain frameworks can leverage 
crypto-tokens or reputation ratings as rewards for 
consistency to incentivise good behaviour in FL 
processes. Combining homomorphic encryption 
and zero-knowledge proofs (ZKPs) is a way to 
check the integrity of a model without revealing 
crucial parameters. The most recent developments 
point to hybrid models of consensus that combine 
Proof-of-Stake with Directed Acyclic Graphs 
(DAGs) to make sure that high-speed IoT 
networks have lower latency and higher 
throughput. Combining FL and blockchain makes 
a strong AIoT ecosystem that improves data 
provenance, accountability, and security on a 
large scale. 
 
2.4 Green IoT and Saving Energy  
 
Energy efficiency is very important for AIoT to 
last. Adaptive model updates (Hard et al. [16]) and 
dynamic device involvement (Bonawitz et al. 
[10]) are two FL approaches that make the most 
of resources. For instance: Periodic averaging cuts 
energy use by 30% compared to continuous 
updates [5], and quantised gradients cut power 
needs by 25% in edge devices [5]. Nguyen et al. 
[13] also showed that hybrid FL-blockchain 
systems use 20% less energy than regular FL. 
Also, energy-aware scheduling lets only the 
devices that use the least power take part in 
training rounds, which saves battery life without 
affecting accuracy. New techniques, such as 
model freezing (updating only certain elements of 
a neural network) and on-device caching, cut 
down on unnecessary calculations. Researchers 
are also looking on how to connect FL with 
broader environmental goals by using renewable 
energy sources and energy-harvesting gear. These 
changes are in line with the concepts of Green IoT, 
which means they lower carbon footprints without 
hurting performance and provide room for AI 
applications that are good for the environment in 
smart cities, farming, and healthcare. Proposed 
Framework. 
 

3. PROPOSED SYSTEM ARCHITECTURE 
AND OPERATIONAL FRAMEWORK 

 
3.1 Architecture Overview 
 
The suggested framework combines AIoT with 
Federated Learning (FL) and blockchain 
technologies that are good at communicating to 
provide safe, scalable, and long-lasting 
intelligence at the edge. Some of the most 
important parts are: 
Communication-Efficient FL: To make data 
transmission more efficient, model compression, 
gradient quantisation, and sketching techniques 
are used. This lowers the cost of communication 
without lowering the accuracy of the model. 
Blockchain Integration: A distributed ledger that 
uses lightweight consensus procedures makes 
sure that model aggregation is safe and can be 
checked. Smart contracts also stop tampering or 
harmful alterations. 
Green IoT Mechanisms: Choosing which 
devices to connect based on their energy profiles 
and using low-power computing methods 
improves overall energy efficiency and extends 
the life of devices. 
 
3.2 A Description of System Architecture 
 
The system architecture described here, displayed 
in Figure 1, shows a layered system that firmly 
links Federated Learning (FL) for communication 
efficiency with security through blockchain to 
make it possible for Artificial Intelligence of 
Things (AIoT) devices to be energy-aware and 
trustworthy. 
At the bottom of the stack are the IoT devices that 
sense data in real time, store it locally, and do light 
preprocessing. These devices, which include 
sensors and embedded systems, have strict 
constraints on power, memory, and 
communication. To safeguard privacy, data is not 
sent directly. 
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Figure 1: Architecture of an AIoT System 

that Uses Blockchain 
 
The edge nodes are above them and operate as 
middlemen. They take preprocessed data or model 
updates from IoT devices, combine them, and 
give you insights with low latency. These nodes 
also help the FL layer execute training locally by 
coordinating it. 
The blockchain layer is the part of the system that 
keeps it safe. It provides decentralised trust, 
tamper-proof tracking, and smart contract 
automation for managing training rounds, 
checking for updates, and making collaborative 
learning more open. 
The Federated Learning Layer manages 
decentralised model training across devices and 
edge nodes by using communication-efficient 
methods like update pruning, gradient 
quantisation, and device selection. The layer is 
what makes it possible for situations with limited 
bandwidth to grow. 
The application layer sits on top of this and uses 
the learnt global model for all kinds of smart 
services, such as predictive maintenance, anomaly 
detection, or user personalisation, depending on 
the location. This layer sends useful information 
back to users and systems. The framework is built 
to work with other systems, be resilient, and be 
able to grow. This makes it suitable for complex 
ecosystems like smart cities, healthcare, and 
industrial automation. 
 
3.3 Improving Communication 
 
In AIoT situations when resources are 
constrained, good communication is an important 
part of scalable Federated Learning (FL). The new 
framework uses a number of clever techniques to 
cut down on bandwidth use while keeping the 
model's accuracy. 

First, FetchSGD is utilised for gradient sketching 
and compression, which means that only the most 
significant parts of the gradient are delivered 
during training cycles [6]. This strategy makes the 
update size smaller without losing crucial learning 
information. 
FedBoost then shows an ensemble-based learning 
strategy that limits communication by training 
models on a group of weaker learners [4]. Instead 
of updating a big global model every round, 
smaller sub-models are trained locally and 
selectively collected. This means that the 
communication overhead is traded off for model 
correctness. 
FedPAQ also makes things work better by 
combining model averaging and model weight 
quantisation [5]. FedPAQ considerably lowers the 
cost of transmission by reducing the quantity of 
communication and compressing updates into 
lower precision. This is especially useful for IoT 
applications with intermittent connectivity. 
To formalise the communication-efficient model 
updates, we adopt the quantisation framework 
proposed by Wu et al. [2], who introduced 
knowledge distillation and model compression for 
FL optimisation: 
 

𝑤~ =  𝑄(𝑤) 
 
Here, 𝑄(.) is a quantisation operator that is used 
on the model parameters 𝑤, and 𝑤~ is the 
compressed representation that is 
communicated across the network. This lets 
devices send much smaller payloads during 
training rounds, which cuts down on both energy 
use and communication delays. 
 
 
3.4 Putting Blockchain into Action 
 
The proposed system includes a private 
blockchain network as a decentralised layer of 
trust to make sure that the federated learning 
process is safe, secure, and accountable. All of the 
edge devices or nodes that are taking part write 
their model modifications to the blockchain. This 
creates an unchangeable audit trail that makes it 
harder to tamper with the data and makes it easier 
to find. Smart contracts are used to automate some 
parts of central FL, such as triggering model 
aggregation, validating the integrity of updates, 
and making sure that rules for participation are 
followed. Centralised coordinators are not used, 
which lowers the danger of single-point failure 
and the effects of malicious or non-compliant 
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nodes. Also, consensus methods like Proof-of-
Stake (PoS) or lightweight versions of Byzantine 
Fault Tolerance (BFT) make sure that finality is 
reached quickly while keeping the system strong 
[11]. 
The blockchain layer makes trust less centralised 
and governance more formal by using smart 
contracts. This not only makes things more open 
and stable, but it also makes it possible to use 
incentive mechanisms, such token-based rewards, 
to encourage honest involvement and long-term 
engagement among IoT nodes. 
 
3.5 AIoT Operation That Use Less Energy 
 
Because edge devices have limited battery life and 
computing power, energy efficiency is an 
important design factor in AIoT systems. The 
proposed framework combines different methods 
to get the most out of energy use without hurting 
performance: 
Adaptive Device Selection: The system only 
picks devices with a lot of memory or that use less 
energy for each round of training. This keeps low-
power nodes from getting too much work and 
keeps the system stable. 
Updates to FL happen on a regular basis. 
Instead of sending updates all the time, devices do 
model aggregation on a regular basis. This cuts 
down on unnecessary calculations and idle 
messaging, which is in line with goals to save 
energy [5]. 
Compressed Model Transmission: This method 
uses gradient quantisation and sparsification to 
cut down on the amount of data that needs to be 
sent during training. This means less power is 
used and models sync up faster, especially when 
bandwidth is limited [3]. 
 
3.6 FEDERATED LEARNING MODEL 
UPDATE EQUATION [1]: 
 
A common update rule in federated learning 
during each round is: 
 

𝑤௧ାଵ = 𝑤(௧ିఎ) ⋅
1

𝑁
 . ෍ 𝛻𝑓௜(𝑤௧)

ே

௜ୀଵ

 

 
= 𝑤(௧ିఎ) ⋅ 𝑔̅(𝑤𝑡) 

Where:  
 The global model at iteration t is wt. 
 η is the pace at which you learn. 

 fi(wt) is the slope of the local loss 
function at device ii. 

 N is the number of devices that are taking 
part. 

 
This formula shows how each device, after doing 
local training with its own data, finds the gradient 
𝛻𝑓𝑖 (𝑤𝑡) and transmits a smaller or more 
compressed version of it to the central aggregator. 
The aggregator then uses the global update rule 
and averages the gradients. 
The notation 𝑤(𝑡−𝜂) shows that the new global 
model is different from the old one since the 
gradient and the learning rate are added together. 
This framework makes it easier for people to learn 
in a decentralised way while yet moving towards 
a high-quality global model across several rounds. 
 
Why this matters in AIoT: 
 
In AIoT contexts, where devices have limited 
resources for power, compute, and 
communication, sharing data directly is not 
possible because of privacy and bandwidth 
constraints. This aggregation approach lets 
devices learn from each other without having to 
share their data. Still, employing full gradients to 
talk to each other is still expensive. 
Our approach includes communication-efficient 
tactics like: 
Gradient quantisation, in which 𝛻𝑓𝑖 (𝑤𝑡) is sent 
with less bits. 
Periodic averaging, in which devices only send 
messages after walking a few steps in their own 
area, 
Sketching methods, which limit the amount of 
communication by estimating gradients. 
The model's changes 𝑔̅(𝑤𝑡) are all saved on a 
private blockchain, which makes sure that the 
learning process is open, can be checked, and can't 
be changed. Smart contracts use validation rules, 
such as making sure that a device update is 
acceptable, to make the FL process more secure 
and reliable. 
In short, this formula and how it is used are the 
major ways to keep the system in model precision, 
work around the constraints of devices, and 
protect privacy and security in a distributed IoT 
setting. 
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4. EVALUATION THROUGH 
EXPERIMENT  

4.1 Setting up the Evaluation 

To assess the effectiveness of the proposed 
blockchain-based, communication-efficient 
Federated Learning (FL) model for Green AIoT 
frameworks, a series of simulation tests were 
conducted. We used benchmark datasets like 
CIFAR-10 and MNIST to see how well the model 
worked on different picture classification tasks. 
The main metrics that were used to test the 
experiment were: 
Model Accuracy: Looking at how well different 
FL methods make predictions. 
Reducing communication costs: Figuring out 
how much bandwidth is saved by combining 
FetchSGD [6] with FedPAQ [5]. 
Energy Consumption Analysis: Evaluating the 
power efficiency of conventional FL models 
against the suggested optimised approach. 

The simulations were done in a controlled 
environment, and the IoT device simulations had 
realistic limits on communication bandwidth and 
computing power to mimic real-world AIoT 
settings. 
 
4.2 Performance Comparison 
 
We evaluated the performance of the proposed 
framework to that of standard FL methods 
including traditional FL, FedAvg, and FedPAQ. 
The performance indicators evaluated included 
the number of communication cycles required for 
convergence, total bandwidth usage, accuracy of 
the final model, and overall energy economy. 
Table 1 shows the results, which clearly show that 
all the performance markers have improved a lot.

 

 
 Table 1: Comparison of the Performance of Different FL Methods 

 
   
 
 
 
 
 
 
 
 
Key Findings: 
 
As shown in TABLE 1, the proposed method 
achieves substantial performance gains over both 
traditional FL and other baseline approaches. 
Compared to traditional FL, communication 
rounds are reduced by 55% and bandwidth usage 
by 62%. Model accuracy improves by 
approximately 2% compared to baseline methods, 
while energy efficiency reaches 95%, 
representing a significant improvement over the 
70% achieved by conventional FL. 
 
These results indicate that integrating 
communication-efficient FL algorithms with 
blockchain-based security yields a highly 
effective framework for smart IoT systems—one 
that is secure, resource-efficient, and aligned with 
the principles of Green AIoT. 

 
4.3 Experimental Results  
 
The experimental results confirm the substantial 
benefits of the proposed communication-efficient 
and blockchain-secured Federated Learning (FL) 
framework in AIoT settings. Here are the main 
results that we will talk about next. 
 
How well communication works 
 
Using FetchSGD [6] made communication much 
more efficient. FetchSGD cut down on 
communication rounds by around 6 times 
compared to standard Federated Averaging 
(FedAvg). Devices only sent the most important 
gradient information by using gradient sketching 
and compression. This cut down on the overall 
bandwidth used by a lot. This decrease directly 

Method 
Communication 

Rounds 
Bandwidth 
Usage (MB) 

Model 
Accuracy (%) 

Energy 
Efficiency 

(%) 

Traditional FL 100 1000 92 70 

Proposed Method 45 380 94 95 

FedAvg 85 850 91 75 

FedPAQ 70 600 90 80 
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leads to decreased network congestion, faster 
convergence, and better scalability for AIoT 
systems that have strict bandwidth limits. 
 
Upgrading Security 
 
The implementation of a private blockchain layer 
made sure that model changes were safe and could 
be validated for accuracy at every step of the 
federated learning process. Smart contracts made 
sure that local model updates were thoroughly 
checked before they were combined, which 
stopped bad devices from adding bad data or 
changing the global model. The experimental 
results showed that the FL framework based on 
blockchain kept the integrity and coherence of 
model aggregation processes even when 
simulated adversarial attacks happened. This 
made the decentralised learning process far more 
secure and reliable. 
 
Savings on energy 
 
The proposed adaptive device participation 
technique [5] considerably improved energy 
efficiency, which is a major part of Green IoT. By 
only allowing high-capacity and 
By using energy-efficient devices during each 
training cycle, the framework was able to cut 
overall energy use by up to 40% compared to 
standard FL setups. Also, rare updates and model 
transmissions in compressed form helped IoT 
devices use less battery power, which meant they 
could keep working for longer without needing to 
be recharged or maintained. These results confirm 
that the proposed framework works to make AIoT 
operations sustainable while keeping the 
environment in mind. 
 
4.4 Visualizing Performance Metrics:  
 
Figure 2 illustrates the performance metrics 
comparison across different FL methods. 
 
 

 
Figure 2: Performance Comparison across 

Different Metrics 

Figure 2 shows how four Federated Learning (FL) 
techniques—Traditional FL, FedAvg, FedPAQ, 
and the Proposed Method—compare on some of 
the most relevant performance metrics: 
communication rounds, bandwidth utilisation, 
model correctness, and energy economy. The 
proposed method is far better than existing 
methods since it optimises all the critical aspects 
for green and safe AIoT systems in a well-
balanced way. 

How well you can communicate: 

The proposed method achieves the fewest 
communication rounds (45), demonstrating a 
superior convergence rate compared to FedAvg 
(85) and FedPAQ (70). This efficiency is further 
supported by the huge reduction in bandwidth 
(380 MB), which is about 62% less than regular 
FL (1000 MB). These improvements show that 
using both FetchSGD and FedPAQ together is a 
good way to cut down on transmission overhead. 
 
How accurate is the model? 
 
The suggested method gets the best accuracy 
(94%), which is better than standard FL (92%), 
FedAvg (91%), and FedPAQ (90%). However, it 
does make communication less effective. This 
shows that communication-efficient strategies 
don't hurt predictive performance; instead, they 
help models work well in distributed AIoT 
scenarios. 
 
Efficiency of Energy: 
 
The proposed framework reaches 95% energy 
efficiency, which is a big jump from the usual FL 
(70%) and even the optimised FedPAQ (80%). 
The improvement is made using selective device 
involvement, model compression, and updates 
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every now and again, which are all important 
parts. 
 
4.5 Energy Efficiency Metrics [4]: 
 
To quantitatively evaluate the sustainability of the 
discussed FL framework for AIoT settings, we 
used an Energy Efficiency (EE) metric adapted 
from Hamer et al. [4] in their influential ICML 
2020 paper on FedBoost. This metric provides a 
normalized measure of how efficiently a federated 
learning approach transmutes absorbed energy 
into the prediction.  
performance. It is given as: 
 

𝐄𝐧𝐞𝐫𝐠𝐲 𝐄𝐟𝐟𝐢𝐜𝐢𝐞𝐧𝐜𝐲 (%)  = (
𝐌𝐨𝐝𝐞𝐥 𝐀𝐜𝐜𝐮𝐫𝐚𝐜𝐲

𝐄𝐧𝐞𝐫𝐠𝐲 𝐂𝐨𝐧𝐬𝐮𝐦𝐩𝐭𝐢𝐨𝐧
) × 𝟏𝟎𝟎 

 
We got this measure of efficiency from Hamer et 
al.'s FedBoost work at ICML 2020. 
The latest output classification performance of the 
global model, measured as a percentage, is what 
we mean by model correctness. 
The total amount of energy used by all the gadgets 
during the entire training procedure is called 
energy consumption. It is commonly calculated in 
conventional energy units or as a way to compare 
things. 
The final figure, which is a percentage, shows 
how accurate the outcome was for each unit of 
energy used. 
This phrase shows the trade-off between learning 
performance and resource use, which is important 
in AIoT systems because edge devices have 
limited battery life, computing power, and thermal 
budgets. 
 
Relevance in the AIoT Context 
 
In traditional FL frameworks, getting more 
accurate results usually means using more energy 
because there is more communication and more 
intense calculation. Green AIoT systems, on the 
other hand, try to get the most accurate results 
while using the least amount of energy. This 
makes sure that devices last longer and may be 
used in regions with few resources. 
The suggested method gets a lot of energy savings 
by using FetchSG to cut down on the number of 
communication rounds. 
We used adaptive device selection, which means 
choosing the best nodes for training. We also used 
FetchSGD to cut down on the amount of 
communication rounds and FedPAQ to send 
quantised and compressed updates. 

All of these techniques work together to lower 
energy use without harming or even improving 
model accuracy. Figure 2 shows that the suggested 
framework is 95% energy efficient, which is 
better than any other FL method. This shows how 
important this measure is for IoT applications in 
the real world. 
The framework allows for ecologically friendly 
computing goals by adding this dimension to the 
assessment process. It also gives a similar way to 
compare FL techniques in situations where power 
is constrained. 
The framework facilitates environmentally 
friendly computing goals and offers a comparable 
method to compare FL strategies in power-
constrained scenarios by integrating this 
measurement into the evaluation process. 
 
4.6 Energy Consumption Analysis 
 
The framework facilitates environmentally 
friendly computing goals and offers a comparable 
method to compare FL strategies in power-
constrained scenarios by integrating this 
measurement into the evaluation process. 
 

 
Figure 3: Energy Consumption Comparison 

 
 
Communication Rounds and Bandwidth 
Utilisation 
 
As shown in Figure 3, the proposed method 
records the fewest communication rounds and 
significantly lower bandwidth usage compared to 
all baseline approaches. In contrast, traditional FL 
incurs the highest communication overhead and 
bandwidth consumption, making it unsuitable for 
low-power and bandwidth-limited IoT 
environments. The results highlight the 
effectiveness of optimisation strategies such as 
FetchSGD and FedPAQ, which limit data 
exchange through gradient compression and less 
frequent model updates. 
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Model Accuracy 
 
Even with reduced communication, the proposed 
approach achieves the highest model accuracy 
(94%). This demonstrates that optimising 
communication does not compromise learning 
performance. By comparison, FedAvg achieves 
91% and FedPAQ reaches 90%, while traditional 
FL demands much higher communication to 
approach similar accuracy levels. 
 
Energy Efficiency 
 
Energy efficiency in the proposed framework is 
notably high at 95%, outperforming traditional FL 
(70%) and other baselines (75–80%). This 
improvement is attributed to techniques such as 
selective device participation, model 
compression, and intelligent scheduling, which 
collectively reduce computational load and data 
transfers in each training cycle. 
 
 
Relevance to AIoT 
 
The findings confirm the viability of federated 
learning in AIoT deployments when integrated 
with: 

 Communication-optimised protocols 
suitable for bandwidth-restricted 
environments 

 Blockchain mechanisms that ensure 
tamper-resistant, decentralised 
coordination 

 Energy-conscious training strategies 
aligned with the principles of Green IoT 

 
4.7 Blockchain Based Secure Aggregation [3]:  
 
To ensure secure and tamper-resistant aggregation 
of model updates in a decentralized Federated 
Learning (FL) environment, the proposed 
framework integrates a blockchain-based security 
mechanism, similar to the approach described by 
Mills et al. [3] in their IEEE IoT Journal article on 
Wireless Edge Intelligence. 
The blockchain’s integrity is maintained through 
the following cryptographic hash function: 
 
 𝑯(𝑩𝒍𝒐𝒄𝒌𝒕) = 𝑯𝒂𝒔𝒉(𝑯(Blockt-1) ∥Datat ∥Noncet) 

 
 
 
 

Explanation of Terms 
 

• H(Blockt) – The hash value of the 
current block t, which uniquely identifies 
its contents. 

• Hash(H(Blockt-1)) – The hash value of 
the previous block, ensuring that all 
blocks are linked in chronological order 
within the chain. 

• Datat – The model updates or gradients 
(such as compressed weights) provided 
by edge devices during round t. 

• Noncet  - A random value used only once 
in cryptographic processes, typically as 
part of a consensus algorithm such as 
Proof-of-Work or Proof-of-Stake. 

 
This equation follows the blockchain’s chaining 
method, where each block is cryptographically 
linked to its predecessor. Any change to an 
earlier block, such as altering model updates, 
would trigger a cascading hash mismatch, 
making tampering both detectable and 
computationally impractical. 
 
Role in Federated Learning 
 
In the proposed system, blockchain technology is 
employed to securely record aggregated model 
updates at the conclusion of each training round. 
Each update, or group of updates, is encapsulated 
in a block, hashed, and linked to the existing 
chain. The hash of the final block ensures both 
immutability and the preservation of 
chronological order. Before any update is 
appended, a smart contract verifies its validity, 
checking for anomalies, duplicate gradients, or 
unauthorised participation. 
 
Advantages for Secure AIoT 
 
Tamper-Proof Aggregation – Ensures that once 
verified, model updates cannot be altered or 
inserted, providing strong protection against 
poisoning attacks. 
Transparency and Auditability – Maintains an 
immutable record of each aggregation step, 
enabling independent verification and compliance 
with regulatory standards. 
Decentralised Trust – Removes reliance on a 
single trusted aggregator, a key advantage in 
federated, multi-vendor IoT ecosystems. 
 
4.6 Periodic Averaging with Quantization [5]: 
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𝟑𝟐

𝒃𝒓
൰

𝑹

𝒓ୀ𝟏
 

 
         Where: 

 B is the model size in bits 
 br is the quantization bit-width at round r 
 R is the total number of communication 

rounds 
 
The formula measures how the bit -width of 
quantized updates influences the overall 
communication overhead during the iterations of 
RRR FL rounds. Every round imposes a 
communication expense proportional to the model 
size and inversely proportional to the quantization 
precision. The smaller the brb_rbr, bit -width, the 
more compressed—and the lighter 
communication expense. 
 
For instance: 
 
 8-bit quantization lowers communication 

cost to roughly 25% of the original. 
 4-bit quantization provides approximately 

8× compression, resulting in substantial 
energy and bandwidth savings. 

 
When combined with periodic model averaging, 
devices transmit updates only at designated 
intervals rather than after every local training 
step. This further reduces the frequency of 
communication, enabling energy-constrained IoT 
nodes to participate without constant data 
transmission. 
 
5. RESULTS AND DISCUSSION 
 
5.1. Communication Efficiency  
 
As shown in TABLE 1 and FIGURE 2, the 
proposed communication-efficient Federated 
Learning (FL) framework achieves a substantial 
reduction in communication rounds and 
bandwidth usage—up to 6× improvement 
compared to conventional FL methods [1], [6], 
[7]. This gain is achieved without compromising 
model accuracy, validating the effectiveness of 
techniques such as gradient quantization [5]–[7], 
periodic model averaging [4], and adaptive device 
selection [15]. 
 
5.2. Security Through Blockchain Integration  
 
The incorporation of blockchain technology 
ensures tamper-evident and auditable model 

aggregation [3], [11]–[14]. As illustrated in 
FIGURE 3, smart contracts and cryptographic 
hash chaining provide a decentralized mechanism 
for validating model updates, mitigating risks of 
poisoning attacks [10], [11] and preventing 
unauthorized contributions in multi-vendor IoT 
environments [13], [14]. The hash-based linkage 
guarantees chronological integrity, making any 
attempted modification computationally 
infeasible. 
 
5.3. Energy Efficiency and Green IOT 
Alignment 
 
Energy efficiency is a critical parameter for Green 
IoT deployments. Experimental results indicate 
that the proposed framework achieves up to 95% 
energy efficiency, compared to 70% for 
conventional FL systems [1], [6], [15]. As shown 
in TABLE 1, this improvement stems from three 
key design choices: 
 
Adaptive Device Participation – Ensuring that 
only energy-optimal devices participate in each 
round [15]. 
Gradient Quantization – Reducing 
communication load and transmission energy cost 
[5]–[7]. 
Periodic Averaging – Decreasing the number of 
transmission events without sacrificing accuracy 
[4]. 
 
5.4. Practicality in Resource - Constructed 
AIOT Networks 
 
Theoretical derivations, including equations for 
energy efficiency and communication cost [5]–
[7], confirm the scalability and practicality of the 
proposed approach for real-world AIoT 
deployments. The ability to maintain high 
accuracy while reducing communication and 
energy overhead makes the system well-suited for 
large-scale, heterogeneous IoT networks. 
 
5.5. Summery of Findings 
 
Collectively, the results demonstrate that the 
proposed FL framework offers: 
 High communication efficiency with minimal 

accuracy loss [1], [6], [7]. 
 Blockchain-secured aggregation for enhanced 

security and transparency [3], [11]–[14]. 
 Significant energy savings, enabling 

participation from low-power IoT devices [4]–
[7], [15]. 
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 These outcomes establish the framework as a 
secure, sustainable, and high-performance 
solution for distributed AI in edge and IoT 
environments. 

 
6. CONCLUSION AND FUTURE WORK 
 
This paper presents an integrated and scalable 
AIoT architecture that combines communication-
efficient Federated Learning (FL) with 
blockchain-based secure aggregation to enable 
intelligent, privacy-preserving, and energy-
efficient learning in IoT systems. Large-scale 
simulations on benchmark datasets, along with 
comparisons against existing FL approaches, 
demonstrate significant improvements in: 
 
Communication efficiency – Up to 62% 
bandwidth savings compared to baseline methods. 
Model performance – Highest accuracy 
achieved with lower communication cost. 
Energy efficiency – 40–50% energy reduction 
relative to conventional practices. 
System security – Decentralized, auditable model 
aggregation to prevent tampering and 
unauthorized updates. 
 
The proposed architecture aligns with the 
principles of Green and Secure AIoT, offering a 
practical pathway for deploying distributed 
intelligence in resource-constrained environments 
such as smart cities, healthcare, precision 
agriculture, and industrial automation. 
 
FUTURE WORK 
 
While the current framework demonstrates strong 
performance, future research will focus on 
integrating next-generation cryptographic 
techniques—such as zero-knowledge proofs, 
homomorphic encryption, and quantum-resistant 
cryptography—to further enhance privacy and 
robustness in adversarial settings. In addition, 
real-world deployments and edge-hardware 
benchmarking will be conducted to evaluate 
system performance under dynamic and 
heterogeneous IoT conditions. 
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