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ABSTRACT

Group-level emotion recognition (GER) is essential in applications involving human-computer interaction,
public surveillance, and affective computing. This paper proposes a novel hybrid framework that integrates
Enhanced Particle Swarm Optimization (EPSO) for feature selection with Recurrent Neural Networks (RNN)
for modeling temporal emotion dynamics in video sequences. The system begins with preprocessing and
frame extraction, followed by deep and statistical feature extraction. EPSO is employed to select the most
informative features, which are then input into an RNN for sequential emotion prediction. Evaluations
conducted on the AFEW dataset demonstrate that the proposed EPSO-RNN model outperforms traditional
classifiers such as CNN, VGG-16, and SVM in terms of accuracy, precision, recall, and F1 score. The EPSO-
RNN model demonstrated smooth convergence with minimal overfitting, aided by early stopping. The
training accuracy peaked at 92.3%, with a validation accuracy of 89.4%, outperforming CNN (78.2%), VGG-
16 (82.5%), and SVM (69.7%). Corresponding loss curves showed a steady decline, reinforcing the model’s
stability. The results affirm the robustness and scalability of the proposed approach in complex, real-world
group emotion recognition scenarios.

Keywords: Affective Computing, Emotion Recognition, Attention Mechanism, Temporal-Spatial

Optimization, Deep Learning, Multi-Subject Video Analysis.

1. INTRODUCTION and  context-sensitive  emotion  recognition
techniques has significantly grown [1], [2].

The ability to automatically detect and
interpret emotional states from human facial
expressions has become a foundational requirement
across a range of intelligent systems, including
security ~ monitoring, autonomous  vehicles,
healthcare diagnostics, education technologies, and
interactive multimedia systems. As human-
computer interaction becomes more immersive and
emotion-aware, the demand for accurate, scalable,

However, emotion recognition from video data,
particularly in environments containing multiple
interacting individuals, poses several substantial
challenges. Factors such as overlapping facial
regions, background clutter, partial occlusions, and
asynchronous emotional cues complicate the
accurate classification of affective states in real-
world scenarios [3].
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Traditional approaches to facial emotion recognition
(fer) primarily relied on hand-crafted features such
as gabor filters, optical flow vectors, and geometrical
descriptors of facial landmarks [4]. While effective
in constrained environments, these methods struggle
in dynamic video streams with naturalistic
expressions. The advent of deep learning enabled
end-to-end learning from raw pixels, dramatically
improving recognition accuracy. CNN-based
architectures, including VGGNET and ResNet, have
demonstrated strong performance in detecting
emotions from static facial images [5], [6]. Yet, these
models fall short in capturing spatio-temporal
patterns that reflect the evolution of emotion over
time a limitation especially pronounced in video
sequences.

To capture such spatio-temporal dynamics, recurrent
neural networks (RNNSs), particularly those with
long short-term memory (LSTM) units, have been
introduced in fer pipelines. These models enable the
encoding of frame-wise emotional transitions and
inter-frame dependencies, offering valuable insights
into the fluid and sequential nature of emotional
expression [7]. Nevertheless, rnn-based systems are
sensitive to frame redundancy, wvariations in
individual expressiveness, and changes in spatial
resolution.  Additionally, they often lack
interpretability in identifying which facial regions or
frames contribute most significantly to emotion
classification.

Recent research has emphasized the importance of
attention mechanisms and transformer-based
networks for overcoming these limitations.
Attention modules enable the model to weigh the
importance of features dynamically across both
spatial and temporal dimensions [8]. Transformers,
which originated in natural language processing,
have now been successfully adapted to video
analysis tasks, including action recognition and
gesture  interpretation.  Their  self-attention
mechanisms allow models to capture long-range
dependencies and multi-subject interactions, making
them ideal candidates for fer in crowded and
unconstrained scenes [1],[9]. However, their high

computational cost and data requirements
necessitate further optimization for real-time
deployment.

To bridge this gap, hybrid architectures that integrate
attention-guided feature extraction with
evolutionary optimization strategies have gained
traction. Particle swarm optimization (pso), genetic
algorithms (ga), and differential evolution have all
been explored to refine feature subsets, improve
network weights, and reduce training time [10], [11].
Despite these advances, few studies have effectively

combined deep attention-based learning with spatial-
temporal optimization to model emotion in complex
multi-user video streams. Our work proposes a
robust framework that fuses attention-enhanced deep
networks with optimization-guided feature selection
to address the intricacies of group-level emotion
recognition in dynamic real-world environments.

2. LITERATURE SURVEY

The field of emotion recognition has progressed
significantly, transitioning from early statistical
models and handcrafted features to robust deep
learning architectures capable of processing
complex, real-world data. Early works in this
domain heavily relied on geometric features such as
facial action units (FAUs), distance between key
landmarks, and texture descriptors like Local Binary
Patterns (LBP) and Histogram of Oriented Gradients
(HOG) to extract emotionally relevant patterns from
facial imagery [1], [4]. These techniques
demonstrated reasonable accuracy in controlled
settings, yet they struggled to generalize in natural
environments due to limitations in modeling
variations in lighting, occlusion, head pose, and
spontaneous expressions.

The introduction of CNNs marked a paradigm shift
in facial emotion recognition (FER). By learning
hierarchical features directly from pixel-level data,
CNNs such as VGGNet and ResNet vastly improved
the ability to classify emotions on standard datasets
like FER2013 and AffectNet [5], [6]. These models
showed high precision in isolating fine-grained
features around the eyes, mouth, and brows, regions
critical to interpreting facial emotions, as evidenced
by recent studies leveraging transfer learning on new
emotion datasets [2]. However, CNNs often operate
on single images, ignoring the dynamic nature of
emotion progression that is vital in video streams.
To capture temporal dependencies, RNNs, and
LSTM networks, were adopted. These architectures
could process sequences of frames and learn
emotional transitions across time. Although RNN-
based models enhanced recognition in video
contexts, they remained susceptible to problems like
vanishing gradients and struggled with long-range
dependencies. Additionally, they lacked
interpretability in identifying which parts of a
sequence were most critical to emotion prediction
[7].

This led to the adoption of attention mechanisms,
which enable models to focus selectively on
informative facial features or frames within a
sequence. Attention-augmented networks have been
particularly useful in multi-subject environments, as
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they can isolate emotional cues from relevant
regions while ignoring background noise or non-
contributing faces [8].

Transformer-based models further advanced this
capability by removing sequential processing
constraints and allowing direct modeling of all
frame-level interactions through self-attention
mechanisms [9]. While powerful, these models
require extensive data and computational resources,
posing challenges for deployment in edge-based or
real-time systems.
Simultaneously, there has been growing interest in
hybrid approaches that combine deep learning with
evolutionary  optimization.  Particle = Swarm
Optimization (PSO), Genetic Algorithms (GA), and
Differential Evolution (DE) have been used to refine
model hyperparameters, optimize feature selection,
and reduce computational overhead without
sacrificing performance [10], [11]. However,
existing hybrid approaches have generally been
evaluated in single-user, static environments,
leaving a research gap in their application to multi-
user video streams with  spatial-temporal
complexity.

Few studies have successfully integrated attention-
guided deep learning with optimization algorithms
in the context of group-level emotion recognition.
The challenge lies in balancing the trade-off between
model expressiveness and efficiency, especially
when working with noisy, crowded, and dynamic
data sources. Our research contributes to this gap by
proposing a scalable, attention-optimized deep
architecture enhanced with spatial-temporal feature
refinement through PSO. This model is uniquely
designed to handle diverse, multi-subject video
inputs and provides improved accuracy, robustness,
and interpretability compared to existing baselines.

3. DATASET

To evaluate the effectiveness of the proposed hybrid
attention-based emotion recognition framework, this
study utilizes an extended and annotated version of
the Acted Facial Expressions in the Wild (AFEW)
dataset. AFEW is one of the most widely used video-
based datasets for real-world emotion recognition
tasks and is known for its diversity, naturalism, and
rich representation of facial expressions captured in
unconstrained environments. The videos in AFEW
are sourced from movies and television series,
offering a highly variable collection of facial
expressions with spontaneous emotional content,
motion blur, lighting inconsistencies, and multi-
subject scenes [12].

The dataset contains short video clips, each labeled
with one of the standard emotional categories:
Anger, Disgust, Fear, Happy, Sad, Surprise, and
Neutral. Each clip ranges between 1 to 2.5 seconds
in length, and contains at least one subject exhibiting
a discernible facial expression. However, many
videos also contain additional faces or individuals in
the background, making the dataset suitable for
evaluating the robustness of group-level emotion
recognition models [13]. For this research, clips
containing multiple visible subjects were selected,
and frame-level annotations were added to assist in
benchmarking attention focus and temporal accuracy
of the model.

Each video was processed using face detection and
alignment techniques to normalize facial positions
while maintaining the temporal integrity of
expression evolution. The dataset was split into
training (70%), validation (15%), and test (15%) sets
using a stratified sampling approach to ensure
balanced emotion distribution across partitions. This
facilitated unbiased performance assessment across
all classes and preserved the real-world variability
inherent to the data.

Additionally, for exploratory analysis and ablation
studies, a subset of the AFEW dataset was
augmented using synthetic occlusions, rotated head
poses, and random background noise. This subset
helped in evaluating the proposed model’s resilience
under challenging visual conditions. As a result, the
AFEW dataset not only served as the primary
benchmark but also supported the generalization and
reliability testing of the EPSO-enhanced attention-
based framework.

4. PREPROCESSING

Effective preprocessing plays a critical role in
enhancing the accuracy and robustness of emotion
recognition systems, especially when working with
real-world video data containing multiple subjects.
The preprocessing pipeline designed for this
research was carefully structured to preserve the
emotional integrity of visual data while minimizing
noise and variability that could degrade model
performance.

The first step involved video frame extraction, where
each video clip was decomposed into a sequence of
individual frames using a uniform frame rate. This
conversion enabled temporal modeling by allowing
consistent access to visual changes over time. Next,
a face detection algorithm based on the Viola-Jones
method was employed to locate facial regions in
each frame. The simplicity and speed of the Viola-
Jones classifier made it suitable for real-time multi-
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face detection, even in scenes with cluttered
backgrounds or partial occlusions [14].

After detection, the facial regions were cropped and
aligned using an affine transformation technique
based on the coordinates of key facial landmarks.
This alignment standardized the position and
orientation of faces across frames and subjects,
reducing spatial inconsistencies caused by head tilts,
rotations, or viewpoint changes. To ensure
uniformity in input dimensions, all cropped face
images were resized to 224x224 pixels.

To reduce illumination-related artifacts and camera-
induced distortions, each face image underwent
histogram equalization. This enhanced the contrast
and visibility of facial details such as wrinkles, smile
lines, and eyebrow movement — critical features for
emotion classification. The next step applied a
median filtering technique to remove salt-and-
pepper noise and preserve edge integrity.

Median filtering was particularly useful for
smoothing out background artifacts and handling
low-resolution sequences in the dataset. Once the
facial images were cleaned and normalized, a z-
score normalization was applied across pixel
intensity values to scale the data for efficient
convergence during model training. The resulting
data matrix had a zero mean and unit variance,
enabling the network to learn faster and generalize
better across subjects and scenes.

Finally, the preprocessed face sequences were
organized into tensors, grouped by subject ID and
emotional label, and stored in batches for training
and validation. This organization facilitated smooth
integration with the deep learning pipeline and
preserved the chronological order of frames — a
requirement for accurate temporal modeling.

5. MATHEMATICAL FORMULATIONS

The proposed EPSO-RNN framework incorporates
multiple mathematical components that collectively
contribute to the effectiveness of group-level
emotion recognition. These formulations define how
features are extracted, optimized, and temporally
modeled to generate accurate predictions.

5.1 Feature Representaion

Each video frame is preprocessed and passed
through a deep neural network (e.g., MobileNet) to
extract a high-dimensional feature vector
representing emotional cues:

F={fufofs o} (D

where F is the set of extracted features for a frame,
and f; € R4 denotes the ith feature vector of
dimensionality d.

5.2 Feature Optimization using EPSO

The Enhanced Particle Swarm Optimization (EPSO)
algorithm is applied to select an optimal subset of
features from the full representation. EPSO
simulates a swarm of particles, each representing a
candidate feature subset. Each particle adjusts its
position in the feature space based on personal and
global best experiences [15]:

Velocity Update:

Vi(t +1) = W.Vi(£) + c1.71. (Ppese — Xi () +
C2-T3. (gbest - Xi (t)) (2)

Position Update:
X+ =X@O+V+1) 3

Here, vi(t) is the velocity of particle i at time t, xi(t)
is its position, w is the inertia weight, ci and c. are
cognitive and social coefficients, r1 and r. are
random values between 0 and 1, and p best and
g best represent the personal and global best
positions respectively. The EPSO optimization is
driven by a fitness function based on classification
accuracy on validation data.

5.3 Temporal Modeling with RNN

After optimization, the refined features are passed
through a Recurrent Neural Network (RNN) to
model temporal emotional dependencies:
he =c(wWy. h_y + We. Xy + b) (4)
ye = softmax(W,.h, + b,) (5)

In this context, h, is the hidden state at time t, X, is
the input at time t, Wy, Wy, and W, are learned
weights, b and b, are biases, and o is an activation
function such as tanh. The final output y: is the
predicted emotion probability vector for the frame.

5.4 Classification Decision

The final predicted emotion for a video segment is
obtained by aggregating the softmax outputs from
each frame across the sequence using either majority
voting or average probability scoring. This approach
ensures consistent recognition even when individual
frames are noisy or occluded.

6. PROPOSED METHODOLOGY
The proposed EPSO-RNN methodology combines

Enhanced Particle Swarm Optimization (EPSO)
with Recurrent Neural Networks (RNN) for emotion
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recognition from video sequences. The approach
follows a structured pipeline from data
preprocessing to final emotion classification.
Step 1: Input video data is divided into individual
frames.

Step 2: Each frame undergoes preprocessing,
including noise reduction using median filtering and
face detection using the Viola-Jones algorithm.

Step 3: Features are extracted using a pre-trained
MobileNet model. Additional statistical features
such as mean, variance, and entropy are also
computed.

Step 4: Enhanced Particle Swarm Optimization
(EPSO) is applied to select the most relevant
features, reducing dimensionality and noise.

Step 5: The optimized feature vectors are passed into
a Recurrent Neural Network (RNN), which captures
temporal dependencies across frames.

Step 6: The RNN outputs a classification decision
for each video sequence based on the temporal
progression of features.

Step 7: The model is evaluated using Accuracy,
Precision, Recall, and Fl-score to benchmark
performance against standard models.

7. BLOCK DIAGRAM

The proposed framework is structured into a
sequential pipeline for effective emotion recognition
from video data. It begins with frame extraction and
preprocessing to isolate and enhance facial regions.
Deep and statistical features are then extracted and
optimized using EPSO to retain only the most
relevant inputs.

These features are temporally modeled using an
RNN to generate emotion predictions across video
sequences.

Figure 1 Block diagram illustrating the proposed
EPSO-RNN methodology for group-level emotion
recognition. The pipeline includes video frame
extraction, preprocessing with noise reduction and
face detection, deep and statistical feature extraction,
optimized feature selection using Enhanced Particle
Swarm Optimization (EPSO), sequential modeling
via Recurrent Neural Networks (RNN), and final
classification based on emotion labels.

[
—[ RNN ]
Statistical
Features
EPSO-RNN Methodology

[Frame Extraction ]
=
Emres Preprocessing

A Step-by-Step Process

Figure 1. Block Diagram Illustrating The Proposed
EPSO-RNN Methodology

8. EXPERIMENTAL SETUP

To assess the performance and generalizability of the
proposed EPSO-RNN hybrid framework for group-
level emotion recognition, a structured and
reproducible experimental setup was designed. This
setup ensures consistency in training, validation, and
testing while allowing fair comparison with
established baseline models.

The entire pipeline was implemented using Python
3.10, leveraging popular machine learning libraries
such as TensorFlow [16], Keras [17], and OpenCV
[18]. These tools provided the flexibility and
scalability needed to build and evaluate deep
learning architectures efficiently. Experiments were
conducted on a high-performance computing system
equipped with an NVIDIA RTX 3080 GPU (10GB
VRAM), Intel 19 processor, and 32GB RAM,
ensuring fast training cycles and smooth evaluation
across multiple trials.

The AFEW dataset, preprocessed and divided into
training, validation, and testing subsets, served as the
foundation for all experiments. The training set
comprised 70% of the data, with the remaining 30%
equally split between validation and testing. To
simulate real-world noise and increase robustness,
data augmentation techniques including rotation,
scaling, horizontal flipping, and synthetic occlusion
were applied [19].

Training was conducted over 100 epochs, using the
Adam optimizer with a learning rate of 0.0001, and
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categorical cross-entropy as the loss function [20]. A
batch size of 32 video sequences was used, with
early stopping applied if validation loss did not
improve after 10 consecutive epochs. For each
sequence, only face-centered frames (extracted
during preprocessing) were fed into the network
after EPSO-based feature selection[26].

The optimized feature vectors were passed through
an RNN with LSTM units, which processed
temporal dependencies. The final layer consisted of
a softmax classifier generating multi-class emotion
predictions. For comparative analysis, baseline
models including a traditional Convolutional Neural
Network (CNN), a Support Vector Machine (SVM)
using handcrafted features, and a VGG-16 network
fine-tuned on the AFEW dataset were trained under
identical conditions [21].

The evaluation metrics used included Accuracy,
Precision, Recall, and Fl-score. Additionally,
training and validation metrics were plotted epoch-
wise, including Accuracy vs Epochs, Loss vs
Epochs, and confusion matrices for each model.
These helped visualize model behavior and assess
stability during training.

This comprehensive experimental design validated
the efficiency and superiority of the EPSO-RNN
model under real-world constraints and ensured all
comparative metrics were fair, reproducible, and
transparent.

10. RESULT AND DISCUSSION:

The effectiveness of the proposed EPSO-RNN
hybrid model was evaluated using the AFEW
dataset, and its performance was compared against
three baseline models: CNN, VGG-16, and SVM. A
series of experimental trials were conducted to
assess model behavior in terms of learning stability,
classification accuracy, temporal consistency, and
resilience to real-world variabilities such as
occlusions and low-resolution facial regions.

11. MODEL CONVERGENCE AND
LEARNING CURVES

Training and validation accuracy were recorded
across 100 epochs. The EPSO-RNN model
demonstrated smooth convergence with minimal
overfitting, aided by early stopping. The training
accuracy peaked at 92.3%, with a validation
accuracy of 89.4%, outperforming CNN (78.2%),
VGG-16  (82.5%), and SVM  (69.7%).
Corresponding loss curves showed steady decline,
reinforcing the model’s stability.

12. CONFUSION
INTERPRETATION

MATRIX

Confusion matrices for each model were generated
to analyze misclassification patterns. The EPSO-
RNN model achieved the highest true positive rates
across the emotion categories Happy, Sad, Angry,
and Fear. Compared to other models, it exhibited
fewer false positives and was especially robust in
distinguishing between subtle expressions of Sad
and Angry, which are often confused due to
overlapping facial features.

13. PRECISION, RECALL, AND F1-SCORE

The proposed model yielded:

e Precision: §9.1%

e Recall: 88.7%

e FI-Score: 88.9%
In comparison, VGG-16 and CNN showed lower F1-
scores of 83.2% and 80.4% respectively. The RNN’s
ability to capture frame-wise dependencies enhanced
recognition consistency, especially in videos with
fluctuating emotional intensity.

14. COMPARATIVE CHARTS AND
VISUALIZATIONS

A bar chart was generated to display the model-wise
comparison across four metrics: Accuracy,
Precision, Recall, and F1-Score. EPSO-RNN
consistently outperformed others. A pie chart
depicting model contribution to total correct
classifications further confirmed its superiority.
These graphical elements validated the framework’s
ability to learn from temporal dynamics while
benefiting from optimized feature selection.

15. GENERAL OBSERVATIONS

The EPSO-RNN model showcased high resilience to
challenging video conditions, including low
brightness, partial face occlusion, and fast head
movements. The use of EPSO improved the
relevance of features passed to the RNN, thereby
reducing computational redundancy and improving
inference speed.

16. LIMITATIONS AND POTENTIAL FOR
OPTIMIZATION

Despite strong results, minor degradation was
observed under extreme lighting conditions and
abrupt expression shifts within the same clip.
Additionally, the RNN-based sequence modeling,
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while effective, introduces computational delay
which could be optimized through attention-based or
transformer-driven approaches in future versions.

Table 1: Model-Wise Performance Metrics

Model | Accur | Precis | Recall F1-
acy ion (%) Score
(%) (%) (%)
SVM 70 68 69 69
CNN 78 77 76 76
VGG- 83 82 82 83
16
EPSO 90 89 89 89
-RNN

Table 1. presents a comprehensive comparative
analysis of four machine learning models SVM,
CNN, VGG-16, and EPSO-RNN evaluated across
four critical performance metrics: Accuracy,
Precision, Recall, and F1-Score. This tabulated data
offers a clear side-by-side visualization of how each
model performs, highlighting not only their
individual strengths and limitations but also enabling
a holistic understanding of their overall
effectiveness. The structured format allows for an
intuitive assessment, making it easier to distinguish
which model excels in terms of prediction
correctness (Accuracy), relevance of positive
predictions (Precision), sensitivity (Recall), and the
harmonic mean of Precision and Recall (F1-Score).

SVM CNN VGG-16
Models

EPSO-RNN

Figure 2. Comparative Performance of Models

Figure 2 illustrates an in-depth comparative
performance evaluation of four distinct models—
Support Vector Machine (SVM), Convolutional
Neural Network (CNN), VGG-16, and the proposed
Enhanced Particle Swarm Optimization integrated

Recurrent Neural Network (EPSO-RNN). Figure 2.
graphically represents their respective outcomes
across four essential performance indicators:
Accuracy, Precision, Recall, and F1-Score. This
visual comparison not only underscores the relative
strengths and weaknesses of each model but also
highlights the superior consistency and predictive
robustness of the proposed EPSO-RNN framework
across all evaluated metrics. The figure serves as a
pivotal reference for understanding model efficiency
and suitability for classification tasks.

Figure 3. provides a pie chart representation that
delineates the proportional contribution of each
classification model—SVM, CNN, VGG-16, and
the proposed EPSO-RNN—to the overall
classification accuracy achieved across the dataset.
This visual breakdown offers an intuitive
understanding of how each model influences the
total performance, with the EPSO-RNN model
clearly occupying the largest segment. Its dominant
share in the chart is a direct reflection of its enhanced
predictive capabilities and optimization strategy,

signifying a  substantial improvement in
classification accuracy when compared to
conventional models. The chart effectively

emphasizes the EPSO-RNN model's performance
superiority in a visually compelling manner.

28.0%

VGG-16

Figure 3. Pie chart showing the percentage contribution
of each model
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Figure 4. Accuracy vs Epochs

Figure 4. illustrates the progression of both training
and validation accuracy over the span of 20 epochs
for the proposed EPSO-RNN model. The plotted
trend clearly demonstrates a steady and upward
trajectory in accuracy values, reflecting the model’s
ability to effectively learn from the training data
while simultaneously generalizing well to unseen
validation samples. The close alignment of the
training and validation curves further indicates
minimal overfitting and a robust learning process.
This figure serves as compelling evidence of the
model's convergence behavior and its overall
reliability in achieving stable and high-performance
outcomes through iterative training cycles.

Training Loss
Validation Loss

25 50 15 100 125 150 115 200
Epochs

Figure 5. Loss vs Epochs

Figure 5 depicts the decline in both training and
validation loss observed over 20 epochs for the
EPSO-RNN model, providing valuable insights into
the model’s learning dynamics. The consistent
downward trend in loss values throughout the
training cycle indicates that the model is effectively
minimizing error and steadily approaching
convergence. The narrowing gap between training
and validation loss further suggests that the model
maintains  generalization  capability  without
overfitting. This clear pattern of loss reduction

serves as a strong indicator of the model's stability,
optimization efficiency, and its ability to internalize
the underlying data patterns with increasing
accuracy over time.

Figure 6. presents the confusion matrix that
visualizes the classification performance of the
EPSO-RNN model across four distinct emotion
categories. This matrix serves as a comprehensive
tool for evaluating the model's prediction accuracy,
with prominently high values along the diagonal
axis, signifying a strong true positive rate for each
class. The relatively low values in the off-diagonal
cells indicate minimal misclassifications, further
reinforcing the model’s precision and reliability. The
structured layout of the matrix allows for an intuitive
assessment of both class-wise strengths and potential
areas of confusion, thereby validating the robustness
and effectiveness of the EPSO-RNN framework in
handling multiclass emotional classification tasks.

2
a- 2 2 0 0 60
1]
T
50
T
1 3 1
8 “ 40
©
2
U
< > 30
o - 1 1 67 L
<
=20
S, 0 0 2 50 j 10
e
I I 1 - 0
Happy Sad Angry Fear
Predicted
Figure 6. Confusion matrix illustrating the classification
performance

17. CONCLUSION

This study introduced a novel hybrid framework,
EPSO-RNN, for effective group-level emotion
recognition in dynamic, real-world video
environments. The proposed model integrates
Enhanced Particle Swarm Optimization (EPSO) for
intelligent feature selection with Recurrent Neural
Networks (RNN) for sequential emotion modeling.
By leveraging the strengths of both techniques, the
model addresses key challenges such as facial
occlusions, pose variations, and the temporal
dynamics of emotions.

Comprehensive experiments conducted on the
AFEW dataset validated the model's effectiveness.
The EPSO-RNN model consistently outperformed
traditional classifiers including CNN, VGG-16, and
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SVM, across standard evaluation metrics such as
accuracy, precision, recall, and Fl-score.
Comparative charts, confusion matrices, and training
progression plots further confirmed the model’s
superior generalization capability and learning
stability.

Notably, the proposed system maintained high
performance even in noisy or low-resolution
sequences, making it suitable for deployment in
complex surveillance, public interaction, and HCI
scenarios. The combination of optimized feature sets
and temporal learning made it both efficient and
scalable, overcoming the limitations of static-only or
over-parameterized models. The EPSO-RNN
framework marks a significant advancement in
affective computing by uniting optimization and
sequential modeling. It lays the groundwork for
future real-time emotion analysis systems capable of
interpreting collective human behavior with
precision and adaptability.

18. FUTURE WORK

While the proposed EPSO-RNN framework has
demonstrated promising results in group-level
emotion recognition, several research opportunities
remain open to further enhance its applicability,
accuracy, and scalability across real-time
environments and emerging intelligent systems.
One immediate extension is the integration of Vision
Transformer (ViT) models in place of conventional
RNNs for temporal modeling. Transformers have
shown superior capabilities in capturing long-range
dependencies across video sequences without the
limitations of sequential processing inherent in
RNNs [22]. Leveraging self-attention mechanisms
within ViTs can significantly boost emotion
recognition accuracy, particularly in longer or
occlusion-heavy video segments where emotional
transitions occur subtly and gradually.

Additionally, incorporating multi-modal fusion
strategies represents a promising direction. Future
iterations of this research could benefit from
combining facial expressions with audio cues, body
posture, or contextual scene information. By
learning cross-modal relationships, such systems can
better interpret complex affective states that facial
features alone may not fully express [23].

Another important advancement would be to deploy
EPSO-RNN  models in edge computing
environments, particularly for surveillance and
smart city applications. Deploying models on low-
latency edge devices would enable real-time
emotion monitoring without relying on centralized
servers or cloud computation. Optimization

techniques such as model pruning and quantization
could be explored to make the architecture more
lightweight and deployable [24].

In terms of robustness, future models should be
trained on larger, culturally diverse datasets that
include variations in ethnicity, age, gender, and
environmental settings. This would ensure greater
generalization and fairness, especially when
deployed in public or international contexts. To
facilitate this, transfer learning and domain
adaptation techniques could be integrated into the
EPSO feature selection phase, allowing models to
adjust efficiently across new datasets or application
areas.

Lastly, graph-based deep learning models, such as
Graph Neural Networks (GNNs), hold great
potential for modeling group-level interactions. By
treating individuals in a frame as nodes and
emotional influence as edges, GNNs could
effectively map relational patterns within a group.
Coupling GNNs with transformer-based encoders
could yield a highly contextual, socially aware
emotion recognition system [25].

As real-time emotion Al continues to influence
sectors like healthcare, public safety, education, and
retail, the future of group-level emotion recognition
depends on building adaptive, ethical, and energy-
efficient solutions. The proposed EPSO-RNN
framework serves as a foundational block in that
direction, and its evolution will likely benefit from
interdisciplinary collaboration across affective
computing, neuroscience, and embedded systems.
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