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ABSTRACT

Diabetic retinopathy (DR) is a diabetes-related eye ailment caused by retinal blood vessel (BV) damage. This
manuscript presents a novel continual DL framework for efficient DR disease detection. Initially, input retinal
fundus images are taken from the IDRI Dataset for accurate DR disease detection, which undergoes the
preprocessing stage by employing a Color Wiener Filter (CWF) that can enhance image clarity by adaptively
removing noise while maintaining edge details for further processing. After preprocessing, a novel Laplacian
Pale Transformative Convolution network (LPTCN) is introduced, which classifies with more accuracy the
distinction between different DR abnormalities. Moreover, the proposed framework integrates Elastic Weight
Consolidation (EWC) and Herding Selection Replay (HSR) to prevent catastrophic forgetting on new data
samples. The proposed framework is simulated in the Python platform. In the simulation part, the average
Accuracy of 97%, Matthew’s Correlation Coefficient (MCC) of 0.936, symmetric mean absolute percentage
error (SMAPE) of 2.07, and Computation Time (CT) of 4.9s, Youden’s index (YI) of 0.89 are obtained by
the suggested framework on DR identification.

Keywords: Diabetic Retinopathy (DR), Retinal Fundus Image (RFI), Multi-class Classification, Image
Preprocessing, Continual Learning, Laplacian Pale Transformative Convolution Network.

1. INTRODUCTION 592 million by 2025, reflecting the expanding

S . ) worldwide burden.
Diabetic Retinopathy (DR) is a severe

microvascular diabetes mellitus complication that Research Problem: DR needs early detection
may result in irreversible vision impairment and because the disease is usually symptom-free in the
blindness, especially in working-age individuals. initial stages, and floaters, blurred vision, and loss
DR destroys the retinal blood vessels (BV), which of vision become manifest only at late stages [4].
provide oxygen and nutrients to the retina [1]. DR Although color fundus imaging is common for
is classified into two categories: Non-Proliferative DR diagnosis, manual grading is time-consuming,
DR (NPDR) and Proliferative DR (PDR). NPDR subjective, and susceptible to inter-observer
is also divided into mild, moderate, and severe variability. Machine learning (ML) and deep
stages, and PDR is the final stage. DR can also be learning (DL) based automated classification
classified on the basis of severity into five phases, systems have been promising, but challenges,
from Phase 0 (no DR) to Phase 4 (PDR). DR is including high computational expense, low
responsible for causing almost 2.6% of blindness availability of annotated datasets, overfitting, and
in the whole world, with more than 239 million bias, limit their implementation in real-world
sufferers in 2010 [2, 3]. The International clinical scenarios. Furthermore, current DL
Diabetes Federation (IDF) noted that as of 2017, models fail to generalize to multi-class
449 million people had diabetes, and over a third classification on varied, high-resolution datasets
had signs of DR. This is estimated to increase to [5]-
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Research Gap: Though many DL models are
suggested for DR detection, they are mostly
limited by -catastrophic forgetting in ongoing
learning, poor noise handling in retinal fundus
images, and weak generalization across multi-
class severity levels. Not many experiments
integrate successful preprocessing, stable feature
extraction, and ongoing learning mechanisms
within a single framework for credible DR
detection.

Research Objectives: The proposed research
seeks to engineer a strong and scalable DR
detection system that (i) enhances image quality
with high-end denoising methods, (ii) derives
feature-rich spatial information for precise multi-
class classification, and (iii) employs continual
learning techniques to address catastrophic
forgetting.

Significance of the Study: By overcoming the
limitations of existing models, the new model can
assist ophthalmologists with faster, accurate, and
automated DR diagnosis. This will eventually
lead to timely treatment, less vision loss, and
better patient outcomes in diabetes care.

The key contributions of the proposed
framework are depicted below:

« Enhance DR detection using a Color
Wiener Filter (CWF) for denoising and a
novel LPTCN for capturing detailed
spatial features.

¢ Ensure continual learning by integrating
EWC and HSR to prevent catastrophic
forgetting.

% Validate the framework on the IDRID
dataset using metrics like Accuracy,
MCC, YI, SMAPE, and Computation
Time, showing its superiority over
existing methods.

The remaining part of the manuscript is
prearranged as follows: Section 2 reviews related
work, Section 3 describes the proposed method,
Section 4 emphasizes results and discussion, and
Section 5 concludes the study.

2. RELATED WORK: A BRIEF REVIEW

Several studies have investigated automated
detection and classification of DR using fundus
retinal images leveraging deep learning (DL),
optimization algorithms, and attention
mechanisms.
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Deep learning architecture for DR detection

Jabbar et al. [6] suggested an efficient service
platform for DR diagnosis, wherein RFI were
analyzed using a computing unit to calculate the
severity of the disease. In like manner, Jabbar et
al. [7] used GoogleNet and ResNet architectures
with APSO for their optimization, exhibiting
enhanced feature extraction and classification
performance. Gupta et al. [8] subsequently
improved DL-based classification using the
Fennec Fox Optimizer, creating the FIDRC-
DLFFO model for Al-driven DR severity
classification. Although these models attained
competitive accuracy, their reliance on enormous
computational  resources and  large-scale
annotated data restricts scalability.

Attention-based and Hybrid Models

Romero-Oraa et al. [9] presented an attention
mechanism that treated illuminated and shadowed
retinal structures separately after a preprocessing
procedure in order to better distinguish fine
lesions. Hemanth et al. [10] put forward a hybrid
method by implementing He Weighted BiLSTM
(HWBLSTM) along with transfer learning for
detecting DR and lesion segmentation with the
Enhanced Grasshopper Optimizer Region
Growing Algorithm (EGORGA). Dimensionality
reduction was applied with Modified Singular
Value Decomposition (MSVD) and lesion
classification was conducted with SqueezeNet.
These methods enhanced detection accuracy but
are plagued with high model complexity and
prolonged training times, which obfuscate real-
time usage in clinical pathways.

From these previous works, it is clear that
although DL and optimization-based models are
robust in classification performance, they still
struggle with certain critical issues. Noise and
variability in RFI are still inadequately handled,
lowering robustness. Multi-class classification at
various stages of DR severity is still challenging.
All techniques do not have mechanisms to cope
with continual learning, resulting in catastrophic
forgetting on introducing new data.

Positioning of the Proposed Work and
Research Gap:

To address these challenges, the suggested
framework incorporates a Color Wiener Filter
(CWF) for noise removal, a new LPTCN network
for fine-spatial feature extraction, and Elastic
Weight Consolidation (EWC) and Hard Sample
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Replay (HSR) to avoid catastrophic forgetting in
continual learning. Unlike other models, this
integrated method is developed to provide robust,
scalable, and clinically usable DR detection at
multiple levels of severity.

3. PROPOSED METHODOLOGY

This manuscript presents a novel continual
DL framework for efficient DR disease detection.
Initially, input retinal fundus images are taken
from the IDRID Dataset for accurate DR disease
detection which undergoes the preprocessing
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stage by employing a CWF that can enhance
image clarity by adaptively removing noise while
maintaining edge details for further processing.
After preprocessing, a novel LPTCN is introduced
which effectively learns intricate spatial
relationships within fundus images, leading to a
more accurate distinction between different DR
abnormalities such as non-DR, mild NPDR,
moderate NPDR, severe NPDR, and PDR. To
mitigate this issue, the proposed framework
integrates EWC and HSR. The proposed
framework’s workflow is depicted in Figure 1.
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Figure 1: Workflow of the Proposed Framework

A. Data Acquisition

Initially, the IDRiD dataset [11]
collected from freely accessible sources contains
516 high-resolution fundus images (4288x2848
pixels) captured in an Indian eye clinic. It includes
segmentation (81 images with lesion masks),
disease grading (516 images labeled for DR and
DME severity), and localization (optic disc and
fovea positions).
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B. Preprocessing Stage

The acquired images from the database consist
of high noise that cannot be directly fed into the
proposed network model. To manifest this issue,
a color wiener filtering (CWF) technique is
introduced that preserves useful information and
improves the illumination level of the
neuroimages. In the RGB color space, the
relationship between the actual image, the
recovered image, and the additive noise can be
expressed mathematically as follows:
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x,=7Z +y, (1)

Here, X, indicates the observed instance
which deliberates the pixel vector in the actual
image Zl. , ¥, signifies the additive noise, and ]
denotes the image pixel which can depicted as,

i(a, b) whereas @ and b manipulates the pixel
directions. X manipulates the mean vector of the

observed sample X;. Z characterizes the

adjusted image of the pixel vector, and VA
embodies the adjusted image of the mean vector
which can be formulated using CWF R is
depicted below:
Z=7=R(x,—%) )
Here, R is evaluated to determine the
mean square error (MSE) amid real and adjusted

samples whereas MSE is mathematically
articulated as,

MSE =min|(Z ~Z =% (x, - )7))2 )

In the actual image, when it fails to

correlate with noise then the adjusted image R
can be formulated as,

R = Moy (mcov + mnn) )

Here, m,  signifies the noise,and m__,
manipulates the covariance matrices. At last, the

WF R can be depicted mathematically as,

R=(m, —x,,)m; ®)

Algorithm 1: Pseudocode for Proposed
Framework
INPUT: IDRiD dataset fundus Images
2,.2,,...2,}
OUTPUT: DR severity classification
{No_DR, Mild, Moderate, Severe, PDR}
STEP 1: Data Acquisition

Load IDRiD dataset (516 fundus images,
resolution 4288x2848)

STEP 2: Preprocessing using Color Wiener
Filter (CWF)
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FOR every image Z ; in Dataset DO

X; = Observed pixel vector of Zl.

/I Eq. (1)

7= Additive noise

/I Eq. (1)

Estimate adjusted pixel vector:
//'Eq. (2)

Z=Z=R(x, %)

Calculate Mean Square Error (MSE)
//'Eq. (3)

AﬂE:mm(Z—f—m@;yDZ

If Z uncorrelated with ; THEN
/I Eq. (4)
m = mcov (mcov + mnn)

Final Wiener Filter output:
/I Eq. (5)
ERz(mm—xM)m
Store preprocessed image
END FOR
STEP 3: Feature Extraction with LPTCN
FOR each preprocessed image DO

Compute Laplacian operator for
/I Eq. (6)
Vzg(u,v) =g(u+],v) +g(u—1,v) +g(u,v+]
Extracted edge features with LCNN:
/' Eq. (7)
e= ]7(p x Laplacian 7CNN(,BO ))
Combine edge + intensity features
END FOR
STEP 4: Pale Transformer (PT) for Global
Attention
FOR each Feature DO

Compute single-head self-attention:
/I Eq. (8)

-1
XX

edges:

T
v U )y, (U .
e
Apply pale attention + position
coding: // Eq. (9-11)

U'=U"+ CPE(U”‘)
U =0 +PA(LN(0’))

V' = soft max

U =0 +MLP(LN(U’))

STEP 5: Continual Learning with HSR
FOR each class DO
Compute the class mean vector
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Select representative samples (RS):
Store RS in the memory buffer for
replay
END FOR
STEP 6: Continual Learning with EWC
FOR ecach task DO
Compute Fisher Information Matrix

G

Regularized loss function:

// ' Eq. (13)

2o)=Ts (9) +Z%Ga(% ~0%:)
END FOR ’

STEP 7: Classification
Train the final classifier on features
Predict severity level € {No DR,
Mild, Moderate, Severe, PDR}
RETURN Predicted DR Severity Levels

C. DR Classification using LPTCN-EWC-
HSR Technique

The preprocessed images are then fed into a
continual learning (CL)-based Laplacian Pale
Transformative Convolutional network (LPTCN),
which integrates CL algorithms Elastic Weight
Consolidation (EWC) and Herding Selection
Replay (HSR) to prevent catastrophic forgetting.
The architecture includes three main components:
a data augmentation module, the LPTCN-EWC-
HSR model, and a CL strategy. The augmentation
module increases data diversity through
transformations like rotation, cropping, blurring,
and noise, with randomized execution to enhance
variation. After normalization, the data is
processed by the model, which features a
backbone for extracting meaningful features and
a classification layer for disease prediction based
on learned patterns.

a. Primary Feature Representation Layer

For the extraction phase, the Laplacian Pale
Transformative Convolutional network (LPTCN)
is introduced. The novel Laplacian operator is
emphasized, which helps to extract the edge-level
features considering the second-order differential
operator by determining the parallel and
perpendicular gradient values of a sample
positioned at the image's focal point region.
Mathematically, the second-order gradient at each

pixel location, represented as < (u,v), is

computed using the Laplacian operator, which
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involves convolving the image with a 3x3
kernel.

og Og
Vig(uv) =527
=g(u+],v) +g(u—1,v) +g(u,v+1) —4g(u,v)

(6)

Finally, a 3x3convolution kernel
incorporating the Laplacian operator is applied to
determine gradient weights across eight different
directions, facilitating the extraction of edge
structures from DR images reconstructed via the
FBP layer. The resulting edge information is then
weighted by multiplying it by the original DR
image. Due to the significant sparsity of high-
frequency edge features, the MSC is combined
with the SE mechanism to develop the multi-scale
convolutional squeeze excitation (MSC-SE)
block. The MSC block consists of triple
convolutional (Conv) kernels of dimensions 1x 1
, 3x3and 5 x 5, which integrate extracted feature
information through elementwise accumulation.
Furthermore, the SE block within the EEN
component functions as a channel attention (CA)
operation. It begins by applying an adaptive
average pooling layer (AAPL) to reduce the
longitudinal extents of the input attributes.

The outcome of the Laplacian CNN
(LCNN) is depicted as,

e= ;7(p x Laplacian _CNN (3, )) (7

Here, €indicates the outcome of edge
features from the LCNN. The kernel conv weight
within the LCNN module is constant and
predefined throughout the learning phase. The
LCNN is configured with the learnable parameter
P for effective outcomes. Initially, its first two

layers focus on capturing narrow pixel attributes
using a pair of CBR blocks. Subsequently, after
resolution reduction, the pixel attributes are
resized to dimensions N x128x128x128
through two conv layers. At this stage, the LCNN
module integrates the CBR unit with the PT unit
to effectively seize global attribute
representations.

b. Pale Transformer Module

Contrasting the conventional self-attention
(SA) mechanism in ViT, the PT introduces a
DConv-based adapted PS-Attention, where self-
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attention is computed within a pale-shaped region.
This approach leverages DConv to lower
computational complexity and reduce memory
consumption. Additionally, self-attention is
performed separately in token clusters arranged
by rows and columns using stream segregation.

Then, the mapping of attention scores
related to series and parallel features is generated
using individual multi-head SA (MSA). The
mathematical expression of single-head SA is
depicted as,

v (U7)w ()

D,
T

V' =softmax w,(Ur)7

= soft max ‘ ¢
V D k
(8)
Here, D k indicates the normalization

parameter for i/ _ (Ur” )_(//k (Ur“ )T. At last, the

evaluated SA attributes of series and parallel are
combined with the channel extent to generate the

outcome U . The entire PT block comprises triple
series parts namely the pale attention (PA) block,
the location coding block for obtaining the
condition of location embedding, and the feature
mapping using MLP. The process held in PT is
mathematically articulated as,

U'=U"+ CPE(U"‘ ) ©9)

U =U"+ PA(LN(U’)) (10)

U'=0"+ MLP(LN(UI )) (11)

Here, CPE indicates the 3x3 Dconv
layer, LN represents the layer normalization,

and the MLP comprises 1X1conv layers
compared to conventional fully connected (FC)
layers. Finally, the features of the image are fused,

which consists of CDR and 1 X 1 conv layers.
c. Herding Selection Replay (HSR)

The classic replay method helps prevent
forgetting in continual learning by retaining key
samples from past training. A variation, HSR,
selects representative samples closest to each
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class's feature space center. It up-samples
features, computes class-wise mean vectors, and
chooses the nearest samples to store in memory.
This balanced approach ensures efficient learning
and adapts as new classes are introduced.

d. Elastic Weight Consolidation (EWC)

EWC supports CL by limiting changes to
synapses critical for earlier tasks. The parameters

(weights and biases) for tasks § v and §Y are
represented as X and Y . The optimal parameter
sets that minimize errors for these tasks are also
labeled X and Y, respectively. A solution can
be found here X aligns with X and Y with ¥

Since computing the exact posterior is
infeasible, EWC approximates it as a Gaussian
distribution centered at the parameter X . The
Fisher Information Matrix is utilized to calibrate
the oblique accuracy. The corresponding loss
function is defined in Equation (13),

o)=Ly (@ +Z4;(
(13)

—¢ Xa)

Here, :I:Y (@)interprets loss function
for the task éY , (.)manipulates the weight
factor, @ * y o manipulates the parameter after

task learning, G contemplates the Fisher
information matrix, & indicates the attributes that
define the relation between new and old tasks.

4. RESEARCH METHOD
EXECUTION PROTOCOL

AND

The proposed scheme is analysed and processed
via the Python simulation platform. For the
investigation progression, hyperparameters like a
learning rate of 0.001, min-batch size of 64,
dropout of 0.2, and 100 epochs are considered.
The proposed method is executed on Intel(R)
Core (TM) i5-4300M CPU with 4GB installed
RAM using a 64-bit operating system. For dataset
utilization, 80%of the data is used for training,
10% for testing, and 10% for wvalidation,
maintaining the ratio of 8:1:1.
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5. RESULTS AND DISCUSSION

This section provides experimental results of the
proposed model, such as confusion matrix
assessment and comparative performance
evaluation against models already implemented.
A detailed discussion is offered to clarify the
results achieved, identify strengths, and analyze
the misclassifications or anomalies.

A. Confusion Matrix Analysis

In this section, the Confusion matrix
(CM) is analyzed for the developed framework
under normal and diseased classes.

MiNPDR

MoNPDR +

Normal

PDR 1

SNPDR 4

MINPDR  MoNPDR

Normal PDR SNPDR

Figure 2: CM Analysis under Varying Classes

The confusion matrix (CM) in Figure 2
shows the performance of a classification model
across five classes: Mild NPDR, Moderate
NPDR, Normal, PDR, and SNPDR, with each
class having 200 samples. The model correctly
classified 196 samples in each class, indicating
high accuracy. Only a few misclassifications
occurred: Mild NPDR had 2 misclassified as
Normal, Moderate NPDR had 1 as PDR and 1 as
Severe NPDR, and Normal had 1 each
misclassified as Mild NPDR and PDR. PDR had
1 misclassified as Mild NPDR and 1 as Moderate
NPDR, while Severe NPDR had 1 misclassified
as Normal and 1 as PDR.

B. Comparative Investigation of the

Suggested Method over Other Schemes

In this section, the effectiveness achieved by
the introduced method over the existing schemes
is deliberated via graphical illustration. Several
existing methods, like CNN-Replay, ResNet-50-
Random Replay, CoroTrans-CL, EfficientNet-b4-
AGEM, and MLP-Mixer B/16-CWRStar
techniques, are compared with the proposed
LPTCN-EWC-HSR technique framework. The
comprehensive scrutiny of the attained efficacy is
depicted below.
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Figure 3: Analysis of (a) Average Accuracy Analysis under Varying Samples, (b) Computation Time under Varying Epochs

Figures 3(a) and 3(b) compare sample
selection accuracy and computation time. The
proposed HSR-EWC method achieves the highest
accuracy across all sample sizes and shows the
most improvement as samples increase. It also

8079

records the lowest computation time across
epochs, highlighting its efficiency. In contrast,
MLP-Mixer B/16-CWRStar and EfficientNet-b4-
AGEM are slower and less accurate, especially
with more epochs.
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Figure 4: Analysis Of (A) MCC, (B) SMAPE, And (C) YI Under Varying Classes

Figures 4(a)-4(c) illustrate the
performance of various models across MCC,
SMAPE, and YI metrics. The proposed HSR-
EWC-LPTCN method consistently outperforms
all others, achieving the highest MCC and YI
(above 0.85) and the lowest SMAPE (2.0-2.5)
across all DR classes. CNN-Replay and ResNet-
50-Random Replay show competitive results,
while CoroTrans-CL and EfficientNet-b4-
AGEM perform moderately. MLP-Mixer B/16-
CWRStar ranks lowest, especially in complex
classes like PDR and Severe NPDR. These
results  highlight the proposed model’s
robustness and classification accuracy.

C. Discussion

The comparison results in Figures 3 and 4 clearly
show that the proposed HSR-EWC-LPTCN
framework performs better consistently than the
state-of-the-art methods, including CNN-
Replay, ResNet-50-Random Replay, CoroTrans-
CL, EfficientNet-b4-AGEM, and MLP-Mixer
B/16-CWRStar. Various reasons account for this
enhanced performance. State-of-the-art CNN-
based models such as CNN-Replay and ResNet-
50-Random Replay yield robust baseline
performance but are poor at capturing fine retinal
lesion boundaries, particularly in higher DR
stages like PDR and Severe NPDR. The
suggested model combines Laplacian Pyramid-
based feature extraction (LPTCN), enhancing
local  texture and  vascular  structure
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representation. It is thus able to detect subtle
variations of lesions more effectively, leading to
improved MCC and YT values. EfficientNet-b4-
AGEM and MLP-Mixer B/16-CWRStar models
experience  catastrophic  forgetting  upon
exposure to different classes of DR severity,
resulting in poor performance in complicated
categories. By implementing Elastic Weight
Consolidation (EWC), the proposed method
preserves essential knowledge throughout
successive training epochs to avoid overfitting
and guarantee stable classification despite
increased sample sizes.

Figure 3(b) indicates that the proposed method
consistently measures lower computation time
per epoch than EfficientNet-b4-AGEM and
MLP-Mixer B/16-CWRStar. This efficiency is
because of hybrid sparse regularization (HSR),
which removes unnecessary parameters and
keeps valuable weights, thus speeding up
convergence without loss of accuracy. Even
though the confusion matrix indicates high
classification accuracy (>98%), there are a few
misclassifications. For instance, Mild NPDR
cases sometimes overlap with Normal, while
PDR cases are sometimes misclassified as
Moderate NPDR. These mistakes can be related
to visual similarities at early-stage lesions or ill-
defined lesion progression, where boundaries are
not clear-cut. It implies that, though the model is
robust, further incorporation of clinical prior
knowledge (e.g., ophthalmologist grading) could
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be even more effective in reducing such
mistakes. The systematically higher MCC
(>0.85) and lower SMAPE (=2.0-2.5) reflect the
model's robustness in all DR classes, reflecting
reliable generalization outside training data. In
comparison to current models, the suggested
framework not only boosts accuracy but also
facilitates quicker execution, which is crucial for
real-time DR  screening in  healthcare
environments.

6. CONCLUSION

This work introduced a CDL-based framework
for auto-Diabetic Retinopathy (DR) detection,
incorporating Color Wiener Filter (CWF)
preprocessing, the new LPTCN model for spatial
feature extraction, and EWC-HSR mechanisms
for dealing with catastrophic forgetting in
continual learning. The proposed framework
obtained better performance on the IDRID
dataset with 97% average accuracy, 0.936 MCC,
2.07 SMAPE, 4.9s computation time, and 0.89
Y1, outperforming other methods. These findings
underscore the robustness, efficiency, and
clinical potential of the proposed approach.

For future work, the model can be enhanced with
explainable Al  methods to  improve
interpretability, integration with multimodal
clinical data to make diagnostic results more
reliable, and real-time deployment in medical
systems for large-scale screening. These
directions will reinforce trust, usability, and
clinical acceptability in real-world healthcare
settings.
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