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ABSTRACT 
Group-level emotion recognition (GER) is essential in applications involving human-computer interaction, 
public surveillance, and affective computing. This paper proposes a novel hybrid framework that integrates 
Enhanced Particle Swarm Optimization (EPSO) for feature selection with Recurrent Neural Networks (RNN) 
for modeling temporal emotion dynamics in video sequences. The system begins with preprocessing and 
frame extraction, followed by deep and statistical feature extraction. EPSO is employed to select the most 
informative features, which are then input into an RNN for sequential emotion prediction. Evaluations 
conducted on the AFEW dataset demonstrate that the proposed EPSO-RNN model outperforms traditional 
classifiers such as CNN, VGG-16, and SVM in terms of accuracy, precision, recall, and F1 score. The EPSO-
RNN model demonstrated smooth convergence with minimal overfitting, aided by early stopping. The 
training accuracy peaked at 92.3%, with a validation accuracy of 89.4%, outperforming CNN (78.2%), VGG-
16 (82.5%), and SVM (69.7%). Corresponding loss curves showed a steady decline, reinforcing the model’s 
stability. The results affirm the robustness and scalability of the proposed approach in complex, real-world 
group emotion recognition scenarios. 
Keywords: Affective Computing, Emotion Recognition, Attention Mechanism, Temporal-Spatial 

Optimization, Deep Learning, Multi-Subject Video Analysis. 
 
1. INTRODUCTION  
 
                The ability to automatically detect and 
interpret emotional states from human facial 
expressions has become a foundational requirement 
across a range of intelligent systems, including 
security monitoring, autonomous vehicles, 
healthcare diagnostics, education technologies, and 
interactive multimedia systems. As human-
computer interaction becomes more immersive and 
emotion-aware, the demand for accurate, scalable, 

and context-sensitive emotion recognition 
techniques has significantly grown [1], [2]. 
However, emotion recognition from video data, 
particularly in environments containing multiple 
interacting individuals, poses several substantial 
challenges. Factors such as overlapping facial 
regions, background clutter, partial occlusions, and 
asynchronous emotional cues complicate the 
accurate classification of affective states in real-
world scenarios [3]. 
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Traditional approaches to facial emotion recognition 
(fer) primarily relied on hand-crafted features such 
as gabor filters, optical flow vectors, and geometrical 
descriptors of facial landmarks [4]. While effective 
in constrained environments, these methods struggle 
in dynamic video streams with naturalistic 
expressions. The advent of deep learning enabled 
end-to-end learning from raw pixels, dramatically 
improving recognition accuracy. CNN-based 
architectures, including VGGNET and ResNet, have 
demonstrated strong performance in detecting 
emotions from static facial images [5], [6]. Yet, these 
models fall short in capturing spatio-temporal 
patterns that reflect the evolution of emotion over 
time a limitation especially pronounced in video 
sequences. 
To capture such spatio-temporal dynamics, recurrent 
neural networks (RNNs), particularly those with 
long short-term memory (LSTM) units, have been 
introduced in fer pipelines. These models enable the 
encoding of frame-wise emotional transitions and 
inter-frame dependencies, offering valuable insights 
into the fluid and sequential nature of emotional 
expression [7]. Nevertheless, rnn-based systems are 
sensitive to frame redundancy, variations in 
individual expressiveness, and changes in spatial 
resolution. Additionally, they often lack 
interpretability in identifying which facial regions or 
frames contribute most significantly to emotion 
classification. 
Recent research has emphasized the importance of 
attention mechanisms and transformer-based 
networks for overcoming these limitations. 
Attention modules enable the model to weigh the 
importance of features dynamically across both 
spatial and temporal dimensions [8]. Transformers, 
which originated in natural language processing, 
have now been successfully adapted to video 
analysis tasks, including action recognition and 
gesture interpretation. Their self-attention 
mechanisms allow models to capture long-range 
dependencies and multi-subject interactions, making 
them ideal candidates for fer in crowded and 
unconstrained scenes [1],[9]. However, their high 
computational cost and data requirements 
necessitate further optimization for real-time 
deployment. 
To bridge this gap, hybrid architectures that integrate 
attention-guided feature extraction with 
evolutionary optimization strategies have gained 
traction. Particle swarm optimization (pso), genetic 
algorithms (ga), and differential evolution have all 
been explored to refine feature subsets, improve 
network weights, and reduce training time [10], [11]. 
Despite these advances, few studies have effectively 

combined deep attention-based learning with spatial-
temporal optimization to model emotion in complex 
multi-user video streams. Our work proposes a 
robust framework that fuses attention-enhanced deep 
networks with optimization-guided feature selection 
to address the intricacies of group-level emotion 
recognition in dynamic real-world environments. 
 
2. LITERATURE SURVEY 
 
The field of emotion recognition has progressed 
significantly, transitioning from early statistical 
models and handcrafted features to robust deep 
learning architectures capable of processing 
complex, real-world data. Early works in this 
domain heavily relied on geometric features such as 
facial action units (FAUs), distance between key 
landmarks, and texture descriptors like Local Binary 
Patterns (LBP) and Histogram of Oriented Gradients 
(HOG) to extract emotionally relevant patterns from 
facial imagery [1], [4]. These techniques 
demonstrated reasonable accuracy in controlled 
settings, yet they struggled to generalize in natural 
environments due to limitations in modeling 
variations in lighting, occlusion, head pose, and 
spontaneous expressions. 
The introduction of CNNs marked a paradigm shift 
in facial emotion recognition (FER). By learning 
hierarchical features directly from pixel-level data, 
CNNs such as VGGNet and ResNet vastly improved 
the ability to classify emotions on standard datasets 
like FER2013 and AffectNet [5], [6]. These models 
showed high precision in isolating fine-grained 
features around the eyes, mouth, and brows, regions 
critical to interpreting facial emotions, as evidenced 
by recent studies leveraging transfer learning on new 
emotion datasets [2]. However, CNNs often operate 
on single images, ignoring the dynamic nature of 
emotion progression that is vital in video streams. 
To capture temporal dependencies,  RNNs, and  
LSTM networks, were adopted. These architectures 
could process sequences of frames and learn 
emotional transitions across time. Although RNN-
based models enhanced recognition in video 
contexts, they remained susceptible to problems like 
vanishing gradients and struggled with long-range 
dependencies. Additionally, they lacked 
interpretability in identifying which parts of a 
sequence were most critical to emotion prediction 
[7]. 
This led to the adoption of attention mechanisms, 
which enable models to focus selectively on 
informative facial features or frames within a 
sequence. Attention-augmented networks have been 
particularly useful in multi-subject environments, as 
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they can isolate emotional cues from relevant 
regions while ignoring background noise or non-
contributing faces [8].  
Transformer-based models further advanced this 
capability by removing sequential processing 
constraints and allowing direct modeling of all 
frame-level interactions through self-attention 
mechanisms [9]. While powerful, these models 
require extensive data and computational resources, 
posing challenges for deployment in edge-based or 
real-time systems. 
Simultaneously, there has been growing interest in 
hybrid approaches that combine deep learning with 
evolutionary optimization. Particle Swarm 
Optimization (PSO), Genetic Algorithms (GA), and 
Differential Evolution (DE) have been used to refine 
model hyperparameters, optimize feature selection, 
and reduce computational overhead without 
sacrificing performance [10], [11]. However, 
existing hybrid approaches have generally been 
evaluated in single-user, static environments, 
leaving a research gap in their application to multi-
user video streams with spatial-temporal 
complexity. 
Few studies have successfully integrated attention-
guided deep learning with optimization algorithms 
in the context of group-level emotion recognition. 
The challenge lies in balancing the trade-off between 
model expressiveness and efficiency, especially 
when working with noisy, crowded, and dynamic 
data sources. Our research contributes to this gap by 
proposing a scalable, attention-optimized deep 
architecture enhanced with spatial-temporal feature 
refinement through PSO. This model is uniquely 
designed to handle diverse, multi-subject video 
inputs and provides improved accuracy, robustness, 
and interpretability compared to existing baselines. 
 
3.  DATASET 
 
To evaluate the effectiveness of the proposed hybrid 
attention-based emotion recognition framework, this 
study utilizes an extended and annotated version of 
the Acted Facial Expressions in the Wild (AFEW) 
dataset. AFEW is one of the most widely used video-
based datasets for real-world emotion recognition 
tasks and is known for its diversity, naturalism, and 
rich representation of facial expressions captured in 
unconstrained environments. The videos in AFEW 
are sourced from movies and television series, 
offering a highly variable collection of facial 
expressions with spontaneous emotional content, 
motion blur, lighting inconsistencies, and multi-
subject scenes [12]. 

The dataset contains short video clips, each labeled 
with one of the standard emotional categories: 
Anger, Disgust, Fear, Happy, Sad, Surprise, and 
Neutral. Each clip ranges between 1 to 2.5 seconds 
in length, and contains at least one subject exhibiting 
a discernible facial expression. However, many 
videos also contain additional faces or individuals in 
the background, making the dataset suitable for 
evaluating the robustness of group-level emotion 
recognition models [13]. For this research, clips 
containing multiple visible subjects were selected, 
and frame-level annotations were added to assist in 
benchmarking attention focus and temporal accuracy 
of the model. 
Each video was processed using face detection and 
alignment techniques to normalize facial positions 
while maintaining the temporal integrity of 
expression evolution. The dataset was split into 
training (70%), validation (15%), and test (15%) sets 
using a stratified sampling approach to ensure 
balanced emotion distribution across partitions. This 
facilitated unbiased performance assessment across 
all classes and preserved the real-world variability 
inherent to the data. 
Additionally, for exploratory analysis and ablation 
studies, a subset of the AFEW dataset was 
augmented using synthetic occlusions, rotated head 
poses, and random background noise. This subset 
helped in evaluating the proposed model’s resilience 
under challenging visual conditions. As a result, the 
AFEW dataset not only served as the primary 
benchmark but also supported the generalization and 
reliability testing of the EPSO-enhanced attention-
based framework. 
 
4. PREPROCESSING 
 
Effective preprocessing plays a critical role in 
enhancing the accuracy and robustness of emotion 
recognition systems, especially when working with 
real-world video data containing multiple subjects. 
The preprocessing pipeline designed for this 
research was carefully structured to preserve the 
emotional integrity of visual data while minimizing 
noise and variability that could degrade model 
performance. 
The first step involved video frame extraction, where 
each video clip was decomposed into a sequence of 
individual frames using a uniform frame rate. This 
conversion enabled temporal modeling by allowing 
consistent access to visual changes over time. Next, 
a face detection algorithm based on the Viola-Jones 
method was employed to locate facial regions in 
each frame. The simplicity and speed of the Viola-
Jones classifier made it suitable for real-time multi-
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face detection, even in scenes with cluttered 
backgrounds or partial occlusions [14]. 
After detection, the facial regions were cropped and 
aligned using an affine transformation technique 
based on the coordinates of key facial landmarks. 
This alignment standardized the position and 
orientation of faces across frames and subjects, 
reducing spatial inconsistencies caused by head tilts, 
rotations, or viewpoint changes. To ensure 
uniformity in input dimensions, all cropped face 
images were resized to 224×224 pixels. 
To reduce illumination-related artifacts and camera-
induced distortions, each face image underwent 
histogram equalization. This enhanced the contrast 
and visibility of facial details such as wrinkles, smile 
lines, and eyebrow movement — critical features for 
emotion classification. The next step applied a 
median filtering technique to remove salt-and-
pepper noise and preserve edge integrity.  
Median filtering was particularly useful for 
smoothing out background artifacts and handling 
low-resolution sequences in the dataset. Once the 
facial images were cleaned and normalized, a z-
score normalization was applied across pixel 
intensity values to scale the data for efficient 
convergence during model training. The resulting 
data matrix had a zero mean and unit variance, 
enabling the network to learn faster and generalize 
better across subjects and scenes. 
Finally, the preprocessed face sequences were 
organized into tensors, grouped by subject ID and 
emotional label, and stored in batches for training 
and validation. This organization facilitated smooth 
integration with the deep learning pipeline and 
preserved the chronological order of frames — a 
requirement for accurate temporal modeling. 
 
5. MATHEMATICAL FORMULATIONS 
 
The proposed EPSO-RNN framework incorporates 
multiple mathematical components that collectively 
contribute to the effectiveness of group-level 
emotion recognition. These formulations define how 
features are extracted, optimized, and temporally 
modeled to generate accurate predictions. 
 
5.1 Feature Representaion 
 
Each video frame is preprocessed and passed 
through a deep neural network (e.g., MobileNet) to 
extract a high-dimensional feature vector 
representing emotional cues: 
             𝐹 = {𝑓ଵ, 𝑓ଶ, 𝑓ଷ, … . , 𝑓௡}  (1) 

where F is the set of extracted features for a frame, 
and fᵢ ∈ ℝᵈ denotes the ith feature vector of 
dimensionality d. 
 
5.2 Feature Optimization using EPSO 
 
The Enhanced Particle Swarm Optimization (EPSO) 
algorithm is applied to select an optimal subset of 
features from the full representation. EPSO 
simulates a swarm of particles, each representing a 
candidate feature subset. Each particle adjusts its 
position in the feature space based on personal and 
global best experiences [15]: 
Velocity Update: 
𝑉௜(𝑡 + 1) = 𝑊. 𝑉௜(𝑡) + 𝑐ଵ. 𝑟ଵ. ൫𝑝௕௘௦௧ − 𝑋௜(𝑡)൯ +

𝑐ଶ. 𝑟ଶ. (𝑔௕௘௦௧ − 𝑋௜(𝑡))      (2) 
 
Position Update: 

𝑋௜(𝑡 + 1) = 𝑋௜(𝑡) + 𝑉௜(𝑡 + 1)    (3) 
Here, vᵢ(t) is the velocity of particle i at time t, xᵢ(t) 
is its position, w is the inertia weight, c₁ and c₂ are 
cognitive and social coefficients, r₁ and r₂ are 
random values between 0 and 1, and p_best and 
g_best represent the personal and global best 
positions respectively. The EPSO optimization is 
driven by a fitness function based on classification 
accuracy on validation data. 
 
5.3 Temporal Modeling with RNN 
 
After optimization, the refined features are passed 
through a Recurrent Neural Network (RNN) to 
model temporal emotional dependencies: 

ℎ௧ = 𝜎(𝑤௛ . ℎ௧ିଵ +𝑊௫ . 𝑋௧ + 𝑏) (4) 
𝑦௧ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊௢. ℎ௧ + 𝑏௢) (5) 

In this context, hₜ is the hidden state at time t, xₜ is 
the input at time t, Wₕ, Wₓ, and Wₒ are learned 
weights, b and bₒ are biases, and σ is an activation 
function such as tanh. The final output yₜ is the 
predicted emotion probability vector for the frame. 
 
5.4 Classification Decision 
 
The final predicted emotion for a video segment is 
obtained by aggregating the softmax outputs from 
each frame across the sequence using either majority 
voting or average probability scoring. This approach 
ensures consistent recognition even when individual 
frames are noisy or occluded. 
 
6. PROPOSED METHODOLOGY 
 
The proposed EPSO-RNN methodology combines 
Enhanced Particle Swarm Optimization (EPSO) 
with Recurrent Neural Networks (RNN) for emotion 



 
 Journal of Theoretical and Applied Information Technology 

15th October 2025. Vol.103. No.19 
©   Little Lion Scientific  

 
ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
8111 

 

recognition from video sequences. The approach 
follows a structured pipeline from data 
preprocessing to final emotion classification. 
Step 1: Input video data is divided into individual 
frames. 
Step 2: Each frame undergoes preprocessing, 
including noise reduction using median filtering and 
face detection using the Viola-Jones algorithm. 
Step 3: Features are extracted using a pre-trained 
MobileNet model. Additional statistical features 
such as mean, variance, and entropy are also 
computed. 
Step 4: Enhanced Particle Swarm Optimization 
(EPSO) is applied to select the most relevant 
features, reducing dimensionality and noise. 
Step 5: The optimized feature vectors are passed into 
a Recurrent Neural Network (RNN), which captures 
temporal dependencies across frames. 
Step 6: The RNN outputs a classification decision 
for each video sequence based on the temporal 
progression of features. 
Step 7: The model is evaluated using Accuracy, 
Precision, Recall, and F1-score to benchmark 
performance against standard models. 
7. BLOCK DIAGRAM 
The proposed framework is structured into a 
sequential pipeline for effective emotion recognition 
from video data. It begins with frame extraction and 
preprocessing to isolate and enhance facial regions. 
Deep and statistical features are then extracted and 
optimized using EPSO to retain only the most 
relevant inputs. 
These features are temporally modeled using an 
RNN to generate emotion predictions across video 
sequences. 
Figure 1 Block diagram illustrating the proposed 
EPSO-RNN methodology for group-level emotion 
recognition. The pipeline includes video frame 
extraction, preprocessing with noise reduction and 
face detection, deep and statistical feature extraction, 
optimized feature selection using Enhanced Particle 
Swarm Optimization (EPSO), sequential modeling 
via Recurrent Neural Networks (RNN), and final 
classification based on emotion labels. 

 

 
Figure 1. Block Diagram Illustrating The Proposed 

EPSO-RNN Methodology 
 
8. EXPERIMENTAL SETUP 
 
To assess the performance and generalizability of the 
proposed EPSO-RNN hybrid framework for group-
level emotion recognition, a structured and 
reproducible experimental setup was designed. This 
setup ensures consistency in training, validation, and 
testing while allowing fair comparison with 
established baseline models. 
The entire pipeline was implemented using Python 
3.10, leveraging popular machine learning libraries 
such as TensorFlow [16], Keras [17], and OpenCV 
[18]. These tools provided the flexibility and 
scalability needed to build and evaluate deep 
learning architectures efficiently. Experiments were 
conducted on a high-performance computing system 
equipped with an NVIDIA RTX 3080 GPU (10GB 
VRAM), Intel i9 processor, and 32GB RAM, 
ensuring fast training cycles and smooth evaluation 
across multiple trials. 
The AFEW dataset, preprocessed and divided into 
training, validation, and testing subsets, served as the 
foundation for all experiments. The training set 
comprised 70% of the data, with the remaining 30% 
equally split between validation and testing. To 
simulate real-world noise and increase robustness, 
data augmentation techniques including rotation, 
scaling, horizontal flipping, and synthetic occlusion 
were applied [19]. 
Training was conducted over 100 epochs, using the 
Adam optimizer with a learning rate of 0.0001, and 
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categorical cross-entropy as the loss function [20]. A 
batch size of 32 video sequences was used, with 
early stopping applied if validation loss did not 
improve after 10 consecutive epochs. For each 
sequence, only face-centered frames (extracted 
during preprocessing) were fed into the network 
after EPSO-based feature selection[26]. 
The optimized feature vectors were passed through 
an RNN with LSTM units, which processed 
temporal dependencies. The final layer consisted of 
a softmax classifier generating multi-class emotion 
predictions. For comparative analysis, baseline 
models including a traditional Convolutional Neural 
Network (CNN), a Support Vector Machine (SVM) 
using handcrafted features, and a VGG-16 network 
fine-tuned on the AFEW dataset were trained under 
identical conditions [21]. 
The evaluation metrics used included Accuracy, 
Precision, Recall, and F1-score. Additionally, 
training and validation metrics were plotted epoch-
wise, including Accuracy vs Epochs, Loss vs 
Epochs, and confusion matrices for each model. 
These helped visualize model behavior and assess 
stability during training. 
This comprehensive experimental design validated 
the efficiency and superiority of the EPSO-RNN 
model under real-world constraints and ensured all 
comparative metrics were fair, reproducible, and 
transparent. 
 
10. RESULT AND DISCUSSION: 
 
The effectiveness of the proposed EPSO-RNN 
hybrid model was evaluated using the AFEW 
dataset, and its performance was compared against 
three baseline models: CNN, VGG-16, and SVM. A 
series of experimental trials were conducted to 
assess model behavior in terms of learning stability, 
classification accuracy, temporal consistency, and 
resilience to real-world variabilities such as 
occlusions and low-resolution facial regions. 
 
11. MODEL CONVERGENCE AND 

LEARNING CURVES 
 
Training and validation accuracy were recorded 
across 100 epochs. The EPSO-RNN model 
demonstrated smooth convergence with minimal 
overfitting, aided by early stopping. The training 
accuracy peaked at 92.3%, with a validation 
accuracy of 89.4%, outperforming CNN (78.2%), 
VGG-16 (82.5%), and SVM (69.7%). 
Corresponding loss curves showed steady decline, 
reinforcing the model’s stability. 

12. CONFUSION MATRIX 
INTERPRETATION 

 
Confusion matrices for each model were generated 
to analyze misclassification patterns. The EPSO-
RNN model achieved the highest true positive rates 
across the emotion categories Happy, Sad, Angry, 
and Fear. Compared to other models, it exhibited 
fewer false positives and was especially robust in 
distinguishing between subtle expressions of Sad 
and Angry, which are often confused due to 
overlapping facial features. 
 
13. PRECISION, RECALL, AND F1-SCORE 
 
The proposed model yielded: 

● Precision: 89.1% 
● Recall: 88.7% 
● F1-Score: 88.9% 

In comparison, VGG-16 and CNN showed lower F1-
scores of 83.2% and 80.4% respectively. The RNN’s 
ability to capture frame-wise dependencies enhanced 
recognition consistency, especially in videos with 
fluctuating emotional intensity. 
 
14. COMPARATIVE CHARTS AND 

VISUALIZATIONS 
 
A bar chart was generated to display the model-wise 
comparison across four metrics: Accuracy, 
Precision, Recall, and F1-Score. EPSO-RNN 
consistently outperformed others. A pie chart 
depicting model contribution to total correct 
classifications further confirmed its superiority. 
These graphical elements validated the framework’s 
ability to learn from temporal dynamics while 
benefiting from optimized feature selection. 
 
15. GENERAL OBSERVATIONS 
 
The EPSO-RNN model showcased high resilience to 
challenging video conditions, including low 
brightness, partial face occlusion, and fast head 
movements. The use of EPSO improved the 
relevance of features passed to the RNN, thereby 
reducing computational redundancy and improving 
inference speed. 
 
16. LIMITATIONS AND POTENTIAL FOR 

OPTIMIZATION 
 
Despite strong results, minor degradation was 
observed under extreme lighting conditions and 
abrupt expression shifts within the same clip. 
Additionally, the RNN-based sequence modeling, 
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while effective, introduces computational delay 
which could be optimized through attention-based or 
transformer-driven approaches in future versions. 
 

Table 1: Model-Wise Performance Metrics 
 

Model Accur
acy 
(%) 

Precis
ion 
(%) 

Recall 
(%) 

F1-
Score 
(%) 

SVM 70 68 69 69 

CNN 78 77 76 76 

VGG-
16 

83 82 82 83 

EPSO
-RNN 

90 89 89 89 
 

 
Table 1. presents a comprehensive comparative 
analysis of four machine learning models SVM, 
CNN, VGG-16, and EPSO-RNN evaluated across 
four critical performance metrics: Accuracy, 
Precision, Recall, and F1-Score. This tabulated data 
offers a clear side-by-side visualization of how each 
model performs, highlighting not only their 
individual strengths and limitations but also enabling 
a holistic understanding of their overall 
effectiveness. The structured format allows for an 
intuitive assessment, making it easier to distinguish 
which model excels in terms of prediction 
correctness (Accuracy), relevance of positive 
predictions (Precision), sensitivity (Recall), and the 
harmonic mean of Precision and Recall (F1-Score). 
 

 
Figure 2. Comparative Performance of Models 

 
Figure 2 illustrates an in-depth comparative 
performance evaluation of four distinct models—
Support Vector Machine (SVM), Convolutional 
Neural Network (CNN), VGG-16, and the proposed 
Enhanced Particle Swarm Optimization integrated 

Recurrent Neural Network (EPSO-RNN). Figure 2. 
graphically represents their respective outcomes 
across four essential performance indicators: 
Accuracy, Precision, Recall, and F1-Score. This 
visual comparison not only underscores the relative 
strengths and weaknesses of each model but also 
highlights the superior consistency and predictive 
robustness of the proposed EPSO-RNN framework 
across all evaluated metrics. The figure serves as a 
pivotal reference for understanding model efficiency 
and suitability for classification tasks. 
Figure 3. provides a pie chart representation that 
delineates the proportional contribution of each 
classification model—SVM, CNN, VGG-16, and 
the proposed EPSO-RNN—to the overall 
classification accuracy achieved across the dataset. 
This visual breakdown offers an intuitive 
understanding of how each model influences the 
total performance, with the EPSO-RNN model 
clearly occupying the largest segment. Its dominant 
share in the chart is a direct reflection of its enhanced 
predictive capabilities and optimization strategy, 
signifying a substantial improvement in 
classification accuracy when compared to 
conventional models. The chart effectively 
emphasizes the EPSO-RNN model's performance 
superiority in a visually compelling manner. 
 
 

 
Figure 3.  Pie chart showing the percentage contribution 

of each model 
 



 
 Journal of Theoretical and Applied Information Technology 

15th October 2025. Vol.103. No.19 
©   Little Lion Scientific  

 
ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
8114 

 

 
Figure 4.  Accuracy vs Epochs 

 
Figure 4. illustrates the progression of both training 
and validation accuracy over the span of 20 epochs 
for the proposed EPSO-RNN model. The plotted 
trend clearly demonstrates a steady and upward 
trajectory in accuracy values, reflecting the model’s 
ability to effectively learn from the training data 
while simultaneously generalizing well to unseen 
validation samples. The close alignment of the 
training and validation curves further indicates 
minimal overfitting and a robust learning process. 
This figure serves as compelling evidence of the 
model's convergence behavior and its overall 
reliability in achieving stable and high-performance 
outcomes through iterative training cycles. 
 

 
Figure 5.  Loss vs Epochs 

 
Figure 5 depicts the decline in both training and 
validation loss observed over 20 epochs for the 
EPSO-RNN model, providing valuable insights into 
the model’s learning dynamics. The consistent 
downward trend in loss values throughout the 
training cycle indicates that the model is effectively 
minimizing error and steadily approaching 
convergence. The narrowing gap between training 
and validation loss further suggests that the model 
maintains generalization capability without 
overfitting. This clear pattern of loss reduction 

serves as a strong indicator of the model's stability, 
optimization efficiency, and its ability to internalize 
the underlying data patterns with increasing 
accuracy over time. 
Figure 6. presents the confusion matrix that 
visualizes the classification performance of the 
EPSO-RNN model across four distinct emotion 
categories. This matrix serves as a comprehensive 
tool for evaluating the model's prediction accuracy, 
with prominently high values along the diagonal 
axis, signifying a strong true positive rate for each 
class. The relatively low values in the off-diagonal 
cells indicate minimal misclassifications, further 
reinforcing the model’s precision and reliability. The 
structured layout of the matrix allows for an intuitive 
assessment of both class-wise strengths and potential 
areas of confusion, thereby validating the robustness 
and effectiveness of the EPSO-RNN framework in 
handling multiclass emotional classification tasks. 
 

 
Figure 6. Confusion matrix illustrating the classification 

performance 
 
17. CONCLUSION 
 
This study introduced a novel hybrid framework, 
EPSO-RNN, for effective group-level emotion 
recognition in dynamic, real-world video 
environments. The proposed model integrates 
Enhanced Particle Swarm Optimization (EPSO) for 
intelligent feature selection with Recurrent Neural 
Networks (RNN) for sequential emotion modeling. 
By leveraging the strengths of both techniques, the 
model addresses key challenges such as facial 
occlusions, pose variations, and the temporal 
dynamics of emotions. 
Comprehensive experiments conducted on the 
AFEW dataset validated the model's effectiveness. 
The EPSO-RNN model consistently outperformed 
traditional classifiers including CNN, VGG-16, and 
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SVM, across standard evaluation metrics such as 
accuracy, precision, recall, and F1-score. 
Comparative charts, confusion matrices, and training 
progression plots further confirmed the model’s 
superior generalization capability and learning 
stability. 
Notably, the proposed system maintained high 
performance even in noisy or low-resolution 
sequences, making it suitable for deployment in 
complex surveillance, public interaction, and HCI 
scenarios. The combination of optimized feature sets 
and temporal learning made it both efficient and 
scalable, overcoming the limitations of static-only or 
over-parameterized models. The EPSO-RNN 
framework marks a significant advancement in 
affective computing by uniting optimization and 
sequential modeling. It lays the groundwork for 
future real-time emotion analysis systems capable of 
interpreting collective human behavior with 
precision and adaptability. 
 
18. FUTURE WORK 
 
While the proposed EPSO-RNN framework has 
demonstrated promising results in group-level 
emotion recognition, several research opportunities 
remain open to further enhance its applicability, 
accuracy, and scalability across real-time 
environments and emerging intelligent systems. 
One immediate extension is the integration of Vision 
Transformer (ViT) models in place of conventional 
RNNs for temporal modeling. Transformers have 
shown superior capabilities in capturing long-range 
dependencies across video sequences without the 
limitations of sequential processing inherent in 
RNNs [22]. Leveraging self-attention mechanisms 
within ViTs can significantly boost emotion 
recognition accuracy, particularly in longer or 
occlusion-heavy video segments where emotional 
transitions occur subtly and gradually. 
Additionally, incorporating multi-modal fusion 
strategies represents a promising direction. Future 
iterations of this research could benefit from 
combining facial expressions with audio cues, body 
posture, or contextual scene information. By 
learning cross-modal relationships, such systems can 
better interpret complex affective states that facial 
features alone may not fully express [23]. 
Another important advancement would be to deploy 
EPSO-RNN models in edge computing 
environments, particularly for surveillance and 
smart city applications. Deploying models on low-
latency edge devices would enable real-time 
emotion monitoring without relying on centralized 
servers or cloud computation. Optimization 

techniques such as model pruning and quantization 
could be explored to make the architecture more 
lightweight and deployable [24]. 
In terms of robustness, future models should be 
trained on larger, culturally diverse datasets that 
include variations in ethnicity, age, gender, and 
environmental settings. This would ensure greater 
generalization and fairness, especially when 
deployed in public or international contexts. To 
facilitate this, transfer learning and domain 
adaptation techniques could be integrated into the 
EPSO feature selection phase, allowing models to 
adjust efficiently across new datasets or application 
areas. 
Lastly, graph-based deep learning models, such as 
Graph Neural Networks (GNNs), hold great 
potential for modeling group-level interactions. By 
treating individuals in a frame as nodes and 
emotional influence as edges, GNNs could 
effectively map relational patterns within a group. 
Coupling GNNs with transformer-based encoders 
could yield a highly contextual, socially aware 
emotion recognition system [25]. 
As real-time emotion AI continues to influence 
sectors like healthcare, public safety, education, and 
retail, the future of group-level emotion recognition 
depends on building adaptive, ethical, and energy-
efficient solutions. The proposed EPSO-RNN 
framework serves as a foundational block in that 
direction, and its evolution will likely benefit from 
interdisciplinary collaboration across affective 
computing, neuroscience, and embedded systems. 
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