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ABSTRACT 

Diabetic retinopathy (DR) is a diabetes-related eye ailment caused by retinal blood vessel (BV) damage. This 
manuscript presents a novel continual DL framework for efficient DR disease detection. Initially, input retinal 
fundus images are taken from the IDRI Dataset for accurate DR disease detection, which undergoes the 
preprocessing stage by employing a Color Wiener Filter (CWF) that can enhance image clarity by adaptively 
removing noise while maintaining edge details for further processing. After preprocessing, a novel Laplacian 
Pale Transformative Convolution network (LPTCN) is introduced, which classifies with more accuracy the 
distinction between different DR abnormalities. Moreover, the proposed framework integrates Elastic Weight 
Consolidation (EWC) and Herding Selection Replay (HSR) to prevent catastrophic forgetting on new data 
samples. The proposed framework is simulated in the Python platform. In the simulation part, the average 
Accuracy of 97%, Matthew’s Correlation Coefficient (MCC) of 0.936, symmetric mean absolute percentage 
error (SMAPE) of 2.07, and Computation Time (CT) of 4.9s, Youden’s index (YI) of 0.89 are obtained by 
the suggested framework on DR identification.  

Keywords:  Diabetic Retinopathy (DR), Retinal Fundus Image (RFI), Multi-class Classification, Image 
Preprocessing, Continual Learning, Laplacian Pale Transformative Convolution Network.  

1. INTRODUCTION 

Diabetic Retinopathy (DR) is a severe 
microvascular diabetes mellitus complication that 
may result in irreversible vision impairment and 
blindness, especially in working-age individuals. 
DR destroys the retinal blood vessels (BV), which 
provide oxygen and nutrients to the retina [1]. DR 
is classified into two categories: Non-Proliferative 
DR (NPDR) and Proliferative DR (PDR). NPDR 
is also divided into mild, moderate, and severe 
stages, and PDR is the final stage. DR can also be 
classified on the basis of severity into five phases, 
from Phase 0 (no DR) to Phase 4 (PDR). DR is 
responsible for causing almost 2.6% of blindness 
in the whole world, with more than 239 million 
sufferers in 2010 [2, 3]. The International 
Diabetes Federation (IDF) noted that as of 2017, 
449 million people had diabetes, and over a third 
had signs of DR. This is estimated to increase to 

592 million by 2025, reflecting the expanding 
worldwide burden. 

Research Problem: DR needs early detection 
because the disease is usually symptom-free in the 
initial stages, and floaters, blurred vision, and loss 
of vision become manifest only at late stages [4]. 
Although color fundus imaging is common for 
DR diagnosis, manual grading is time-consuming, 
subjective, and susceptible to inter-observer 
variability. Machine learning (ML) and deep 
learning (DL) based automated classification 
systems have been promising, but challenges, 
including high computational expense, low 
availability of annotated datasets, overfitting, and 
bias, limit their implementation in real-world 
clinical scenarios. Furthermore, current DL 
models fail to generalize to multi-class 
classification on varied, high-resolution datasets 
[5]. 
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Research Gap: Though many DL models are 
suggested for DR detection, they are mostly 
limited by catastrophic forgetting in ongoing 
learning, poor noise handling in retinal fundus 
images, and weak generalization across multi-
class severity levels. Not many experiments 
integrate successful preprocessing, stable feature 
extraction, and ongoing learning mechanisms 
within a single framework for credible DR 
detection. 

Research Objectives: The proposed research 
seeks to engineer a strong and scalable DR 
detection system that (i) enhances image quality 
with high-end denoising methods, (ii) derives 
feature-rich spatial information for precise multi-
class classification, and (iii) employs continual 
learning techniques to address catastrophic 
forgetting. 

Significance of the Study: By overcoming the 
limitations of existing models, the new model can 
assist ophthalmologists with faster, accurate, and 
automated DR diagnosis. This will eventually 
lead to timely treatment, less vision loss, and 
better patient outcomes in diabetes care. 

The key contributions of the proposed 
framework are depicted below:  

 Enhance DR detection using a Color 
Wiener Filter (CWF) for denoising and a 
novel LPTCN for capturing detailed 
spatial features. 

 Ensure continual learning by integrating 
EWC and HSR to prevent catastrophic 
forgetting. 

 Validate the framework on the IDRID 
dataset using metrics like Accuracy, 
MCC, YI, SMAPE, and Computation 
Time, showing its superiority over 
existing methods.  

The remaining part of the manuscript is 
prearranged as follows: Section 2 reviews related 
work, Section 3 describes the proposed method, 
Section 4 emphasizes results and discussion, and 
Section 5 concludes the study. 

2. RELATED WORK: A BRIEF REVIEW 

Several studies have investigated automated 
detection and classification of DR using fundus 
retinal images leveraging deep learning (DL), 
optimization algorithms, and attention 
mechanisms. 

 

Deep learning architecture for DR detection 

Jabbar et al. [6] suggested an efficient service 
platform for DR diagnosis, wherein RFI were 
analyzed using a computing unit to calculate the 
severity of the disease. In like manner, Jabbar et 
al. [7] used GoogleNet and ResNet architectures 
with APSO for their optimization, exhibiting 
enhanced feature extraction and classification 
performance. Gupta et al. [8] subsequently 
improved DL-based classification using the 
Fennec Fox Optimizer, creating the FIDRC-
DLFFO model for AI-driven DR severity 
classification. Although these models attained 
competitive accuracy, their reliance on enormous 
computational resources and large-scale 
annotated data restricts scalability. 

Attention-based and Hybrid Models 

Romero-Oraá et al. [9] presented an attention 
mechanism that treated illuminated and shadowed 
retinal structures separately after a preprocessing 
procedure in order to better distinguish fine 
lesions. Hemanth et al. [10] put forward a hybrid 
method by implementing He Weighted BiLSTM 
(HWBLSTM) along with transfer learning for 
detecting DR and lesion segmentation with the 
Enhanced Grasshopper Optimizer Region 
Growing Algorithm (EGORGA). Dimensionality 
reduction was applied with Modified Singular 
Value Decomposition (MSVD) and lesion 
classification was conducted with SqueezeNet. 
These methods enhanced detection accuracy but 
are plagued with high model complexity and 
prolonged training times, which obfuscate real-
time usage in clinical pathways. 

From these previous works, it is clear that 
although DL and optimization-based models are 
robust in classification performance, they still 
struggle with certain critical issues. Noise and 
variability in RFI are still inadequately handled, 
lowering robustness. Multi-class classification at 
various stages of DR severity is still challenging. 
All techniques do not have mechanisms to cope 
with continual learning, resulting in catastrophic 
forgetting on introducing new data. 

Positioning of the Proposed Work and 
Research Gap: 

To address these challenges, the suggested 
framework incorporates a Color Wiener Filter 
(CWF) for noise removal, a new LPTCN network 
for fine-spatial feature extraction, and Elastic 
Weight Consolidation (EWC) and Hard Sample 
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Replay (HSR) to avoid catastrophic forgetting in 
continual learning. Unlike other models, this 
integrated method is developed to provide robust, 
scalable, and clinically usable DR detection at 
multiple levels of severity. 

3. PROPOSED METHODOLOGY 

This manuscript presents a novel continual 
DL framework for efficient DR disease detection. 
Initially, input retinal fundus images are taken 
from the IDRID Dataset for accurate DR disease 
detection which undergoes the preprocessing 

stage by employing a CWF that can enhance 
image clarity by adaptively removing noise while 
maintaining edge details for further processing. 
After preprocessing, a novel LPTCN is introduced 
which effectively learns intricate spatial 
relationships within fundus images, leading to a 
more accurate distinction between different DR 
abnormalities such as non-DR, mild NPDR, 
moderate NPDR, severe NPDR, and PDR. To 
mitigate this issue, the proposed framework 
integrates EWC and HSR. The proposed 
framework’s workflow is depicted in Figure 1.  

 

Figure 1: Workflow of the Proposed Framework 

A. Data Acquisition 

Initially, the IDRiD dataset [11] 
collected from freely accessible sources contains 
516 high-resolution fundus images (4288×2848 
pixels) captured in an Indian eye clinic. It includes 
segmentation (81 images with lesion masks), 
disease grading (516 images labeled for DR and 
DME severity), and localization (optic disc and 
fovea positions).  

 

B. Preprocessing Stage 

The acquired images from the database consist 
of high noise that cannot be directly fed into the 
proposed network model. To manifest this issue, 
a color wiener filtering (CWF) technique is 
introduced that preserves useful information and 
improves the illumination level of the 
neuroimages. In the RGB color space, the 
relationship between the actual image, the 
recovered image, and the additive noise can be 
expressed mathematically as follows: 
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i i ix Z                 (1) 

Here, ix indicates the observed instance 

which deliberates the pixel vector in the actual 

image iZ , i signifies the additive noise, and i
denotes the image pixel which can depicted as, 

 ,i a b  whereas a and b  manipulates the pixel 

directions. x manipulates the mean vector of the 

observed sample ix . Z characterizes the 

adjusted image of the pixel vector, and Z


embodies the adjusted image of the mean vector 

which can be formulated using CWF   is 
depicted below:  

 iZ Z x x  
 

                   (2) 

Here,  is evaluated to determine the 
mean square error (MSE) amid real and adjusted 
samples whereas MSE is mathematically 
articulated as,  

  2

min iMSE Z Z x x   
 

  (3) 

In the actual image, when it fails to 

correlate with noise then the adjusted image 
can be formulated as,  

 cov cov nnm m m                 (4) 

Here, nnm signifies the noise, and covm
manipulates the covariance matrices. At last, the 

WF  can be depicted mathematically as,  

  1
xx nn xxm x m                    (5) 

Algorithm 1: Pseudocode for Proposed 
Framework 
INPUT: IDRiD dataset fundus Images 

 1 2, ,...., nZ Z Z   

OUTPUT: DR severity classification 
{No_DR, Mild, Moderate, Severe, PDR} 
STEP 1: Data Acquisition 
    Load IDRiD dataset (516 fundus images, 
resolution 4288 2848 ) 
STEP 2: Preprocessing using Color Wiener 
Filter (CWF) 

    FOR every image iZ in Dataset DO 

ix = Observed pixel vector of iZ  

 // Eq. (1) 

i = Additive noise                      

 // Eq. (1) 
         Estimate adjusted pixel vector:        
 // Eq. (2) 

 iZ Z x x   
 

  

         Calculate Mean Square Error (MSE) 
  // Eq. (3) 
               2

min iMSE Z Z x x   
   

If 
iZ uncorrelated with i THEN         

 // Eq. (4) 

             cov cov nnm m m    

Final Wiener Filter output:              
 // Eq. (5) 

  1
xx nn xxm x m    

        Store preprocessed image  
   END FOR 
STEP 3: Feature Extraction with LPTCN 
    FOR each preprocessed image DO 

Compute Laplacian operator for 
edges:    // Eq. (6) 

      2 , 1, 1, , 1 4 ,g u v g u v g u v g u v g u v       
         Extracted edge features with LCNN:        
 // Eq. (7) 

  0_e p Laplacian CNN    

         Combine edge + intensity features 
    END FOR 
STEP 4: Pale Transformer (PT) for Global 
Attention 
    FOR each Feature DO 

Compute single-head self-attention: 
 // Eq. (8) 

     .
max

Ta a
x c k ca a

r v c

k

U U
V soft U

D

 


 
 
 
 

         Apply pale attention + position 
coding:  // Eq. (9–11) 
              1 1l l lU U CPE U  


 

  l l lU U PA LN U 
  

 

  l l lU U MLP LN U 
 

 

STEP 5: Continual Learning with HSR 
    FOR each class DO 
         Compute the class mean vector  
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         Select representative samples (RS): 
              Store RS in the memory buffer for 
replay 
    END FOR 
STEP 6: Continual Learning with EWC 
    FOR each task DO 
        Compute Fisher Information Matrix 

G  
Regularized loss function:              

  // Eq. (13) 

     2

,*
2Y a a X a

a

G
      

  END FOR 
STEP 7: Classification 
     Train the final classifier on features  

Predict severity level ∈ {No_DR, 
Mild, Moderate, Severe, PDR} 
RETURN Predicted DR Severity Levels 

 

C. DR Classification using LPTCN-EWC-
HSR Technique 

The preprocessed images are then fed into a 
continual learning (CL)-based Laplacian Pale 
Transformative Convolutional network (LPTCN), 
which integrates CL algorithms Elastic Weight 
Consolidation (EWC) and Herding Selection 
Replay (HSR) to prevent catastrophic forgetting. 
The architecture includes three main components: 
a data augmentation module, the LPTCN-EWC-
HSR model, and a CL strategy. The augmentation 
module increases data diversity through 
transformations like rotation, cropping, blurring, 
and noise, with randomized execution to enhance 
variation. After normalization, the data is 
processed by the model, which features a 
backbone for extracting meaningful features and 
a classification layer for disease prediction based 
on learned patterns. 

a. Primary Feature Representation Layer 

For the extraction phase, the Laplacian Pale 
Transformative Convolutional network (LPTCN) 
is introduced. The novel Laplacian operator is 
emphasized, which helps to extract the edge-level 
features considering the second-order differential 
operator by determining the parallel and 
perpendicular gradient values of a sample 
positioned at the image's focal point region. 
Mathematically, the second-order gradient at each 

pixel location, represented as  ,g u v , is 

computed using the Laplacian operator, which 

involves convolving the image with a 3 3
kernel. 

 
       

2 2
2

2 2 2 2
,

1, 1, , 1 4 ,

g g
g u v

u v
g u v g u v g u v g uv

 
  

 
      

                                        

      (6) 

Finally, a 3 3 convolution kernel 
incorporating the Laplacian operator is applied to 
determine gradient weights across eight different 
directions, facilitating the extraction of edge 
structures from DR images reconstructed via the 
FBP layer. The resulting edge information is then 
weighted by multiplying it by the original DR 
image. Due to the significant sparsity of high-
frequency edge features, the MSC is combined 
with the SE mechanism to develop the multi-scale 
convolutional squeeze excitation (MSC-SE) 
block. The MSC block consists of triple 
convolutional (Conv) kernels of dimensions 1 1
, 3 3 and 5 × 5, which integrate extracted feature 
information through elementwise accumulation. 
Furthermore, the SE block within the EEN 
component functions as a channel attention (CA) 
operation. It begins by applying an adaptive 
average pooling layer (AAPL) to reduce the 
longitudinal extents of the input attributes.  

The outcome of the Laplacian CNN 
(LCNN) is depicted as,  

  0_e p Laplacian CNN     (7) 

Here, e indicates the outcome of edge 
features from the LCNN. The kernel conv weight 
within the LCNN module is constant and 
predefined throughout the learning phase. The 
LCNN is configured with the learnable parameter 
p for effective outcomes. Initially, its first two 

layers focus on capturing narrow pixel attributes 
using a pair of CBR blocks. Subsequently, after 
resolution reduction, the pixel attributes are 
resized to dimensions 128 128 128N   
through two conv layers. At this stage, the LCNN 
module integrates the CBR unit with the PT unit 
to effectively seize global attribute 
representations.  

b. Pale Transformer Module 

Contrasting the conventional self-attention 
(SA) mechanism in ViT, the PT introduces a 
DConv-based adapted PS-Attention, where self-
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attention is computed within a pale-shaped region. 
This approach leverages DConv to lower 
computational complexity and reduce memory 
consumption. Additionally, self-attention is 
performed separately in token clusters arranged 
by rows and columns using stream segregation.  

Then, the mapping of attention scores 
related to series and parallel features is generated 
using individual multi-head SA (MSA). The 
mathematical expression of single-head SA is 
depicted as,  

     

     

.
max ,

.
max

Ta a
x r k ra a a

r v r c

k

Ta a
x c k c a

v c

k

U U
V soft U V

D

U U
soft U

D

 


 


 
 
 
 

 
 
 
 

  

(8) 

Here, kD indicates the normalization 

parameter for    .
Ta a

x r k rU U  . At last, the 

evaluated SA attributes of series and parallel are 
combined with the channel extent to generate the 

outcome U . The entire PT block comprises triple 
series parts namely the pale attention (PA) block, 
the location coding block for obtaining the 
condition of location embedding, and the feature 
mapping using MLP. The process held in PT is 
mathematically articulated as,  

 1 1l l lU U CPE U  


           (9) 

  l l lU U PA LN U 
  

          (10) 

  l l lU U MLP LN U 
 

    (11) 

Here, CPE indicates the 3 3  Dconv 

layer, LN represents the layer normalization, 

and the MLP comprises 1 1 conv layers 
compared to conventional fully connected (FC) 
layers. Finally, the features of the image are fused, 
which consists of CDR and 1 1 conv layers.  

c. Herding Selection Replay (HSR)  

The classic replay method helps prevent 
forgetting in continual learning by retaining key 
samples from past training. A variation, HSR, 
selects representative samples closest to each 

class's feature space center. It up-samples 
features, computes class-wise mean vectors, and 
chooses the nearest samples to store in memory. 
This balanced approach ensures efficient learning 
and adapts as new classes are introduced. 

d. Elastic Weight Consolidation (EWC) 

EWC supports CL by limiting changes to 
synapses critical for earlier tasks. The parameters 

(weights and biases) for tasks X  and Y are 

represented as X and Y . The optimal parameter 
sets that minimize errors for these tasks are also 
labeled X and Y , respectively. A solution can 
be found here X aligns with X and Y  with Y
.  

Since computing the exact posterior is 
infeasible, EWC approximates it as a Gaussian 
distribution centered at the parameter X . The 
Fisher Information Matrix is utilized to calibrate 
the oblique accuracy. The corresponding loss 
function is defined in Equation (13), 

     2

,*
2Y a a X a

a

G
           

(13) 

Here,  Y  interprets loss function 

for the task Y ,  . manipulates the weight 

factor, ,*X a manipulates the parameter after 

task learning, G contemplates the Fisher 
information matrix,  indicates the attributes that 
define the relation between new and old tasks.  

4. RESEARCH METHOD AND 
EXECUTION PROTOCOL 

The proposed scheme is analysed and processed 
via the Python simulation platform. For the 
investigation progression, hyperparameters like a 
learning rate of 0.001, min-batch size of 64, 
dropout of 0.2, and 100 epochs are considered. 
The proposed method is executed on Intel(R) 
Core (TM) i5-4300M CPU with 4GB installed 
RAM using a 64-bit operating system. For dataset 
utilization, 80%of the data is used for training, 
10% for testing, and 10% for validation, 
maintaining the ratio of 8:1:1.  
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5. RESULTS AND DISCUSSION 

This section provides experimental results of the 
proposed model, such as confusion matrix 
assessment and comparative performance 
evaluation against models already implemented. 
A detailed discussion is offered to clarify the 
results achieved, identify strengths, and analyze 
the misclassifications or anomalies. 

A. Confusion Matrix Analysis  

In this section, the Confusion matrix 
(CM) is analyzed for the developed framework 
under normal and diseased classes.  

 

Figure 2: CM Analysis under Varying Classes 

The confusion matrix (CM) in Figure 2 
shows the performance of a classification model 
across five classes: Mild NPDR, Moderate 
NPDR, Normal, PDR, and SNPDR, with each 
class having 200 samples. The model correctly 
classified 196 samples in each class, indicating 
high accuracy. Only a few misclassifications 
occurred: Mild NPDR had 2 misclassified as 
Normal, Moderate NPDR had 1 as PDR and 1 as 
Severe NPDR, and Normal had 1 each 
misclassified as Mild NPDR and PDR. PDR had 
1 misclassified as Mild NPDR and 1 as Moderate 
NPDR, while Severe NPDR had 1 misclassified 
as Normal and 1 as PDR.  

B. Comparative Investigation of the 
Suggested Method over Other Schemes 

In this section, the effectiveness achieved by 
the introduced method over the existing schemes 
is deliberated via graphical illustration. Several 
existing methods, like CNN-Replay, ResNet-50-
Random Replay, CoroTrans-CL, EfficientNet-b4-
AGEM, and MLP-Mixer B/16-CWRStar 
techniques, are compared with the proposed 
LPTCN-EWC-HSR technique framework. The 
comprehensive scrutiny of the attained efficacy is 
depicted below. 

 

Figure 3: Analysis of (a) Average Accuracy Analysis under Varying Samples, (b) Computation Time under Varying Epochs 

Figures 3(a) and 3(b) compare sample 
selection accuracy and computation time. The 
proposed HSR-EWC method achieves the highest 
accuracy across all sample sizes and shows the 
most improvement as samples increase. It also 

records the lowest computation time across 
epochs, highlighting its efficiency. In contrast, 
MLP-Mixer B/16-CWRStar and EfficientNet-b4-
AGEM are slower and less accurate, especially 
with more epochs. 
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Figure 4: Analysis Of (A) MCC, (B) SMAPE, And (C) YI Under Varying Classes 

Figures 4(a)–4(c) illustrate the 
performance of various models across MCC, 
SMAPE, and YI metrics. The proposed HSR-
EWC-LPTCN method consistently outperforms 
all others, achieving the highest MCC and YI 
(above 0.85) and the lowest SMAPE (2.0–2.5) 
across all DR classes. CNN-Replay and ResNet-
50-Random Replay show competitive results, 
while CoroTrans-CL and EfficientNet-b4-
AGEM perform moderately. MLP-Mixer B/16-
CWRStar ranks lowest, especially in complex 
classes like PDR and Severe NPDR. These 
results highlight the proposed model’s 
robustness and classification accuracy. 

C. Discussion 

The comparison results in Figures 3 and 4 clearly 
show that the proposed HSR-EWC-LPTCN 
framework performs better consistently than the 
state-of-the-art methods, including CNN-
Replay, ResNet-50-Random Replay, CoroTrans-
CL, EfficientNet-b4-AGEM, and MLP-Mixer 
B/16-CWRStar. Various reasons account for this 
enhanced performance. State-of-the-art CNN-
based models such as CNN-Replay and ResNet-
50-Random Replay yield robust baseline 
performance but are poor at capturing fine retinal 
lesion boundaries, particularly in higher DR 
stages like PDR and Severe NPDR. The 
suggested model combines Laplacian Pyramid-
based feature extraction (LPTCN), enhancing 
local texture and vascular structure 

representation. It is thus able to detect subtle 
variations of lesions more effectively, leading to 
improved MCC and YI values. EfficientNet-b4-
AGEM and MLP-Mixer B/16-CWRStar models 
experience catastrophic forgetting upon 
exposure to different classes of DR severity, 
resulting in poor performance in complicated 
categories. By implementing Elastic Weight 
Consolidation (EWC), the proposed method 
preserves essential knowledge throughout 
successive training epochs to avoid overfitting 
and guarantee stable classification despite 
increased sample sizes. 

Figure 3(b) indicates that the proposed method 
consistently measures lower computation time 
per epoch than EfficientNet-b4-AGEM and 
MLP-Mixer B/16-CWRStar. This efficiency is 
because of hybrid sparse regularization (HSR), 
which removes unnecessary parameters and 
keeps valuable weights, thus speeding up 
convergence without loss of accuracy. Even 
though the confusion matrix indicates high 
classification accuracy (>98%), there are a few 
misclassifications. For instance, Mild NPDR 
cases sometimes overlap with Normal, while 
PDR cases are sometimes misclassified as 
Moderate NPDR. These mistakes can be related 
to visual similarities at early-stage lesions or ill-
defined lesion progression, where boundaries are 
not clear-cut. It implies that, though the model is 
robust, further incorporation of clinical prior 
knowledge (e.g., ophthalmologist grading) could 
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be even more effective in reducing such 
mistakes. The systematically higher MCC 
(>0.85) and lower SMAPE (≈2.0–2.5) reflect the 
model's robustness in all DR classes, reflecting 
reliable generalization outside training data. In 
comparison to current models, the suggested 
framework not only boosts accuracy but also 
facilitates quicker execution, which is crucial for 
real-time DR screening in healthcare 
environments. 

6. CONCLUSION 

This work introduced a CDL-based framework 
for auto-Diabetic Retinopathy (DR) detection, 
incorporating Color Wiener Filter (CWF) 
preprocessing, the new LPTCN model for spatial 
feature extraction, and EWC-HSR mechanisms 
for dealing with catastrophic forgetting in 
continual learning. The proposed framework 
obtained better performance on the IDRID 
dataset with 97% average accuracy, 0.936 MCC, 
2.07 SMAPE, 4.9s computation time, and 0.89 
YI, outperforming other methods. These findings 
underscore the robustness, efficiency, and 
clinical potential of the proposed approach. 

For future work, the model can be enhanced with 
explainable AI methods to improve 
interpretability, integration with multimodal 
clinical data to make diagnostic results more 
reliable, and real-time deployment in medical 
systems for large-scale screening. These 
directions will reinforce trust, usability, and 
clinical acceptability in real-world healthcare 
settings. 
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