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ABSTRACT 
 

 Network security has become a critical concern due to the increasing complexity of cyber threats 
targeting interconnected systems. The “Internet of Medical Things” (IoMT) has transformed healthcare by 
enabling real-time monitoring, remote diagnostics, and automated medical interventions. Integrating IoMT 
devices into healthcare infrastructures exposes networks to security vulnerabilities, requiring robust 
intrusion detection mechanisms. “Host-based intrusion Detection Systems” (HIDS) provide a localized 
security approach, monitoring system logs, processes, and behaviors to detect unauthorized activities. 
Traditional detection techniques often struggle with evolving threats and resource limitations in IoMT 
environments. Bio-inspired optimization techniques offer adaptive security enhancements, refining 
detection mechanisms while minimizing computational overhead. The Adaptive Caribou Defense Protocol 
(ACDP) leverages nature-inspired intelligence to optimize intrusion detection, ensuring enhanced security 
resilience. By integrating bio-inspired approaches with HIDS, intrusion detection frameworks can achieve 
improved adaptability, real-time threat identification, and efficient security enforcement across IoMT 
networks, mitigating emerging cyber risks effectively. 

Keywords: Host Intrusion Detection Systems - Internet of Medical Things - Intrusion Detection – 
Cybersecurity in Healthcare - Caribou Optimization  

 
1. INTRODUCTION  

 
 “Wireless Sensor Networks” (WSNs) have 
revolutionized data collection, transmission, and 
processing in various sectors, particularly in 
healthcare. These networks consist of 
interconnected sensor nodes that monitor 
physiological parameters, environmental 
conditions, and medical processes [1]. WSNs are 
crucial in remote patient monitoring, emergency 
response systems, and hospital automation. The 
ability of these networks to collect real-time 
medical data has enhanced healthcare efficiency, 
reduced manual intervention, and improved the 
quality of patient care [2]. Due to their open 
communication channels and dependency on 
wireless connectivity, WSNs remain vulnerable to 
cyber threats, including data breaches, unauthorized 
access, and network intrusions. Securing these 
networks requires advanced security mechanisms 
that detect, prevent, and respond to cyber threats in 
real time [3].  

The “Internet of Medical Things” (IoMT) 
extends the principles of WSNs into a more 

advanced interconnected ecosystem, integrating 
medical devices, wearable sensors, and cloud-based 
healthcare platforms [4]. IoMT enables seamless 
communication between smart medical devices, 
electronic health records (EHRs), and remote 
healthcare providers, ensuring real-time diagnostics, 
patient monitoring, and medical intervention. The 
growing dependence on IoMT has introduced new 
challenges concerning data security, privacy, and 
network integrity [5]. IoMT devices, often 
operating on resource-constrained platforms, face 
significant risks such as malware infections, data 
tampering, and denial-of-service (DoS) attacks. 
Since these medical devices interact with sensitive 
patient data, the consequences of security breaches 
can be severe, leading to compromised patient 
safety, unauthorized alterations in medical 
prescriptions, and disruptions in critical healthcare 
services [6].  

“Intrusion Detection Systems” (IDS) is a critical 
security mechanism in IoMT, ensuring early 
detection of malicious activities, unauthorized 
network access, and suspicious behavioral patterns 
[7]. Traditional cybersecurity measures such as 
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encryption and authentication provide a 
foundational level of security, but they remain 
insufficient against advanced cyber threats that 
continuously evolve. Intrusion detection in IoMT 
involves monitoring real-time network traffic, 
analyzing system logs, and identifying anomalies 
that indicate potential security breaches. IoMT 
environments require specialized intrusion detection 
techniques that consider the constraints of medical 
devices, including limited processing power, low 
energy consumption, and stringent real-time 
requirements [8]. By incorporating IDS, healthcare 
infrastructures can safeguard medical data, ensure 
device integrity, and maintain seamless 
communication across IoMT networks [8]. 

Among the various intrusion detection 
techniques, “Host-Based Intrusion Detection 
Systems” (HIDS) are crucial in securing IoMT 
networks. Unlike “Network-Based Intrusion 
Detection Systems” (NIDS), which focus on 
monitoring traffic across an entire network, HIDS 
operates at the device level, detecting anomalies, 
unauthorized access, and system irregularities 
directly within IoMT endpoints [9]. HIDS analyzes 
system logs, file integrity, and process activities, 
identifying threats such as malware infections, 
privilege escalation, and unauthorized 
modifications in medical applications. Since IoMT 
devices function in diverse environments ranging 
from hospital infrastructure to wearable healthcare 
monitoring systems, HIDS provides a localized 
security approach that strengthens individual device 
security and prevents network-wide disruptions 
[10]. 

HIDS performs real-time monitoring of system 
activities, detecting deviations from predefined 
security policies. By examining system logs and 
behavior patterns, HIDS identifies unauthorized 
changes in file structures, configuration settings, 
and software execution flows. IoMT devices rely on 
stable and predictable operational behaviors; thus, 
any anomaly detected by HIDS is an early warning 
for potential security threats [11]. HIDS offers 
forensic capabilities, allowing security 
administrators to analyze logs and determine the 
origin of an attack, thereby facilitating rapid threat 
mitigation and future prevention strategies [12]. 
HIDS in IoMT also enhances security resilience by 
providing behavioral-based detection mechanisms. 
Unlike signature-based detection, which relies on 
predefined attack patterns, behavioral-based 
detection in HIDS examines real-time deviations 
from normal device operations. IoMT devices 
frequently communicate with cloud storage, remote 

healthcare providers, and centralized hospital 
management systems, making them susceptible to 
novel cyber threats [13]. HIDS continuously adapts 
to evolving threat landscapes, identifying 
previously unknown attack patterns that traditional 
security methods might overlook. This adaptive 
security mechanism ensures that IoMT networks 
remain protected against zero-day vulnerabilities 
and advanced persistent threats (APTs) [13]. 

Integrating HIDS with IoMT frameworks 
requires efficient optimization techniques to address 
resource constraints associated with medical 
devices. Since IoMT devices often operate with 
limited processing power and battery life, HIDS 
implementations must be lightweight, ensuring 
minimal computational overhead. Advanced 
optimization algorithms enhance HIDS 
performance, allowing real-time threat detection 
without compromising device efficiency [14]. By 
prioritizing essential security checks and 
minimizing redundant processes, optimized HIDS 
solutions ensure effective intrusion detection while 
maintaining uninterrupted medical functionalities 
[15]. HIDS also plays a vital role in compliance and 
regulatory adherence within IoMT security 
frameworks. Healthcare infrastructures must 
comply with stringent data protection regulations 
such as the “Health Insurance Portability and 
Accountability Act” (HIPAA) and the “General 
Data Protection Regulation” (GDPR). These 
regulations mandate the secure handling of medical 
data, ensuring confidentiality, integrity, and 
availability [16]. HIDS solutions help enforce 
regulatory compliance by detecting unauthorized 
data access, ensuring file integrity, and monitoring 
system logs for security violations. By maintaining 
comprehensive audit trails and security logs, HIDS 
enables healthcare organizations to meet regulatory 
requirements while enhancing overall security 
resilience. 

In IoMT environments, HIDS is a proactive 
defense mechanism, mitigating security risks before 
they escalate into major threats. By integrating 
HIDS with machine learning algorithms, security 
frameworks can predict potential intrusions based 
on historical data patterns, improving threat 
response mechanisms [17]. Predictive security 
models combined with HIDS enhance real-time 
intrusion detection capabilities, ensuring robust 
protection for medical devices, patient records, and 
healthcare communication networks. The evolving 
landscape of IoMT security demands a multi-
layered security approach, where HIDS functions as 
a fundamental component in protecting individual 
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devices from cyber threats [18]. Continuous 
advancements in HIDS technology contribute to 
intrusion detection mechanisms' resilience, 
adaptability, and reliability, ensuring secure 
medical environments and patient safety across 
interconnected healthcare infrastructures [19]. 

Bio-inspired optimization draws inspiration from 
natural processes to develop efficient problem-
solving techniques in various computational 
domains. Evolutionary behaviors, swarm 
intelligence, and ecological adaptations provide the 
foundation for optimization algorithms that enhance 
decision-making, pattern recognition, and resource 
allocation [20], [21]. Nature-inspired models, such 
as genetic algorithms, ant colony optimization, and 
particle swarm optimization, mimic biological 
mechanisms to solve complex challenges 
efficiently. These methods enable adaptive learning, 
self-organization, and dynamic problem-solving, 
making them suitable for network security, robotics, 
and machine-learning applications [22]. In intrusion 
detection, bio-inspired optimization improves 
classification accuracy, reduces false positives, and 
enhances detection efficiency. Optimization 
techniques refine security models by emulating 
strategies from wildlife, such as caribou migration 
and foraging behavior, enabling real-time 
adaptation to evolving cyber threats. Integrating 
bio-inspired approaches with HIDS strengthens 
network resilience, ensuring a proactive defense 
mechanism for safeguarding critical infrastructures, 
including IoMT environments [23]. 

1.1. Challenges 

 Intrusion detection in the IoMT faces 
multiple challenges due to the complexity of 
interconnected medical devices. Resource 
constraints in IoMT devices limit the computational 
capabilities required for efficient HIDS. Real-time 
monitoring demands impose high processing loads, 
affecting device performance and energy efficiency. 
The evolving nature of cyber threats introduces 
sophisticated attack patterns that bypass traditional 
detection mechanisms. Ensuring seamless 
integration of HIDS with IoMT frameworks 
requires optimization techniques to minimize 
latency and false positives. Compliance with 
regulatory frameworks such as HIPAA and GDPR 
complicates security implementation. Secure data 
transmission and encrypted storage remain critical 
concerns, particularly in remote patient monitoring 
systems and cloud-based healthcare platforms. 

 

 

1.2 Motivation and Objective 

 The increasing adoption of the IoMT has 
introduced significant security concerns, 
necessitating robust intrusion detection 
mechanisms. Medical devices, electronic health 
records, and remote monitoring systems require 
protection from cyber threats that could 
compromise patient safety and data integrity. HIDS 
provides a localized security approach, ensuring 
device-level monitoring and anomaly detection. The 
primary motivation is to enhance real-time threat 
identification while minimizing computational 
overhead in resource-constrained IoMT 
environments. The objective is to develop an 
optimized HIDS framework that ensures accurate 
intrusion detection, reduces false positives, and 
aligns with regulatory compliance. Strengthening 
security resilience in IoMT networks ensures 
uninterrupted healthcare services while mitigating 
unauthorized access and data breach risks. 

1.3 Research Gap 

 Existing security frameworks in the IoMT 
lack efficient intrusion detection mechanisms 
tailored for resource-constrained medical devices. 
Traditional “Network-Based Intrusion Detection 
Systems” (NIDS) focus on network traffic but fail 
to address security threats at the device level. HIDS 
offers localized monitoring, yet current 
implementations struggle with high computational 
overhead, leading to inefficiencies in real-time 
threat detection. Adaptive optimization techniques 
for HIDS in IoMT remain underexplored, limiting 
the ability to mitigate emerging cyber threats 
effectively. Existing models also exhibit high false-
positive rates, reducing reliability in intrusion 
detection. Addressing these gaps requires a 
lightweight, adaptive HIDS framework that 
enhances security while ensuring minimal impact 
on device performance and real-time healthcare 
operations. 

2. LITERATURE REVIEW 
 “DSRNN-ISCOA” [24] integrated a 
dynamically stabilized recurrent neural network 
(DSRNN) with an intensified sand cat swarm 
optimization (ISCOA) technique for securing 
wireless sensor networks (WSNs). An adaptive 
multi-scale differential filter preprocessed data by 
removing redundancies, while the Wolf-Bird 
Optimization Algorithm selected relevant features. 
DSRNN classified network traffic, detecting black 
holes, grey holes, flooding, and TDMA attacks. 
ISCOA optimized DSRNN’s weight parameters, 
enhancing accuracy by adapting to attack patterns. 
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“Boost-WSN-IDS” [25] introduced a LEACH-
based dataset simulating DoS attacks in wireless 
sensor networks, including wormhole, black hole, 
grey hole, flooding, and TDMA-based attacks. 
Boosting-based models such as LightGBM, 
XGBoost, and Bagging were used for intrusion 
detection. Feature selection minimized 
computational complexity while maintaining high 
accuracy. LightGBM, with its leaf-wise growth 
strategy, excelled in memory efficiency and speed, 
making it ideal for resource-limited WSNs. 

 “E2E-CNN1D” [26] introduced a 
lightweight 1D convolutional neural network for 
detecting advanced cyber threats in industrial IoT 
networks. Using the Edge-IIoTset dataset with 14 
attack categories, the model employed end-to-end 
learning, eliminating extensive feature engineering. 
A preprocessing step normalized input data for 
consistency, while CNN1D extracted hierarchical 
features to capture local and temporal attack 
patterns. K-fold cross-validation improved 
generalization and reduced overfitting. “UAV-IDS 
Datasets” [27] analyzed datasets for intrusion 
detection in UAV communication networks, 
categorizing them based on intra-UAV and inter-
UAV security challenges. Key factors like attack 
types, data distribution, and network protocols were 
evaluated to assess suitability for machine learning-
based IDS. A novel taxonomy highlighted gaps in 
existing datasets and the need for broader attack 
scenarios. Recommendations were provided for 
dataset selection based on UAV network 
configurations and threat models. “MAFA-LSTM” 
[28] combined a memetic self-adaptive firefly 
algorithm (MAFA) with LSTM for intrusion 
detection in IoT networks. A perturbation operator 
in MAFA prevented local optima, ensuring optimal 
LSTM hyperparameters. After noise removal and 
feature normalization, MAFA selected the most 
relevant security parameters, which LSTM then 
analyzed for temporal attack patterns. This hybrid 
approach improved precision, recall, and accuracy, 
surpassing traditional deep learning methods. 

 “SA-PVAE-GAN” [29] introduced a 
security framework for wireless sensor networks 
(WSN) by integrating self-attention, provisional 
variational auto-encoders (PVAE), and GANs. A 
preprocessing module extracted key network 
features, while PVAE encoded data into a latent 
space, learning normal and attack traffic 
distributions. Self-attention improved feature 
learning by capturing long-range dependencies. A 
GAN-based approach generated synthetic attack 
samples to enhance training, with a discriminator 

refining intrusion detection. “DRL-IDS Guide” [30] 
explored deep reinforcement learning (DRL) for 
intrusion detection in IoT networks, analyzing 
architectures, training strategies, and real-world 
applications. A design framework focused on 
reward functions, action spaces, and state 
representations while addressing exploration-
exploitation trade-offs and computational 
constraints. Key challenges such as training 
instability, high-dimensional action spaces, and 
adversarial attacks were identified. The study 
emphasized federated learning, transfer learning, 
and self-adaptive DRL for improving detection.
 “ML-DDOS-SDIoT” [31] introduced a 
machine learning-based security framework to 
mitigate DDoS attacks in software-defined IoT 
(SD-IoT) networks. A feature engineering pipeline 
extracted key traffic patterns, while a multi-stage 
classifier combining SVM, RF, and DNN ensured 
hierarchical threat detection. The SDN controller 
dynamically adjusted flow rules based on real-time 
IDS feedback, with a feedback loop enabling 
adaptive retraining. An anomaly detection 
mechanism flagged threats before full-scale attacks, 
reducing detection latency and resource usage. 

 “M-CNN-IDS” [32] introduced an 
optimized CNN-based intrusion detection system 
(IDS) for enhanced cybersecurity. An advanced 
feature extraction layer captured spatial and 
temporal attack patterns more effectively than 
standard CNNs. A lightweight architecture enabled 
deployment in resource-constrained environments 
while batch normalization and dropout layers 
reduced overfitting. A hybrid data augmentation 
technique improved the detection of rare attacks. 
“E-IDS-WSN” [33] introduced an E-shaped 
machine learning framework for intrusion detection 
in WSN. It featured three core components: feature 
selection, ensemble classification, and adaptive 
security policies. An evolutionary optimization 
algorithm selected key security attributes, while an 
ensemble of classifiers (decision trees, SVMs, and 
RNNs) improved detection accuracy. The model 
dynamically adjusted classification thresholds based 
on network conditions for real-time adaptability. 
Reinforcement learning-based security policies 
enabled continuous evolution against emerging 
threats. “RBM-LSTM-IDS” [34] combined 
Restricted Boltzmann Machine (RBM) and Long 
Short-Term Memory (LSTM) networks for 
detecting routing attacks in IoT networks. RBM 
extracted high-relevance features from raw traffic, 
while LSTM analyzed sequential patterns to 
identify anomalies like blackhole and wormhole 
attacks. A dynamic thresholding mechanism 
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adapted to network conditions, minimizing false 
positives. The model continuously learned from 
traffic behavior, distinguishing legitimate routing 
changes from attacks. 

 “WOGRU-IDS” [35] combined the Whale 
Optimization Algorithm (WOA) and Gated 
Recurrent Unit (GRU) networks for intrusion 
detection in IoT-assisted Wireless Sensor Networks 
(WSNs). WOA selected optimal features, reducing 
computational overhead while preserving accuracy. 
The GRU model analyzed these features, detecting 
threats like sinkholes, Sybil, and selective 
forwarding attacks. With adaptive learning, the 
system updated itself to counter evolving threats. 
Unlike traditional IDS, it achieved high accuracy 
with low energy consumption, making it ideal for 
resource-constrained IoT-WSN environments. 
“GA-RF-IDS” [36] integrated the Genetic 
Algorithm (GA) with Random Forest (RF) to 
enhance intrusion detection in IoT networks. GA 
optimized RF’s decision trees, selecting the most 
relevant features for classification. The network 
was divided into subdomains, each managed by a 
controller node running the optimized RF model. 
These nodes operated independently or 
cooperatively, analyzing traffic and detecting 
threats while balancing precision and recall to 
minimize false positives. Extensive testing on 
NSW-NB15 and NSL-KDD datasets showed higher 
accuracy than traditional RF-based IDS. 

 “D-NIDS” [37] introduces a domain-
invariant network intrusion detection system to 
improve threat detection across different network 
environments. The model leverages deep learning 
techniques to extract invariant features, ensuring 
consistent performance in varying domains. The 
system enhances generalization and robustness 
against cyber threats by addressing distribution 
shifts in network traffic data. The approach 
minimizes dependency on specific datasets, making 
it adaptable to diverse network conditions. Through 
advanced feature learning and anomaly detection, 
DI-NIDS effectively identifies malicious activities, 
providing a scalable and reliable cybersecurity 
solution for modern network infrastructures. 

 “D-MAN” [38] presents an effective 
technique for detecting minority attacks in network 
intrusion detection systems (NIDS) using deep 
learning and sampling strategies. The approach 
addresses data imbalance by employing advanced 
sampling techniques to enhance minority class 
detection. A deep learning model is trained on 
enriched datasets, improving sensitivity to rare 
cyber threats. By refining feature extraction and 

classification, the system enhances accuracy in 
identifying underrepresented attack types. The 
method ensures robust intrusion detection, reducing 
false negatives and strengthening cybersecurity 
defenses. This framework provides a more balanced 
and efficient solution for detecting minority attacks 
in evolving network environments. 

Bio-inspired optimization in the research 
outcomes demonstrates how natural foraging 
strategies can strengthen intrusion detection by 
enhancing adaptability under dynamic IoMT 
conditions [39] - [50]. The results validate that the 
algorithm reduces false alarms and improves 
detection accuracy through elite selection and 
adaptive search [51] - [64]. This shows the study’s 
contribution in transferring biologically inspired 
intelligence into practical security mechanisms for 
resource-constrained medical devices [65] – [78]. 
 
3. ADAPTIVE CARIBOU DEFENSE 

PROTOCOL (ACDP) 
 
The Adaptive Caribou Defense Protocol 

(ACDP) begins with the essential step of 
initializing the caribou herd, which simulates the 
setup of potential solutions within the HIDS. Each 
caribou in this initialization phase represents a 
unique configuration of HIDS parameters designed 
to establish a diverse starting population of possible 
solutions. This step lays the groundwork for the 
optimization process, ensuring that the HIDS can 
adapt, evolve, and become more effective at 
detecting intrusions.  

 
3.1 Parameter Definition and Herd Diversity 
  
 The first objective in initializing the 
caribou herd is creating various parameter values 
for the HIDS. Each caribou, representing a specific 
configuration, is defined by multiple variables that 
collectively determine the behavior and sensitivity 
of the HIDS. Let a vector denote the configuration 
of each caribou , as shown in Eq.(1). 

 

(1) 

 signifies a complete configuration vector for a 
single caribou, with each element  representing a 
specific HIDS parameter. These parameters could 
include thresholds for anomaly detection, logging 
intervals, and resource allocation levels. The initial 
population of caribou is selected to ensure diversity 
across these parameters, promoting a broad 
exploration of the solution space. Diverse 
configurations help prevent early convergence to 
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suboptimal solutions, a common pitfall in 
optimization processes. The caribou initialization 
step actively enhances HIDS’s adaptive capabilities 
by populating the herd with configurations 
spanning a wide range of values. 
 
Resource Allocation in Herd Initialization 
 Optimizing resource allocation plays a key 
role in the initial setup of the caribou herd. Each 
caribou configuration allocates system resources 
such as CPU and memory to maximize HIDS 
efficiency without overburdening the host system. 
The resource allocation for each caribou, denoted as 

, can be formulated as Eq.(2). 

 

(2) 

where  indicates the weight of resource impact 
for each parameter This equation helps balance 
the configuration to utilize optimal resources 
efficiently. Optimized resource allocation ensures 
that each caribou’s configuration remains viable 
within the HIDS, maximizing performance without 
causing significant system overhead. 
 
Distance Between Configurations 
 Caribou within the herd exhibit differences 
in configuration, creating a measure of “distance” 
between each pair to maintain diversity. This 
distance metric, , evaluates the distinction 
between the parameter settings of two 
configurations, labeled  and  

 

(3) 

In Eq.(3), the distance  Captures the 
variance across the parameters between two 
configurations, ensuring various distinct solutions 
at the onset. Maintaining a diverse distance profile 
enhances the likelihood of discovering an 
optimized solution through caribou behavior. 
 
Objective Function for Herd Members 
 The initialization process requires defining 
an objective function each caribou will attempt to 
optimize during the migration and adaptation 
phases. The objective function  Evaluate the 
effectiveness of each caribou configuration in 
detecting potential intrusions, expressed 
mathematically in Eq.(4). 

 

(4) 

where  and  represent the weights for accuracy 
and resource efficiency. Balancing these elements 
ensures that each caribou configuration remains 
aligned with HIDS’s goal to detect intrusions while 
conserving system resources. 
 
Migration Potential 
 The initialization step assigns each caribou 
a migration potential , representing its capacity to 
move within the parameter space toward better 
configurations. This migration potential is 
calculated as Eq.(5). 

 

(5) 

where  indicates the migration influence factor 
and  It is the configuration with the highest 
initial objective function value. This potential 
prepares the herd to move toward optimized 
solutions in subsequent steps. 
 
Intrusion Detection Sensitivity Adjustment 
 As part of initialization, the sensitivity of 
intrusion detection in each configuration is set. 
Sensitivity  determines how aggressively HIDS 
flags potential threats, calculated for each caribou 
as shown in Eq.(6). 

 

(6) 

This sensitivity score  balances the detection 
aggressiveness of HIDS, ensuring a range of 
conservative to aggressive configurations within the 
herd, which supports comprehensive intrusion 
detection. 
 
Resource Constraint Verification 
 Each caribou configuration must adhere to 
resource constraints to ensure it does not 
compromise host system stability. A constraint 
check, , confirms compliance with resource 
limits, defined by Eq.(7). 

 

(7) 

where  represents the maximum allowable 
resource usage. Configurations exceeding  are 
excluded, maintaining HIDS functionality without 
excessive resource consumption. 
Configuration Adaptability Scoring 
 Each caribou’s adaptability, denoted as , 
measures its potential to adjust and respond to 
changing security conditions. The adaptability 
score is computed as expressed in Eq.(8). 
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(8) 

Where  indicates the adaptability factor. A high 
adaptability score signals configurations that can 
dynamically evolve, guiding the herd toward 
adaptable, optimized solutions. 
3.2 Defining Caribou Movement Patterns 
 
 This phase provides a systematic approach 
to adjust configurations for HIDS optimization. 
This step aims to simulate the migratory behaviour 
of caribou to locate high-performing configurations 
while minimizing resource usage. Implementing 
movement strategies that mimic caribou allows 
adaptive parameter space exploration, enabling 
HIDS to evolve toward configurations with 
enhanced intrusion detection capabilities. The 
movement patterns, mathematically represented, 
dictate each caribou’s direction and step size within 
the parameter landscape, simulating how caribou 
migrate toward favourable regions for optimized 
results. 
 
Caribou Migration Model 
 In defining movement, caribou utilizes a 
migration model that enables movement toward 
configurations showing higher objective function 
values. The migration distance for each caribou  
can be expressed as Eq.(9). 

 

(9) 

where  denotes the migration factor,  is the 
position of the configuration with the highest 
objective function value, and  represents 
the current position of the caribou. This equation 
encourages caribou to move closer to 
configurations with favourable attributes, 
simulating the natural tendency to migrate toward 
optimal conditions. 
 
 
Position Update Based on Migration Direction 
 Each caribou’s location in the parameter 
space is updated according to its migration distance 
to adjust position. The new position  for each 
caribou is calculated as Eq.(10). 

 

(10) 

 This equation updates the caribou’s 
position by adding the migration distance to the 
current location. The adjustment brings each 
caribou closer to optimized configurations, moving 

it in line with the path set by high-performance 
points. 
 
 
Exploration and Diversification of Path 
 Diversification factors are introduced to 
increase exploratory movement and prevent the 
caribou from converging prematurely on local 
optima. A diversification term  for each caribou 
can be expressed as Eq.(11). 

 

(11) 

where  represents the diversification factor and 
 is a randomly selected configuration 

within the search space. Diversification expands the 
search space by encouraging movement away from 
the current location, balancing exploration and 
exploitation. 
 
Adaptive Step Size Adjustment 
 Step size determines how rapidly caribou 
can move toward optimal configurations, and it 
adapts based on the performance of previous 
movements. The step size  for each caribou is 
defined as Eq.(12). 

 

(12) 

where  is a scaling factor,  and 
 denote the objective function values at 

the best and current positions, and  is a small 
constant to avoid division by zero. The step size 
adjusts adaptively to ensure movement efficiency. 
 
Movement Angle for Optimized Positioning 
 Directionality in movement is influenced 
by calculating an angle  that helps determine the 
caribou’s precise path toward the optimized region. 
The movement angle  can be determined as 
Eq.(13). 

 

(13) 

where  and  are the coordinates of the 
best configuration in a two-dimensional parameter 
space, and  and  represent the 
coordinates of the caribou’s current position. This 
angle determines the directional vector along which 
the caribou moves, refining its path. 
 
Dynamic Adjustment of Migration Influence 
 The migration influence dynamically 
adjusts to balance the herd's movement between 
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exploration and convergence. The migration 
influence  is defined by Eq.(14). 

 

(14) 

where  is the initial migration influence,  is a 
decay constant, and  represents the number of 
iterations. This exponential decay function reduces 
migration influence over time, allowing the caribou 
to fine-tune positions closer to the optimal point 
without excessive deviation. 
 
Optimization of Caribou Positions in Movement 
 In coordination with migration patterns, 
positioning adjustments ensure that caribou 
configurations continue optimizing over time. 
Optimized positioning, , can be modelled as 
Eq.(15). 

 

(15) 

where  is the updated position, represents 

step size,  is the diversification term, and  is the 

movement angle. This equation calculates an 
optimized position, factoring in the caribou’s 
adjusted movement parameters to achieve improved 
configuration alignment. 
 
3.3 Foraging Behavior Simulation 
  
 A dynamic approach to fine-tune HIDS 
parameters by simulating the foraging behaviour of 
caribou. This process enables each configuration to 
explore promising areas of the parameter space that 
are likely to yield enhanced detection capabilities. 
Foraging here refers to seeking optimized settings 
that maximize HIDS’s performance in identifying 
threats. The foraging behaviour maintains the HIDS 
system’s adaptability and effectiveness by 
continuously adjusting and evaluating 
configurations. 
 
Fitness Evaluation in the Foraging Process 
 The foraging behaviour begins by 
evaluating the fitness of each caribou's 
configuration, representing the configuration’s 
effectiveness in intrusion detection. The fitness  
of each configuration is determined by a specific 
evaluation function, calculated as represented 
mathematically in Eq.(16). 

 

(16) 

where  denotes the weight assigned to the 
detection rate, and  indicates the penalty weight 
for resource usage. This function prioritizes 
configurations with high detection accuracy and 
low resource consumption, guiding caribou to 
forage in regions that optimize HIDS performance. 
 
Search Radius Determination 
 The foraging behaviour includes setting a 
search radius  around each caribou’s position, 
limiting the area where the configuration will be 
explored. The search radius can be defined as 
Eq.(17). 

 

(17) 

where  represents the scaling factor of the search 
radius, and  and  indicate the positions 
of the best-performing configuration and the 
caribou’s current position, respectively. This 
controlled radius allows focused exploration around 
promising configurations. 
 
Directional Adjustment Toward Optimal Solutions 
 As part of the foraging process, each 
caribou adjusts its direction based on the position of 
nearby high-fitness configurations. The directional 
vector  is calculated as Eq.(18). 

 

(18) 

where  is a directional influence factor,  
denotes the position of the nearest high-fitness 
configuration, and  represents the current 
configuration. This vector directs the caribou to 
align its position towards configurations 
demonstrating optimized performance. 
 
Probabilistic Selection of Neighboring Points 
 The foraging behaviour simulates the 
tendency to explore neighbouring points 
probabilistically, allowing for both intensification 
and diversification of the search. A probability 
function  defines the likelihood of selecting 
neighbouring points as Eq.(19). 

 

(19) 

where  is the fitness of a neighbouring 
configuration, and  represents the total 
fitness of all considered neighbours. This 
probability encourages selection based on fitness, 
guiding exploration to high-performance areas. 
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Energy-Based Foraging Adjustment 
 To simulate resource constraints in 
foraging, an energy factor  limits the number of 
iterations a configuration can spend exploring a 
particular region. The energy factor is calculated as 
Eq.(20). 
 

 

(20) 

where  is the initial energy assigned to the 
caribou,  is the decay rate, and  represents the 
time or number of iterations in the foraging process. 
As energy depletes, the caribou shifts focus, 
preventing the over-exploration of a single area. 
 
Adaptive Step Size During Foraging 
 To ensure efficient movement, each 
caribou's step size adapts during foraging based on 
the fitness of nearby configurations. The adaptive 
step size  for foraging is expressed as Eq.(21). 

 

(21) 

where  is the step-size scaling factor, 

 and  denote fitness values 

of the neighbour and current configurations, and  

prevents division by zero. This step size adjustment 
ensures that configurations adapt according to the 
quality of surrounding points. 
 
3.4 Adaptation to Environmental Changes 
 
 This step simulates the caribou’s real-
world adaptability to shifting conditions, enhancing 
the system’s resilience by dynamically adjusting 
HIDS configurations. Through mathematical 
adjustments, caribou adapt their parameters, 
optimizing HIDS performance across different 
environmental contexts, such as variations in 
network traffic or user behaviour. The adaptability 
mechanism incorporates factors including 
sensitivity, responsiveness, and adjustment 
thresholds, ensuring that each caribou configuration 
remains effective despite environmental shifts. 
 
Environmental Change Detection 
 The first task in environmental adaptation 
involves detecting changes in the HIDS 
environment. Environmental change  a detection 
function monitors variations in key indicators such 

as traffic volume or anomaly patterns, expressed 
mathematically as Eq.(22). 

 

(22) 

where  is a sensitivity factor,  represents the 
anomaly rate at the current time, and  indicates 
the anomaly rate from the previous time step. This 
difference signals an environmental change 
requiring parameter adjustment. 
 
Configuration Sensitivity Adjustment 
 Upon detecting environmental change, 
each caribou configuration adjusts its sensitivity to 
align with the new conditions. The sensitivity  
for each configuration is recalculated as shown in 
Eq.(23). 

 

(23) 

where  is the baseline sensitivity, and  
denotes the adjustment factor in response to 
detected changes. This equation amplifies the 
configuration’s responsiveness to emerging threats 
while maintaining a controlled sensitivity level. 
 
Threshold Modulation for Resource Efficiency 
 Adaptation to environmental changes 
involves recalibrating the thresholds that govern 
system resource usage. The threshold  is 
modified in response to shifts in anomaly rates, 
calculated as shown in Eq.(24). 

 

(24) 

where  represents the initial resource 
threshold, and  is the decay rate based on the 
extent of environmental change. Lowering  
during high anomaly periods prioritizes resources 
for detection, maximizing HIDS’s operational 
efficiency. 
 
Adaptive Reweighting of Objective Function 
 The objective function balances detection 
accuracy and resource usage and adapts by 
reweighting components according to 
environmental shifts. The adapted objective 
function  is expressed as shown in Eq.(25). 

 

(25) 

where  and  are reweighting factors for detection 
rate and resource efficiency, respectively. This 
adjustment aligns the objective function to 
prioritize detection accuracy during periods of 
increased anomaly activity. 
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Dynamic Migration Influence Adjustment 
 To balance adaptation and stability, the 
migration influence  adapts according to the rate 
of environmental change. This dynamic migration 
influence is calculated as expressed in Eq.(26). 

 

(26) 

where  is the baseline migration influence, 
and  controls the intensity of adaptation. This 
equation increases the caribou’s movement 
adaptability during periods of heightened activity, 
allowing configurations to converge toward new 
optimized solutions. 
 
Adaptive Feedback Loop for Continuous 
Adjustment 
 The adaptation process includes a 
continuous feedback loop , recalibrating 
configurations to align with ongoing environmental 
conditions. 

 

(27) 

In Eq.(27), where  is the feedback sensitivity 
factor,  and  represent the objective 
function values from previous and current 
iterations, and  ensures numerical stability. This 
loop enables caribou configurations to adapt 
responsively, aligning with optimized HIDS goals. 
 
3.5 Selection of Elite Caribou (Best 

Configurations) 
 
 This step involves identifying and 
prioritizing configurations demonstrating optimal 
intrusion detection capabilities in the HIDS. By 
selecting elite caribou, the protocol ensures that 
configurations with superior performance influence 
the overall herd, guiding future adjustments toward 
optimized solutions. This process mirrors the 
natural selection observed in caribou herds, where 
only the strongest or best-suited individuals lead the 
way. The choice of elite caribou is determined by 
assessing configurations based on specific criteria 
such as detection accuracy, resource efficiency, and 
adaptability. 
 
Elite Fitness Evaluation 
 The selection of elite caribou begins with 
evaluating the fitness of each configuration to 
determine those with the highest performance 
levels. The fitness  for each caribou configuration 
is defined by an equation balancing detection 
accuracy and resource usage as defined in Eq.(28). 

 

(28) 

where  denotes the weight given to detection 
accuracy, and  is the penalty factor for resource 
consumption. This function ranks configurations by 
favoring those with high detection rates and low 
resource consumption, setting a benchmark for elite 
selection. 
 
Threshold for Elite Selection 
 An elite selection threshold  determines 
which configurations are considered the best, 
setting a minimum fitness level that must be met. 
The threshold is calculated as a function of the 
herd's average fitness, as shown in Eq.(29). 

 

(29) 

Where  represents a threshold factor,  is the total 
number of caribou, and  is the fitness of the -th 
caribou. This equation selects configurations with 
fitness scores above the threshold, identifying them 
as elite. 
 
Ranking of Elite Configurations 
 Once the threshold is set, elite caribou are 
ranked based on their fitness scores. The rank  of 
each elite configuration is determined by Eq.(30). 

 

(30) 

Where configurations are ordered in descending 
order of fitness values , with the highest fitness 
ranked first. This ranking system establishes a 
hierarchy among elite caribou, where top-ranked 
configurations exert greater influence in the 
optimization process. 
 
Influence Factor for Elite Configurations 
 Each elite caribou contributes an influence 
factor , which impacts the migration patterns of 
other caribou in the herd. The influence factor is 
calculated based on each elite configuration's rank 
and fitness, expressed in Eq.(31). 

 

(31) 

where  is a scaling constant. The inverse 
relationship between  and  ensures that higher-
ranked (more fit) configurations influence the 
herd's movement toward optimized solutions. 
 
Weighted Mean Position of Elite Configurations 
 The weighted mean position  elite 
configurations are calculated to centralize the 
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herd’s movement around high-performing regions. 
This mean position is derived from Eq.(32). 

 

(32) 

where  denotes the number of elite configurations, 
 represents the influence factor of each elite 

caribou, and  is the position of the -th elite 
configuration. This weighted mean centralizes 
movement around the most optimized regions, 
anchoring future adjustments. 
 
Elite Configuration Adjustment Threshold 
 An adjustment threshold  ensures that 
elite configurations maintain their status by 
adapting to ongoing environmental conditions. The 
threshold is calculated as shown in Eq.(33). 

 

(3
3) 

where  is a scaling factor,  is the adjusted 
position, and  is the weighted mean position. 
Elite caribou exceeding this threshold undergo 
additional adjustments, maintaining optimized 
alignment. 
 
3.6 Migration and Path Diversification 
 
 Migration involves calculated movements 
based on elite configurations, while path 
diversification introduces variability, allowing each 
caribou to explore beyond familiar areas. This step 
strengthens adaptability, ensuring that the HIDS 
remains robust and responsive to evolving security 
threats and changes in the computational 
environment. 
 
Migration Step Calculation 
 The migration of each caribou is directed 
by the previously selected elite configurations, 
promoting movement towards optimized solutions. 
The migration step  is calculated as Eq.(34). 

 

(34) 

where  is the migration scaling factor,  
represents the position of the nearest elite 
configuration, and  is the caribou's current 
position. This migration step pulls each caribou 
toward high-performing settings identified by elite 
configurations, guiding the herd collectively toward 
optimal parameter regions. 
 
 
 

 
Path Diversification Factor 
 Path diversification introduces exploratory 
variability to prevent premature convergence on a 
single solution. The path diversification factor  is 
defined as Eq.(35). 

 

(35) 

where  is the diversification scaling factor, 
 is a randomly chosen position in the 

search space, and  represents the caribou's 
current position. This factor enables the caribou to 
shift away from familiar paths, periodically 
increasing exploration. 
 
Combined Migration and Diversification 
Movement 
 By integrating migration and 
diversification, each caribou’s next position  is 
calculated through as specified in Eq.(36). 

 

(36) 

where  represents the directed migration step and 
 adds exploratory movement. This combined 

approach enables caribou to progress toward 
optimized configurations while retaining the 
flexibility to explore alternative paths. 
 
Migration Decay Function 
 To adjust migration intensity over time, a 
migration decay function modulates movement 
strength across iterations. 

 

(37) 

In Eq.(37), where  represents the initial migration 
intensity,  is the decay rate, and  is the iteration 
number. This decay function gradually reduces 
migration influence, encouraging finer adjustments 
as caribou converge toward optimal settings. 
 
Adaptive Diversification Radius 
 To dynamically adjust path diversity, an 
adaptive diversification radius  is calculated 
based on the performance of neighbouring 
configurations which is represented mathematically 
in Eq.(38). 

 

(38) 

where  scales the radius,  denotes the fitness of 
each neighbouring configuration,  is the mean 
fitness, and  is the number of neighbours. A larger 
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 signals variability, enabling greater 
diversification in cases of low neighbouring fitness. 
3.7 Survival of the Fittest Configuration 
 
 This step emulates natural selection, where 
only configurations with superior performance 
survive, ensuring the Host-Based Intrusion 
Detection System (HIDS) consistently progresses 
toward optimal efficiency. The survival mechanism 
filters out suboptimal configurations, consolidating 
the system’s resources and focusing computational 
efforts on configurations that maximize intrusion 
detection accuracy while conserving resources. 
 
Fitness Threshold for Surviva 
 The survival process begins by defining a 
fitness threshold , which filters 
configurations based on their effectiveness. This 
threshold ensures that only configurations meeting 
a minimum standard are retained. The threshold is 
calculated as expressed mathematically in Eq.(39). 

 

(39) 

where  is a scaling factor,  represents the total 
number of caribou configurations, and  is the 
fitness score of each configuration. By setting this 
benchmark, the configurations below  are 
deemed unfit for retention. 
 
Probability of Configuration Survival 
 Configurations meeting the fitness 
threshold undergo a probabilistic assessment for 
survival, allowing a degree of variability in 
selection. The survival probability  for each 
configuration is given by Eq.(40). 

 

(40) 

where  represents the fitness of the configuration, 
and  is the highest fitness score among all 
configurations. This probability favors higher 
fitness values, yet allows diversity by not strictly 
eliminating lower-fitness configurations. 
 
 
Fitness-Based Resource Allocation 
 Resources are allocated for configurations 
surviving the selection process based on their 
relative fitness. The resource allocation  for each 
configuration is calculated as shown in Eq.(41). 

 

(41) 

where  is the total available resource budget,  
represents the fitness of the selected configuration, 
and  is the total number of surviving 
configurations. This allocation distributes resources 
in proportion to fitness, prioritizing highly 
optimized configurations. 
 
Elimination of Weak Configurations 
 Configurations with fitness scores below 
the defined threshold are removed from the 
population. The elimination indicator  is 
expressed as Eq.(42). 

 

(42) 

where  denotes the configuration's fitness score. 
An indicator value of 1 signifies elimination, 
effectively filtering weaker configurations from 
further optimization cycles. 
 
Iterative Fitness Reinforcement 
 Surviving configurations undergo an 
iterative reinforcement to promote continued 
optimization in successive steps. The reinforcement 
factor  is defined as expressed in Eq.(43). 

 

(43) 

where  is the reinforcement scaling factor and  
denotes the fitness of the configuration. Reinforcing 
fitness enhances each configuration’s potential for 
adaptation, ensuring persistence toward optimal 
HIDS performance. 
 
3.8 Herd Communication and Information 

Sharing 
  
` Through effective communication, caribou 
configurations share valuable information about 
intrusion detection and parameter tuning. This 
mechanism draws inspiration from herd dynamics, 
where individuals communicate beneficial 
information to adapt better to environmental 
changes. In HIDS optimization, such shared 
knowledge strengthens the configurations, 
improving detection capabilities and aligning the 
system with real-time demands. 
 
Exchange of Fitness Information 
 The exchange of fitness information is 
crucial, allowing each caribou to understand the 
performance of neighbouring configurations. The 
shared fitness value  for a configuration  the 
average fitness of nearby configurations is 
calculated mathematically in Eq.(44). 
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(44) 

where  represents the set of neighbouring 
configurations,  is the fitness of each 
neighbouring configuration , and  denotes 
the total number of neighbours. This averaging 
process provides a reference fitness level for 
configurations, guiding their adjustments. 
 
Influence of Shared Knowledge on Position 
Update 
 Each configuration adjusts its position in 
the parameter space using the shared fitness 
information. The position update  the 
configuration’s current and average shared fitness 
are influenced by the configuration, calculated as 
shown in Eq.(45). 

 

(45) 

where  is the learning rate,  is the shared fitness, 
represents the current configuration’s fitness, and 

 denotes the position of a 
neighboringconfiguration. This equation directs 
each configuration toward positions aligned with 
better fitness scores, optimizing detection 
capabilities. 
 
Shared Parameter Optimization 
 Caribou configurations benefit from 
shared parameter optimization, where key 
parameters for intrusion detection are harmonized 
across the herd. The optimized parameter  each 
caribou is calculated as the weighted average of 
parameters from neighbouring configurations. 

 

(46) 

In Eq.(46), where represents the weight based on 
each neighbour’s fitness , and  is the parameter 
of interest for configuration . This weighted 
averaging ensures that parameters align with high-
performing configurations, promoting consistency 
across the herd. 
 
Adaptation of Communication Range 
 Herd communication includes an adaptive 
communication range , allowing configurations 
to adjust their neighbourhood size based on 
performance. The communication range is 
expressed as Eq.(47). 

 

(47) 

where  scales the communication distance,  is 
the fitness of the configuration, and  is the 
maximum fitness among configurations. This range 
adapts to encourage interaction with more 
configurations when fitness is lower, enhancing 
learning opportunities. 
 
Reinforcement of High-Performance 
Configurations 
 To reinforce optimized behaviour, high-
performance configurations transmit their settings 
more frequently. The transmission rate  for a 
configuration is defined as Eq.(48). 

 

(48) 

where  is a base rate constant,  represents the 
configuration’s fitness, and  is the highest 
fitness within the herd. This rate increases with 
fitness, promoting wider dissemination of effective 
settings across the configurations. 
 
3.9 Continuous Monitoring and Feedback Loop 
 
 This step enables real-time responsiveness 
to environmental changes, ensuring the HIDS 
remains optimized for accurate intrusion detection 
and resource efficiency. Through continuous 
monitoring, the protocol collects performance data, 
while the feedback loop applies these insights to 
adjust configurations, promoting sustained 
optimization across the system. 
 
Performance Monitoring Function 
 The monitoring process begins with a 
performance function  that quantifies each 
configuration’s effectiveness. This function 
evaluates detection accuracy and resource usage, 
providing a basis for adjustments. The performance 
function is given as shown in Eq.(49). 

 

(49) 

where  and  are weighting factors for accuracy 
and resource consumption, respectively. This 
calculation highlights configurations that maximize 
detection efficiency without excessive resource 
demands, establishing a performance benchmark 
for the feedback loop. 
 
Error Calculation for Feedback Loop 
 To facilitate refinement, the feedback loop 
calculates an error  based on the deviation 
between desired and actual performance metrics. 
The error function is defined as Eq.(50). 
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(50) 

where  represents the target performance, 
and  is the monitored performance. This error 
quantifies the extent of adjustment needed to align 
each configuration with optimized performance 
standards. 
 
Adjustment Rate Based on Error Feedback 
 The feedback loop applies an adjustment 
rate  proportional to the error, modifying 
configuration parameters accordingly. The 
adjustment rate is expressed as Eq.(51). 

 

(51) 

where  is a scaling factor that controls the 
magnitude of changes based on . A larger error 
prompts greater adjustments, enabling rapid 
adaptation to performance gaps. 
 
Updated Configuration Application 
 Once the adjustment rate is determined, 
the configuration update  is applied to 
modify parameter values within HIDS. 

 

(52) 

In Eq.(52), where  is the existing 
configuration, and  represents the adjustment rate 
derived from the feedback loop. This update 
ensures that each configuration continuously aligns 
with performance goals, fostering ongoing 
optimization. 
 
3.10   Fine-tuning through Local Adjustments 
 
 Local adjustments refine parameter values, 
ensuring that high-performing configurations are 
further optimized. This step employs incremental 
updates, allowing configurations to achieve optimal 
detection accuracy and resource utilization based on 
specific conditions within the HIDS environment. 
 
Calculation of Adjustment Gradient 
 The fine-tuning process begins with 
calculating an adjustment gradient.  for each 
configuration to assess the direction and magnitude 
of improvement needed. This gradient is computed 
as depicted in Eq.(53). 

 

(53) 

where  is the performance metric function, and  
represents the configuration parameters. The 

gradient identifies how changes in each parameter 
impact performance, guiding local adjustments to 
improve HIDS effectiveness. 
 
 
 
Local Step Size for Parameter Adjustment 
 Using the adjustment gradient, a local step 
size  is calculated to control the extent of 
parameter modification, defined as Eq.(54). 

 

(54) 

where  is a learning rate that moderates the 
adjustment intensity. This step size ensures that 
incremental parameter changes promote stability 
and prevent overshooting, which can lead to 
suboptimal performance. 
 
Updated Configuration with Fine-Tuning 
 After calculating the step size, each 
parameter within the configuration is fine-tuned, 
resulting in the updated configuration  
which is represented mathematically in Eq.(55). 

 

(55) 

where  represents the existing parameter 
values, and  adds the calculated step for fine-
tuning. This update aligns each configuration with 
incremental enhancements, refining settings that 
contribute positively to intrusion detection 
performance. 
 
Convergence Check for Local Adjustments 
To ensure stability, a convergence check  
assesses whether further fine-tuning is necessary. 
This check is calculated by evaluating the 
difference between consecutive updates as 
expressed in Eq.(56). 

 

(56) 

If  falls below a specified tolerance level, no 
additional adjustments are made. This check 
ensures that configurations remain focused on 
precision without redundant modifications. 
 
3.11 Convergence to Optimal Herd 

Configuration 
 
 This phase ensures that all configurations 
reach a state of optimized performance, balancing 
detection accuracy, resource allocation, and 
stability across the herd. Convergence involves 
identifying configurations that meet the optimized 
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criteria, and finalizing the most effective herd 
configuration for sustained HIDS efficiency. 
 
Mean Fitness for Herd Convergence 
 The convergence process begins by 
calculating the mean fitness  of the herd, 
which serves as a benchmark for final alignment. 
This average fitness is computed as expressed in 
Eq.(57). 

 

(57) 

where  represents the total number of 
configurations, and  is the fitness of each 
configuration. The mean fitness provides a standard 
that reflects the collective performance level across 
configurations. 
 
Fitness Deviation for Stability Check 
 To assess convergence, a fitness deviation 

 is calculated to measure the variability among 
configurations. This deviation is given by Eq.(58). 

 

(58) 

where  denotes the fitness of each configuration, 
and  is the mean fitness. A low  indicates 
minimal variation, suggesting that configurations 
are reaching consistent levels of performance. 
 
Position Adjustment for Final Convergence 
 Each configuration’s position  is 
adjusted to align with the mean position of high-
fitness configurations, calculated as Eq.(59). 

 

(59) 

where  is the mean position of high-fitness 
configurations,  is the mean fitness, and  
represents the adjustment scaling factor. This step 
refines each configuration’s position to enhance 
overall convergence. 
 
Convergence Indicator for Optimal State 
 A convergence indicator  assesses 
whether the herd has achieved the optimal state. 
This indicator is defined as Eq.(60). 

 

(60) 

where  represents the predefined optimal 
fitness target. A minimal  confirms that the 
herd has reached the desired performance level, 
signaling final convergence. 
 
4. DATASET DESCRIPTION 

 The “Network Intrusion Detection” 
dataset, available on Kaggle, comprises 22,544 
instances and 41 features, serving as a benchmark 
for evaluating intrusion detection systems. This 
dataset includes diverse simulated intrusions within 
a military network environment, providing a 
comprehensive foundation for analyzing various 
attack types. The features encompass various 
network traffic attributes, such as protocol type, 
service, and flag, along with continuous features 
like duration and byte counts. The dataset is 
instrumental in training and testing machine 
learning models to identify malicious activities 
within network traffic. Researchers and 
practitioners utilize this dataset to develop and 
benchmark algorithms for detecting anomalies and 
enhancing cybersecurity measures. Its structured 
format and detailed feature set facilitate the 
application of various analytical techniques, 
contributing to advancements in network security. 
The comprehensive dataset makes it a valuable 
resource for improving intrusion detection 
methodologies. 

5. RESULTS AND DISCUSSIONS 

 Results and discussion analyze the 
performance of classification models by 
interpreting evaluation metrics. The results validate 
the effectiveness of each model, while the 
discussion highlights strengths, limitations, and 
comparative insights. The evaluation provides a 
clear understanding of detection accuracy, 
precision, recall, and overall classification 
efficiency, ensuring an informed assessment of 
security models in network intrusion detection. 
Classification algorithms for network intrusion 
detection are assessed using CL-AC (Classification 
Accuracy) and F-MSR (F-Measure) metrics. 
Classification Accuracy (CL-AC) measures the 
proportion of correctly classified instances, 
providing an overall performance assessment. F-
Measure (F-MSR) represents the harmonic mean of 
precision and recall, ensuring a balanced evaluation 
of classification effectiveness, particularly in 
imbalanced datasets.  
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 Fig 1. illustrates the CL-AC and F-MSR; 
the DI-NIDS model achieves 63.090% CL-AC and 
63.071% F-MSR, indicating moderate performance 
but limited effectiveness in detecting sophisticated 
intrusions. DMAN improves detection rates, 
reaching 66.397% CL-AC and 67.327% F-MSR, 
demonstrating better classification capabilities. The 
Adaptive Caribou Defense Protocol (ACDP) 
significantly outperforms both models, achieving 
80.232% CL-AC and 80.196% F-MSR, indicating a 
substantial improvement in detection accuracy and 
precision. The results highlight ACDP's ability to 
enhance intrusion detection efficiency, minimize 
false positives, and strengthen network security. 
The optimized approach ensures better adaptability 
in identifying evolving cyber threats. 

 
Fig 1. CL-AC and F-MSR 

 The performance evaluation of 
classification algorithms in network intrusion 
detection is measured using Precision (PREC) and 
Recall (RCLL) metrics. Precision (PREC) 
quantifies the proportion of correctly identified 
intrusions among all instances classified as 
intrusions, indicating the algorithm’s ability to 
reduce false positives. Recall (RCLL) represents 
the proportion of correctly detected intrusions out 
of all actual intrusions, assessing the model’s 
effectiveness in minimizing false negatives. Fig 2. 
Depicts the RCLL and PREC comparison outcomes 
of the three protocols. 

 
 The DI-NIDS model achieves 59.285% 
PREC and 67.373% RCLL, reflecting moderate 
detection capabilities but a relatively higher false-
positive rate. DMAN improves precision and recall, 
reaching 66.091% PREC and 68.610% RCLL, 
demonstrating better classification reliability. The 
Adaptive Caribou Defense Protocol (ACDP) 

significantly enhances intrusion detection, 
achieving 81.598% PREC and 78.840% RCLL, 

showcasing superior precision and recall.  
  

Fig 2. RCLL and PREC 

 The optimized ACDP model effectively 
balances false positives and false negatives, 
ensuring more reliable and adaptive threat 
detection. The results confirm that ACDP 
outperforms other models by efficiently identifying 
intrusions while maintaining high detection 
accuracy, improving network security resilience 
against evolving threats. 
 The evaluation of classification algorithms 
in network intrusion detection is analyzed using 
Attack Detection Rate (ADR), Miss Detection Rate 
(MDR), and Detection Rate (DR). Attack Detection 
Rate (ADR) quantifies the proportion of actual 
intrusions correctly identified by the model, 
ensuring effectiveness in threat recognition. Miss 
Detection Rate (MDR) measures the proportion of 
actual intrusions that were not detected, reflecting 
the model’s susceptibility to false negatives. 
Detection Rate (DR) represents the model's overall 
accuracy in identifying intrusions across different 
attack types. Fig 3. Illustrates the ADR, MDR and 
DR of the three protocols. 

 
Fig 3. ADR, MDR and DR 
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 The DI-NIDS model achieves 67.373% 
ADR, 32.627% MDR, and 63.090% DR, indicating 
moderate detection efficiency but a high miss 
detection rate, affecting its reliability in identifying 
complex threats. The DMAN model demonstrates 
improved detection capabilities, with 68.610% 
ADR, 31.390% MDR, and 66.397% DR, reflecting 
better intrusion recognition but presenting 
challenges in reducing false negatives. 
 The ACDP significantly enhances 
intrusion detection performance, achieving 
78.840% ADR, 21.160% MDR, and 80.232% DR. 
The lower miss detection rate highlights ACDP’s 
ability to reduce false negatives while maintaining 
high detection accuracy. The superior performance 
of ACDP confirms its effectiveness in identifying 
security threats with improved adaptability, 
reducing misclassification rates, and strengthening 
overall network protection. The results validate that 
ACDP optimizes intrusion detection by balancing 
high detection accuracy with minimized false 
negatives, ensuring a robust security framework for 
evolving cyber threats. 
 

6. CONCLUSION 

 Intrusion detection in the IoMT requires a 
robust security framework to safeguard medical 
devices and sensitive data from cyber threats. The 
integration of HIDS enhances security by providing 
real-time monitoring, anomaly detection, and 
localized threat prevention. The comparative 
analysis of classification models, including DI-
NIDS, DMAN, and ACDP, demonstrates detection 
performance, precision, and recall variations. While 
traditional deep-learning-based models such as DI-
NIDS and DMAN improve detection capabilities, 
limitations in false-positive reduction and adaptive 
learning impact their effectiveness. The ACDP 
exhibits superior classification accuracy, achieving 
high detection rates while maintaining lower false 
negatives. Evaluating performance metrics such as 
accuracy, precision, recall, attack detection rate, and 
detection rate highlights the necessity of optimizing 
intrusion detection for IoMT applications. ACDP’s 
bio-inspired optimization approach strengthens 
network security by ensuring an adaptive and 
resource-efficient detection mechanism. Reducing 
false positives and improving classification 
reliability contribute to the resilience of medical 
infrastructures, preventing unauthorized access and 
data breaches. Integrating optimized HIDS in IoMT 
frameworks enhances cybersecurity, ensuring real-
time defense mechanisms against evolving cyber 
threats. Strengthening detection methodologies 

through advanced optimization techniques ensures 
continued improvements in securing interconnected 
medical environments. 
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