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ABSTRACT

Network security has become a critical concern due to the increasing complexity of cyber threats
targeting interconnected systems. The “Internet of Medical Things” (IoMT) has transformed healthcare by
enabling real-time monitoring, remote diagnostics, and automated medical interventions. Integrating [oMT
devices into healthcare infrastructures exposes networks to security vulnerabilities, requiring robust
intrusion detection mechanisms. “Host-based intrusion Detection Systems” (HIDS) provide a localized
security approach, monitoring system logs, processes, and behaviors to detect unauthorized activities.
Traditional detection techniques often struggle with evolving threats and resource limitations in IoMT
environments. Bio-inspired optimization techniques offer adaptive security enhancements, refining
detection mechanisms while minimizing computational overhead. The Adaptive Caribou Defense Protocol
(ACDP) leverages nature-inspired intelligence to optimize intrusion detection, ensuring enhanced security
resilience. By integrating bio-inspired approaches with HIDS, intrusion detection frameworks can achieve
improved adaptability, real-time threat identification, and efficient security enforcement across IoMT
networks, mitigating emerging cyber risks effectively.

Keywords: Host Intrusion Detection Systems - Internet of Medical Things - Intrusion Detection —
Cybersecurity in Healthcare - Caribou Optimization

1. INTRODUCTION advanced interconnected ecosystem, integrating

medical devices, wearable sensors, and cloud-based

“Wireless Sensor Networks” (WSNs) have
revolutionized data collection, transmission, and

processing in various sectors, particularly in
healthcare. These  networks  consist  of
interconnected sensor nodes that monitor
physiological parameters, environmental

conditions, and medical processes [1]. WSNs are
crucial in remote patient monitoring, emergency
response systems, and hospital automation. The
ability of these networks to collect real-time
medical data has enhanced healthcare efficiency,
reduced manual intervention, and improved the
quality of patient care [2]. Due to their open
communication channels and dependency on
wireless connectivity, WSNs remain vulnerable to
cyber threats, including data breaches, unauthorized
access, and network intrusions. Securing these
networks requires advanced security mechanisms
that detect, prevent, and respond to cyber threats in
real time [3].

The “Internet of Medical Things” (IoMT)
extends the principles of WSNs into a more

healthcare platforms [4]. IoMT enables seamless
communication between smart medical devices,
electronic health records (EHRs), and remote
healthcare providers, ensuring real-time diagnostics,
patient monitoring, and medical intervention. The
growing dependence on IoMT has introduced new
challenges concerning data security, privacy, and
network integrity [5]. IoMT devices, often
operating on resource-constrained platforms, face
significant risks such as malware infections, data
tampering, and denial-of-service (DoS) attacks.
Since these medical devices interact with sensitive
patient data, the consequences of security breaches
can be severe, leading to compromised patient
safety, unauthorized alterations in medical
prescriptions, and disruptions in critical healthcare
services [6].

“Intrusion Detection Systems” (IDS) is a critical
security mechanism in IoMT, ensuring -early
detection of malicious activities, unauthorized
network access, and suspicious behavioral patterns
[7]. Traditional cybersecurity measures such as
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encryption and  authentication provide a
foundational level of security, but they remain
insufficient against advanced cyber threats that
continuously evolve. Intrusion detection in IoMT
involves monitoring real-time network traffic,
analyzing system logs, and identifying anomalies
that indicate potential security breaches. IoMT
environments require specialized intrusion detection
techniques that consider the constraints of medical
devices, including limited processing power, low
energy consumption, and stringent real-time
requirements [8]. By incorporating IDS, healthcare
infrastructures can safeguard medical data, ensure

device integrity, and maintain = seamless
communication across [oMT networks [8].

Among the various intrusion detection
techniques, “Host-Based Intrusion Detection

Systems” (HIDS) are crucial in securing IoMT
networks.  Unlike “Network-Based Intrusion
Detection Systems” (NIDS), which focus on
monitoring traffic across an entire network, HIDS
operates at the device level, detecting anomalies,
unauthorized access, and system irregularities
directly within IoMT endpoints [9]. HIDS analyzes
system logs, file integrity, and process activities,
identifying threats such as malware infections,
privilege escalation, and unauthorized
modifications in medical applications. Since [oMT
devices function in diverse environments ranging
from hospital infrastructure to wearable healthcare
monitoring systems, HIDS provides a localized
security approach that strengthens individual device
security and prevents network-wide disruptions
[10].

HIDS performs real-time monitoring of system
activities, detecting deviations from predefined
security policies. By examining system logs and
behavior patterns, HIDS identifies unauthorized
changes in file structures, configuration settings,
and software execution flows. [oMT devices rely on
stable and predictable operational behaviors; thus,
any anomaly detected by HIDS is an early warning
for potential security threats [11]. HIDS offers
forensic capabilities, allowing security
administrators to analyze logs and determine the
origin of an attack, thereby facilitating rapid threat
mitigation and future prevention strategies [12].
HIDS in IoMT also enhances security resilience by
providing behavioral-based detection mechanisms.
Unlike signature-based detection, which relies on
predefined attack patterns, behavioral-based
detection in HIDS examines real-time deviations
from normal device operations. IoMT devices
frequently communicate with cloud storage, remote

healthcare providers, and centralized hospital
management systems, making them susceptible to
novel cyber threats [13]. HIDS continuously adapts
to evolving threat landscapes, identifying
previously unknown attack patterns that traditional
security methods might overlook. This adaptive
security mechanism ensures that IoMT networks
remain protected against zero-day vulnerabilities
and advanced persistent threats (APTs) [13].

Integrating HIDS with ToMT frameworks
requires efficient optimization techniques to address
resource constraints associated with medical
devices. Since IoMT devices often operate with
limited processing power and battery life, HIDS
implementations must be lightweight, ensuring
minimal computational overhead. Advanced
optimization algorithms enhance HIDS
performance, allowing real-time threat detection
without compromising device efficiency [14]. By
prioritizing  essential  security checks and
minimizing redundant processes, optimized HIDS
solutions ensure effective intrusion detection while
maintaining uninterrupted medical functionalities
[15]. HIDS also plays a vital role in compliance and
regulatory adherence within IoMT security
frameworks. Healthcare infrastructures must
comply with stringent data protection regulations
such as the “Health Insurance Portability and
Accountability Act” (HIPAA) and the “General
Data Protection Regulation” (GDPR). These
regulations mandate the secure handling of medical
data, ensuring confidentiality, integrity, and
availability [16]. HIDS solutions help enforce
regulatory compliance by detecting unauthorized
data access, ensuring file integrity, and monitoring
system logs for security violations. By maintaining
comprehensive audit trails and security logs, HIDS
enables healthcare organizations to meet regulatory
requirements while enhancing overall security
resilience.

In IoMT environments, HIDS is a proactive
defense mechanism, mitigating security risks before
they escalate into major threats. By integrating
HIDS with machine learning algorithms, security
frameworks can predict potential intrusions based
on historical data patterns, improving threat
response mechanisms [17]. Predictive security
models combined with HIDS enhance real-time
intrusion detection capabilities, ensuring robust
protection for medical devices, patient records, and
healthcare communication networks. The evolving
landscape of IoMT security demands a multi-
layered security approach, where HIDS functions as
a fundamental component in protecting individual
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devices from cyber threats [18]. Continuous
advancements in HIDS technology contribute to
intrusion  detection  mechanisms'  resilience,
adaptability, and reliability, ensuring secure
medical environments and patient safety across
interconnected healthcare infrastructures [19].

Bio-inspired optimization draws inspiration from
natural processes to develop efficient problem-
solving techniques in various computational
domains. Evolutionary ~ behaviors, swarm
intelligence, and ecological adaptations provide the
foundation for optimization algorithms that enhance
decision-making, pattern recognition, and resource
allocation [20], [21]. Nature-inspired models, such
as genetic algorithms, ant colony optimization, and
particle swarm optimization, mimic biological
mechanisms to solve complex challenges
efficiently. These methods enable adaptive learning,
self-organization, and dynamic problem-solving,
making them suitable for network security, robotics,
and machine-learning applications [22]. In intrusion

detection, bio-inspired optimization improves
classification accuracy, reduces false positives, and
enhances detection efficiency. Optimization

techniques refine security models by emulating
strategies from wildlife, such as caribou migration
and foraging behavior, enabling real-time
adaptation to evolving cyber threats. Integrating
bio-inspired approaches with HIDS strengthens
network resilience, ensuring a proactive defense
mechanism for safeguarding critical infrastructures,
including [oMT environments [23].

1.1. Challenges

Intrusion detection in the IoMT faces
multiple challenges due to the complexity of
interconnected  medical  devices.  Resource
constraints in [oMT devices limit the computational
capabilities required for efficient HIDS. Real-time
monitoring demands impose high processing loads,
affecting device performance and energy efficiency.
The evolving nature of cyber threats introduces
sophisticated attack patterns that bypass traditional
detection  mechanisms.  Ensuring  seamless
integration of HIDS with IoMT frameworks
requires optimization techniques to minimize
latency and false positives. Compliance with
regulatory frameworks such as HIPAA and GDPR
complicates security implementation. Secure data
transmission and encrypted storage remain critical
concerns, particularly in remote patient monitoring
systems and cloud-based healthcare platforms.

1.2 Motivation and Objective

The increasing adoption of the IoMT has
introduced  significant  security = concerns,
necessitating robust intrusion detection
mechanisms. Medical devices, electronic health
records, and remote monitoring systems require
protection from cyber threats that could
compromise patient safety and data integrity. HIDS
provides a localized security approach, ensuring
device-level monitoring and anomaly detection. The
primary motivation is to enhance real-time threat
identification while minimizing computational
overhead in resource-constrained IoMT
environments. The objective is to develop an
optimized HIDS framework that ensures accurate
intrusion detection, reduces false positives, and
aligns with regulatory compliance. Strengthening
security resilience in IoMT networks ensures
uninterrupted healthcare services while mitigating
unauthorized access and data breach risks.

1.3 Research Gap

Existing security frameworks in the [oMT
lack efficient intrusion detection mechanisms
tailored for resource-constrained medical devices.
Traditional “Network-Based Intrusion Detection
Systems” (NIDS) focus on network traffic but fail
to address security threats at the device level. HIDS
offers  localized monitoring, yet current
implementations struggle with high computational
overhead, leading to inefficiencies in real-time
threat detection. Adaptive optimization techniques
for HIDS in IoMT remain underexplored, limiting
the ability to mitigate emerging cyber threats
effectively. Existing models also exhibit high false-
positive rates, reducing reliability in intrusion
detection. Addressing these gaps requires a
lightweight, adaptive HIDS framework that
enhances security while ensuring minimal impact
on device performance and real-time healthcare
operations.

2. LITERATURE REVIEW

“DSRNN-ISCOA” [24] integrated a
dynamically stabilized recurrent neural network
(DSRNN) with an intensified sand cat swarm
optimization (ISCOA) technique for securing
wireless sensor networks (WSNs). An adaptive
multi-scale differential filter preprocessed data by
removing redundancies, while the Wolf-Bird
Optimization Algorithm selected relevant features.
DSRNN classified network traffic, detecting black
holes, grey holes, flooding, and TDMA attacks.
ISCOA optimized DSRNN’s weight parameters,
enhancing accuracy by adapting to attack patterns.

e ——
8182



Journal of Theoretical and Applied Information Technology ~
15" October 2025. Vol.103. No.19 ~J

© Little Lion Scientific

SMminl

ISSN: 1992-8645

www jatit.org

E-ISSN: 1817-3195

“Boost-WSN-IDS” [25] introduced a LEACH-
based dataset simulating DoS attacks in wireless
sensor networks, including wormhole, black hole,
grey hole, flooding, and TDMA-based attacks.
Boosting-based models such as LightGBM,
XGBoost, and Bagging were used for intrusion
detection. Feature selection minimized
computational complexity while maintaining high
accuracy. LightGBM, with its leaf-wise growth
strategy, excelled in memory efficiency and speed,
making it ideal for resource-limited WSNss.

“E2E-CNN1D”  [26] introduced a
lightweight 1D convolutional neural network for
detecting advanced cyber threats in industrial ToT
networks. Using the Edge-lloTset dataset with 14
attack categories, the model employed end-to-end
learning, eliminating extensive feature engineering.
A preprocessing step normalized input data for
consistency, while CNNID extracted hierarchical
features to capture local and temporal attack
patterns.  K-fold  cross-validation  improved
generalization and reduced overfitting. “UAV-IDS
Datasets” [27] analyzed datasets for intrusion
detection in UAV communication networks,
categorizing them based on intra-UAV and inter-
UAYV security challenges. Key factors like attack
types, data distribution, and network protocols were
evaluated to assess suitability for machine learning-
based IDS. A novel taxonomy highlighted gaps in
existing datasets and the need for broader attack
scenarios. Recommendations were provided for
dataset selection based on UAV network
configurations and threat models. “MAFA-LSTM”
[28] combined a memetic self-adaptive firefly
algorithm (MAFA) with LSTM for intrusion
detection in IoT networks. A perturbation operator
in MAFA prevented local optima, ensuring optimal
LSTM hyperparameters. After noise removal and
feature normalization, MAFA selected the most
relevant security parameters, which LSTM then
analyzed for temporal attack patterns. This hybrid
approach improved precision, recall, and accuracy,
surpassing traditional deep learning methods.

“SA-PVAE-GAN” [29] introduced a
security framework for wireless sensor networks
(WSN) by integrating self-attention, provisional
variational auto-encoders (PVAE), and GANs. A
preprocessing module extracted key network
features, while PVAE encoded data into a latent
space, learning normal and attack traffic
distributions. ~ Self-attention improved feature
learning by capturing long-range dependencies. A
GAN-based approach generated synthetic attack
samples to enhance training, with a discriminator

refining intrusion detection. “DRL-IDS Guide” [30]
explored deep reinforcement learning (DRL) for
intrusion detection in IoT networks, analyzing
architectures, training strategies, and real-world
applications. A design framework focused on
reward functions, action spaces, and state
representations  while addressing exploration-
exploitation  trade-offs and  computational
constraints. Key challenges such as training
instability, high-dimensional action spaces, and
adversarial attacks were identified. The study
emphasized federated learning, transfer learning,
and self-adaptive DRL for improving detection.
“ML-DDOS-SDIoT” [31] introduced a
machine learning-based security framework to
mitigate DDoS attacks in software-defined IoT
(SD-10T) networks. A feature engineering pipeline
extracted key traffic patterns, while a multi-stage
classifier combining SVM, RF, and DNN ensured
hierarchical threat detection. The SDN controller
dynamically adjusted flow rules based on real-time
IDS feedback, with a feedback loop enabling
adaptive retraining. An anomaly detection
mechanism flagged threats before full-scale attacks,
reducing detection latency and resource usage.

“M-CNN-IDS”  [32] introduced an
optimized CNN-based intrusion detection system
(IDS) for enhanced cybersecurity. An advanced
feature extraction layer captured spatial and
temporal attack patterns more effectively than
standard CNNs. A lightweight architecture enabled
deployment in resource-constrained environments
while batch normalization and dropout layers
reduced overfitting. A hybrid data augmentation
technique improved the detection of rare attacks.
“E-IDS-WSN” [33] introduced an E-shaped
machine learning framework for intrusion detection
in WSN. It featured three core components: feature
selection, ensemble classification, and adaptive
security policies. An evolutionary optimization
algorithm selected key security attributes, while an
ensemble of classifiers (decision trees, SVMs, and
RNNs) improved detection accuracy. The model
dynamically adjusted classification thresholds based
on network conditions for real-time adaptability.
Reinforcement learning-based security policies
enabled continuous evolution against emerging
threats. “RBM-LSTM-IDS” [34] combined
Restricted Boltzmann Machine (RBM) and Long
Short-Term Memory (LSTM) networks for
detecting routing attacks in IoT networks. RBM
extracted high-relevance features from raw traffic,
while LSTM analyzed sequential patterns to
identify anomalies like blackhole and wormhole
attacks. A dynamic thresholding mechanism
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adapted to network conditions, minimizing false
positives. The model continuously learned from
traffic behavior, distinguishing legitimate routing
changes from attacks.

“WOGRU-IDS” [35] combined the Whale
Optimization Algorithm (WOA) and Gated
Recurrent Unit (GRU) networks for intrusion
detection in IoT-assisted Wireless Sensor Networks
(WSNs). WOA selected optimal features, reducing
computational overhead while preserving accuracy.
The GRU model analyzed these features, detecting
threats like sinkholes, Sybil, and selective
forwarding attacks. With adaptive learning, the
system updated itself to counter evolving threats.
Unlike traditional IDS, it achieved high accuracy
with low energy consumption, making it ideal for
resource-constrained  IoT-WSN  environments.
“GA-RF-IDS” [36] integrated the Genetic
Algorithm (GA) with Random Forest (RF) to
enhance intrusion detection in IoT networks. GA
optimized RF’s decision trees, selecting the most
relevant features for classification. The network
was divided into subdomains, each managed by a
controller node running the optimized RF model.
These nodes operated independently or
cooperatively, analyzing traffic and detecting
threats while balancing precision and recall to
minimize false positives. Extensive testing on
NSW-NB15 and NSL-KDD datasets showed higher
accuracy than traditional RF-based IDS.

“D-NIDS” [37] introduces a domain-
invariant network intrusion detection system to
improve threat detection across different network
environments. The model leverages deep learning
techniques to extract invariant features, ensuring
consistent performance in varying domains. The
system enhances generalization and robustness
against cyber threats by addressing distribution
shifts in network traffic data. The approach
minimizes dependency on specific datasets, making
it adaptable to diverse network conditions. Through
advanced feature learning and anomaly detection,
DI-NIDS effectively identifies malicious activities,
providing a scalable and reliable cybersecurity
solution for modern network infrastructures.

“D-MAN” [38] presents an effective
technique for detecting minority attacks in network
intrusion detection systems (NIDS) using deep
learning and sampling strategies. The approach
addresses data imbalance by employing advanced
sampling techniques to enhance minority class
detection. A deep learning model is trained on
enriched datasets, improving sensitivity to rare
cyber threats. By refining feature extraction and

classification, the system enhances accuracy in
identifying underrepresented attack types. The
method ensures robust intrusion detection, reducing
false negatives and strengthening cybersecurity
defenses. This framework provides a more balanced
and efficient solution for detecting minority attacks
in evolving network environments.

Bio-inspired optimization in the research
outcomes demonstrates how natural foraging
strategies can strengthen intrusion detection by
enhancing adaptability under dynamic IoMT
conditions [39] - [50]. The results validate that the
algorithm reduces false alarms and improves
detection accuracy through elite selection and
adaptive search [51] - [64]. This shows the study’s
contribution in transferring biologically inspired
intelligence into practical security mechanisms for
resource-constrained medical devices [65] — [78].

3. ADAPTIVE CARIBOU DEFENSE
PROTOCOL (ACDP)

The Adaptive Caribou Defense Protocol
(ACDP) begins with the essential step of
initializing the caribou herd, which simulates the
setup of potential solutions within the HIDS. Each
caribou in this initialization phase represents a
unique configuration of HIDS parameters designed
to establish a diverse starting population of possible
solutions. This step lays the groundwork for the
optimization process, ensuring that the HIDS can
adapt, evolve, and become more effective at
detecting intrusions.

3.1 Parameter Definition and Herd Diversity

The first objective in initializing the
caribou herd is creating various parameter values
for the HIDS. Each caribou, representing a specific
configuration, is defined by multiple variables that
collectively determine the behavior and sensitivity
of the HIDS. Let a vector denote the configuration
of each caribou X, as shown in Eq.(1).

X =[xy,%5,%5, ., Xy (1)

X signifies a complete configuration vector for a
single caribou, with each element x; representing a
specific HIDS parameter. These parameters could
include thresholds for anomaly detection, logging
intervals, and resource allocation levels. The initial
population of caribou is selected to ensure diversity
across these parameters, promoting a broad
exploration of the solution space. Diverse
configurations help prevent early convergence to
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suboptimal  solutions, a common pitfall in
optimization processes. The caribou initialization
step actively enhances HIDS’s adaptive capabilities
by populating the herd with configurations
spanning a wide range of values.

Resource Allocation in Herd Initialization

Optimizing resource allocation plays a key
role in the initial setup of the caribou herd. Each
caribou configuration allocates system resources
such as CPU and memory to maximize HIDS
efficiency without overburdening the host system.
The resource allocation for each caribou, denoted as
R, can be formulated as Eq.(2).

n
R =Z(Tz-'xi-
i=1

where a; indicates the weight of resource impact
for each parameter x;This equation helps balance
the configuration to utilize optimal resources
efficiently. Optimized resource allocation ensures
that each caribou’s configuration remains viable
within the HIDS, maximizing performance without
causing significant system overhead.

2

Distance Between Configurations

Caribou within the herd exhibit differences
in configuration, creating a measure of “distance”
between each pair to maintain diversity. This

distance metric, [}, evaluates the distinction
between the parameter settings of two
configurations, labeled X; and X;.
—
| T
2
1J k=1

In Eq.3), the distance D(X,X;) Captures the

variance across the parameters between two
configurations, ensuring various distinct solutions
at the onset. Maintaining a diverse distance profile
enhances the likelihood of discovering an
optimized solution through caribou behavior.

Objective Function for Herd Members

The initialization process requires defining
an objective function each caribou will attempt to
optimize during the migration and adaptation
phases. The objective function f(X) Evaluate the
effectiveness of each caribou configuration in
detecting  potential intrusions, expressed
mathematically in Eq.(4).

f(X) =y Accuracy + & - Resource Ef ficiency (4)

where y and & represent the weights for accuracy
and resource efficiency. Balancing these elements
ensures that each caribou configuration remains
aligned with HIDS’s goal to detect intrusions while
conserving system resources.

Migration Potential

The initialization step assigns each caribou
a migration potential M, representing its capacity to
move within the parameter space toward better
configurations. This migration potential is
calculated as Eq.(5).

M=8-DIX X,
~

ANy Spests (5)
where f indicates the migration influence factor
and X, It is the configuration with the highest
initial objective function value. This potential
prepares the herd to move toward optimized
solutions in subsequent steps.

Intrusion Detection Sensitivity Adjustment

As part of initialization, the sensitivity of
intrusion detection in each configuration is set.
Sensitivity § determines how aggressively HIDS
flags potential threats, calculated for each caribou
as shown in Eq.(6).

[
_ A=t

5= (6)

n

This sensitivity score § balances the detection
aggressiveness of HIDS, ensuring a range of
conservative to aggressive configurations within the
herd, which supports comprehensive intrusion
detection.

Resource Constraint Verification
Each caribou configuration must adhere to
resource constraints to ensure it does not
compromise host system stability. A constraint
check, C(X), confirms compliance with resource
limits, defined by Eq.(7).
n

c(x)= Z X < R (7
i=1

where R,,.. represents the maximum allowable
resource usage. Configurations exceeding R, are
excluded, maintaining HIDS functionality without
excessive resource consumption.
Configuration Adaptability Scoring

Each caribou’s adaptability, denoted as A4,
measures its potential to adjust and respond to
changing security conditions. The adaptability
score is computed as expressed in Eq.(8).
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A=n-(M+f(X)) (®)

Where 7 indicates the adaptability factor. A high
adaptability score signals configurations that can
dynamically evolve, guiding the herd toward
adaptable, optimized solutions.

3.2 Defining Caribou Movement Patterns

This phase provides a systematic approach
to adjust configurations for HIDS optimization.
This step aims to simulate the migratory behaviour
of caribou to locate high-performing configurations
while minimizing resource usage. Implementing
movement strategies that mimic caribou allows
adaptive parameter space exploration, enabling
HIDS to evolve toward configurations with
enhanced intrusion detection capabilities. The
movement patterns, mathematically represented,
dictate each caribou’s direction and step size within
the parameter landscape, simulating how caribou
migrate toward favourable regions for optimized
results.

Caribou Migration Model

In defining movement, caribou utilizes a
migration model that enables movement toward
configurations showing higher objective function
values. The migration distance for each caribou M,
can be expressed as Eq.(9).

M, =3 (X0 — X rans) ©)
where 1 denotes the migration factor, X, is the
position of the configuration with the highest
objective function value, and X_,,,...; represents
the current position of the caribou. This equation
encourages caribou to move closer to
configurations ~ with  favourable  attributes,
simulating the natural tendency to migrate toward
optimal conditions.

Position Update Based on Migration Direction

Each caribou’s location in the parameter
space is updated according to its migration distance
to adjust position. The new position X,,,, for each
caribou is calculated as Eq.(10).

Xnew = Xcurrent + Md (10)
This equation updates the caribou’s
position by adding the migration distance to the
current location. The adjustment brings each
caribou closer to optimized configurations, moving

it in line with the path set by high-performance
points.

Exploration and Diversification of Path
Diversification factors are introduced to
increase exploratory movement and prevent the
caribou from converging prematurely on local
optima. A diversification term D¢ for each caribou

can be expressed as Eq.(11).

Df ={ " [ Xrandom — Xourrentl (1)
where { represents the diversification factor and
Xianasm 15 a randomly selected configuration
within the search space. Diversification expands the
search space by encouraging movement away from
the current location, balancing exploration and
exploitation.

Adaptive Step Size Adjustment

Step size determines how rapidly caribou
can move toward optimal configurations, and it
adapts based on the performance of previous
movements. The step size §_ for each caribou is
defined as Eq.(12).

i/,f[ngsr) - ,f[Xcurrgnz}\l]
"\ IXIJESE - Xcurrs‘nrl te t’

where p is a scaling factor, f(X,...) and

£ !

f{Xcurrens) denote the objective function values at
the best and current positions, and € is a small
constant to avoid division by zero. The step size

adjusts adaptively to ensure movement efficiency.

(12)

S.=on-
I

Movement Angle for Optimized Positioning
Directionality in movement is influenced
by calculating an angle @ that helps determine the
caribou’s precise path toward the optimized region.
The movement angle # can be determined as

Eq.(13).
A . =1 {Xbest — Xourrent )
f=tan " |———————— |
\Viest — Yeurrent/

(13)

where Xp,.; and V.., are the coordinates of the
best configuration in a two-dimensional parameter
space, and X.,prenr N Voyrren: represent the
coordinates of the caribou’s current position. This
angle determines the directional vector along which
the caribou moves, refining its path.

Dynamic Adjustment of Migration Influence
The migration influence dynamically
adjusts to balance the herd's movement between
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exploration and convergence. The migration
influence M; is defined by Eq.(14).
M,=1-e % (14)

where 71 is the initial migration influence, k is a
decay constant, and t represents the number of
iterations. This exponential decay function reduces
migration influence over time, allowing the caribou
to fine-tune positions closer to the optimal point
without excessive deviation.

Optimization of Caribou Positions in Movement

In coordination with migration patterns,
positioning adjustments ensure that caribou
configurations continue optimizing over time.
Optimized positioning, F,,,, can be modelled as
Eq.(15).

Fopt = Xpew T 55" Df - cos (&) (15)

where X

ew 18 the updated position, S_represents

step size, Dy is the diversification term, and 8 is the

movement angle. This equation calculates an
optimized position, factoring in the caribou’s
adjusted movement parameters to achieve improved
configuration alignment.

3.3 Foraging Behavior Simulation

A dynamic approach to fine-tune HIDS
parameters by simulating the foraging behaviour of
caribou. This process enables each configuration to
explore promising areas of the parameter space that
are likely to yield enhanced detection capabilities.
Foraging here refers to seeking optimized settings
that maximize HIDS’s performance in identifying
threats. The foraging behaviour maintains the HIDS

system’s adaptability and effectiveness by
continuously adjusting and evaluating
configurations.

Fitness Evaluation in the Foraging Process

The foraging behaviour begins by
evaluating the fitness of each caribou's
configuration, representing the configuration’s

effectiveness in intrusion detection. The fitness F
of each configuration is determined by a specific

evaluation function, calculated as represented
mathematically in Eq.(16).
F = w- Detection Rate — 1 Resource Usage (16)

where ¢« denotes the weight assigned to the
detection rate, and #: indicates the penalty weight
for resource usage. This function prioritizes
configurations with high detection accuracy and
low resource consumption, guiding caribou to
forage in regions that optimize HIDS performance.

Search Radius Determination

The foraging behaviour includes setting a
search radius R_ around each caribou’s position,
limiting the area where the configuration will be
explored. The search radius can be defined as
Eq.(17).

r
R: = ¢' : 1.."l |X.Tm~:r - Xr::.rrranl

amn

where ¢ represents the scaling factor of the search
radius, and Xy, and X, ..., indicate the positions
of the best-performing configuration and the
caribou’s current position, respectively. This
controlled radius allows focused exploration around
promising configurations.

Directional Adjustment Toward Optimal Solutions

As part of the foraging process, each

caribou adjusts its direction based on the position of

nearby high-fitness configurations. The directional
vector D, is calculated as Eq.(18).

X X

optimal — “current

D,=y

v

(18)

|Xararz'ma! - Xcurrgnr|

where y is a directional influence factor, X, ima
denotes the position of the nearest high-fitness
configuration, and X, ,...: represents the current
configuration. This vector directs the caribou to
align its position towards configurations

demonstrating optimized performance.

Probabilistic Selection of Neighboring Points

The foraging behaviour simulates the
tendency to explore neighbouring points
probabilistically, allowing for both intensification
and diversification of the search. A probability
function P, defines the likelihood of selecting
neighbouring points as Eq.(19).

p

p = Fl\Aneighbort (19)
° ZiF XI)
where F(Xn cighb m,) is the fitness of a neighbouring

configuration, and ¥ ;F(X;) represents the total
fitness of all considered neighbours. This
probability encourages selection based on fitness,
guiding exploration to high-performance areas.
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Energy-Based Foraging Adjustment

To simulate resource constraints in
foraging, an energy factor E limits the number of
iterations a configuration can spend exploring a
particular region. The energy factor is calculated as
Eq.(20).

Ef = Enitit =6 T (20)
where Ej;.iq; 1 the initial energy assigned to the
caribou, & is the decay rate, and T represents the
time or number of iterations in the foraging process.

As energy depletes, the caribou shifts focus,
preventing the over-exploration of a single area.

Adaptive Step Size During Foraging

To ensure efficient movement, each
caribou's step size adapts during foraging based on
the fitness of nearby configurations. The adaptive
step size Sg for foraging is expressed as Eq.(21).

Sf —-g- (F(Xngfghbar) - F(Xcurrgnr)) (21)
|Xngi_ﬂhbar - Xcurranr' +e

where £ is the step-size scaling factor,
F[:Xm-g M,ar] and F (X, ;rens) denote fitness values
of the neighbour and current configurations, and e

prevents division by zero. This step size adjustment
ensures that configurations adapt according to the
quality of surrounding points.

3.4 Adaptation to Environmental Changes

This step simulates the caribou’s real-
world adaptability to shifting conditions, enhancing
the system’s resilience by dynamically adjusting
HIDS configurations. Through mathematical
adjustments, caribou adapt their parameters,
optimizing HIDS performance across different
environmental contexts, such as variations in
network traffic or user behaviour. The adaptability
mechanism  incorporates  factors  including
sensitivity,  responsiveness, and adjustment
thresholds, ensuring that each caribou configuration
remains effective despite environmental shifts.

Environmental Change Detection

The first task in environmental adaptation
involves detecting changes in the HIDS
environment. Environmental change E, a detection
function monitors variations in key indicators such

as traffic volume or anomaly patterns, expressed
mathematically as Eq.(22).

E.=& A, — A, ] (22)
where & is a sensitivity factor, 4, represents the
anomaly rate at the current time, and 4,_, indicates
the anomaly rate from the previous time step. This
difference signals an environmental change
requiring parameter adjustment.

Configuration Sensitivity Adjustment

Upon detecting environmental change,
each caribou configuration adjusts its sensitivity to
align with the new conditions. The sensitivity 5,
for each configuration is recalculated as shown in
Eq.(23).

Sa = S.[Jase ta- Ec (23)
where §j,... is the baseline sensitivity, and a
denotes the adjustment factor in response to
detected changes. This equation amplifies the
configuration’s responsiveness to emerging threats
while maintaining a controlled sensitivity level.

Threshold Modulation for Resource Efficiency

Adaptation to environmental changes
involves recalibrating the thresholds that govern
system resource usage. The threshold T, is
modified in response to shifts in anomaly rates,
calculated as shown in Eq.(24).
Tr = Tinin’a! _IG : Er: (24)
where T, Tepresents the initial resource
threshold, and S is the decay rate based on the
extent of environmental change. Lowering T,
during high anomaly periods prioritizes resources
for detection, maximizing HIDS’s operational
efficiency.

Adaptive Reweighting of Objective Function

The objective function balances detection
accuracy and resource usage and adapts by
reweighting components according to
environmental shifts. The adapted objective
function f;, is expressed as shown in Eq.(25).

f,=(y+8"E,) Detection Rate - () -1 E,)- Resource Usage ~ (25)
where & and 5 are reweighting factors for detection
rate and resource efficiency, respectively. This
adjustment aligns the objective function to
prioritize detection accuracy during periods of
increased anomaly activity.
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Dynamic Migration Influence Adjustment

To balance adaptation and stability, the
migration influence M_ adapts according to the rate
of environmental change. This dynamic migration
influence is calculated as expressed in Eq.(26).

M{T = M:l'n:l'rin.f + 3 : 171(1 + Er‘) (26)

where M, ;o 1S the baseline migration influence,
and @ controls the intensity of adaptation. This
equation increases the caribou’s movement
adaptability during periods of heightened activity,
allowing configurations to converge toward new
optimized solutions.

Adaptive Feedback Loop for Continuous

Adjustment
The adaptation process includes a
continuous feedback loop F,, recalibrating

configurations to align with ongoing environmental
conditions.

fpreﬁaus _fcurrent
F[J =ad-

fprem’aus +e€

27

In Eq.(27), where o is the feedback sensitivity
factor, foreviows aNd fryrren: T€present the objective
function values from previous and current
iterations, and € ensures numerical stability. This
loop enables caribou configurations to adapt
responsively, aligning with optimized HIDS goals.

3.5 Selection of Elite Caribou (Best
Configurations)

This step involves identifying and
prioritizing configurations demonstrating optimal
intrusion detection capabilities in the HIDS. By
selecting elite caribou, the protocol ensures that
configurations with superior performance influence
the overall herd, guiding future adjustments toward
optimized solutions. This process mirrors the
natural selection observed in caribou herds, where
only the strongest or best-suited individuals lead the
way. The choice of elite caribou is determined by
assessing configurations based on specific criteria
such as detection accuracy, resource efficiency, and
adaptability.

Elite Fitness Evaluation

The selection of elite caribou begins with
evaluating the fitness of each configuration to
determine those with the highest performance
levels. The fitness F, for each caribou configuration
is defined by an equation balancing detection
accuracy and resource usage as defined in Eq.(28).

F, = §- Detection Rate — k. Resource Usage  (28)

where & denotes the weight given to detection
accuracy, and x is the penalty factor for resource
consumption. This function ranks configurations by
favoring those with high detection rates and low
resource consumption, setting a benchmark for elite
selection.

Threshold for Elite Selection

An elite selection threshold T, determines

which configurations are considered the best,

setting a minimum fitness level that must be met.

The threshold is calculated as a function of the

herd's average fitness, as shown in Eq.(29).
T —2- YL Fy

29
¢ N

Where A represents a threshold factor, N is the total
number of caribou, and F,; is the fitness of the i-th
caribou. This equation selects configurations with
fitness scores above the threshold, identifying them
as elite.

Ranking of Elite Configurations

Once the threshold is set, elite caribou are
ranked based on their fitness scores. The rank R of
each elite configuration is determined by Eq.(30).

R, = Rank(F,, descending) (30)

Where configurations are ordered in descending
order of fitness values F,, with the highest fitness
ranked first. This ranking system establishes a
hierarchy among elite caribou, where top-ranked
configurations exert greater influence in the
optimization process.

Influence Factor for Elite Configurations

Each elite caribou contributes an influence
factor [, which impacts the migration patterns of
other caribou in the herd. The influence factor is
calculated based on each elite configuration's rank

and fitness, expressed in Eq.(31).
1
If =p—

7 (D)

where u is a scaling constant. The inverse
relationship between R, and I ensures that higher-
ranked (more fit) configurations influence the
herd's movement toward optimized solutions.

Weighted Mean Position of Elite Configurations
The weighted mean position X, elite
configurations are calculated to centralize the

e ——
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herd’s movement around high-performing regions.
This mean position is derived from Eq.(32).
v L=k X
o W -
Xioily;

where E denotes the number of elite configurations,
Iz ; represents the influence factor of each elite
caribou, and X; is the position of the j-th elite
configuration. This weighted mean centralizes
movement around the most optimized regions,
anchoring future adjustments.

(32)

Elite Configuration Adjustment Threshold

An adjustment threshold A, ensures that
elite configurations maintain their status by
adapting to ongoing environmental conditions. The
threshold is calculated as shown in Eq.(33).
AEZBIIXHGW_le g?;
where 6 is a scaling factor, X, ., is the adjusted
position, and X, is the weighted mean position.
Elite caribou exceeding this threshold undergo
additional adjustments, maintaining optimized
alignment.

3.6 Migration and Path Diversification

Migration involves calculated movements
based on elite configurations, while path
diversification introduces variability, allowing each
caribou to explore beyond familiar areas. This step
strengthens adaptability, ensuring that the HIDS
remains robust and responsive to evolving security
threats and changes in the computational
environment.

Migration Step Calculation

The migration of each caribou is directed
by the previously selected elite configurations,
promoting movement towards optimized solutions.
The migration step M. is calculated as Eq.(34).

) (34)

AFIETFTEeTE S

fromy

LT r
A v ™
aLire

=

n
IV

Wy
S

represents the position of the nearest -elite
configuration, and X_,,.....; 1S the caribou's current
position. This migration step pulls each caribou
toward high-performing settings identified by elite
configurations, guiding the herd collectively toward
optimal parameter regions.

Path Diversification Factor

Path diversification introduces exploratory
variability to prevent premature convergence on a
single solution. The path diversification factor D,, is
defined as Eq.(35).

Dy=a- iXrandom — Keurrent| (35

where @ is the diversification scaling factor,
Xianasm 18 @ randomly chosen position in the

search space, and X,,,...n; represents the caribou's
current position. This factor enables the caribou to

shift away from familiar paths, periodically
increasing exploration.
Combined  Migration  and  Diversification
Movement

By integrating migration and

diversification, each caribou’s next position X,,,, is
calculated through as specified in Eq.(36).

Konow = Xeurrene T Ms+ Dy (36)
where M_ represents the directed migration step and
D, adds exploratory movement. This combined
approach enables caribou to progress toward
optimized configurations while retaining the
flexibility to explore alternative paths.

Migration Decay Function
To adjust migration intensity over time, a
migration decay function M ; modulates movement
strength across iterations.
My=f et 37
In Eq.(37), where 8 represents the initial migration
intensity, A is the decay rate, and t is the iteration
number. This decay function gradually reduces
migration influence, encouraging finer adjustments
as caribou converge toward optimal settings.

Adaptive Diversification Radius

To dynamically adjust path diversity, an
adaptive diversification radius R, is calculated
based on the performance of neighbouring
configurations which is represented mathematically
in Eq.(38).

. |rzf=l[Fk — 'Fmein:m)2
\ K
where 8 scales the radius, F;, denotes the fitness of

each neighbouring configuration, F,, ., is the mean
fitness, and K is the number of neighbours. A larger

Ry= 6 (38)
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R, signals variability, enabling  greater
diversification in cases of low neighbouring fitness.
3.7 Survival of the Fittest Configuration

This step emulates natural selection, where
only configurations with superior performance
survive, ensuring the Host-Based Intrusion
Detection System (HIDS) consistently progresses
toward optimal efficiency. The survival mechanism
filters out suboptimal configurations, consolidating
the system’s resources and focusing computational
efforts on configurations that maximize intrusion
detection accuracy while conserving resources.

Fitness Threshold for Surviva

The survival process begins by defining a
fitness  threshold  Fuyppen,  Which  filters
configurations based on their effectiveness. This
threshold ensures that only configurations meeting
a minimum standard are retained. The threshold is
calculated as expressed mathematically in Eq.(39).

_ E?;l F; (39)

Finresn = X°
res N

where y is a scaling factor, N represents the total
number of caribou configurations, and F; is the
fitness score of each configuration. By setting this
benchmark, the configurations below F,..; are
deemed unfit for retention.

Probability of Configuration Survival
Configurations meeting the fitness

threshold undergo a probabilistic assessment for

survival, allowing a degree of wvariability in

selection. The survival probability P, for each

configuration is given by Eq.(40).

= (40)

FJ‘HHJ.'

where F; represents the fitness of the configuration,
and F,,,,. is the highest fitness score among all
configurations. This probability favors higher
fitness values, yet allows diversity by not strictly

eliminating lower-fitness configurations.

Fitness-Based Resource Allocation
Resources are allocated for configurations
surviving the selection process based on their
relative fitness. The resource allocation R, for each
configuration is calculated as shown in Eq.(41).
F.
(41)

_ ]
Ry=Gs B
j=11j

where o is the total available resource budget, F,
represents the fitness of the selected configuration,
and § is the total number of surviving
configurations. This allocation distributes resources
in proportion to fitness, prioritizing highly
optimized configurations.

Elimination of Weak Configurations

Configurations with fitness scores below

the defined threshold are removed from the

population. The elimination indicator E; is
expressed as Eq.(42).

Ei = [1 lf Fz < Fthresh

i (42)
0 otherwise

where F; denotes the configuration's fitness score.
An indicator value of 1 signifies elimination,
effectively filtering weaker configurations from
further optimization cycles.

Iterative Fitness Reinforcement

Surviving configurations undergo an
iterative reinforcement to promote continued
optimization in successive steps. The reinforcement
factor Ry is defined as expressed in Eq.(43).

Rr=pF 43)
where p is the reinforcement scaling factor and F;
denotes the fitness of the configuration. Reinforcing
fitness enhances each configuration’s potential for
adaptation, ensuring persistence toward optimal
HIDS performance.

3.8 Herd Communication and Information
Sharing

Through effective communication, caribou
configurations share valuable information about
intrusion detection and parameter tuning. This
mechanism draws inspiration from herd dynamics,
where  individuals communicate  beneficial
information to adapt better to environmental
changes. In HIDS optimization, such shared
knowledge  strengthens the  configurations,
improving detection capabilities and aligning the
system with real-time demands.

Exchange of Fitness Information

The exchange of fitness information is
crucial, allowing each caribou to understand the
performance of neighbouring configurations. The
shared fitness value F, for a configuration i the
average fitness of nearby configurations is
calculated mathematically in Eq.(44).

e ——
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_ Ljenn 44
£ = SIND 44

where N(i) represents the set of neighbouring
configurations, F; is the fitness of each
neighbouring configuration j, and |N(i)| denotes
the total number of neighbours. This averaging
process provides a reference fitness level for

configurations, guiding their adjustments.

Influence of Shared Knowledge on Position
Update

Each configuration adjusts its position in
the parameter space using the shared fitness
information. The position update X, 4.4 the
configuration’s current and average shared fitness
are influenced by the configuration, calculated as

shown in Eq.(45).
Xupdared = Xeyrrere T iFs - Fz) anez'gh.'Jcr - Xcurrenz) (45)

where 1) is the learning rate, F; is the shared fitness,
F,represents the current configuration’s fitness, and

Xoeignpor ~ denotes  the  position  of a

neighboringconfiguration. This equation directs
each configuration toward positions aligned with
better fitness scores, optimizing detection
capabilities.

Shared Parameter Optimization

Caribou configurations benefit from
shared parameter optimization, where key
parameters for intrusion detection are harmonized
across the herd. The optimized parameter P, each
caribou is calculated as the weighted average of
parameters from neighbouring configurations.

- Ljen Wi B (46)
Yienan W

In Eq.(46), where w;represents the weight based on
each neighbour’s fitness F;, and P; is the parameter
of interest for configuration j. This weighted
averaging ensures that parameters align with high-
performing configurations, promoting consistency
across the herd.

Adaptation of Communication Range

Herd communication includes an adaptive
communication range R, allowing configurations
to adjust their neighbourhood size based on

performance. The communication range is
expressed as Eq.(47).
F.
RC=§-(1— ‘) 47)
FJ‘T!CU:

where § scales the communication distance, F; is
the fitness of the configuration, and F,,, is the
maximum fitness among configurations. This range
adapts to encourage interaction with more
configurations when fitness is lower, enhancing
learning opportunities.

Reinforcement of High-Performance
Configurations

To reinforce optimized behaviour, high-
performance configurations transmit their settings
more frequently. The transmission rate T, for a

configuration is defined as Eq.(48).
F;
48
Fﬂ]ﬂ.l’ ( )

T.=y:

where y is a base rate constant, F; represents the
configuration’s fitness, and F,,,, is the highest
fitness within the herd. This rate increases with
fitness, promoting wider dissemination of effective
settings across the configurations.

3.9 Continuous Monitoring and Feedback Loop

This step enables real-time responsiveness
to environmental changes, ensuring the HIDS
remains optimized for accurate intrusion detection
and resource efficiency. Through continuous
monitoring, the protocol collects performance data,
while the feedback loop applies these insights to
adjust  configurations, promoting  sustained
optimization across the system.

Performance Monitoring Function

The monitoring process begins with a
performance function P, that quantifies each
configuration’s  effectiveness. This  function
evaluates detection accuracy and resource usage,
providing a basis for adjustments. The performance
function is given as shown in Eq.(49).

P,, = - Detection Accuracy — 8 - Resource Usage  (49)
where a and 8 are weighting factors for accuracy
and resource consumption, respectively. This
calculation highlights configurations that maximize
detection efficiency without excessive resource
demands, establishing a performance benchmark
for the feedback loop.

Error Calculation for Feedback Loop

To facilitate refinement, the feedback loop
calculates an error Er based on the deviation
between desired and actual performance metrics.
The error function is defined as Eq.(50).
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Ef = Pde:-z'red - Pm (50)
where P, ..... represents the target performance,
and P,, is the monitored performance. This error
quantifies the extent of adjustment needed to align
each configuration with optimized performance
standards.

Adjustment Rate Based on Error Feedback
The feedback loop applies an adjustment
rate A, proportional to the error, modifying

configuration = parameters  accordingly.  The
adjustment rate is expressed as Eq.(51).
A. =¥y Ef (51)

where ¥ is a scaling factor that controls the
magnitude of changes based on Ef. A larger error
prompts greater adjustments, enabling rapid
adaptation to performance gaps.

Updated Configuration Application

Once the adjustment rate is determined,
the configuration update X, .:q 1S applied to
modify parameter values within HIDS.

Xupdarea = Xcurrent + A4 (52)

In Eq.(52), where X., ., .. 1S the existing
configuration, and A,. represents the adjustment rate
derived from the feedback loop. This update
ensures that each configuration continuously aligns
with performance goals, fostering ongoing
optimization.

3.10 Fine-tuning through Local Adjustments

Local adjustments refine parameter values,
ensuring that high-performing configurations are
further optimized. This step employs incremental
updates, allowing configurations to achieve optimal
detection accuracy and resource utilization based on
specific conditions within the HIDS environment.

Calculation of Adjustment Gradient

The fine-tuning process begins with
calculating an adjustment gradient. G, for each
configuration to assess the direction and magnitude
of improvement needed. This gradient is computed
as depicted in Eq.(53).

dF,
Ga= "y (53)

where F,, is the performance metric function, and X
represents the configuration parameters. The

gradient identifies how changes in each parameter
impact performance, guiding local adjustments to
improve HIDS effectiveness.

Local Step Size for Parameter Adjustment

Using the adjustment gradient, a local step
size §; is calculated to control the extent of
parameter modification, defined as Eq.(54).
S,=nG, (54)
where 77 is a learning rate that moderates the
adjustment intensity. This step size ensures that
incremental parameter changes promote stability
and prevent overshooting, which can lead to
suboptimal performance.

Updated Configuration with Fine-Tuning

After calculating the step size, each
parameter within the configuration is fine-tuned,
resulting in the updated configuration Xe; o ryneq

which is represented mathematically in Eq.(55).

Xtine—runed = Xcurrent T 5 (55)
where X_,...n: represents the existing parameter
values, and §; adds the calculated step for fine-
tuning. This update aligns each configuration with
incremental enhancements, refining settings that
contribute  positively to intrusion detection
performance.

Convergence Check for Local Adjustments
To ensure stability, a convergence check C,
assesses whether further fine-tuning is necessary.

This check is calculated by evaluating the
difference between consecutive updates as
expressed in Eq.(56).

Cv = |Xﬁn9—rungd - Xcurranr' (56)
If €, falls below a specified tolerance level, no
additional adjustments are made. This check
ensures that configurations remain focused on
precision without redundant modifications.

3.11

Convergence  to Herd

Configuration

Optimal

This phase ensures that all configurations
reach a state of optimized performance, balancing
detection accuracy, resource allocation, and
stability across the herd. Convergence involves
identifying configurations that meet the optimized
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criteria, and finalizing the most effective herd
configuration for sustained HIDS efficiency.

Mean Fitness for Herd Convergence

The convergence process begins by
calculating the mean fitness F,,.,, of the herd,
which serves as a benchmark for final alignment.
This average fitness is computed as expressed in

Eq.(57).
_ TR

F mean N (57)
where N represents the total number of

configurations, and F, is the fitness of each
configuration. The mean fitness provides a standard
that reflects the collective performance level across
configurations.

Fitness Deviation for Stability Check
To assess convergence, a fitness deviation
D¢ is calculated to measure the variability among

configurations. This deviation is given by Eq.(58).

H\“N ‘o _ A2
| Li=1\ Tmeant

\ N

(58)

Df=

where F; denotes the fitness of each configuration,
and F,,.qy, is the mean fitness. A low Dy indicates
minimal variation, suggesting that configurations
are reaching consistent levels of performance.

Position Adjustment for Final Convergence

Each configuration’s position Xgp,q; i8
adjusted to align with the mean position of high-
fitness configurations, calculated as Eq.(59).

Xrinat = Xmean T @ (Fregn — F1) (59)
where X,,..n i the mean position of high-fitness
configurations, F,.., 1S the mean fitness, and a
represents the adjustment scaling factor. This step
refines each configuration’s position to enhance
overall convergence.

Convergence Indicator for Optimal State

A convergence indicator C,,, assesses
whether the herd has achieved the optimal state.
This indicator is defined as Eq.(60).

(60)

Capr = |Fmgan - Ftarggr|

where F,..... represents the predefined optimal
fitness target. A minimal C,,, confirms that the
herd has reached the desired performance level,

signaling final convergence.

4. DATASET DESCRIPTION

The “Network Intrusion Detection”
dataset, available on Kaggle, comprises 22,544
instances and 41 features, serving as a benchmark
for evaluating intrusion detection systems. This
dataset includes diverse simulated intrusions within
a military network environment, providing a
comprehensive foundation for analyzing various
attack types. The features encompass various
network traffic attributes, such as protocol type,
service, and flag, along with continuous features
like duration and byte counts. The dataset is
instrumental in training and testing machine
learning models to identify malicious activities
within  network  traffic.  Researchers and
practitioners utilize this dataset to develop and
benchmark algorithms for detecting anomalies and
enhancing cybersecurity measures. Its structured
format and detailed feature set facilitate the
application of wvarious analytical techniques,
contributing to advancements in network security.
The comprehensive dataset makes it a valuable

resource for improving intrusion detection
methodologies.
5. RESULTS AND DISCUSSIONS

Results and discussion analyze the

performance  of  classification models by
interpreting evaluation metrics. The results validate
the effectiveness of each model, while the
discussion highlights strengths, limitations, and
comparative insights. The evaluation provides a
clear understanding of detection accuracy,
precision, recall, and overall classification
efficiency, ensuring an informed assessment of
security models in network intrusion detection.
Classification algorithms for network intrusion
detection are assessed using CL-AC (Classification
Accuracy) and F-MSR (F-Measure) metrics.
Classification Accuracy (CL-AC) measures the
proportion of correctly classified instances,
providing an overall performance assessment. F-
Measure (F-MSR) represents the harmonic mean of
precision and recall, ensuring a balanced evaluation
of classification effectiveness, particularly in
imbalanced datasets.
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Fig 1. illustrates the CL-AC and F-MSR; significantly = enhances intrusion  detection,
the DI-NIDS model achieves 63.090% CL-AC and  achieving 81.598% PREC and 78.840% RCLL,
63.071% F-MSR, indicating moderate performance “DLNIDS =DMAN = ACDP
but limited effectiveness in detecting sophisticated 20
intrusions. DMAN improves detection rates, 80
reaching 66.397% CL-AC and 67.327% F-MSR, 70
demonstrating better classification capabilities. The $60
Adaptive Caribou Defense Protocol (ACDP) 750
significantly outperforms both models, achieving "'540
80.232% CL-AC and 80.196% F-MSR, indicating a (230
substantial improvement in detection accuracy and 20
precision. The results highlight ACDP's ability to 10
enhance intrusion detection efficiency, minimize 0
false positives, and strengthen network security. PREC RCLL

Performance Metrics

The optimized approach ensures better adaptability
in identifying evolving cyber threats.

EDI-NIDS EDMAN ®ACDP

Results (%)
= =2 =]
=] =] S

]
[—]
1

[—]
1

F-MSR

-AC
Performance Mefrics

Fig 1. CL-AC and F-MSR

The performance evaluation of
classification algorithms in network intrusion
detection is measured using Precision (PREC) and
Recall (RCLL) metrics. Precision (PREC)
quantifies the proportion of correctly identified
intrusions among all instances classified as
intrusions, indicating the algorithm’s ability to
reduce false positives. Recall (RCLL) represents
the proportion of correctly detected intrusions out
of all actual intrusions, assessing the model’s
effectiveness in minimizing false negatives. Fig 2.
Depicts the RCLL and PREC comparison outcomes
of the three protocols.

The DI-NIDS model achieves 59.285%
PREC and 67.373% RCLL, reflecting moderate
detection capabilities but a relatively higher false-
positive rate. DMAN improves precision and recall,
reaching 66.091% PREC and 68.610% RCLL,
demonstrating better classification reliability. The
Adaptive Caribou Defense Protocol (ACDP)

showcasing superior precision and recall.

Fig 2. RCLL and PREC
The optimized ACDP model effectively

balances false positives and false negatives,
ensuring more reliable and adaptive threat
detection. The results confirm that ACDP

outperforms other models by efficiently identifying
intrusions while maintaining high detection
accuracy, improving network security resilience
against evolving threats.

The evaluation of classification algorithms
in network intrusion detection is analyzed using
Attack Detection Rate (ADR), Miss Detection Rate
(MDR), and Detection Rate (DR). Attack Detection
Rate (ADR) quantifies the proportion of actual
intrusions correctly identified by the model,
ensuring effectiveness in threat recognition. Miss
Detection Rate (MDR) measures the proportion of
actual intrusions that were not detected, reflecting
the model’s susceptibility to false negatives.
Detection Rate (DR) represents the model's overall
accuracy in identifying intrusions across different
attack types. Fig 3. Illustrates the ADR, MDR and
DR of the three protocols.

100.000

50.000

Results (%0)
Performance Metrics

0.000

Axis Title
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Fig 3. ADR, MDR and DR
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The DI-NIDS model achieves 67.373%
ADR, 32.627% MDR, and 63.090% DR, indicating
moderate detection efficiency but a high miss
detection rate, affecting its reliability in identifying
complex threats. The DMAN model demonstrates
improved detection capabilities, with 68.610%
ADR, 31.390% MDR, and 66.397% DR, reflecting

better intrusion recognition but presenting
challenges in reducing false negatives.

The ACDP significantly  enhances
intrusion  detection  performance, achieving

78.840% ADR, 21.160% MDR, and 80.232% DR.
The lower miss detection rate highlights ACDP’s
ability to reduce false negatives while maintaining
high detection accuracy. The superior performance
of ACDP confirms its effectiveness in identifying
security threats with improved adaptability,
reducing misclassification rates, and strengthening
overall network protection. The results validate that
ACDP optimizes intrusion detection by balancing
high detection accuracy with minimized false
negatives, ensuring a robust security framework for
evolving cyber threats.

6. CONCLUSION

Intrusion detection in the IoMT requires a
robust security framework to safeguard medical
devices and sensitive data from cyber threats. The
integration of HIDS enhances security by providing
real-time monitoring, anomaly detection, and
localized threat prevention. The comparative
analysis of classification models, including DI-
NIDS, DMAN, and ACDP, demonstrates detection
performance, precision, and recall variations. While
traditional deep-learning-based models such as DI-
NIDS and DMAN improve detection capabilities,
limitations in false-positive reduction and adaptive
learning impact their effectiveness. The ACDP
exhibits superior classification accuracy, achieving
high detection rates while maintaining lower false
negatives. Evaluating performance metrics such as
accuracy, precision, recall, attack detection rate, and
detection rate highlights the necessity of optimizing
intrusion detection for [oMT applications. ACDP’s
bio-inspired optimization approach strengthens
network security by ensuring an adaptive and
resource-efficient detection mechanism. Reducing
false positives and improving classification
reliability contribute to the resilience of medical
infrastructures, preventing unauthorized access and
data breaches. Integrating optimized HIDS in [oMT
frameworks enhances cybersecurity, ensuring real-
time defense mechanisms against evolving cyber
threats. Strengthening detection methodologies

through advanced optimization techniques ensures
continued improvements in securing interconnected
medical environments.
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