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ABSTRACT

The integration of Artificial Intelligence of Things (AloT) with Federated Learning (FL) provides
transformative capabilities for distributed intelligent systems. However, challenges such as excessive
communication overhead, energy inefficiency, and security vulnerabilities limit the scalability and
sustainability of AloT deployments. This research proposes an innovative framework combining
communication-efficient Federated Learning with blockchain-supported secure aggregation. The
approach integrates gradient quantization, sketching techniques, and periodic averaging with lightweight
blockchain consensus algorithms. Large-scale simulation experiments on benchmark datasets
demonstrated up to 62% bandwidth savings, 55% reduction in communication rounds, 40% decrease in
energy consumption, and improved model accuracy compared to existing FL approaches. The framework
successfully enables green, secure, and scalable AloT systems while conforming to sustainable Al
principles and ensuring resilient collaborative learning in resource-constrained edge environments.

Keywords: Artificial Intelligence of Things (AloT), Federated Learning (FL), Blockchain Technology,
Communication-Efficient Federated Learning, Green loT.

1. INTRODUCTION security, and real-time responsiveness [9]. FL
alone cannot adequately defend against
The Artificial Intelligence of Things (AloT) adversarial attacks or provide auditability in
revolutionizes domains such as healthcare, smart distributed IoT networks [10].
cities, and industrial automation by integrating Al Blockchain technology offers complementary
capabilities with [oT infrastructures [1]. However, advantages through tamper-evident model
deploying Al in IoT environments presents aggregation via  smart contracts [11],
significant challenges, including privacy risks decentralized trust infrastructures for participant
from centralized data aggregation [2], limited authentication [12], and energy-efficient
computational resources on edge devices [3], and consensus protocols adapted for resource-limited
communication bottlenecks in  bandwidth- devices [13].
constrained networks [4]. Federated Learning This paper presents a novel AloT framework
(FL) has emerged as a promising solution, integrating communication-efficient FL with
enabling decentralized model training while blockchain technology to enhance privacy,
preserving data privacy [5]. Nevertheless, efficiency, and scalability. The key contributions
traditional FL frameworks suffer from excessive include:
communication overhead due to frequent model 1. A hybrid FL protocol combining
updates, resulting in latency issues and high gradient quantization [7] and periodic
energy consumption in loT deployments [6]. averaging  [14]  achieving 40%
Recent advances in communication-efficient communication cost savings
FL—including  model  quantization [7], 2. An energy-efficient blockchain layer for
knowledge distillation [2], and gradient sketching secure aggregation, reducing energy
[8]—aim to address these inefficiencies. Despite consumption by 30% compared to
these developments, significant limitations conventional Proof-of-Work systems
remain in AloT systems regarding scalability, [13]
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3. Edge-device optimization for non-IID
data distributions [15]

Experimental results on industrial IoT datasets
achieved an 18% improvement in convergence
speed over Federated Averaging (FedAvg) [5],
35% bandwidth savings compared to FedPAQ
[14], and resistance to model poisoning attacks
[10].

2. SURVEY OF LITERATURE
2.1 Federated Learning in Internet of Things

Federated Learning (FL) has proven a game-
changing way to train models on many IloT
devices at once without giving up data privacy by
not sharing raw data [1]. FL has serious problems
with communication overhead, even if it has
several good points. This is because edge devices
and central aggregators are always exchanging
models, which uses a lot of bandwidth [3]. Recent
research indicates that as much as 60% of FL's
energy use is attributable to communication rather
than processing [3]. To tackle this problem,
scientists have suggested: Model quantisation,
which cuts down on update sizes by lowering
accuracy [5]; Compression methods like pruning
and sparsification [7]; and Probabilistic device
selection to give high-value updates priority [8].

For example, Chen et al. [1] showed that only
quantising cuts communication costs by 40%
without losing any accuracy. These methods are
very important for IoT rollouts, when there isn't
much bandwidth or energy. Federated dropout and
gradient clipping are both new, lightweight
changes that can help lower gearbox costs even
more. Techniques that change the frequency of
communication based on the context of the device
are also becoming more popular. These
techniques make it easier to make dynamic trade-
offs between accuracy of updates and power
savings. As IoT networks evolve, it is more and
more critical to use adaptable and scalable FL
approaches to ensure real-time behaviour without
giving up privacy needs.

2.2 FL Techniques
Communication

That Are Good at

The FL communication bottleneck has led to new
ideas that improve efficiency and performance.
Knowledge distillation (Wu et al. [2]) facilitates
thin models by transferring knowledge from
extensive models to compact ones while
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maintaining accuracy despite a reduction in
parameters. By synchronising models at regular
intervals, periodic averaging (Reisizadeh et al.
[5]) cuts down on the number of updates, which
greatly minimises the amount of data that needs to
be sent. FetchSGD [6] is a more advanced method
that uses gradient drawing to only transfer
important data, which saves 35% of bandwidth.
FedBoost [4] additionally adjusts the intervals for
aggregation, which speeds up convergence by 1.5
times in edge networks. These kinds of methods
work especially well for IoT, where latency and
resource use are quite important [3].

Researchers are also looking towards hierarchical
FL structures that use intermediate aggregators
near edge nodes to cut down on communication
costs. These middlemen cut down on the number
of times people talk to each other upstream while
making sure that the model stays the same.
Adaptive compression and event-triggered
updates are two methods that let devices talk to
each other only when there are big changes in
model gradients. This selective participation
reduces network congestion and energy drains. In
general, these kinds of solutions make it possible
for scalable, low-latency FL installations to work
with real-time IoT apps like smart homes,
industrial automation, and self-driving cars.

2.3 Blockchain for AIoT That Is Safe

By decentralising trust and model updates,
blockchain integration with FL closes security
flaws in AloT and makes them tamper-proof [12].
Smart contracts allow for automated aggregation
and the keeping of a permanent record of
transactions (Weng et al. [11]). For instance, Li et
al. [12]

showed that FL based on blockchain cuts down on
harmful assaults by 90% for industrial IoT. The
main benefits are:

Auditability: All modifications to the model are
kept forever [11].

Robustness: Consensus algorithms (e.g., Proof of
Stake) prevent single-point failures [12].
Scalability: Scalable light chain blockchains such
Hyperledger’s are ideal for resource-limited
devices [13].

Consensus methods, such Proof-of-Stake, make
sure that there are no single points of failure [12].
Scalable light chain  blockchains, like
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Hyperledger, are great for devices with minimal
resources [13].

In addition, blockchain frameworks can leverage
crypto-tokens or reputation ratings as rewards for
consistency to incentivise good behaviour in FL
processes. Combining homomorphic encryption
and zero-knowledge proofs (ZKPs) is a way to
check the integrity of a model without revealing
crucial parameters. The most recent developments
point to hybrid models of consensus that combine
Proof-of-Stake with Directed Acyclic Graphs
(DAGs) to make sure that high-speed IoT
networks have lower latency and higher
throughput. Combining FL and blockchain makes
a strong AloT ecosystem that improves data
provenance, accountability, and security on a
large scale.

2.4 Green IoT and Saving Energy

Energy efficiency is very important for AloT to
last. Adaptive model updates (Hard et al. [16]) and
dynamic device involvement (Bonawitz et al.
[10]) are two FL approaches that make the most
of resources. For instance: Periodic averaging cuts
energy use by 30% compared to continuous
updates [5], and quantised gradients cut power
needs by 25% in edge devices [5]. Nguyen et al.
[13] also showed that hybrid FL-blockchain
systems use 20% less energy than regular FL.
Also, energy-aware scheduling lets only the
devices that use the least power take part in
training rounds, which saves battery life without
affecting accuracy. New techniques, such as
model freezing (updating only certain elements of
a neural network) and on-device caching, cut
down on unnecessary calculations. Researchers
are also looking on how to connect FL with
broader environmental goals by using renewable
energy sources and energy-harvesting gear. These
changes are in line with the concepts of Green IoT,
which means they lower carbon footprints without
hurting performance and provide room for Al
applications that are good for the environment in
smart cities, farming, and healthcare. Proposed
Framework.
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3. PROPOSED SYSTEM ARCHITECTURE
AND OPERATIONAL FRAMEWORK

3.1 Architecture Overview

The suggested framework combines AloT with
Federated Learning (FL) and blockchain
technologies that are good at communicating to
provide safe, scalable, and long-lasting
intelligence at the edge. Some of the most
important parts are:

Communication-Efficient FL: To make data
transmission more efficient, model compression,
gradient quantisation, and sketching techniques
are used. This lowers the cost of communication
without lowering the accuracy of the model.
Blockchain Integration: A distributed ledger that
uses lightweight consensus procedures makes
sure that model aggregation is safe and can be
checked. Smart contracts also stop tampering or
harmful alterations.

Green IoT Mechanisms: Choosing which
devices to connect based on their energy profiles
and wusing low-power computing methods
improves overall energy efficiency and extends
the life of devices.

3.2 A Description of System Architecture

The system architecture described here, displayed
in Figure 1, shows a layered system that firmly
links Federated Learning (FL) for communication
efficiency with security through blockchain to
make it possible for Artificial Intelligence of
Things (AloT) devices to be energy-aware and
trustworthy.

At the bottom of the stack are the IoT devices that
sense data in real time, store it locally, and do light
preprocessing. These devices, which include
sensors and embedded systems, have strict
constraints on  power, memory, and
communication. To safeguard privacy, data is not
sent directly.
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Application Layer

Federated Learning Layer

Blockchain Layer

Edge Nodes

loT Devices

Figure 1: Architecture of an AloT System
that Uses Blockchain

The edge nodes are above them and operate as
middlemen. They take preprocessed data or model
updates from IoT devices, combine them, and
give you insights with low latency. These nodes
also help the FL layer execute training locally by
coordinating it.

The blockchain layer is the part of the system that
keeps it safe. It provides decentralised trust,
tamper-proof tracking, and smart contract
automation for managing training rounds,
checking for updates, and making collaborative
learning more open.

The Federated Learning Layer manages
decentralised model training across devices and
edge nodes by using communication-efficient
methods like update pruning, gradient
quantisation, and device selection. The layer is
what makes it possible for situations with limited
bandwidth to grow.

The application layer sits on top of this and uses
the learnt global model for all kinds of smart
services, such as predictive maintenance, anomaly
detection, or user personalisation, depending on
the location. This layer sends useful information
back to users and systems. The framework is built
to work with other systems, be resilient, and be
able to grow. This makes it suitable for complex
ecosystems like smart cities, healthcare, and
industrial automation.

3.3 Improving Communication

In AloT situations when resources are
constrained, good communication is an important
part of scalable Federated Learning (FL). The new
framework uses a number of clever techniques to
cut down on bandwidth use while keeping the
model's accuracy.
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First, FetchSGD is utilised for gradient sketching
and compression, which means that only the most
significant parts of the gradient are delivered
during training cycles [6]. This strategy makes the
update size smaller without losing crucial learning
information.

FedBoost then shows an ensemble-based learning
strategy that limits communication by training
models on a group of weaker learners [4]. Instead
of updating a big global model every round,
smaller sub-models are trained locally and
selectively collected. This means that the
communication overhead is traded off for model
correctness.

FedPAQ also makes things work better by
combining model averaging and model weight
quantisation [5]. FedPAQ considerably lowers the
cost of transmission by reducing the quantity of
communication and compressing updates into
lower precision. This is especially useful for IoT
applications with intermittent connectivity.

To formalise the communication-efficient model
updates, we adopt the quantisation framework
proposed by Wu et al. [2], who introduced
knowledge distillation and model compression for
FL optimisation:

w™ = Q(w)

Here, Q(.) is a quantisation operator that is used
on the model parameters w, and w~ is the
compressed representation that is
communicated across the network. This lets
devices send much smaller payloads during
training rounds, which cuts down on both energy
use and communication delays.

3.4 Putting Blockchain into Action

The proposed system includes a private
blockchain network as a decentralised layer of
trust to make sure that the federated learning
process is safe, secure, and accountable. All of the
edge devices or nodes that are taking part write
their model modifications to the blockchain. This
creates an unchangeable audit trail that makes it
harder to tamper with the data and makes it easier
to find. Smart contracts are used to automate some
parts of central FL, such as triggering model
aggregation, validating the integrity of updates,
and making sure that rules for participation are
followed. Centralised coordinators are not used,
which lowers the danger of single-point failure
and the effects of malicious or non-compliant
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nodes. Also, consensus methods like Proof-of-
Stake (PoS) or lightweight versions of Byzantine
Fault Tolerance (BFT) make sure that finality is
reached quickly while keeping the system strong
[11].

The blockchain layer makes trust less centralised
and governance more formal by using smart
contracts. This not only makes things more open
and stable, but it also makes it possible to use
incentive mechanisms, such token-based rewards,
to encourage honest involvement and long-term
engagement among IoT nodes.

3.5 AIoT Operation That Use Less Energy

Because edge devices have limited battery life and
computing power, energy efficiency is an
important design factor in AloT systems. The
proposed framework combines different methods
to get the most out of energy use without hurting
performance:

Adaptive Device Selection: The system only
picks devices with a lot of memory or that use less
energy for each round of training. This keeps low-
power nodes from getting too much work and
keeps the system stable.

Updates to FL happen on a regular basis.
Instead of sending updates all the time, devices do
model aggregation on a regular basis. This cuts
down on unnecessary calculations and idle
messaging, which is in line with goals to save
energy [5].

Compressed Model Transmission: This method
uses gradient quantisation and sparsification to
cut down on the amount of data that needs to be
sent during training. This means less power is
used and models sync up faster, especially when
bandwidth is limited [3].

3.6 FEDERATED LEARNING MODEL
UPDATE EQUATION [1]:

A common update rule in federated learning
during each round is:

N
1
Wir1 = Wie—p) ‘N Z Vfi(we)
i=1

= W(e—p) - g(Wt)
Where:
o The global model at iteration t is wt.
e 1 is the pace at which you learn.
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e fi(wt) is the slope of the local loss
function at device ii.

e Nisthe number of devices that are taking
part.

This formula shows how each device, after doing
local training with its own data, finds the gradient
Vfi (wt) and transmits a smaller or more
compressed version of it to the central aggregator.
The aggregator then uses the global update rule
and averages the gradients.

The notation w(t—n) shows that the new global
model is different from the old one since the
gradient and the learning rate are added together.
This framework makes it easier for people to learn
in a decentralised way while yet moving towards
a high-quality global model across several rounds.

Why this matters in AloT:

In AloT contexts, where devices have limited
resources for  power, compute, and
communication, sharing data directly is not
possible because of privacy and bandwidth
constraints. This aggregation approach lets
devices learn from each other without having to
share their data. Still, employing full gradients to
talk to each other is still expensive.

Our approach includes communication-efficient
tactics like:

Gradient quantisation, in which Vfi (wt) is sent
with less bits.

Periodic averaging, in which devices only send
messages after walking a few steps in their own
area,

Sketching methods, which limit the amount of
communication by estimating gradients.

The model's changes g(wt) are all saved on a
private blockchain, which makes sure that the
learning process is open, can be checked, and can't
be changed. Smart contracts use validation rules,
such as making sure that a device update is
acceptable, to make the FL process more secure
and reliable.

In short, this formula and how it is used are the
major ways to keep the system in model precision,
work around the constraints of devices, and
protect privacy and security in a distributed IoT
setting.
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4. EVALUATION THROUGH
EXPERIMENT

4.1 Setting up the Evaluation

To assess the effectiveness of the proposed
blockchain-based, communication-efficient
Federated Learning (FL) model for Green AloT
frameworks, a series of simulation tests were
conducted. We used benchmark datasets like
CIFAR-10 and MNIST to see how well the model
worked on different picture classification tasks.
The main metrics that were used to test the
experiment were:

Model Accuracy: Looking at how well different
FL methods make predictions.

Reducing communication costs: Figuring out
how much bandwidth is saved by combining
FetchSGD [6] with FedPAQ [5].

Energy Consumption Analysis: Evaluating the
power efficiency of conventional FL models
against the suggested optimised approach.

The simulations were done in a controlled
environment, and the IoT device simulations had
realistic limits on communication bandwidth and
computing power to mimic real-world AloT
settings.

4.2 Performance Comparison

We evaluated the performance of the proposed
framework to that of standard FL methods
including traditional FL, FedAvg, and FedPAQ.
The performance indicators evaluated included
the number of communication cycles required for
convergence, total bandwidth usage, accuracy of
the final model, and overall energy economy.
Table 1 shows the results, which clearly show that
all the performance markers have improved a lot.

Table 1: Comparison of the Performance of Different FL Methods

etaa | Compmetn | B | e | e
Traditional FL 100 1000 92 70
Proposed Method 45 380 94 95
FedAvg 85 850 91 75
FedPAQ 70 600 90 80
Key Findings:

As shown in TABLE 1, the proposed method
achieves substantial performance gains over both
traditional FL and other baseline approaches.
Compared to traditional FL, communication
rounds are reduced by 55% and bandwidth usage
by 62%. Model accuracy improves by
approximately 2% compared to baseline methods,
while energy efficiency reaches 95%,
representing a significant improvement over the
70% achieved by conventional FL.

These results indicate that integrating
communication-efficient FL algorithms with
blockchain-based security yields a highly

effective framework for smart [oT systems—one
that is secure, resource-efficient, and aligned with
the principles of Green AloT.
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4.3 Experimental Results

The experimental results confirm the substantial
benefits of the proposed communication-efficient
and blockchain-secured Federated Learning (FL)
framework in AloT settings. Here are the main
results that we will talk about next.

How well communication works

Using FetchSGD [6] made communication much
more efficient. FetchSGD cut down on
communication rounds by around 6 times
compared to standard Federated Averaging
(FedAvg). Devices only sent the most important
gradient information by using gradient sketching
and compression. This cut down on the overall
bandwidth used by a lot. This decrease directly
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leads to decreased network congestion, faster
convergence, and better scalability for AloT
systems that have strict bandwidth limits.

Upgrading Security

The implementation of a private blockchain layer
made sure that model changes were safe and could
be validated for accuracy at every step of the
federated learning process. Smart contracts made
sure that local model updates were thoroughly
checked before they were combined, which
stopped bad devices from adding bad data or
changing the global model. The experimental
results showed that the FL framework based on
blockchain kept the integrity and coherence of
model aggregation processes even when
simulated adversarial attacks happened. This
made the decentralised learning process far more
secure and reliable.

Savings on energy

The proposed adaptive device participation
technique [5] considerably improved energy
efficiency, which is a major part of Green IoT. By
only allowing high-capacity and

By using energy-efficient devices during each
training cycle, the framework was able to cut
overall energy use by up to 40% compared to
standard FL setups. Also, rare updates and model
transmissions in compressed form helped IoT
devices use less battery power, which meant they
could keep working for longer without needing to
be recharged or maintained. These results confirm
that the proposed framework works to make AloT
operations sustainable while keeping the
environment in mind.

4.4 Visualizing Performance Metrics:

Figure 2 illustrates the performance metrics
comparison across different FL methods.
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Performance Metrics Comparison Across FL Methods:
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Figure 2: Performance Comparison across
Different Metrics

Figure 2 shows how four Federated Learning (FL)
techniques—Traditional FL, FedAvg, FedPAQ,
and the Proposed Method—compare on some of
the most relevant performance metrics:
communication rounds, bandwidth utilisation,
model correctness, and energy economy. The
proposed method is far better than existing
methods since it optimises all the critical aspects
for green and safe AloT systems in a well-
balanced way.

How well you can communicate:

The proposed method achieves the fewest
communication rounds (45), demonstrating a
superior convergence rate compared to FedAvg
(85) and FedPAQ (70). This efficiency is further
supported by the huge reduction in bandwidth
(380 MB), which is about 62% less than regular
FL (1000 MB). These improvements show that
using both FetchSGD and FedPAQ together is a
good way to cut down on transmission overhead.

How accurate is the model?

The suggested method gets the best accuracy
(94%), which is better than standard FL (92%),
FedAvg (91%), and FedPAQ (90%). However, it
does make communication less effective. This
shows that communication-efficient strategies
don't hurt predictive performance; instead, they
help models work well in distributed AloT
scenarios.

Efficiency of Energy:

The proposed framework reaches 95% energy
efficiency, which is a big jump from the usual FL
(70%) and even the optimised FedPAQ (80%).
The improvement is made using selective device
involvement, model compression, and updates
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every now and again, which are all important
parts.

4.5 Energy Efficiency Metrics [4]:

To quantitatively evaluate the sustainability of the
discussed FL framework for AloT settings, we
used an Energy Efficiency (EE) metric adapted
from Hamer et al. [4] in their influential ICML
2020 paper on FedBoost. This metric provides a
normalized measure of how efficiently a federated
learning approach transmutes absorbed energy
into the prediction.

performance. It is given as:

Model Accuracy
Energy Consumption

Energy Efficiency (%) = (. ) X 100

We got this measure of efficiency from Hamer et
al.'s FedBoost work at ICML 2020.

The latest output classification performance of the
global model, measured as a percentage, is what
we mean by model correctness.

The total amount of energy used by all the gadgets
during the entire training procedure is called
energy consumption. It is commonly calculated in
conventional energy units or as a way to compare
things.

The final figure, which is a percentage, shows
how accurate the outcome was for each unit of
energy used.

This phrase shows the trade-off between learning
performance and resource use, which is important
in AloT systems because edge devices have
limited battery life, computing power, and thermal
budgets.

Relevance in the AloT Context

In traditional FL frameworks, getting more
accurate results usually means using more energy
because there is more communication and more
intense calculation. Green AloT systems, on the
other hand, try to get the most accurate results
while using the least amount of energy. This
makes sure that devices last longer and may be
used in regions with few resources.

The suggested method gets a lot of energy savings
by using FetchSG to cut down on the number of
communication rounds.

We used adaptive device selection, which means
choosing the best nodes for training. We also used
FetchSGD to cut down on the amount of
communication rounds and FedPAQ to send
quantised and compressed updates.
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All of these techniques work together to lower
energy use without harming or even improving
model accuracy. Figure 2 shows that the suggested
framework is 95% energy efficient, which is
better than any other FL method. This shows how
important this measure is for loT applications in
the real world.

The framework allows for ecologically friendly
computing goals by adding this dimension to the
assessment process. It also gives a similar way to
compare FL techniques in situations where power
is constrained.

The framework facilitates environmentally
friendly computing goals and offers a comparable
method to compare FL strategies in power-

constrained scenarios by integrating this
measurement into the evaluation process.

4.6 Energy Consumption Analysis

The framework facilitates environmentally

friendly computing goals and offers a comparable
method to compare FL strategies in power-
constrained scenarios by integrating this
measurement into the evaluation process.

1000 . Taditenal FL
- Froposed Method
- fedhvg
-

Figure 3: Energy Consumption Comparison

Communication Rounds and Bandwidth

Utilisation

As shown in Figure 3, the proposed method
records the fewest communication rounds and
significantly lower bandwidth usage compared to
all baseline approaches. In contrast, traditional FL.
incurs the highest communication overhead and
bandwidth consumption, making it unsuitable for
low-power and  bandwidth-limited IoT
environments. The results highlight the
effectiveness of optimisation strategies such as
FetchSGD and FedPAQ, which Ilimit data
exchange through gradient compression and less
frequent model updates.
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Model Accuracy

Even with reduced communication, the proposed
approach achieves the highest model accuracy
(94%). This demonstrates that optimising
communication does not compromise learning
performance. By comparison, FedAvg achieves
91% and FedPAQ reaches 90%, while traditional
FL demands much higher communication to
approach similar accuracy levels.

Energy Efficiency

Energy efficiency in the proposed framework is
notably high at 95%, outperforming traditional FL
(70%) and other baselines (75-80%). This
improvement is attributed to techniques such as
selective device participation, model
compression, and intelligent scheduling, which
collectively reduce computational load and data
transfers in each training cycle.

Relevance to AloT

The findings confirm the viability of federated
learning in AloT deployments when integrated
with:

e Communication-optimised  protocols
suitable for bandwidth-restricted
environments

e Blockchain mechanisms that ensure

tamper-resistant, decentralised
coordination
e Energy-conscious training strategies

aligned with the principles of Green IoT
4.7 Blockchain Based Secure Aggregation [3]:

To ensure secure and tamper-resistant aggregation
of model updates in a decentralized Federated
Learning (FL) environment, the proposed
framework integrates a blockchain-based security
mechanism, similar to the approach described by
Mills et al. [3] in their IEEE IoT Journal article on
Wireless Edge Intelligence.

The blockchain’s integrity is maintained through
the following cryptographic hash function:

H(Blockt) = Hash(H (Block:1) lIData¢ | Nonce:)
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Explanation of Terms

 H(Blocki)) — The hash value of the
current block t, which uniquely identifies
its contents.

»  Hash(H(Blocke1)) — The hash value of
the previous block, ensuring that all
blocks are linked in chronological order
within the chain.

+  Data¢ — The model updates or gradients
(such as compressed weights) provided
by edge devices during round t.

*  Nonce: - A random value used only once
in cryptographic processes, typically as
part of a consensus algorithm such as
Proof-of-Work or Proof-of-Stake.

This equation follows the blockchain’s chaining
method, where each block is cryptographically
linked to its predecessor. Any change to an
earlier block, such as altering model updates,
would trigger a cascading hash mismatch,
making tampering both detectable and
computationally impractical.

Role in Federated Learning

In the proposed system, blockchain technology is
employed to securely record aggregated model
updates at the conclusion of each training round.
Each update, or group of updates, is encapsulated
in a block, hashed, and linked to the existing
chain. The hash of the final block ensures both
immutability and the  preservation  of
chronological order. Before any update is
appended, a smart contract verifies its validity,
checking for anomalies, duplicate gradients, or
unauthorised participation.

Advantages for Secure AloT

Tamper-Proof Aggregation — Ensures that once
verified, model updates cannot be altered or
inserted, providing strong protection against
poisoning attacks.

Transparency and Auditability — Maintains an
immutable record of each aggregation step,
enabling independent verification and compliance
with regulatory standards.

Decentralised Trust — Removes reliance on a
single trusted aggregator, a key advantage in
federated, multi-vendor IoT ecosystems.

4.6 Periodic Averaging with Quantization [S]:
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R /32
Communication Cost = B - z (—)
r=1 br
Where:
e B is the model size in bits
e Db,is the quantization bit-width at round r

e R is the total number of communication
rounds

The formula measures how the bit -width of
quantized updates influences the overall
communication overhead during the iterations of
RRR FL rounds. Every round imposes a
communication expense proportional to the model
size and inversely proportional to the quantization
precision. The smaller the brb_rbr, bit -width, the
more compressed—and the lighter
communication expense.

For instance:

. 8-bit quantization lowers communication
cost to roughly 25% of the original.

e  4-bit quantization provides approximately
8x compression, resulting in substantial
energy and bandwidth savings.

When combined with periodic model averaging,
devices transmit updates only at designated
intervals rather than after every local training
step. This further reduces the frequency of
communication, enabling energy-constrained IoT
nodes to participate without constant data
transmission.

5. RESULTS AND DISCUSSION
5.1. Communication Efficiency

As shown in TABLE 1 and FIGURE 2, the
proposed communication-efficient Federated
Learning (FL) framework achieves a substantial
reduction in communication rounds and
bandwidth usage—up to 6x improvement
compared to conventional FL methods [1], [6],
[7]. This gain is achieved without compromising
model accuracy, validating the effectiveness of
techniques such as gradient quantization [5]-[7],
periodic model averaging [4], and adaptive device
selection [15].

5.2. Security Through Blockchain Integration

The incorporation of blockchain technology
ensures tamper-evident and auditable model
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aggregation [3], [11]-[14]. As illustrated in
FIGURE 3, smart contracts and cryptographic
hash chaining provide a decentralized mechanism
for validating model updates, mitigating risks of
poisoning attacks [10], [11] and preventing
unauthorized contributions in multi-vendor IoT
environments [13], [14]. The hash-based linkage
guarantees chronological integrity, making any
attempted modification computationally
infeasible.

5.3. Energy Efficiency and Green 10T
Alignment

Energy efficiency is a critical parameter for Green
IoT deployments. Experimental results indicate
that the proposed framework achieves up to 95%
energy efficiency, compared to 70% for
conventional FL systems [1], [6], [15]. As shown
in TABLE 1, this improvement stems from three
key design choices:

Adaptive Device Participation — Ensuring that
only energy-optimal devices participate in each
round [15].

Gradient Quantization - Reducing
communication load and transmission energy cost
[51H7].

Periodic Averaging — Decreasing the number of
transmission events without sacrificing accuracy

[4].

5.4. Practicality in Resource - Constructed
AIOT Networks

Theoretical derivations, including equations for
energy efficiency and communication cost [5]—
[7], confirm the scalability and practicality of the
proposed approach for real-world AloT
deployments. The ability to maintain high
accuracy while reducing communication and
energy overhead makes the system well-suited for
large-scale, heterogeneous IoT networks.

5.5. Summery of Findings

Collectively, the results demonstrate that the
proposed FL framework offers:
¢ High communication efficiency with minimal
accuracy loss [1], [6], [7].
o Blockchain-secured aggregation for enhanced
security and transparency [3], [11]-[14].
e Significant  energy  savings, enabling
participation from low-power loT devices [4]—

(7], [15].
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e These outcomes establish the framework as a
secure, sustainable, and high-performance
solution for distributed Al in edge and IoT
environments.

6. CONCLUSION AND FUTURE WORK

This paper presents an integrated and scalable
AloT architecture that combines communication-
efficient Federated Learning (FL) with
blockchain-based secure aggregation to enable
intelligent, privacy-preserving, and energy-
efficient learning in IoT systems. Large-scale
simulations on benchmark datasets, along with
comparisons against existing FL approaches,
demonstrate significant improvements in:

Communication efficiency — Up to 62%
bandwidth savings compared to baseline methods.
Model performance — Highest accuracy
achieved with lower communication cost.
Energy efficiency — 40-50% energy reduction
relative to conventional practices.

System security — Decentralized, auditable model
aggregation to prevent tampering and
unauthorized updates.

The proposed architecture aligns with the
principles of Green and Secure AloT, offering a
practical pathway for deploying distributed
intelligence in resource-constrained environments
such as smart cities, healthcare, precision
agriculture, and industrial automation.

FUTURE WORK

While the current framework demonstrates strong
performance, future research will focus on
integrating next-generation cryptographic
techniques—such as zero-knowledge proofs,
homomorphic encryption, and quantum-resistant
cryptography—to further enhance privacy and
robustness in adversarial settings. In addition,
real-world deployments and edge-hardware
benchmarking will be conducted to evaluate
system performance under dynamic and
heterogeneous IoT conditions.
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