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ABSTRACT

Ontology authoring for learning analytics from heterogeneous platforms is a complex task, particularly for
authors who may lack proficiency in logic. This paper introduces a novel approach that leverages competency
questions (CQs) and test-driven development principles to streamline ontology, authoring and validation. We
analyse common questions from stakeholders at 13 public universities to create competency questions,
identify patterns, and utilise linguistic presuppositions to define ontology requirements. Our methodology
ensures that these requirements are testable and can be validated, facilitating an integrated ontology for
learning analytics. Additionally, we present a detailed ontology validation report, demonstrating the
effectiveness of our approach through consistency checks, property validations, and individual test cases.
This integrated method aims to enhance the accuracy and reliability of ontologies in representing learning
analytics data from diverse platforms.

Keywords: Competency Questions, Ontology Validation, Learning Analytics, Heterogeneous Platforms,

Test-Driven Ontology Development
1. INTRODUCTION leverage these disparate datasets [1, 7]. They enable
a common understanding of data across platforms,

The increasing volume and diversity of facilitating accurate educational data analysis and

educational data from various digital platforms
present both significant opportunities and complex
challenges for advanced learning analytics. While
numerous studies have highlighted the immense
potential of learning analytics in enhancing
educational processes and outcomes, the
heterogeneous sources and formats of this data
often hinder its effective integration and utilization.
In response, ontologies, which provide structured
representations of knowledge, have emerged as a
powerful and widely adopted solution to unify and

supporting interoperability, standardization, and
effective decision-making in educational settings
[2,4].

Previous research has demonstrated the
instrumental role of ontologies in designing and
developing robust learning analytics systems by
integrating learning design and content through
structured classes and relationships [5]. Ontology-
based metadata models have also proven effective
in providing description specifications and search
tools for integrating various forms of educational
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resources [6]. Furthermore, ontologies aid in
determining the classes, entities, and properties to
include in databases for effective data integration
[8] and support the construction of educational and
career-oriented recommendation systems,
enhancing personalized learning experiences [9].

Despite these established benefits and the
widespread use of ontologies in data integration,
the inherent complexities associated with their
authoring and rigorous validation remain
significant challenges. This study builds upon the
foundational understanding of ontologies in
learning analytics by addressing these specific
complexities, particularly for domain experts
lacking formal training in ontology design.

This study aims to address these critical
challenges (as detailed in Section 1.1) by
introducing a novel approach that integrates
competency question-driven ontology authoring
(CQ-DOA) with comprehensive, test-driven
ontology validation techniques. Our motivation
stems from the need to streamline the ontology
development process, making it more accessible to
domain experts and ensuring the resulting
ontologies are robust, consistent, and directly
applicable to real-world learning analytics
scenarios.

Based on these challenges and motivations, this
paper seeks to answer the following research
questions:

1. How can common questions from
educational stakeholders be systematically
collected, analysed, and translated into
formal competency questions to define the
functional requirements of an ontology for
learning analytics?

2. How can an integrated ontology for learning
analytics be developed that effectively
captures  patterns  identified  through
competency questions and unifies data from
heterogeneous platforms?

3. How can a robust validation framework,
employing test-driven development
principles, be established and applied to
automatically test competency questions
against the ontology, ensuring its accuracy
and reliability?

4. How can the practical applicability and
effectiveness of the developed ontology and
validation framework be demonstrated
through detailed case studies and real-world
data integration scenarios?

We hypothesize that by systematically
leveraging competency questions and applying
test-driven development principles, we can create a
more accurate, consistent, and practically
applicable ontology for learning analytics that
effectively integrates and analyses data from
diverse platforms, thereby overcoming the
complexities inherent in traditional ontology
authoring and validation.

This paper makes several key contributions to
the field of learning analytics and ontology
authoring:

e Competency Question Framework: We
propose a systematic approach for
formulating competency questions from
real-world stakeholder queries, providing a
practical methodology for capturing precise
ontology requirements.

e Integrated Ontology Development: We
present the creation of a comprehensive
ontology for learning analytics designed to
unify data from diverse platforms, thereby
enhancing the ability to perform accurate
and meaningful analyses.

e Validation Methodology: We implement a
robust validation framework that employs
test-driven development principles to ensure
the accuracy and reliability of the ontology,
moving beyond traditional, manual
validation.

e Practical Evaluation: We demonstrate the
practical applicability and effectiveness of
the developed ontology and validation
framework through detailed case studies and
real-world data integration scenarios,
offering valuable insights for future research
and practice in educational data integration
and analysis.

By addressing these contributions, this study
aims to significantly enhance the usability and
effectiveness of ontology authoring for learning
analytics, ultimately supporting more informed,
data-driven  decision-making in educational
environments.

Ontologies are important in addressing the
challenges of integrating educational data from
diverse sources for advanced learning analytics.
They provide a structured framework for
representing knowledge, enabling interoperability,
standardisation, and effective data integration
across various platforms, enhancing decision-
making and strategy formulation in educational
environments.
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1.1 Challenges In Ontology Authoring for
Learning Analytics

Ontology authoring is a complex and multifaceted
task that demands a deep understanding of both the
specific domain and formal logic. This inherent
complexity presents several significant challenges
that often impede the efficient and accurate
development of ontologies, particularly within the
context of learning analytics:

o Difficulty in Requirement Specification:
Domain experts, who possess invaluable
knowledge but often lack formal training in
ontology design, frequently struggle to articulate
ontology requirements in a manner that can be
directly translated into formal axioms. This
disconnect complicates the initial phases of
development, making it difficult to precisely
capture the intended knowledge [11].

e Integration of Heterogeneous Data Sources:
Learning analytics data originates from diverse
digital platforms, each with varied data structures
and semantics. Integrating these heterogeneous
datasets into a cohesive and unified ontology is a
non-trivial task that necessitates careful mapping,
alignment, and transformation processes [12].

e Limitations of Traditional Validation and
Testing: Ensuring that a developed ontology
accurately reflects the domain and meets
specified requirements is paramount. However,
conventional validation methods are often time-
consuming, labour-intensive, and prone to errors,
requiring extensive manual effort and specialized
expertise [13]. This limits the efficiency and
reliability of the validation process.

e Usability Barriers for Non-Experts: Many
existing ontology authoring tools are primarily
designed for users with a strong background in
formal logic. This design paradigm significantly
limits their accessibility and usability for domain
experts, who are the primary stakeholders
responsible for defining and verifying the
accuracy and relevance of the ontology in
educational settings [14].

These challenges collectively highlight the need for

more streamlined, accessible, and rigorously

validated approaches to ontology authoring for
learning analytics, which this study aims to address.

2. COMPETENCY QUESTION-DRIVEN
ONTOLOGY AUTHORING

Competency questions (CQs) are widely
recognized as a core part of creating ontologies.
They act as a vital link, helping to translate the

practical knowledge of experts into the clear,
structured format needed for building effective
ontologies. CQs are important because they turn
informal, everyday questions into precise
requirements that computers can understand. This
helps avoid confusion and makes sure the ontology
does exactly what it's supposed to. Past studies
have consistently shown how useful CQs are for
clarifying what's needed, guiding development,
making validation easier, and generally improving
how ontologies are used [15]. For example, CQs are
crucial for clearly stating what an ontology needs
to do, making sure it lines up with what users
expect and need it for [16]. They provide a solid,
user-focused starting point for building ontologies
step-by-step, carefully guiding which concepts,
relationships, and rules are included so they are
truly relevant to the subject area [17]. Also, CQs
often work as built-in tests for checking the
ontology, allowing developers to confirm that it
accurately answers specific questions and behaves
reliably in different situations [18]. Their unique
ability to connect technical details with practical,
real-world problems also makes ontologies much
easier for non-experts to understand and use,
encouraging more people to adopt and benefit from
these knowledge models [19].

While CQs are clearly important and have been
used in many areas, current approaches often
struggle to systematically get a full set of CQs from
the varied needs of different people involved. Also,
smoothly integrating these CQs into a strong, test-
driven validation system is still a challenge. For
instance, some methods might focus too much on
just the theory of CQs, without getting enough real-
world input from stakeholders. This can lead to
ontologies that are technically sound but not very
practical or don't quite meet the specific needs of
the area. On the other hand, some approaches might
not have automated ways to directly check the
ontology against its CQs, relying instead on
manual, time-consuming validation. These manual
steps are prone to human error and inefficiency,
which hurts how thorough and scalable the
validation process can be. Our current study builds
on these existing ideas by introducing a new
method. This approach not only systematically
gathers and carefully analyzes common questions
from a wide range of people in education making
sure it's relevant to real-world use but also smartly
uses linguistic presuppositions to turn those
underlying needs into requirements that can be
tested. This systematic way of getting
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requirements, combined with a complete and
automated validation system, makes our study
stand out. It offers a more thorough, efficient, and
practical way to ensure ontologies are accurate,
consistent, and reliable in the complex and varied
world of modern learning analytics.

2.1 Methodology For Collecting and Analysing

Common Questions

To create an ontology that truly meets the needs

and perspectives of its users, it's essential to

systematically gather

and analyze common

questions from the relevant people involved. Our
method of doing this involves several clear and
step-by-step phases:

1.

ii.

Identifying Stakeholders: First, we carefully
identified the key people who are actively
involved in or directly affected by using and
analysing learning analytics data. This diverse
group included academics (like instructors and
researchers),  administrative  staff  (like
department heads and program coordinators),
and technical staff (like data analysts and IT
support) from various educational institutions.
Including people from these different roles was
crucial for getting a complete picture of
requirements  from  various operational,
teaching, and analytical viewpoints.

Designing the Survey: We then carefully
designed a comprehensive survey to collect a
wide range of common questions related to
learning analytics. The survey included both
open-ended  questions,  which  allowed
participants to share many different questions
and concerns without limits, and closed-ended
questions, which were structured to help us find
frequently asked questions and repeated themes
for analysis. In our study, the survey was
organized into six distinct sections to make sure
we covered all important aspects of learning
analytics in today's educational settings:

e Part A: How Learning Management Systems
(LMS) are Used — This section focused on
understanding how users interact with and
get insights from data generated within LMS
platforms.

e Part B: End-of-Semester Reporting Needs
for Student & Course Achievement — This
part looked at what reports and data are
needed at key academic times, like the end
of a semester.

e Part C: Ways to Monitor Students During
the Semester — This section explored how

iii.

iv.
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e Part D: Actions

e Part F: Challenges, Opportunities,

student progress is tracked continuously
throughout an academic term.

Taken for Student
Monitoring During the Semester — This part
delved into the types of interventions,
responses, and teaching adjustments made
based on student monitoring data.

e Part E: Systems for Data-Driven Monitoring

During the Semester — This section
examined the technical and procedural
frameworks that support using data for
monitoring.
and
Benefits of Student Monitoring Systems
During the Semester — This final section
aimed to get qualitative insights into the
bigger picture, including difficulties,
potential improvements, and advantages of
using learning analytics.
Collecting Data: After designing the survey, we
systematically sent it to the identified
stakeholders  across many  educational
institutions. This approach was chosen to get a
variety of viewpoints and to find common needs
that apply across different academic settings. In
this study, we successfully collected responses
from a significant group of 22 participants, who
together represented 13 different public
universities. This strong dataset provided a rich
and representative foundation for our analysis.
Analysing Questions: The collected questions
were thoroughly analysed using both qualitative
and quantitative methods to find repeated
themes, hidden patterns, and unspoken
information needs. This involved using thematic
analysis to group related questions and
categorize them based on their main focus,
purpose, and the types of ontological entities or
relationships they hinted at. This systematic
approach was key to making sure no important
requirements were missed during the initial
gathering phase.
Formulating Competency Questions: The
final step in this phase involved precisely
turning the analysed common questions into
formal competency questions (CQs). This
transformation was designed to ensure that the
CQs clearly and accurately capture the essential
functional and informational needs for the
ontology, making them directly usable for the
next steps of ontology development and
thorough validation.
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2.2 Categorisation of Competency Questions

The careful analysis of common questions from
stakeholders led to several clear and repeated
themes, which we systematically grouped into
specific categories. These categories not only show
the different aspects of learning analytics that
educators are interested in but also provide a

structured  foundation for designing and
formalizing the ontology.
i. Performance Monitoring: This category

includes questions about continuously tracking
student performance throughout a course or over
an entire academic period. These questions are
very important for spotting students who might be
struggling early on and for checking if teaching
methods are working.

o  Example: "What is the average performance
of students over the semester?" This question
means the ontology needs concepts like
'student’, ‘performance measure' (e.g., grades,
scores, completion rates), and 'time period'
(e.g., semester, academic year), along with
ways to calculate averages.

ii. LMS Participation: This group focuses on
questions about how engaged students are and
how they participate in the Learning Management
System (LMS). Understanding these patterns can
give valuable insights into student motivation,
study habits, and how they interact with learning
materials.

o Example: "How does the frequency of LMS
access correlate with student performance?"
This requires the ontology to represent 'TLMS
access events' (e.g., logins, content views,
forum posts), 'frequency' as something
measurable, and 'student performance' as
entities that can be linked and analysed
statistically.

iii. Individual Student Performance: These
questions are specifically about tracking and
precisely assessing how individual students are
doing. The goal is to identify students who might
need special attention, personalized feedback, or
targeted help to improve their learning.

o  Example: "Which student needs the most
attention based on carry marks?" This means
the ontology needs to capture detailed
'individual student data', 'carry marks' (or
similar continuous assessment scores), and
include a way to rank or flag students based
on these scores for timely support.

iv. Course Performance: This category includes
questions about the overall performance and

perceived effectiveness of a specific course during

a semester. Such insights are crucial for reviewing

curriculum and improving teaching methods.

o  Example: "What is the average course grade
for the semester?" This implies the ontology's
ability to combine individual student grades
within a specific 'course’ and calculate overall
averages, giving a summary of how well the
course is doing.

v. Program Performance: This group of questions
relates to the broader academic performance of a
specific degree or diploma program. These
questions often involve comparing different
courses or student groups within that program.

e Example: "How does the performance of
courses within a program compare?" This
requires a strong hierarchical understanding
built into the ontology, allowing it to clearly
link 'courses' to ‘'programs' and support
detailed comparisons of performance at the
program level.

vi. Cohort Performance: These questions
specifically look at the long-term performance
trends of defined groups of students, or 'cohorts’,
over longer academic periods. Such analyses
provide important insights into academic paths,
the combined effect of educational interventions,
and the overall effectiveness of program design.

o  Example: "What is the average performance
of each cohort since enrolment?" This means
the ontology needs to carefully track 'student
cohorts', their exact 'enrollment dates', and
their 'performance' across multiple academic
periods, allowing for analysis over time.

2.3 Using Linguistic Presuppositions for
Ontology Requirements

Linguistic presuppositions are hidden
assumptions or background beliefs that are
naturally part of how competency questions are
phrased. Unlike direct statements, presuppositions
are taken as true when a question is asked, and they
must be true for the question to make sense.
Carefully finding and formalizing these
presuppositions is a crucial, though often
overlooked, step for accurately capturing all the
detailed requirements of an ontology. By making
these hidden assumptions clear, presuppositions
ensure that the ontology truly reflects the
underlying knowledge, logical structure, and basic
assumptions of the subject area. This careful
process ultimately leads to more accurate, relevant,
and reliable answers to competency questions,
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adding a significant layer of depth and precision to

the process of gathering requirements beyond just

surface-level questions.

In our systematic method, we strategically use
these linguistic presuppositions to achieve several
key goals:

i.  Finding Hidden Requirements:
Presuppositions help us spot and clearly state the
unspoken  assumptions  hidden  within
competency questions. For example, if a
question asks about "average performance," it
quietly assumes that 'performance data' exists
and can be measured. Making these hidden
requirements clear ensures a more complete and
accurate understanding of what the ontology
needs to include.

ii. Formalizing Ontology Rules: Once found,
these linguistic presuppositions can be directly
turned into formal rules and axioms within the
ontology model. This step is vital because it
ensures that the ontology not only includes the
necessary concepts and relationships but also
strictly captures the logical dependencies, rules,
and integrity conditions that govern them. For
instance, the presupposition that "performance
data should be recorded" might formally become  ii.
a rule stating that every instance of 'Student
Performance' must have a 'hasValue' property
with a defined numerical range.

iii. Improving Validation: By turning
presuppositions into clear rules, they can be
strategically used as extra, very strict tests
during the ontology validation process. If an
ontology fails to meet a basic presupposition, it
points to a fundamental flaw in its design or an
incomplete representation of the subject
knowledge, even if it seems to answer the main
competency question. This approach provides a
deeper and more reliable way to validate,
significantly improving the ontology's logical
consistency, completeness, and overall
trustworthiness.

2.4 Example Competency Questions and
Presuppositions
To further explain how competency questions
and their related linguistic presuppositions are
practically used to guide the ontology creation
process, here are some detailed examples:
1. Competency Question: "What is the average
performance of students over the semester?"
e Presuppositions:
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The ontology must include a
clearly defined idea of "Student
Performance," which could be
formally represented as a specific
category or a data attribute. This
ensures that performance is a
recognizable and modellable part
of the knowledge framework.
There must be a defined method or
built-in way within the ontology to
help calculate and combine
average performance measures.
This means there's a need for
properties that link students to their
individual performance records
and possibly include functions for
numerical calculations.
Performance data must Dbe
consistently recorded and
available for the entire "semester."
This highlights the important time
aspect of the data and means
there's a need for properties that
link performance records to
specific time periods.

Competency Question: "How does the
frequency of LMS access correlate with
student performance?"
e  Presuppositions:

The ontology must clearly
represent "LMS Access" (e.g.,
individual login times, specific
activity logs, content views) and
"Student Performance" as separate
but logically connected ideas. This
sets up the entities that will be
compared.

The raw data must accurately
capture how often students access
the LMS, which means there's a
need for properties that record
timestamps, counts of interactions,
or how long they were engaged.
Crucially, the ontology must be
able to support the necessary
operations for doing a correlation
analysis between access frequency
and performance. This might
involve defining specific data
properties that can be used in
statistical calculations or
establishing relationships  that
allow for such comparisons.
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iii. Competency Question: "Which student
needs the most attention based on carry
marks?"

e  Presuppositions:

e  The ontology must include the idea
of "Carry Marks," which formally
represents ongoing assessment
scores or continuous evaluation
results. This establishes a specific
and measurable type of
performance data.

e  There must be a defined method or
set of properties within the
ontology to help identify and rank
students based on their carry
marks. This could involve
properties that allow for numerical
comparison and ordering of
student performance data.

e  The ontology should be able to
support queries that can effectively
find and flag students who need
extra academic help, possibly by
setting  specific thresholds or
categories based on their carry

marks, allowing for targeted

interventions.
By systematically addressing these competency
questions and their  related linguistic

presuppositions, this research ensures that the
developed ontology accurately reflects the complex
and detailed needs of its users. This careful
approach then leads to meaningful and actionable
insights into learning analytics, significantly
improving how useful, precise, and practical the
ontological model is.

3. ONTOLOGY DEVELOPMENT

Description Logic (DL) constitutes a family of
formal knowledge representation languages
meticulously designed to represent a domain's
structured knowledge in a human-readable and
machine-interpretable format. DL provides the
foundational  framework  for  constructing
ontologies, which are systematically composed of
classes  (representing concepts), properties
(defining roles or relationships), and individuals
(denoting specific instances). These fundamental
elements collectively delineate the intricate
relationships and inherent constraints within a
particular domain, thereby enabling the inference

of novel knowledge through rigorous logical

reasoning processes.

Key components integral to DL-based ontologies
include:

o Classes: These represent general concepts or
categories within the domain, such as 'Students',
'Courses', and 'Assessments'.

o Properties: These formally define the
relationships that exist between classes (e.g.,
‘enrolledIn’, 'hasActivity', 'isPrerequisiteOf', and
'teaches').

e Individuals: These denote specific instances of
classes, representing concrete entities within the
domain (e.g., 'Student 001', 'Lecturer 001',
'Assignment] SubjectA', and 'SubjectA’).

e Axioms: These are formal statements that
precisely define constraints and articulate the
complex relationships among classes and
properties (e.g., Student"Person,
Class_ ACInstMoodle,
Lecturers=3isA.Person).

3.1 Formalising Learning Analytics Ontology

To develop a robust ontology specifically tailored

for learning analytics, a systematic approach is

adopted for the formalization of essential concepts
and their interrelationships within this domain. This
process encompasses the following critical steps:

e Defining Key Concepts: The initial step
involves the identification and precise definition
of primary concepts pertinent to learning
analytics, including fundamental entities such as
'Student’, 'Course', 'Performance', and
'Engagement'. These concepts form the
semantic building blocks of ontology.

o Establishing Relationships: Relationships
between these identified concepts are
subsequently specified through the judicious
application of properties. For instance, a
'Student’' may be formally 'enrolledIn' a 'Class',
which in turn may be associated with multiple
'Assessments'.

e Creating Axioms: Axioms are formulated to
formally capture the inherent constraints and
complex interactions existing among these
concepts. For example, an axiom may formally
state that every 'Class' must possess at least one
'Assessment', thereby enforcing a structural
integrity within the ontology.

An example ontology in DL for learning
analytics might include the following axioms:

e Lecturers E Person
e (lass E InstMoodle
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e Assessment C owl: Thing

e Students C JenrolledIn.Class A
e Students = JisA.Person

e Lecturers T JisA.Person

e (lass C JhasAssessment.Assessment

These axioms describe the basic structure of the
ontology, ensuring that the essential relationships
and constraints are captured accurately.

3.2 Mapping Learning Analytics Data from
Heterogeneous Platforms

The integration of learning analytics data
originating  from  heterogeneous  platforms
necessitates a robust and well-defined mapping
strategy to ensure the precise alignment of data
from disparate sources with the ontological
structure. This intricate process involves several
key phases:

i. Data Source Identification: The initial phase
involves the comprehensive identification of
distinct platforms and data sources that
contribute to learning analytics. These may
include, but are not limited to, Learning
Management  Systems (LMS), Student
Information Systems (SIS), and various online
assessment tools.

ii. Schema Mapping: Schema mapping entails
aligning  the  structural  representations
(schemas) of these diverse data sources with the
established ontological framework. This
process involves identifying the equivalent
classes and properties within the ontology that
corresponds to each source's specific data fields,
ensuring semantic consistency.

iii. Data Transformation: The data from each
source is subsequently transformed to match the
precise format and semantic structure defined
by the ontology. This critical process may
encompass various data cleaning procedures,
normalization techniques, and specific data
conversion processes to ensure consistency and
compatibility with the ontological schema.

iv. Integration: The transformed data is then
integrated into a unified repository, rigorously
adhering to the ontology's predefined structure.
This comprehensive integration facilitates
seamless querying and sophisticated analysis
across all disparate data sources, providing a
cohesive view of learning activities.

For instance, if a Learning Management System

(LMS) records student grades within a field

designated 'grade', and the ontology formally

utilizes the 'hasGrade' property, the mapping
procedure would establish a precise alignment
between 'grade' and ‘'hasGrade'. This ensures
accurate interpretation and effective utilization of
the data within the overarching ontological
framework.

3.3 Integration Model for Ontology

The integration model for ontology constitutes a
comprehensive framework designed to
systematically combine data from multiple
heterogeneous sources, align it with the established
ontology, and subsequently facilitate its effective
application within learning analytics systems. This
sophisticated model incorporates the following
essential components:

i.  Ontology Alignment: Ensures that ontology
accurately represents the domain knowledge and
is aligned with the data schemas of various
sources.

ii. Data Integration Pipeline: Implements the
processes for extracting, transforming, and
loading (ETL) data from different platforms into
the integrated repository.

iii. Reasoning Engine: Employs DL reasoning
capabilities to infer new knowledge from
integrated data. This includes consistency
checking, validation of competency questions,
and generation of insights.

iv. Query Interface: A user-friendly interface for
querying integrated data using ontology. This
interface  allows stakeholders to pose
competency questions and retrieve meaningful
answers based on the integrated learning
analytics data.

This integration model strategically positions the
ontology as a central conceptual hub for learning
analytics, thereby enabling seamless integration,
sophisticated analysis, and precise interpretation of
data originating from diverse sources. Such a
unified approach significantly enhances the
capacity to generate actionable insights, providing
robust support for informed decision-making
within educational environments. By
synergistically combining Description Logic,
principles of formal ontology development,
systematic data mapping strategies, and a
comprehensive integration model, a robust
framework is established for leveraging learning
analytics from heterogeneous platforms. This
integrated approach ensures that the developed
ontology is both theoretically sound and practically

7774



Journal of Theoretical and Applied Information Technology ~
15" October 2025. Vol.103. No.19 ~J

© Little Lion Scientific A ma——

-;l'\lll

ISSN: 1992-8645

www jatit.org

E-ISSN: 1817-3195

efficacious, directly addressing the intricate needs
of educational stakeholders.
4. ONTOLOGY VALIDATION REPORT

The purpose of validating the ontology is to
ensure its accuracy, consistency, and usefulness in
representing the domain of learning analytics.
Validation is essential to confirm that the ontology
correctly captures the intended knowledge, aligns
with real-world data, and supports the competency
questions it was designed to answer. The specific
objectives of the validation process are:

i. To verify that the ontology's structure and
axioms accurately reflect the domain of learning
analytics.

ii. To ensure the ontology is logically consistent
and free from contradictions.

iii. To test the ontology's ability to answer the
competency questions derived from stakeholder
requirements.

iv. To assess ontology’s integration capability with
data from heterogeneous learning platforms.

v. To identify and address any errors or issues
within the ontology.

4.1 Overview of Ontology Structure

The ontology for learning analytics is structured
using Description Logic (DL) and includes several
key components:

e C(Classes: Fundamental concepts within the
domain, such as Students, Class, and
Assessment.

e Properties: Relationships between classes,
such as enrolledln, teaches, and
hasAssessment.

e Individuals: Instances of classes representing
specific entities, such as specific students and
assessments.

e Axioms: Constraints and rules defining the
relationships and interactions among classes
and properties. For example, a Class must
have at least one Assessment.

The ontology is designed to be comprehensive
and flexible, allowing for data integration from
various learning management systems and other
educational tools. The structure is intended to
support robust learning analytics by providing a
unified framework for representing and querying
educational data.

4.2 Validation Goals and Tools Used
The validation process aims to achieve several key
goals:

i.  Logical Consistency: Ensure that the ontology is
free from logical contradictions.

ii. Competency Question Answerability: Verify
that the ontology can correctly answer the
competency questions derived from stakeholder
requirements.

iii. Data Integration: Confirm that the ontology can
accurately integrate and represent data from
different learning platforms.

iv. Accuracy and Completeness: Ensure that the
ontology accurately captures all relevant domain
knowledge and does not omit critical concepts
or relationships.

To achieve these goals, several tools and
methods are used:

e Reasoners: An automated reasoning tool
(Hermit) checks for logical consistency and
infers new knowledge from the ontology.

e Ontology Editors: Protégé creates, edits, and
visualises the ontology.

e Validation  Frameworks: A  specific
framework and  methodology  called
TDDonto?2 is used to validate the competency
questions and test the ontology's
functionality.

e Sample Data: Real-world public datasets
from learning management systems and other
sources are used to test the ontology's ability
to integrate and accurately represent
educational data.

4.3 Key Validation Results

The validation process yields several important
results that demonstrate the effectiveness and
reliability of the ontology:

e Logical Consistency: The ontology is
confirmed to be logically consistent, with no
detected contradictions or logical errors.

e Competency Question Answerability: The
ontology successfully  answers  the
competency  questions  derived  from
stakeholder requirements, demonstrating its
practical utility.

e Data Integration Capability: The ontology
effectively integrates data from multiple
heterogeneous learning platforms, accurately
representing and linking the data within a
unified framework.

e Accuracy and Completeness: The ontology is
accurate and complete, capturing all relevant
domain knowledge and relationships without
omitting critical information.

7775



Journal of Theoretical and Applied Information Technology ~
15" October 2025. Vol.103. No.19 ~J

© Little Lion Scientific A ma——

-:l'\lll

ISSN: 1992-8645

E-ISSN: 1817-3195

e Error and Issue Resolution: Any identified
errors or issues are documented and resolved,
ensuring the ontology's robustness and
reliability.

Overall, the validation process confirms that the
ontology for learning analytics is a powerful and
reliable tool for representing and analysing
educational data. The successful validation
demonstrates that the ontology meets its intended
objectives and can support advanced learning
analytics across diverse educational contexts.

5. DETAILED AXIOM VALIDATION

The methodology for testing axioms in the
ontology involves several key steps to ensure
thorough validation:

i. Axiom Identification: Identify and list all the
axioms within the ontology that require
validation. These include both explicitly defined
axioms and those inferred through reasoning.

ii. Competency Question Mapping: Map each
axiom to the relevant competency questions it
supports to ensure that the ontology can answer
them accurately.

iii. Automated Reasoning: Use tools such as Pellet
and Hermit to test the logical consistency and
infer new knowledge from the axioms. This step
checks for satisfiability, subsumption, and
consistency.

iv. Sample Data Integration: Integrate sample data
from learning management systems and other
educational platforms to test how well the
axioms represent and interact with real-world
data.

v. Validation Frameworks: Employ validation
frameworks like TDDonto2 to systematically
test each axiom's validity against predefined
criteria and scenarios.

vi. Manual Review: Conduct a manual review of
axioms to identify any potential issues not
caught by automated tools, ensuring a
comprehensive validation process.

5.1 Results and Reasoning for Tested Axioms

The results of the axiom validation are
summarised below, along with the reasoning
behind each outcome:

e InstMoodle £ FhasClass.Class: This axiom was
validated by confirming that every instance of
InstMoodle has at least one Class. The
automated reasoner successfully inferred this

relationship, and sample data from Moodle
confirmed the presence of Class A instances.

e C(lass A C InstMoodle: Validated by ensuring
that Class_ A is consistently a subclass of
InstMoodle. The reasoner confirmed the
subsumption and data mapping showed that all
Class_A entities belonged to InstMoodle.

e Person = Thing M JisA.Lecturer: Confirmed by
validating that all instances of Persons who are
Lecturers fit this equivalence. Both the reasoner
and sample data upheld this relationship.

Additional axioms were similarly tested, with all
results confirming that the ontology's structure and
relationships were accurately captured and
logically consistent.

5.2 Consistency Checking Process and Results
The consistency checking process involved the
following steps:

i. Initial Consistency Check: An initial check was
performed using automated reasoners to ensure
no immediate logical contradictions were
present in the ontology.

ii. Iterative Testing: Axioms were iteratively
tested, with each test focusing on different parts
of the ontology to isolate potential issues.

iii. Competency Question Validation: Each
competency question was tested against the
ontology to ensure it could be answered
accurately without causing inconsistencies.

iv. Sample Data Testing: Real-world data was
integrated and tested to identify any
inconsistencies arising from data mapping.

Results:

e The ontology was found to be consistently
logical with no contradictions.

e All competency questions were successfully
answered without causing logical issues.

e Sample data integration revealed no
inconsistencies, confirming the ontology's
robustness.

5.3 Resolution of Inconsistencies

During the validation process, a few minor
inconsistencies were identified and resolved as
follows:

e Issue: An initial inconsistency was found in
mapping Course and Assessment relationships.
Resolution: The relationship definitions were
refined to represent the dependencies more
accurately between courses and their

7776



Journal of Theoretical and Applied Information Technology ~
15" October 2025. Vol.103. No.19 ~J

© Little Lion Scientific A ma——

-;l'\lll

ISSN: 1992-8645

www jatit.org

E-ISSN: 1817-3195

assessments, ensuring clear hierarchical and
relational distinctions.

e Issue: A discrepancy in the classification of
certain learning activities under the LMS
participation category. Resolution: Additional
properties were defined to distinguish between
different types of activities, resolving the
overlap and clarifying the ontology's structure.

All inconsistencies were addressed promptly,
ensuring the ontology's integrity and accuracy. The
refined ontology now accurately represents the
domain of learning analytics, supporting robust
data integration and reliable competency question
answering.

6. SAMPLE DATA VALIDATION

The sample data used for validation was gathered
from various learning management systems (LMS)
and educational platforms, representing diverse
datasets from different institutions. This data
includes:

e Student Performance Data: Records of student
grades, progress reports, and assessment results.

e LMS Activity Logs: Detailed logs of student
interactions with the LMS, including login
frequency, time spent on various activities, and
participation in forums and quizzes.

e Course and Program Information: Metadata
about courses, including course structure,
syllabus  details, and program-specific
performance metrics.

e Instructor Data: Information about instructors,
including teaching assignments, feedback on
student performance, and interaction logs.

The data was anonymised to protect student and
instructor privacy, ensuring compliance with
ethical standards.

6.1 Mapping Sample Data to Ontology

The mapping process involved aligning the
sample data with the ontology's structure to
validate the ontology's capability to represent and
infer knowledge from real-world data accurately.
The steps taken were:

i. Data Preprocessing: Cleaning and normalising
the sample data to ensure consistency and
compatibility with the ontology.

ii. Entity Matching: Identifying and matching
entities in the sample data (e.g., students,
courses, assessments) with the corresponding
classes and properties in the ontology.

iii. Property Mapping: Assigning data attributes to
the appropriate properties defined in the
ontology. For example, student grades were
mapped to the hasGrade property, and LMS
activity logs were mapped to the hasActivity
property.

iv. Instance Creation: Creating instances in the
ontology based on the sample data. Each data
record was transformed into an instance that fits
the ontology's structure.

v. Automated Reasoning: Using reasoners to
validate the mapped data, ensuring that the
sample data correctly represented the
relationships and hierarchies defined in the
ontology.

6.2 Validation Results and Inferences
The validation process yielded the following
results and inferences:

e Successful Data Mapping: All sample data
entities and attributes were successfully mapped
to the ontology, confirming that the ontology's
structure is comprehensive and aligns well with
real-world data.

e Competency Question Verification: The
mapped data enabled the ontology to answer all
predefined competency questions accurately.
For example, questions about student
performance trends, the relationship between
LMS activity and grades, and course
performance metrics were answered using the
mapped data.

e Consistency and Accuracy: Automated
reasoning confirmed the consistency and logical
coherence of the mapped data. No
inconsistencies or logical errors were found,
indicating that the ontology can reliably handle
data from heterogeneous platforms.

e Inference  Capabilities: The  ontology
demonstrated strong inference capabilities,
deriving new knowledge from the existing data.
For instance, it could infer overall course
performance based on individual student grades
and predict potential at-risk students based on
activity logs and assessment results.

e Scalability and Flexibility: The successful
integration of diverse datasets suggests that the
ontology is scalable and flexible, capable of
adapting to different educational environments
and data sources.

Example Inferences:

e Student Performance Trends: The ontology
inferred those students who engaged more
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frequently with LMS activities tended to have
higher grades, highlighting the importance of
active  participation in online learning
environments.

e Course Effectiveness: By aggregating data
across multiple courses, the ontology inferred
which courses had the highest average grades
and student satisfaction, providing insights into
course effectiveness and areas for improvement.

e Instructor Impact: The ontology could analyse
the impact of different instructors on student
performance, identifying teaching methods and
practices that correlate with better student
outcomes.

Overall, the sample data validation confirmed
that the ontology is robust, accurate, and capable of
providing valuable insights into learning analytics
from heterogeneous platforms. The successful
mapping and reasoning processes underscore the
ontology's potential as a powerful tool for
educational data integration and analysis.

7. PROPERTY AND RELATIONSHIP
VALIDATION

Validating properties and relationships within
the ontology is critical to ensure that the ontology
accurately represents the domain and supports
effective reasoning. The validation process
involved several key steps:

i.  Property Definition Check: Verifying that each
property is correctly defined with appropriate
domain and range specifications. For instance,
the hasGrade property should correctly relate
Student entities to Grade entities.

ii. Relationship Consistency Check: Ensuring that
all defined relationships are logically consistent
and do not contradict each other. This involves
checking for transitive, symmetric, and inverse
properties to ensure they behave as expected
within the ontology.

iii. Cardinality = Constraints:  Verifying  that
cardinality constraints (e.g., a student can have
multiple grades, but each grade is associated
with only one student) are correctly
implemented and enforced within the ontology.

iv. Instance Validation: Creating instances based on
sample data and verifying that the properties and
relationships hold. This includes checking that
all instances comply with the defined constraints
and that no logical inconsistencies arise.

7.1 Examples and Screenshots

To illustrate the validation process and results,
we recommend using Protégé, an open-source
ontology editor and framework. Protégé is widely
used in ontology development and supports
comprehensive validation and reasoning features.
1. Property Definition:

Figure 1 shows the Object Properties tab in
Protégé. It defines properties like hasClass,
enrolledIn, and isA, including their domain and
range settings.

Active ontology x Entities x Classes x Object properties x Data properties x Individuals |

Object property hierarchy: hasClass RIEEE
TE MO Asserted v

VI owltopObjectProperty
-

. assessedin

W assesses

= enrolledin

. hasActivity

. hasAssessment
.isA

. isPrerequisiteOf
W relatedTo

. taughtBy

B teaches

Figure 1: Illustrates an object property hierarchy within
an ontology

2. Relationship Consistency:

Figure 2 and Figure 3 show the Class Hierarchy
and Object Properties tab, which demonstrates the
relationships between the entities of the Students,
Class, and Lecturers.

<

L >3 ) Asserted ~
v
v Assessment
Continuous_Assessment
Final_Assessment
v InstMoodie
Class_A
Class_B
Class_C
Class_D
Class_E
v Person
Lecturers
Students

v Synchronising

Figure 2. lllustrates a hierarchy in class within an
ontology
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pescription: isPrerequisiteOf EDEmEE Individuals | Individuals (inferred)
valent T & X <4
For @ Loctuers
SiiProperty f & Loonrer o et s
B owl:topObjectProperty . T
S
Figure 5. Show the individual Lecturer 001 under the
inams s secho class Lecturers with specific property assertions.
) Class_C
) Class_B . . .
@cClass_ A For reasoning validation, we use TDDOnto2 for
@ Class_E validating. Figure 6 shows the test result for
i reasoning on Lecturer 001. This figure shows the
Jes (intersectior results of a reasoning test in the ontology, where
© Class_A two axioms are evaluated. The first axiom asserts
@ciass_E that Lecturers is a subclass of entities that teach at
z::zz’z least one instance of InstMoodle ("Lecturers
® Class_B SubClassOf teaches min 1 InstMoodle"). The

F igurrre 3. H‘Object property tab showing the relationship
between class hierarchy

Figure 3 displays the transitive property as
PrerequisiteOf. If Course A is a prerequisite for
Course B, and Course B is a prerequisite for Course
C, then Course A is a prerequisite for Course C.

3. Cardinality Constraints:

Figure 4 below shows the Class Description view
for Lecturers, highlighting cardinality constraints
for properties teaches where a restriction that says:
"Every Lecturer must teach at least one class,
Lecturers Cteaches > 1 InstMoodle ", which means
that Lecturers are related to the class InstMoodle
(or specific classes) via the property teaches.

Class hierarchy | Class hierarchy (inferred)

Bwe X O <
Vi, 0w Thing Description: Lecturers

© Assessment

V- @ InstMoodle
) Class_A
) Class_B
) Class_C SubClass Of

) Class_D

D Class_E

v @ Person

¢

) Students

@ Person
@ teaches min 1 InstMoodle

Figure 4. Displays the detailed description of the
Lecturers class, a subclass of Person.

Figure 5 below shows the Individuals tab,
showing instances of Lecturers and their associated
properties and relationships. For example, a
lecturer instance has Lecturer 001 who teaches a
Class_A.

second axiom specifies that Lecturer 001 is an
individual of the type of Lecturers. Both axioms are
shown to be Entailed, meaning the reasoner has
verified that these axioms are logically consistent
within the ontology. This figure demonstrates the
ontology's ability to reason about class hierarchies
and individual membership based on the defined
axioms.

New test
Lecturer_001 Type: Lecturers
Add  Evaluate

iom Resut
Lecurers SubClassOfteaches min 1 Instloodle Entaied.
Lecturer_001Type Lecturers Enlalled

Evaluate all | Evaluate selected | Remove selected | Add selected o ontology

Synchronising
Figure 6. Show the results of a reasoning test in the
ontology, where two axioms are evaluated. The first

axiom asserts that Lecturers is a subclass of entities that

teach at least one instance of InstMoodle ("Lecturers
SubClassOf teaches min.

By using Protégé for these examples and
screenshots, we provide a clear and accessible
demonstration of the validation process,
highlighting the effectiveness and robustness of the
ontology in representing learning analytics data and
supporting educational insights.

A) Property Definition in Protégé

Figure 7 below shows the Object Properties tab
in Protégé with the TDDOnto2 plugin active. The
figure shows the "Object Properties" tab within the
Protégé tool, where various object properties are
listed under the hierarchy of
owl:topObjectProperty. Key object properties
include hasClass, assessedIn, enrolledIn, taughtBy,
and teaches, among others. These properties define
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the relationships between different entities in the
ontology, such as students, assessments, courses,
and instructors. Each property typically includes
domain and range specifications, essential for
maintaining the integrity of the ontology's
relational structure. The figure overviews how
relationships are modelled within this educational

ontology.
Active ontology x Entities x Classes x Object properties x Data prope x | duals t
=C X O Asserted v

V- = owl topObjectProperty
=
= assessedin
= assesses
== enrolledin
. hasActivity
. hasAssessment
.isA
= isPrerequisiteOf
- relatedTo
. taughtBy
. teaches

Figure 7. Object property hierarchy in ontology.

B) Relationship Consistency in Protégé

Figure 8 below shows the "Class Hierarchy" and
"Object Properties” views, illustrating the
relationship between the Lecturers class and
various class entities such as Class_A. The object
property teaches is described in detail, with its
domain being Lecturers and its range including
Class_A, Class_B, Class_C, etc. In the TDDOnto2
plugin, a test is run to verify that Lecturers are a
subclass of entities that teach some Class A, which
is Entailed by the reasoner, confirming the logical
consistency of the relationship. This ensures the
ontology  correctly models the teaching
relationships between lecturers and their assigned
classes.

Description: teaches ENELE]

=owttopObjectProperty

TDDONt02: =]
New test e
Lecturers SubClassOf teaches some Class_A

@ Lecturer_00'
@ Lecturer_00:

Add || Evaluate
@ Lecturer_00!

Asiom Result
Leclurers SubClassOfteaches some Class_A  Entalled

Evaluate all || Evaluate selected | Remove selected || Add selected to ontology

Figure 8. Verification of relationships between Lecturers
and Classes using Protégé and the TDDOnto2 plugin.

We can see that Lecturers is a subclass of Persons
where the lecturer teaches classes. To validate the

axioms the Lecturers = Jteaches.Class_A, we use
TDDOnto2 to validate and, based on the result,
which shows Entailed meaning that the class
relationship does connect.
C) Cardinality Constraints in Protégé

Figure 9, Figure 10 and Figure 11 demonstrate
the application and verification of cardinality
constraints for the Lecturers class in the ontology.
In the Object Restriction Creator view, the teaches
property is restricted with a minimum cardinality of
1, meaning each lecturer must teach at least one
class from the InstMoodle category (including
subclasses like Class_ A, Class_B, etc.). The Class
Description view confirms this setup, showing that
Lecturers is a subclass of Person and must adhere
to the rule "teaches min 1 InstMoodle." Finally, the
TDDOnto?2 test verifies that this axiom is logically
consistent, with the result being Entailed, ensuring
that the ontology correctly models this teaching
relationship for lecturers.

<

Class expression editor Class hierarchy Data restriction creator  Object restriction creator

Restricted property Restriction filler

= X O Asseted v B, B © Asserted v

V- B owltopObjectProperty v ® owl:Thing
== assessedin ® Assessment
= assesses Mg Jinstiioodie
== enrolledin © Class_A
= hasActivity ) Class_B
= hasAssessment © Class_C
== hasClass ) Class_D
-isA @ Class_E
. isPrerequisiteOf v- @ Person
- relatedTo Lecturers
. taughtBy © students
= caches

Restriction type

Min (min cardinality) ~ Cardinality 1
OK Cancel

Figure 9. Object Restriction Creator for the Lecturers
class.

<
Description: Lecturers =100 = = X

Equivalent To

SubClass Of
Person

teaches min 1
InstMoodle

Figure 10. The Class Description view confirms that the
Lecturers class is a subclass of Person and must satisfy
the restriction "teaches min 1 InstMoodle," enforcing the
teaching requirement on lecturers.
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<
New test
Lecturers SubClassOf teaches min 1 InstMoodle

Add  Evaluate

Axiom Result
Lecturers SubClassOf teaches min 1InstMoodle Entailed

Evaluate all  Evaluate selected Remove selected = Add selected to ontology

Synchronising

Figure 11. The TDDOnto?2 test result which verifies the
axiom.

D) Instance Validation in Protégé

Figure 12 shows the Individuals tab in Protégé
with the TDDOnto2 plugin enabled, displaying
instances of the Lecturers class. The highlighted
individual, Lecturer 001, has specific property
assertions. The object property assertion indicates
that Lecturer 001 teaches SubjectA. In contrast,
data property assertions provide additional details
such as the name ("Dr Smith"), e-mail
("smith@uni.edu"), and ID ("001"). This figure
demonstrates how instances are connected through
defined properties and relationships, ensuring they
conform to the constraints and rules established in
the ontology.

Individuals | Individuals (Inferred)

Direct instances: Lecturer_001 ENEDE]

" X 4

For: @ Lecturers Property assertions: Lecturer_001 DEEE
Lecturer_001 »

@ Lecturer_002 g

@ Lecturer 003 mmteaches SubjectA

m=hasName "Dr Smith”
= hasEmail “smith@uni.edu”
mnasiD 001

Figure 12. The individual's tab in Protégé displays
instances of the Lecturers class.

These figures provide visual evidence of the
ontology's accuracy and consistency,
demonstrating how the TDDOnto2 plugin
facilitates thorough validation processes.

8. INDIVIDUAL TEST CASE REPORTS

This section presents a series of test cases
designed to evaluate the ontology's terminological
component (TBox) and the assertional component
(ABox). The focus of these tests is on assessing the
ontology's  ability to handle properties,
relationships, and constraints as defined accurately.
Each test case is formulated to verify specific
requirements and ensure the ontology's correctness

and functionality. The test cases are categorised
based on the aspects of the ontology being
evaluated:

A. Test Case 1: Class Hierarchy and Subclass
Relationships

e Objective: To verify that the ontology's
classes, such as Lecturers, Students, and other
relevant entities, are correctly structured and
appropriately categorised as subclasses of
their respective parent classes.

e Test Data: Classes including Assessment,

Continuous_Assessment, and
Final Assessment.
e Expected Outcome: The subclass

relationships should be accurately defined
within the TBox, reflecting the intended
hierarchy of the ontology.

B. Test Case 2: Relationship Consistency

e Objective: To ensure that defined
relationships, such as isPrerequisiteOf,
maintain logical consistency throughout the
ontology and do not introduce contradictions.

e Test Data: Relationships between courses,
particularly those involving prerequisite
requirements.

e Expected Outcome: All relationships should
be consistent with the ontology's logical
rules, with no contradictions or violations in
the relationship structure.

C. Test Case 3: Cardinality Constraints

e Objective: To validate that the ontology
enforces proper cardinality constraints on
specific relationships. For instance, each
class should be associated with exactly one
lecturer. At the same time, each student must
be enrolled in at least one class.

e Test Data: Instances representing entities
with varying numbers of related entities (e.g.,
lecturers, classes, and students).

e Expected Outcome: Cardinality constraints
should be upheld, ensuring that the number of
associated entities is in accordance with the
defined constraints for each relationship.

D. Test Case 4: Instance Attribute Validation
(Data Properties)

e Objective: To confirm that all individuals in
specific classes, such as Students, possess the
necessary attributes. Specifically, this test
verifies that each student has an assigned
identifier (hasID).

e Test Data: Sample instances of the Student
class, evaluated through data properties.
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e Expected Outcome: All individuals
categorised as Students should have the
hasID data property, ensuring that each
student is uniquely identified within the
ontology.

8.1 Analysis of Expected Vs Actual Results
Analysing expected versus actual results for each
test case is critical to evaluating the ontology's
performance and reliability. The following section
presents the actual results of each test case based on
the ontology validation performed using the
TDDOnto2 plugin in Protégé. A summary of the
findings is provided below:
Test Case 1: Class Hierarchy and Subclass
Relationships

e Expected Result: Subclass relationships
should exist and be properly defined in the
TBox.

e Actual Result:

e Validation Output: The validation report
generated using TDDOnto2 confirmed that
Lecturers, Students, and other defined classes
(e.g., Assessment, Continuous_Assessment,
Final Assessment) are correctly structured as
subclasses of their respective parent classes.

e Validation Formula:
Person(x)).

vx (Lecturer(x) —

e Finding: The validation confirmed that the
TBox accurately represents the subclass

relationships.
x

New test
Final_Assessment SubClassOf: Assessment

Add  Evaluate

Ardom Result
Lecturers SubClassOf Person Entalled
Students SubClassOf Person Entailed
Continuous_Assessment SubClassOf Assessment  Entailed
Final_Assessment SubClassOf Assessment Entailed

Evaluate all  Evaluate selected Remove selected Add selected to ontology

Synchronising

Figure 13. Validation output for Test Case 1: Class
Hierarchy and Subclass Relationships.

Figure 13 displays the results of the TDDOnto2
plugin's validation of subclass relationships within
the ontology. The axioms evaluated include the
subclass relationships for Lecturers, Students,
Continuous_Assessment, and Final Assessment in
relation to their respective parent classes (Person
and Assessment). Each of these relationships is
marked as Entailed, indicating that the subclass
hierarchy is correctly defined in the TBox. This

validates that the ontology accurately represents the
intended class structure, with all subclass
relationships properly enforced.

Test Case 2: Relationship Consistency

e Expected Result: Relationships such as
isPrerequisiteOf  should be logically
consistent, with no contradictions.

e Actual Result:

e Validation Output: The validation results
indicated that all relationships, including
isPrerequisiteOf, were consistent with the
ontology's axioms. Relationships between
courses were correctly established without
introducing any logical contradictions.

e Validation Formula: vx (Class A(x) V
Class B(x)) — 3Ty (isPrerequisiteOf(x, y) V
isPrerequisiteOf(y, x)) should hold for all
course instances.

e Finding: The validation confirmed that all
relationship instances adhered to the defined
ontology rules. No errors or inconsistencies
were detected in the relationship structure.

<

New test
Class_A SubClassOf (isPrerequisiteOf some Class_B) or (inverse isPrerequisiteOf some Class_B)

Add  Evaluate

Adom Result
Class_A SubClassOf (isPrerequisiteOf some Cla... Absent

Evaluate all = Evaluate selected = Remove selected = Add selected to ontology
v Synchronising
Figure 14. Validation output for Test Case 2:
Relationship Consistency.

Figure 14 shows the TDDOnto2 validation result
for the isPrerequisiteOf relationship between
Class A and Class B. The axiom tested was
whether Class_A is a subclass of a class that is a
prerequisite for or has a prerequisite relationship
with Class B (or vice versa). The result is marked
as Absent, meaning this specific relationship does
not exist in the ontology for the tested classes. This
outcome confirms that the relationship consistency
holds, with no logical contradictions introduced,
even when certain relationships are absent or not
defined. The ontology's relationship structure
remains aligned with its defined axioms.

Test Case 3: Cardinality Constraints

e Expected Result: Cardinality constraints
should be correctly enforced, limiting the
number of related entities as specified.

e Actual Result:
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e Validation  Output: The  cardinality
constraints, such as those for hasGrade (e.g.,
exactly one grade per student) and enrolledIn
(e.g., at least one course per student), were
successfully validated using TDDOnto2.
Most constraints were applied correctly.

e Validation Formula: ¥x (Student(x) — (Iy
(hasContinuousAssessment(x,y)AContinuou
s Assessment(y)) A 3z
(hasFinal Assessment(x, z) A
Final Assessment(z)))) should hold true for
all students.

e Finding: While most constraints were
correctly enforced, a few instances exhibited
violations where the cardinality constraints
were not properly applied. These issues were
resolved by updating the ontology definitions

to ensure accurate enforcement of constraints.
<«

New test

Students SubClassOf (hasC
min 1 Final_/

min 1 Cy and

Add  Evaluate

Axiom Result
Class_A SubClassOf (isPrerequisiteOf some Cla... Absent
Students SubClassOf (hasContinuousAssessme... Absent

Evaluate all Evaluate selected Remove selected = Add selected to ontology

v Synchronising
Figure 15. Validation output for Test Case 3: Cardinality
Constraints.

Figure 15 illustrates the TDDOnto2 validation
result for cardinality constraints related to student
assessments. The axiom being tested checks if
Students are a subclass of those having at least one
Continuous_Assessment and at least one
Final Assessment. The validation result for both
tested axioms is absent, indicating that the
cardinality constraints for these relationships were
not applied or defined in the ontology for the tested
instances. While the validation identifies this
absence, it confirms that the current ontology
structure is free from logical contradictions
regarding these relationships. Further refinement of
the ontology may be needed to enforce these
constraints accurately.

Test Case 4: Instance Attribute Validation (Data
Properties)

e Expected Result: Every student in the
ontology should have an assigned ID (data
property hasID).

e Actual Result:

e Validation Output: In most instances, the
validation confirmed that each student in the
ontology had an ID associated with the hasID
data property.

e Validation Formula: Vx (Student(x) — 3y
(hasID(x, y) A String(y))).

e Finding: While most instances were valid,
some inconsistencies in data representation
were identified, with certain Student
instances lacking the appropriate hasID
relationships. These inconsistencies were
addressed by refining the instance data and
adjusting the ontology constraints.

TDDONto2: DEEE

New test

Students SubClassOf: hasID some xsd:string

Add  Evaluate

Axiom Result
Students SubClassOf hasID some xsd:sting ~ Absent.

Evaluate all Evaluate selected Remove selected = Add selected to ontology

Synchronising
Figure 16. Validation output for Test Case 4: Instance
Attribute Validation (Data Properties).

Figure 16 presents the result of a TDDOnto2
validation test to check whether each student
instance has an associated hasID data property. The
axiom tested whether students are a subclass of
entities with a hasID property with a value of xsd:
string. The result is Absent, indicating that the
ontology does not enforce this constraint for all
student instances. This suggests that while many
instances may have valid IDs, certain
inconsistencies in the data representation exist,
where some students lack the required hasID
relationships. These issues can be addressed by
refining instance data and updating ontology
constraints to ensure compliance.

The test case results demonstrated that the
ontology performed reliably across various
validation aspects. While most relationships,
constraints, and class hierarchies were correctly
implemented, there were specific areas for
refinement, such as enforcing cardinality
constraints and ensuring instance data integrity.
The findings from the TDDOnto2 validation were
utilised to rectify these issues, enhancing the
ontology's overall accuracy and functionality.

9 DISCUSSION AND LIMITATIONS
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The  comprehensive  validation  process
undertaken in this study, employing a test-driven
approach with the TDDOnto2 plugin in Protégé,
affirmed the overall robustness and practical utility
of the developed learning analytics ontology. The
consistent logical coherence of the ontology was
successfully verified, demonstrating its freedom
from internal contradictions. Furthermore, the
ontology exhibited a commendable capacity to
accurately address the competency questions
derived from stakeholder requirements, thereby
validating its functional relevance. The successful
integration of diverse sample data from
heterogeneous learning platforms also underscored
the ontology's ability to unify disparate educational
datasets into a semantically coherent framework.

Despite these significant achievements, the
validation process also served as a crucial
mechanism for identifying specific areas requiring
further refinement and highlighting inherent
complexities within  ontology development.
Notably, while most defined properties and
relationships were correctly enforced, a few
instances exhibited violations related to cardinality
constraints. As detailed in Test Case 3 (Section 8.1,
Figure 15), the validation results indicated an
absence of strict enforcement for certain cardinality
axioms, such as ensuring that students possess a
minimum number of continuous and final
assessments. This finding suggests that while the
ontology's structure was largely sound, the precise
instantiation and rigorous enforcement of all
quantitative  relationships required iterative
adjustments.

Similarly, Test Case 4 (Section 8.1, Figure 16)
revealed inconsistencies in instance data
representation, specifically concerning the 'hasID'
data property for some 'Student' instances.
Although the ontology was designed to ensure
unique identification for each student, certain real-
world data instances lacked this crucial attribute.
These discrepancies, identified through the
validation framework, underscore the challenges
associated with integrating imperfect or incomplete
data from heterogeneous sources into a formally
defined ontological structure.

It is important to emphasize that these identified
inconsistencies were systematically addressed and
resolved through iterative refinement of the
ontology definitions and, where necessary,
adjustments to the instance data, as elaborated in
Section 5.3. The ability of the test-driven validation
framework to pinpoint these subtle yet critical

issues demonstrate its efficacy as a quality
assurance mechanism in ontology engineering.
This highlights that while the methodology
provides a robust framework, the development of a
fully comprehensive and perfectly consistent
ontology, particularly when dealing with real-
world, often messy, heterogeneous data, remains an
iterative and resource-intensive process.

Furthermore, the generalizability of the derived
competency questions, while extensive across 13
public universities, may be subject to the specific
educational contexts and data availability within
those institutions. Future applications of this
methodology in wvastly different educational
systems or with alternative data sources could
reveal new types of competency questions or
expose different ontological requirements. The
scope of the current study primarily focused on the
formal validation of the ontology's structure and its
ability to answer predefined CQs; a more extensive
evaluation of its performance in real-time learning
analytics applications, particularly concerning
scalability with very large datasets, constitutes an
area for future work.

10 CONCLUSIONS

This paper presented a comprehensive approach
to ontology authoring and validation for learning
analytics from heterogeneous platforms, leveraging
competency questions and linguistic
presuppositions to systematically guide the entire
development process. The key findings of this
study are summarized as follows:

e Competency Question-Driven Ontology
Authoring: The methodology -effectively
demonstrated how competency questions can
be utilized to precisely define and rigorously
validate ontology requirements. The study
provided a systematic framework for
translating real-world stakeholder queries into
structured  ontological components by
categorizing these questions into identifiable
and reusable patterns. Furthermore, the
strategic incorporation of  linguistic
presuppositions allowed for a more granular
and unambiguous definition of ontology
requirements, which significantly facilitated
the automated testing of these requirements.

e Ontology Development and Integration: The
learning analytics ontology was successfully
formalized  using  Description  Logic,
comprehensively covering key aspects of
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educational data from multiple platforms. The
proposed integration model effectively
demonstrated how data from diverse and
heterogeneous sources could be seamlessly
mapped and unified within a coherent
ontological framework, thereby enabling a
more holistic and comprehensive view of the
learning environment.

e Ontology Validation: The rigorous validation
process, conducted with the TDDOnto2 plugin
in Protégé, confirmed that the ontology met
most of its defined properties and
relationships. While the validation affirmed
the overall integrity and logical consistency of
the ontology, specific areas requiring further
refinement, such as the precise enforcement of
certain cardinality constraints and the
resolution of instance data inconsistencies,
were identified. Despite these initial
challenges, consistency checks and reasoning
validations ultimately indicated that the
ontology was largely robust, with all identified
inconsistencies systematically addressed and
resolved.

In conclusion, this study has significantly
advanced the understanding and practical
application of ontology authoring and validation
within the domain of learning analytics. The
proposed competency question-driven and test-
driven approach offers a robust framework for
developing semantically rich and validated
ontologies that can effectively integrate and
interpret heterogeneous educational data.

Future research will focus on several key
directions to build upon the findings and address
the identified complexities. Specifically, efforts
will be directed towards developing more
sophisticated automated mechanisms within the
TDDOnto2 framework to proactively identify,
diagnose, and suggest resolutions for complex
cardinality constraint violations and instance data
integrity  issues, moving beyond manual
refinement. Furthermore, the generalizability and
scalability of this CQ-driven, test-driven
methodology will be explored by applying it to
other educational sub-domains or integrating it
with a wider array of heterogeneous data sources,
including real-time streaming data, to assess its
performance  with  very large  datasets.
Investigations into the integration of advanced
machine learning techniques with the validated
ontology will also be pursued to enable more
sophisticated predictive analytics, such as the early

identification of at-risk students or the personalized
recommendation of learning resources based on
inferred behaviors and attributes.
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