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ABSTRACT

Gestational Diabetes Mellitus (GDM) is a critical pregnancy-related complication that affects both maternal
and neonatal health. Although commonly used for diagnosis, the Oral Glucose Tolerance Test (OGTT) is
invasive, time-consuming, and fails to provide early detection. Inconsistent screening guidelines further
complicate the identification of high-risk pregnancies, emphasizing the need for more accurate and timely
predictive tools. This research develops a robust, non-invasive prediction model for GDM risk using White
Tiger Swarm Optimization-enhanced Multilayer Perceptron (WTSO-MLP). The goal is to enhance early
detection by integrating bio-inspired optimisation techniques to improve model performance while reducing
dependency on invasive tests, such as OGTT. The WTSO-MLP model combines White Tiger Swarm
Optimisation (WTSO) with Multilayer Perceptron (MLP) to optimise weight configurations, trained on a
dataset of 3,525 instances that contain clinical and demographic data. Class imbalance has been addressed
through adaptive techniques. Model performance has been evaluated using the Matthews Correlation
Coefficient (MCC), Error Rate, Youden’s Index, and Critical Success Index (CSI). This study contributes
new knowledge by demonstrating how a bio-inspired optimization strategy can simultaneously refine neural
network parameters and feature subsets using prospectively collected data, achieving superior accuracy, early
detection capability, and adaptability across diverse clinical settings. The WTSO-MLP model outperformed
traditional methods, achieving high performance in GDM prediction, especially for early-stage detection.
The model demonstrated improved generalization, reduced misclassifications, and higher MCC scores,
making it a reliable tool for clinicians. The WTSO-MLP model provides an innovative, efficient solution for
early GDM risk prediction, improving diagnostic accuracy, generalization, and interpretability. It can
seamlessly integrate into clinical workflows to enable early, non-invasive GDM assessments, ultimately
enhancing maternal and fetal health outcomes.
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1. INTRODUCTION early pathophysiological effects begin much earlier.
Global prevalence fluctuates widely due to
variations in population genetics, clinical practices,
and diagnostic criteria [2]. Such variability
complicates risk assessment and standardization.
With increasing maternal age, rising obesity rates,
and sedentary lifestyles, GDM continues to rise
globally. The lack of clear thresholds and universally
accepted screening criteria has created uncertainty in
identifying true risk groups [3]. Addressing this
problem demands a framework that considers
physiological, demographic, and clinical factors

Diabetes mellitus encompasses a group of
metabolic disorders marked by elevated blood
glucose levels, among which gestational diabetes
mellitus (GDM) appears as a pregnancy-specific
form. This condition emerges through impaired
carbohydrate metabolism influenced by placental
hormones [1]. GDM presents diagnostic challenges,
as its onset is asymptomatic and confined to the
gestational period. The condition usually develops
between 24 and 28 weeks of pregnancy, though its
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while maintaining computational feasibility and
fairness across diverse populations [4], [5].

GDM contributes substantially to adverse
maternal and neonatal health outcomes, with direct
effects on  birth  complications, delivery
interventions, and postnatal care. These effects
include excessive fetal growth, birth trauma, and
maternal hypertensive disorders, which often require
intensive monitoring and medical support [6]. Long-
term metabolic consequences emerge in both the
mother and child, including elevated risk of future
type 2 diabetes and cardiovascular conditions. These
risks lead to sustained healthcare engagement and
recurring medical expenditure, especially in low-
resource environments [7]. The socio-economic
impact intensifies with indirect costs such as time
away from work, specialized dietary planning, and
limited access to prenatal services in remote or
underserved regions. Diagnosis through laboratory
testing increases this burden, particularly when
unnecessary OGTT procedures are administered
broadly without risk differentiation [8], [9]. Health
disparities, care accessibility, and testing fatigue
have made it essential to adopt targeted, early-stage
diagnostic  support that reduces avoidable
intervention while prioritizing safety [10], [11].

Recent years have seen widespread interest
in applying machine learning (ML) and deep
learning (DL) to predict GDM from routine clinical
records. These approaches rely on algorithmic
models trained on historical data to classify high-risk
cases based on medical and demographic inputs.
While promising, such models often suffer from low
sensitivity and reduced reliability across varying
populations  [12]. Using retrospective and
imbalanced datasets, combined with limited
diversity in training sources, introduces bias and
lowers generalization capacity. Clinical practitioners
hesitate to adopt these systems due to poor
interpretability, unstable outputs, and limited control
over decision boundaries [13]. Most models struggle
with early-stage prediction, failing to capture subtle
physiological indicators visible only in the initial
trimester. Technical gaps in model design, absence
of domain-aware learning constraints, and inability
to quantify clinical confidence in outputs further
restrict real-world use. These persistent deficiencies
indicate a critical need to develop stable,
explainable, context-aware frameworks trained on
purpose-built, prospectively gathered data [14].

Bio-inspired optimization has emerged as a
suitable enhancement to deep learning workflows,
addressing training limitations through natural
intelligence principles. Swarm-based techniques

imitate decision processes observed in nature to
search for optimal model configurations under
uncertain, non-linear conditions [15]. These
strategies outperform traditional gradient-based
learning in handling complex loss surfaces and
feature dependencies. Inspired by adaptive behaviors
in predatory environments, White Tiger Swarm
Optimization (WTSO) incorporates stealthy
exploration, responsive territory modulation, and
controlled convergence [16]. These mechanisms
contribute to a model’s ability to refine weights
adaptively without excessive drift. Multilayer
Perceptrons (MLPs), known for their versatility in
structured data learning, benefit from such guided
optimization by avoiding overfitting and improving
convergence stability. This adaptive potential
becomes highly relevant in predicting GDM, where
population  heterogeneity, clinical  variable
interaction, and early physiological cues demand
nuanced learning [17]. Combining biologically
grounded optimization with an MLP architecture
creates an informed pathway toward reliable GDM
risk prediction with improved interpretability and
clinical alignment.

GDM presents a critical public health challenge
due to its rising global prevalence, potential for
severe maternal—fetal complications, and strong link
to future type 2 diabetes. Current screening practices,
particularly OGTT, face limitations in accuracy,
efficiency, and accessibility, leading to both over-
testing and missed diagnoses. This research focuses
on developing an advanced predictive model to
enable early, reliable, and resource-efficient GDM
risk identification, directly addressing these clinical
and societal needs.

Bio-inspired optimization leverages patterns and
strategies observed in nature to navigate complex
solution spaces efficiently, adapting search behavior
to dynamic problem landscapes [18]-[37]. By
balancing wide-ranging exploration with focused
refinement, it enables predictive models to reach
optimal configurations that deliver both high
accuracy and robust generalization, aligning closely
with the desired research outcomes [38]-[57].

1.1 Problem Statement

GDM presents a persistent clinical
challenge due to inconsistencies in screening
guidelines, unreliable diagnostic thresholds, and
variability in patient populations. Despite its
substantial impact on maternal and neonatal
outcomes, no universal consensus exists regarding
whether all pregnant women should undergo oral
glucose tolerance testing (OGTT) or only those in
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defined risk groups. The OGTT poses challenges—
invasive, time-consuming, costly, and often poorly
tolerated—Ileading to suboptimal compliance.
Existing risk-based models suffer from subjective
definitions of risk factors and usually miss early-
stage detection, particularly in the first trimester
when intervention may be most effective. Moreover,
variations in GDM prevalence (1-22%) across
regions and datasets reflect the lack of standardized
diagnostic practices and contribute to over- or under-
diagnosis. Machine learning models proposed for
GDM prediction have shown limited sensitivity and
reliability, mainly due to their reliance on
retrospective data, imbalanced class distributions,
and inconsistent electronic health record (EHR)
quality. These models often lack interpretability,
which impedes clinical acceptance and regulatory
approval. Real-world deployment further demands
generalization across diverse populations and
transparent reasoning in decision-making. These
limitations collectively indicate a critical need for
accurate, early, and generalizable predictive
methods that reduce unnecessary testing while
preserving clinical trust and diagnostic precision.

1.2 Motivation

GDM poses a serious public health challenge
with far-reaching societal consequences. Its
undetected progression not only jeopardizes
maternal and neonatal health but also significantly
increases the long-term risk of developing type 2
diabetes in both mother and child. Current screening
methods, such as the oral glucose tolerance test
(OGTT), are invasive, resource-intensive, and often
inaccessible in rural or underserved regions,
contributing to disparities in prenatal care.
Inaccurate or delayed diagnosis leads to unnecessary
interventions for some and missed preventive
opportunities for others. The healthcare system bears
the cumulative economic burden through increased
hospitalizations, long-term diabetes care, and
associated complications. Early and equitable
identification of at-risk pregnancies would allow
timely interventions, reduce complications, and
optimize healthcare resource allocation. Societal
well-being can be advanced through predictive tools
that integrate with digital health systems, enabling
cost-effective, scalable, and personalized risk
assessment. Empowering clinicians and
communities with such capabilities fosters
preventive care, promotes health equity, and
mitigates the growing intergenerational impact of
diabetes across populations.

1.3 Objective

This research aims to develop an early,
adaptive, and interpretable predictive model named
WTSO-MLP (White Tiger Swarm Optimization-
enhanced Multilayer Perceptron) for identifying
individuals at risk of GDM before clinical
manifestation. This work aims to overcome the core
challenges in current GDM screening practices, such
as dependence on invasive OGTT, ambiguous
diagnostic thresholds, and variable classification
accuracy in traditional machine learning approaches.
The WTSO-MLP model integrates nature-inspired
swarm intelligence with deep learning to
dynamically refine neural weights, maintain
prediction stability, and improve diagnostic
sensitivity across diverse populations. Special
emphasis has been placed on achieving high
classification accuracy and enhancing
interpretability using model-explainable outputs to
facilitate clinical trust. The model includes an
embedded strategy to regulate learning dynamics
through a circadian rhythm-based learning rate and
applies a multi-strategy optimization mechanism to
escape local minima. The proposed framework is
intended for practical integration into -clinical
decision-support environments, enabling
personalized risk assessment, reduced diagnostic
burden, and timely intervention, thereby promoting

scalable, equitable, and preventive prenatal
healthcare.
2. LITERATURE REVIEW

“Wearable TFT Insight” [58] integrates CGM
streams with static user data into a Temporal Fusion
Transformer (TFT) model that applies self-attention
to emphasize recent trends. Static features like
demographics are embedded into time-series input.
After cloud training, the model is compressed and
deployed onto a system-on-chip. The edge device
processes glucose predictions in real-time using
sensor input, temporal patterns, and compact
computation, enabling personalized and low-power
glucose forecasting without cloud reliance. “Three-
Track Risk Grid” [59] combines regression-based
statistical formulas, classical machine learning
classifiers, and deep neural architectures to model
diabetes progression. Regression maps biomarkers
to outcomes, ML classifiers like SVM and Random
Forests rank predictive features, and deep networks
handle non-linear patient history. Data preparation
includes normalization and missing data handling.
Each model is validated using AUC and recall
metrics. “Feature-to-Controller Bridge” [60] links
glucose trends, insulin intake, and carb logs with
rule-based, regression, and neural models using
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constraint-aware learning. Data is preprocessed into
structured sequences and routed into multiple
predictive layers—clinical safety zones, like
hypo/hyperglycemia thresholds, guide training
targets. Output predictions are evaluated using real-

world safety metrics and explained using
SHAP/LIME. Feedback loops adjust insulin
forecasts dynamically.

“Pathway Tree” [61] uses random forest

survival models to trace transitions between immune
states by capturing autoantibody timelines. Patient
data is segmented into event intervals and encoded
with biomarkers and history. Two forests separately
forecast early immune conversion and clinical onset,
using time-to-event learning. Each tree estimates
transition likelihood by statistical splits. Importance
scores rank features influencing disease risk. “HER-
Aware Attention Net” [62] reformats inconsistent
health records into ordered multi-feature maps
capturing local and long-term signal patterns.
Temporal derivatives and statistical summaries
enhance variability tracking. Dual attention
mechanisms highlight essential features and time
frames. Time-aware embeddings handle missingness
while medical ratings add clinical context. A
classifier fuses all levels to output risk probabilities.
“Stack-Guided Fusion Core” [63] merges CNNs,
RNNs, and DNNSs into a meta-learning stack where
each base learner captures distinct clinical patterns.
Raw medical data is scaled and fed to the learners,
whose outputs are aggregated through a gradient-
based meta-learner. Attention and calibration
modules guide interpretability and confidence
scoring. Final predictions emerge from a harmonized
view of structural, sequential, and relational features.

“Demographic-Stratified Voting Grid” [64]
segments the dataset by gender and age, fitting
separate models to each group using scaled clinical
inputs. Each subgroup uses tailored encoders and
trains multiple learners, such as SVM, RF, and
boosting. Predictions are aggregated with weighted
voting based on subgroup performance. A
calibration layer aligns subgroup outputs into a
unified prediction. “Prior-Infused Bayesian Filter”
[65] fuses CGM data with domain-informed priors
using a Bayesian filtering pipeline. Glucose patterns,
meal intake, and insulin history are observed
features, while expert physiological expectations
guide state transitions. Gaussian Process Regression
models noise, and Kalman filtering smoothens
outputs. Bayes’ rule updates posterior predictions
with each time step, reflecting learned dynamics and
clinical bounds. “Hierarchical Layer Fusion” [66]
combines deep neural feature extraction with
ensemble tree classifiers. Initial layers include

bidirectional LSTM and dense networks that learn
sequence- and context-sensitive health patterns.
These embeddings feed into classifiers like Random
Forest and Gradient Boosting, optimized via
Bayesian tuning. Softmax temperature scaling
adjusts prediction certainty. SHAP values and class
activation overlays identify dominant biomarkers.

“Confidence-Calibrated Meta Loop” [67]
blends MAML-based meta-learning with evidential
deep networks for personalized glucose prediction.
Historical data per subject is parsed into learning
episodes, from which a generalized model is fine-
tuned with minimal steps. Evidential layers yield
belief intervals alongside forecasts, while a critic
loss penalizes overconfident errors. “Explanation
Dual Lens” [68] compares LIME and SHAP
interpretations over models predicting diabetes from
structured clinical data. LIME builds local surrogate
models through input perturbation to determine
impactful features per instance. SHAP computes
global feature contributions using Shapley values
derived from all feature subsets. Tree SHAP
accelerates evaluations for tree-based models.
“Subspace Fusion Select” [69] integrates radiomic
and clinical features using multi-view subspace
clustering for diabetes risk after pancreatectomy. 3D
scan-derived wavelet features and structured patient
data are clustered into latent groups, identifying
cross-view correlations. MSCUFS selects high-
relevance features within and across views. Selected
features are fused and passed to a classifier like
SVM. Imaging and clinical metrics reinforce one
another through clustering-guided fusion, modeling
post-surgical ~diabetes onset with improved
consistency.

“Edge-Attentive IoMT Loop” [70] enables
wearable glucose forecasting through real-time deep
learning on edge devices. Glucose readings are
streamed into an attention-equipped recurrent
network, prioritizing recent influential data points.
The system operates on-device to minimize latency
and compute offloading. A connected mobile app
provides alerts and visualization. Model updates
occur periodically in the cloud. “PA-BGL Fusion
Layers” [71] incorporates heart rate and movement
data with glucose trends using three fusion
strategies. Signal-level fusion directly aligns sensor
inputs, feature-level fusion derives statistical activity
metrics, and decision-level fusion averages outputs
from separate models. The system learns
physiological reactivity from short bursts and
prolonged behaviors. “Sensor-Stacked Fusion Grid”
[72] aggregates time-series data from glucose, ECG,
motion, and respiration sensors. Each signal
undergoes feature extraction, producing structured
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vectors. Sensor combinations are evaluated with
XGBoost, determining which sensor sets yield
optimal predictive accuracy. Fusion prioritizes
glucose, ECG, and motion data. Redundant sensors
are discarded.

“Adaptive Harmony-Driven Hybrid Stacking
(AHDHS)” [73] explores a dual-optimized ensemble
model suited for early gestational diabetes
prediction. Unlike traditional stacking, which treats
features and learners as static, AHDHS uses
harmony search to select both dynamically. It
eliminates redundant variables, such as correlated
hormone indicators, while optimizing classifier
synergy. The result is a leaner ensemble that
responds well to limited, early-trimester datasets.
This structure improves detection precision during
early check-ups when symptom patterns are weak or
variable, reducing dependence on late-stage lab-
based diagnostics. “Outlier Detection with Deep
Stacked Autoencoder (OD-DSAE)” [74] presents a
robust mechanism for early GDM screening by
integrating hierarchical anomaly detection with deep
representation learning. Due to noisy data and
unfiltered extremes, traditional clinical models often
miss atypical cases. OD-DSAE removes such
irregularities through mutual information-based
clustering and learns discriminative representations
via autoencoders. Unlike shallow predictors, it
preserves patient-specific glucose dynamics while
generalizing across screening windows. This hybrid
ensures reduced false positives during early
gestation, a critical phase for initiating dietary or
insulin intervention.

2.1. Problem Hypothesis

It is hypothesized that the limitations of current
GDM screening such as the invasiveness of OGTT,
inconsistent  diagnostic  thresholds, and low
sensitivity for early detection can be overcome by
integrating a bio-inspired optimization strategy with
a neural network classifier. By combining White
Tiger Swarm Optimization (WTSO) with a
Multilayer Perceptron (MLP), it is possible to
simultaneously optimize model parameters and
select the most relevant features from high-quality,
prospectively collected clinical data. This approach
is expected to improve predictive accuracy, enhance
early-stage detection, reduce unnecessary testing,

and adapt effectively across diverse patient
populations.
3. PROPOSED METHODOLOGY

The White Tiger Swarm Optimization-

enhanced Multilayer Perceptron (WTSO-MLP)
model has been developed to predict Gestational

Diabetes Mellitus (GDM) using clinical and
demographic data. This research integrates White
Tiger Swarm Optimization (WTSO) with Multilayer
Perceptron (MLP) to improve prediction accuracy
while reducing reliance on invasive tests like OGTT.
The model is trained and validated using a dataset of
3,525 instances, collected prospectively from 2019
to 2021. This study aims to identify individuals at
high risk for GDM early, preventing unnecessary
testing and improving timely interventions. The
model focuses on providing an interpretable and
computationally efficient solution that can be
integrated into clinical decision support systems,
helping optimize healthcare resources and
improving maternal health outcomes.

3.1 Initialization

The initialization phase in WTSO-MLP defines
the neural network architecture and encodes the
search space for weight optimization. This phase
establishes input feature representation, assigns
initial weight values, and structures the swarm-based
optimization framework inspired by white tiger
behavioral mechanisms. Proper initialization
enhances training stability, convergence speed, and
search efficiency in GDM prediction.

A multilayer perceptron designed for GDM
prediction consists of input, hidden, and output
layers, where each neuron represents a clinical
feature or activation unit. The initialization phase
ensures that the feature representations capture non-
linear relationships between biological and lifestyle
factors affecting GDM risk.

X = {x1, %3, o, X0},
X, €ER, i=12,..,n

Wt ={w}i € [1,m],j € [1,n]} ()

The feature set X consists of n clinical
parameters such as glucose level, BMI, insulin
resistance, and blood pressure, while W' represents
the weight matrix in layer [, where m and n denote
neuron counts in successive layers. Proper
initialization of W' is essential for stable gradient
propagation and practical training.

Each white tiger agent in WTSO represents
a unique candidate weight configuration that
undergoes adaptive optimization. The initialization
step assigns each agent a randomly generated weight
set, ensuring diverse exploration in the search space.
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0" = a-N(0,02) 3)
Puie = {62,065, ...,6,"} “)

The initial weight parameter Hi(o) for each
agent i, a Gaussian distribution N (0, ¢2), where o2
is the variance control factor. The population Pj,;,
consists of N white tiger agents, each encoding a
unique weight set. This design ensures search
diversity, preventing premature convergence.

Inspired by white tigers’ adaptive hunting
strategies, the search region dynamically expands or
contracts depending on convergence rates. This
prevents excessive exploitation in the suboptimal
areas and allows compelling weight exploration.

Si(O) = Smin + (Smax - Smin) ' e_M (5)

AVVL'(O) =1 Wnax = Win) - § (6)

The search boundary function Si(o)expands
or contracts based on a decay factor A and iteration
step t. The perturbation function AWi(O)introduces
controlled randomness, where 7 is an adaptive factor
and ¢ follows a normal distribution to introduce
stochastic variations.

Bias parameters modify neuron activation
thresholds, allowing flexibility in decision boundary
shifts. An adaptive thresholding method inspired by
tiger predation strategies has been applied to fine-
tune bias values.

b® =y - tanh(s) )

_1 (0)
Tthreshald _; §V=1|9i | (8)

The initial bias vector bl.(o) follows a
hyperbolic tangent transformation, where y is a
scaling factor, and §; is a randomized initialization
term. The adaptive threshold function Tinreshold
ensures stable gradient flow by normalizing initial
weight magnitudes.

3.2 Swarm Generation

The swarm generation phase in WTSO-
MLP has established an adaptive population-based
search framework, where each white tiger agent
represents a potential solution for neural network
weight optimization. The initialization has ensured
diversity in the search space by distributing agents
across multiple regions, facilitating exploration and

exploitation during training. The designed swarm
structure enhances the model’s ability to detect non-
linear patterns in GDM prediction, improving
classification = accuracy and  computational
efficiency.

The swarm consists of agents, each
encoding a distinct set of weight parameters for the
neural network. These agents navigate the search
space, evaluating loss functions and adjusting
positions based on an adaptive search mechanism.
The population distribution has been structured to
maintain diversity, ensuring efficient convergence to
optimal weight configurations.

pP= {All AZI ---;AN}:

A; = {011,002, ..., 0im} ©)
N
M= ) A -¥(4) (10)

The swarm set P comprises N agents, and
each agent. A4; storing a unique set of weight values
0;;, where m represents the total parameter count.
The adaptive weight modulation matrix M has been
computed using the fitness-based modulation
function W(4;), ensuring an intelligent distribution
of agents across the search space.

The placement of agents within the search
space has been distributed dynamically, ensuring
balanced coverage across different weight
configurations. This structure allows the swarm to
converge efficiently, without stagnating in
suboptimal solutions.

I, — L
Si(O) = ( maxN an) + T (11)

Vi=A- (5@ -5) (12)

The
Si(o)determines the placement of each agent within
the predefined search bounds I3,,, and [},;,. The
velocity initialization function V; assigns an adaptive
search movement parameter, where A scales the
deviation from the mean position S. This ensures a
controlled yet dynamic exploration process.

initial spatial allocation function

Each white tiger agent has been assigned
behavioral characteristics that dictate its exploration-
exploitation tendencies. These behaviors are
inspired by real-world predation strategies, ensuring
effective weight adjustments for optimizing the
MLP model.
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e(pdi 13
Fi= 1+ e 9d (13)
T; = o sign(F; — &) (14)

The fitness-based exploration coefficient
Fymodulates search behavior based on the distance
factor d; from the current optimal weight set. The
territory shift factor T; determines whether an agent
will expand or contract its search space, based on a
comparison with a random exploration coefficient £.
This strategy enhances the adaptability of the swarm
during optimization.

To balance computational efficiency and
search effectiveness, the swarm has undergone
density-based refinement, adjusting the number of
active agents based on search progress.

Dactive = N - 1- e_kt) (15)
Dgctive
Aveinea = ). A (16)
i=1

The active agent count D, ;e increases
progressively based on the iteration index t and an
adaptive growth factor k. The refined swarm
Arefinea consists only of agents contributing to
significant search improvements, preventing
redundant computations.

3.3 Forward Propagation

The forward propagation phase in WTSO-
MLP has enabled the sequential flow of input data
through the network, generating weighted
summations and activations in each layer. This step
has determined how efficiently the optimized
weights extracted from swarm intelligence influence
the model’s predictive capacity for GDM. The
process has ensured non-linear transformation,
enabling the network to map complex relationships
between clinical attributes and GDM diagnosis
outcomes.

The input layer has received preprocessed
clinical parameters, representing diverse biometric
and metabolic attributes associated with GDM risk
factors. The feature set has undergone a weighted
summation, allowing each neuron to pass an
adjusted value to the next computational stage.

ZOW=x-wW 4+ pW (17)

The transformed input vector Z(Y) has been
obtained by multiplying the input matrix X with the
synaptic weight matrix W@ of the first layer,
followed by the addition of a bias vector B, This
formulation has enabled the model to capture linear
relationships between features while preserving
weighted influences from previous WTSO-based
optimizations.

The weighted summation has been passed
through a non-linear activation function, ensuring
the model effectively captures hierarchical
dependencies in GDM risk assessment. This
activation mechanism has transformed the linear
combinations into representations that allow deep
feature extraction.

A = d)(Z(h)) (18)

The activation vector A at the h-th hidden
layer has been obtained using a non-linear activation
function ¢(:). This function has regulated neuron
responses, preventing vanishing gradients and
enabling the network to retain significant feature
patterns essential for accurate GDM classification.
The choice of ¢ has determined the model’s ability
to generalize across highly variable patient records.

Each hidden Ilayer has performed a
weighted summation of activated neurons from the
previous layer, progressively refining the learned
representations. This phase has reinforced the
contribution of highly discriminative features,
enhancing the model’s predictive robustness.

Z(h+1) — A(h) . W(h+1) + B(h+1) (19)

The hidden-layer summation vector Z#+1
has been computed using the activation outputs A
from the preceding layer, weighted by W ®+1D and
adjusted using the bias term B*1_ This operation
has ensured a hierarchical transformation of the
input data, enhancing the network’s ability to detect
non-linear correlations among features indicative of
GDM development.

The final layer has transformed the
processed features into a decision boundary,
allowing the network to differentiate between
diabetic and non-diabetic cases. The resulting scores
have been mapped to probabilities, facilitating a
binary classification process.

9 =d(z®) (20)
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The predicted probability § has been
computed using an activation function @(-) applied
to the output summation Z®) of the final layer. This
function has ensured that predictions remain within
a bounded range, allowing the model to infer the
likelihood of GDM presence in a given patient. The
choice of @ has dictated the network’s ability to
generalize beyond training data.

3.4 Fitness Evaluation

The fitness evaluation phase in WTSO-
MLP has assessed the performance of each white
tiger agent based on its assigned weight set. The
evaluation has relied on loss computation, gradient
stability, classification confidence, and entropy-
based uncertainty measures, ensuring the
optimization process refines the model’s ability to
predict GDM with high precision. The computed
fitness values have determined the direction of
weight  adjustments, preventing  premature
convergence to suboptimal solutions.

The optimization process has utilized a loss
function to measure classification errors, guiding the
agents toward configurations that minimize
predictive deviations. The fitness assessment has
relied on the computed difference between model
predictions and true outcomes for each training
instance.

N
1
~ =) Dilog @)

+ (1 —y)log(1 — 3]

i=1

The loss-based fitness function Fj,¢s has been
computed using a logarithmic function that measures
the divergence between the true label y; and the
predicted probability ¥;. The fitness score has been
negative, meaning lower loss values correspond to
higher fitness, encouraging agents to optimize
toward accurate weight distributions.

Floss =

21

The stability of gradient updates has
influenced the fitness evaluation, preventing erratic
oscillations during weight optimization. The
magnitude of weight updates has been considered,
ensuring convergence toward well-optimized values
without excessive variance.

L
F _ 1 aFloss
orad = w L low ®
=1

The gradient-based fitness function Fy,qq
has measured the mean absolute gradient magnitude
across all layers L, where W ® represents the weight
matrix of layer L. This metric has ensured controlled

(22)

weight updates, preventing sharp deviations that
could lead to unstable training.

The probability distribution of model
predictions has contributed to fitness evaluations,
ensuring the network exhibits high confidence in its
decisions. This assessment has helped refine weights
that improve decision boundary clarity.

N
1
Fconf = NZ”/\L - 05| (23)
i=1
The confidence-based fitness function

Feons has measured the deviation of each predicted
probability J; from the decision threshold of 0.5,
ensuring a high separation between positive and
negative GDM classifications. Larger values
indicate more substantial confidence, contributing to
better fitness evaluations.

The optimization process has penalized
predictions exhibiting high entropy, ensuring the
model maintains decisive classification outputs. The
fitness evaluation has incorporated an entropy

regularisation term, promoting weight
configurations that generate low-uncertainty
predictions.

N
1
Fene = _Nzll%'log(%') +(1 (24)
i=

—¥)log(1 =9I
The entropy-based fitness function F,,, has
measured the uncertainty level of model predictions.
Low entropy values have indicated highly confident
classifications, increasing fitness scores for weight
sets that produce well-calibrated probability
distributions.

A composite fitness function has
aggregated multiple evaluation criteria, ensuring that
the selection mechanism retains only the most
optimized weight sets in the swarm. This function
has assigned adaptive importance to each fitness
measure based on training dynamics.

Ftotal = AlFloss + /12Fgrad + ASFconf

25
+ /14Fent ( )

The overall fitness function F;,.,; has been
computed as a weighted summation of loss, gradient
stability, classification confidence, and entropy-
based uncertainty, where 44, 4,, 15,1, are adaptive
coefficients. The weighting mechanism has
dynamically adjusted these coefficients based on the
training progression, emphasizing relevant fitness
components at different phases.
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3.5 Territory Expansion and Contraction

The territory expansion and contraction
mechanism in WTSO-MLP has dynamically
adjusted the search space boundaries for each white
tiger agent based on the fitness landscape. This step
has enabled the exploration of diverse weight
configurations while ensuring the fine-tuned
exploitation of optimal solutions. Adapting search
regions has prevented stagnation in local minima,
improving the network’s ability to learn non-linear
feature representations essential for GDM
prediction.

The distribution of fitness scores across the
swarm population determines the expansion of
search territories. Agents exhibiting high variance in
fitness values have expanded their search domains,
ensuring broader coverage of potential weight
configurations.

Sexp=ﬂ+€'

The expansion threshold S, has been
computed using the mean fitness score p and the
standard deviation of fitness values. The expansion
coefficient ¢ has scaled the influence of population
diversity, ensuring controlled territory growth when
fitness score dispersion has been high.

Agents  displaying minimal fitness
variations have reduced their search territories,
allowing precise fine-tuning of high-performing
weight sets. This contraction mechanism has ensured
computational efficiency, eliminating unnecessary
weight adjustments for well-converged agents.

Scon = S+ e MFpest 27

The contraction function S.,, has been
formulated using the mean search space size S scaled
by an exponential decay function controlled by the
best fitness score Fjp,s:. This strategy has ensured
that highly optimized agents maintain localized
refinements instead of unnecessary weight
perturbations.

An adaptive balance between search
expansion and contraction has been implemented to
optimize learning efficiency. This mechanism has
adjusted the rate of territory modifications based on
the fitness trend slope, ensuring smooth transitions
between exploratory and exploitative phases.

den =p- Sexp +(1- p) *Scon (28)

The dynamic search space function
Sayn has been computed as a weighted sum of
expansion and contraction terms, where the
coefficient p has dictated the exploration-
exploitation tradeoff. This parameter has adapted
throughout training, ensuring gradual refinement of
model parameters.

Agents that have failed to improve their
fitness over multiple iterations have migrated to new
search regions, preventing stagnation in poor-
performing territories. The migration function has

been formulated to reposition agents while
maintaining structural coherence randomly.
Smig = Scon TV - u(—¢,€) (29)

The migration-adjusted search space Sp,;4
has incorporated a random perturbation sampled
from a uniform distribution u(—¢, €), ensuring that
migrating agents explore new weight configurations.
The coefficient y has scaled the degree of
randomness, preserving solution stability.

3.6 Memory Retention and Social Interaction

The memory retention and social
interaction mechanism in  WTSO-MLP has
improved learning efficiency by preserving

historically optimal weight configurations while
enabling knowledge sharing among well-performing
agents. This step has prevented information loss,
ensured adaptive weight refinement, and enhanced
the model’s capability to distinguish GDM risk
factors through a cooperative search mechanism.

The swarm maintained an elite memory
containing the best weight configurations identified
during optimization iterations. This memory
structure has guided agents in avoiding repetitive
exploration of suboptimal regions, ensuring a
progressive improvement in weight refinement.

M; =4 My + (1= 2)W; (30)

The memory update function M; has
blended the previously stored optimal weight M;_;
with the current weight W; of the agent. The
coefficient A, has determined the weight
contribution of prior knowledge, ensuring a balanced
integration of past and present learning.

The retained memory has undergone
periodic reinforcement, allowing well-performing
agents to update their stored weights based on real-
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time fitness evaluations. This reinforcement has
ensured that only superior weight configurations
persist, improving training efficiency.
MP = M + A5 (Fi = Fany) (31)
The reinforced memory function M;**? has
modified stored weight sets based on the difference
between individual fitness F; and the average fitness
score Fg,g. The coefficient A, has scaled the

adjustment intensity, ensuring that progressively
improving weights remain in memory.

A social interaction mechanism has
allowed well-performing agents to share their weight
configurations with less effective agents, promoting
cooperative exploration of promising search regions.
This strategy has mitigated convergence stagnation
and enhanced the model’s generalization ability.

W'Y = W, + A, Z (M; —w;)
JEN()

(32)

The adaptive weight update function W;**"
has enabled agents to refine their weights based on
shared knowledge from neighboring agents N(i).
The coefficient A; has controlled the influence of
social learning, preventing excessive deviations
from individual learning trajectories.

The memory structure has dynamically
influenced the search step size, enabling progressive
fine-tuning of weight adjustments while maintaining
robust exploration during early training phases. This
adaptability has allowed agents to transition
smoothly between exploration and exploitation.

smem = g, . g=AaMi (33)

The memory-influenced search adjustment
function S™*™ has modified the search space size S;
based on the stored memory weight M;. The
coefficient 1, has regulated the decay rate, ensuring
that high-memory agents reduce their search
intensity, prioritizing weight stabilization.

3.7 Multi-Attack Optimization Strategy

The Multi-Attack Optimization Strategy in
the WTSO-MLP has integrated diverse optimization
techniques to explore the search space efficiently.
This strategy has combined local, global, and
stochastic search mechanisms, enhancing the
model’s adaptability in discovering optimal weight
configurations. Including multiple attack patterns
has allowed for robust performance in identifying
non-linear patterns relevant to GDM prediction.

The local exploitation mechanism has
focused on fine-tuning weight adjustments in
regions close to the current optimal solution. This
process has enhanced convergence by capitalizing
on existing high-fitness areas, ensuring stability in
the optimization.

Wioewr = Wi + a - VE(W;) (34)

The locally optimized weight W,,.,; has
been computed by adjusting the current weight W;
using a scaled gradient VF (W;). The learning rate a
controls the magnitude of the adjustment, enabling
precise refinements in well-performing regions.

The global exploration strategy has allowed
the swarm to escape local optima by introducing
larger perturbations to explore diverse regions of the
search space. This technique has ensured
comprehensive coverage, enhancing the discovery
of better weight configurations.

ngobal =W, +pB- N(O' 0-2) (35)

The globally perturbed weight W44, has
incorporated a Gaussian noise term N (0, o2), where
o? denotes the variance. The scaling factor § has
regulated the exploration intensity, balancing search
diversity and convergence speed.

The stochastic search approach has
introduced random fluctuations in weight
adjustments, promoting diversity in the swarm’s
exploration patterns. This mechanism has reduced
premature convergence and enhanced robustness
against noisy fitness landscapes.

Wstocn = Wi + v -u(=4,6) (36)

The stochastic weight adjustment Wg;,qp,
has utilized a uniform random perturbation
u(—46,8), with the parameter § determining the
range of randomness. The coefficient y has
modulated the strength of stochastic influence,
maintaining a controlled randomness in the search
process.

The aggressive search strategy has
amplified weight adjustments in response to
significant fitness improvements. This approach has
accelerated convergence in promising regions of the
search space, ensuring rapid optimization progress.

Wagg = Wi + k - sign(VF(W)))

VEW)| S
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The aggressive weight update W4, has
leveraged the sign and magnitude of the gradient
VF(W;) to enhance weight adjustments. The
parameter k has amplified the update, facilitating
rapid exploitation of promising regions.

The defensive search mechanism has
minimized excessive weight changes in response to
noisy gradients, ensuring stability in optimization
under uncertain conditions. This strategy has
safeguarded the model from erratic convergence
behavior.

Waer = Wi — 1 - sign(VF(W,))

-min(|[VF(W))|, 7) (38)

The defensive weight update W,.; has
constrained the weight adjustment based on the
gradient sign and a threshold t. The learning rate n
has regulated the update magnitude, ensuring
stability against noisy gradient information.

The hybrid search has combined multiple
attack strategies, integrating local, global, and
stochastic adjustments to create a versatile
optimization process. This comprehensive approach
has enhanced the model’s ability to adapt to complex
fitness landscapes.

Whyb =1 Wisear + A2 ngobal

39
+ /13 Wstoch ( )

The hybrid weight update W, has
aggregated contributions from local, global, and
stochastic adjustments. The weighting coefficients
A4,45,15 have balanced the influence of each
strategy, promoting adaptive optimization based on
the current fitness landscape.

3.8 Silent Approach Mechanism

The Silent Approach Mechanism in
WTSO-MLP has enhanced weight optimization by
allowing strategic updates based on the network’s
performance. This method has selectively adjusted
weights with minimal computational overhead,
preventing unnecessary perturbations in well-
optimized layers. The mechanism has ensured
computational efficiency, enabling the model to
refine critical GDM predictors without excessive
network instability. The mechanism has prioritized
weight updates for highly influential neurons,
ensuring adjustments focus on parameters critical to
model predictions. Neurons contributing minimally
to loss reduction have undergone reduced updates,
maintained  computational  efficiency  while
preserving learned feature relationships.

Wser = Wi+ 4, - M; - O(IVF(W)| — 1) (40)

The selectively updated weight W, has been
computed using the stored memory M; and the
gradient magnitude threshold function
O([VF(W;)| — 7). This thresholding has ensured
that only neurons surpassing a significance level
have undergone updates, reducing unnecessary
computations.

A dynamic learning rate adaptation has
controlled weight updates in highly stable neurons.
This mechanism has gradually decreased learning
rates for well-performing parameters, ensuring that
fine-tuning remains precise while preventing over-
adjustments in stable weights.
~at

Agyn = Amax " € (41)

The dynamic learning rate ag,, has
followed an exponential decay function, where a4,
represents the initial learning rate, t denotes the
iteration count, and A, governs the decay rate. This
adaptation has ensured progressive fine-tuning,
reducing the likelihood of excessive parameter shifts
in well-converged weights.

The model has eliminated neurons with
persistently low contributions, ensuring that the
network retains only significant feature detectors.
An impact factor has been determined for the
pruning process, ensuring that neurons consistently
contributing to minimal fitness improvements have
been removed.

P, =0(u—450) 42)

The pruning decision function P; has
applied a threshold-based removal strategy, where u
denotes the mean neuron impact score, and o
represents the standard deviation of neuron
influence. The coefficient A; has controlled pruning
sensitivity, ensuring that only consistently redundant
neurons have been deactivated.

3.9 Camouflage-Inspired Adaptive
Regularization in WTSO-MLP

The Camouflage-Inspired Adaptive
Regularization in WTSO-MLP has dynamically
adjusted the model’s regularisation strength based
on learning stability. This mechanism has reduced
overfitting while ensuring smooth generalization
across diverse patient datasets. The adaptive
regularisation strategy has preserved essential GDM
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predictors, preventing unnecessary weight penalties
on clinically relevant features.

The regularisation strength has been adjusted
based on gradient fluctuations, ensuring stable
parameters receive lower penalties, while volatile
parameters undergo higher constraints to prevent
excessive variation.

Areg = Ao e~ BIVFW)| (43)
The adaptive weight decay factor 4,4 has
followed an exponential decay function, where Ayis
the initial regularisation parameter, and f
determines the influence of gradient stability. Larger
gradient magnitudes have resulted in weaker
penalties, ensuring frequently adjusted weights
receive lower constraints.

Regularisation strength has been adjusted
based on the importance of individual features,
preventing essential GDM-related predictors from
excessive penalization while applying stronger
constraints on irrelevant features.

. I(x;)
()

The feature-scaled regularisation parameter
Afeat has been computed by modulating the weight
decay factor A,., using the feature importance
function 1(x;). This formulation has ensured that
critical features contribute less to regularisation,
preventing unnecessary model constraints on
informative predictors.

The dropout probability has been
dynamically adjusted based on the model’s
classification confidence, ensuring that highly
confident predictions undergo lower dropout rates.
At the same time, uncertain regions receive higher
regularisation to prevent overfitting.

1
> (45)

1+ e_V(Fconf_T)

Aear = A (44)

Parop = Po * (1 -

The dropout rate gy, has followed a sigmoid-
based scaling function, where p,, is the base dropout
probability, and y controls the sensitivity to the
model’s confidence score F.onr. Higher confidence
predictions have undergone lower dropout rates,
ensuring that well-learned patterns are preserved.

An adaptive noise injection mechanism has
introduced controlled perturbations in weight
updates, preventing excessive sensitivity to minor
variations in the training data

Whoise = W + Oreg * N(0,1) (46)

The noise-augmented weight update W,, ;5. has
incorporated Gaussian noise N(0,1) scaled by an
adaptive variance parameter dy.4. This controlled
noise injection has regularised weight updates,
preventing overfitting by ensuring robust parameter
stability.

3.10 Circadian Rhythms-Based Adaptive
Learning Rate
The Circadian Rhythms-Based Adaptive

Learning Rate mechanism in WTSO-MLP has
modulated learning rates dynamically, mimicking
biological circadian cycles. This approach has
ensured that the model maintains high exploration in
early training and gradually shifts towards controlled
exploitation, enhancing convergence stability and
classification accuracy in GDM prediction. The
learning rate adaptation has followed oscillatory
patterns, preventing premature convergence and
ensuring robust weight adjustments.

A time-dependent oscillation function has
governed the learning rate, ensuring periodic
fluctuations that enable exploration-exploitation
tradeoffs. This mechanism has prevented stagnation
in local minima and allowed adaptive training
progress

1+ sin(27rwt)> 7

Tosc = Amax ( 2

The oscillatory learning rate @,s. has been
computed using a sinusoidal modulation function,
where a,,,, represents the initial maximum learning
rate, and w controls the frequency of oscillations.
The cyclic nature has ensured that the learning rate
follows a biological rhythm-inspired pattern,
enhancing weight adaptation.

As the model has approached convergence, the
learning rate has been adaptively reduced based on
gradient stability, ensuring finer weight adjustments
for improved classification reliability.

Adecay = Xosc e HVEWI (48)

The adaptive decay function @gecqy has
incorporated an exponential reduction factor, where
A controls decay intensity. The gradient norm
VF (W) has dictated decay magnitude, ensuring that
the learning rate remains high in the early stages and
decays progressively as the model stabilizes.
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When weight updates have exhibited high
variance, the learning rate has been temporarily
increased, ensuring that the model does not stagnate
in suboptimal regions.

Ograd
Ayar = Agecay - (1 + ﬂ) (49)

Umax

The variance-driven learning rate a,,,,- has been
computed using the gradient variance ratio, where
Ograq Tepresents the gradient standard deviation, and
Omax denotes the maximum observed variance. This
formulation has ensured that the learning rate
temporarily increases in unstable training phases,
promoting further weight adjustments.

A weighted combination of oscillatory,
decay, and variance-adjusted rates has been
employed to ensure smooth transitions between
learning phases.

Afinal = P1%osc + P2%gecay + P3Qpar (50)

The final adaptive learning rate Afinal has
been computed as a linear combination of different
rate components, where p;, p,, p; have dynamically
adjusted contributions based on training phase
progression. This approach has ensured that the
model optimally balances exploration and
exploitation during GDM prediction.

3.11 Post-Hunt Restorative Strategy

The Post-Hunt Restorative Strategy in
WTSO-MLP  has optimized computational
efficiency by reducing unnecessary updates after
reaching a near-optimal state. This approach has
controlled weight modifications, enabling adaptive
refinement of the model while preventing excessive
adjustments in well-converged regions for GDM
prediction.

The strategy has progressively reduced
update frequency once the model has achieved near-

optimal convergence. This mechanism has
prevented redundant weight adjustments, ensuring
efficient  optimization  without  unnecessary
computational overhead.
— -1
(update = Cmax " € Fpest (51)
The  update  frequency  parameter

Cupaate has been scaled using an exponential decay
function, where {,,,, denotes the initial update
frequency, and A determines the decay rate. The
fitness score Fp.g; has dictated the reduction rate,

ensuring that models with near-optimal solutions
undergo fewer weight adjustments.

Weights that have exhibited minimal
variance over multiple training iterations have been
identified as stable, reducing further modifications to
enhance model robustness and prevent oscillatory
adjustments.

Wetapie = Wi G)(O—grad - T) (52)

stabilized weight function W, has used
a thresholding mechanism based on gradient
variance 0grqq. The function @(Ugmd - ’[) has
determined whether weight should be frozen,
ensuring only parameters exceeding a stability
threshold T undergo updates.

An adaptive scaling mechanism has been
applied to ensure that weight modifications have
remained efficient, dynamically reducing the
magnitude of weight adjustments for stable neurons.

Wadj =W + Qseqie VF(VVL') (53)

The energy-scaled weight adjustment Wy
has incorporated a learning rate modifier g4,
which has been reduced as training has progressed.
This function has ensured that weight updates

become gradually finer, maintaining stability while
refining classification accuracy.

Neurons that have contributed minimally to
error reduction over several iterations have been
progressively frozen, preventing them from
consuming unnecessary computational resources.

Nfreeze =N- (1 - e_/lfreezet) (54)

The frozen neuron set Nfpeere has been
determined using a progressive freezing function,
where Afreeze controls the freezing rate, and ¢
denotes the training iteration index. This function

has ensured that redundant neurons are gradually
deactivated, improving model efficiency.

3.12 Final Model Evaluation and Deployment

The Final Model Evaluation and
Deployment phase in WTSO-MLP has ensured that
the trained model meets performance benchmarks
before deployment. The evaluation process has
assessed classification accuracy, robustness, and
generalization to guarantee optimal prediction
capability for GDM detection.
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The model has undergone a comprehensive
performance assessment using various evaluation
metrics to measure classification accuracy,
sensitivity, specificity, and precision. These metrics
have quantified the model’s ability to effectively
distinguish between GDM-positive and GDM-
negative cases.

TP+TN
TP+TN+FP+FN

Aevar = (55)

The accuracy metric A,,, has computed
the ratio of correctly predicted true positives (TP)
and true negatives (TN) to the total cases, including
false positives (FP) and false negatives (FN). This
assessment has ensured that the model maintains a
high predictive performance without excessive
misclassification.

The model’s ability to generalize across
unseen patient datasets has been validated using an
uncertainty-based confidence estimation, ensuring
that predictions remain stable under diverse input
variations.

N
1
Gconf = 1_NZ|5}1_05| (56)
i=1

The generalization confidence score Geon
has measured the distance of predicted probabilities
from the decision threshold (0.5), ensuring that
classification boundaries remain sharp and well-
separated. Higher values indicate more substantial
model certainty and robustness across patient
variability.

Before deployment, the trained model has
undergone a real-time efficiency analysis, ensuring
that it meets computational constraints for practical
clinical applications. The execution latency for
processing patient data has been minimized without
sacrificing classification precision.

N
1
Texec = Nz T;
=1

The execution time per inference T, has
measured the average computation time per patient
sample, ensuring the model operates efficiently in
clinical decision-making scenarios. Lower execution
times have indicated optimized computational
performance, enabling rapid GDM risk assessments.

3.13 WTSO-MLP Process Flow

The WTSO-MLP Process Flow outlines the
step-by-step methodology for training, optimizing,
and applying the WTSO-MLP model for GDM

(57)

prediction. This process begins with initializing the
neural network and defining the search space for
optimization. It then proceeds with swarm
generation, where White Tiger Swarm Optimization
(WTSO) guides the weight updates, followed by
forward propagation to calculate model predictions.
The process integrates multi-strategy optimization
for weight adjustments, memory retention for
optimal configurations, and adaptive learning rates
to refine predictions. Each phase of the model is
designed to improve predictive accuracy and
generalization, ensuring efficient and accurate GDM
risk prediction. The overall algorithm is given
below:

Algorithm 1: WTSO-MLP

Input:

o Initial weight configurations W, feature
set X, bias terms B, fitness scores F,
neuron importance [ (x;), execution time
T;, performance thresholds Tgcc, Teons
learning rate «.

Output:

e Optimized weight configurations W,
adaptive learning rate Qfinq, final
accuracy A,yq;, deployment decision.

Procedure:

Step 1: Initialization: Initialize neural network
weights W, biases B, and define the
search space for white tiger swarm
agents.

Swarm Generation: Generate the white
tiger agent population P, assigning

Step 2:

search  positions Sl.(o) and initial
velocities V;.

Forward Propagation: Compute
weighted summation Z, activation values
A, and model predictions § for
classification.

Fitness Evaluation: Assess fitness using
loss-based accuracy Fj,gs, gradient
stability Fg,.qq, and confidence measures

Step 3:

Step 4:

F conf-

Territory Expansion and Contraction:
Adjust search space S;,, based on
fitness score variance, ensuring adaptive
exploration and refinement.

Memory  Retention and  Social
Interaction: Update memory storage M;,
reinforce weights using fitness-guided
adjustments, and share knowledge
among agents.

Step S:

Step 6:
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Step 7: Multi-Attack Optimization Strategy:
Apply local Wlocala glObal ngobala
stochastic Wgocn, and hybrid weight
updates Wy,

Silent Approach Mechanism: Selectively

update neurons Wg,;, dynamically scale

learning rate @gyn, and prune non-

contributory neurons P;.

Camouflage-Inspired Adaptive

Regularisation: Adjust weight decay

Areg, feature-sensitive regularisation

Afeat, dropout probability pgrop, and

introduce controlled noise W, ;-

Step 10: Circadian Rhythms-Based Adaptive
Learning Rate: Compute oscillatory
learning  rate decay-based
adaptation  @gecqy, variance-driven
scaling @,,,, and finalize the adaptive
learning rate dfing;.

Step 11: Post-Hunt Restorative Strategy: Reduce
update frequency {ypqqte, Stabilize well-
converged weights W;,p10, Scale weight
adjustments W,4;, and progressively
freeze neurons Nepeeze-

Step 12: Final Model Evaluation and
Deployment: Compute accuracy Agpars
assess generalization Gg,ns, €valuate
execution  efficiency  Tpyee, and
determine deployment readiness based
on predefined thresholds T ¢, Teons-

Step 8:

Step 9:

aOSC?

The WTSO-MLP model offers several
advantages in predicting GDM, addressing many
challenges associated with current screening
methods. Integrating White Tiger Swarm
Optimization (WTSO) with Multilayer Perceptron
(MLP) enhances the model’s ability to adaptively

explore the search space, optimize weights
efficiently, and make highly accurate predictions. It
leverages advanced techniques like adaptive

learning rates, memory retention, and multi-strategy
optimization, ensuring improved generalization
across diverse populations. These features make the
WTSO-MLP model a powerful tool for early,
accurate, and non-invasive GDM risk prediction.
Significant advantages of WTSO-MLP for GDM
Prediction are:

1. Enhanced Predictive Accuracy: Integrating
WTSO with MLP improves the model’s ability
to predict GDM risk with higher accuracy,
reducing false positives and negatives.

www jatit.org

il. Adaptability Across Diverse Populations:
The model generalizes well across different
demographic and clinical profiles, ensuring it
performs reliably across varied populations.

iil. Early Prediction Capability: WTSO-MLP

allows for early identification of at-risk
pregnancies, facilitating timely interventions
to prevent complications associated with
GDM.

iv. Efficient Weight Optimization: Using bio-
inspired swarm optimization enables the model
to avoid local minima and optimize weight
configurations effectively, improving overall
training efficiency.

v. Scalability and Integration Potential: The
model is designed to integrate seamlessly into
clinical settings, supporting both real-time risk
assessment and scalable deployment in various
healthcare environments.

4 DATASET

The dataset used in this research was
developed through a forward-looking collection
process between 2019 and 2021, focusing
exclusively on early-stage identification of
gestational diabetes mellitus (GDM). It consists of
3525 individual records, each embedded with 15
measured attributes capturing a broad spectrum of
maternal and clinical features commonly associated
with GDM risk. These include maternal age, body
mass index, pregnancy history, family background
of diabetes, and other health indicators. The dataset
adopts a binary classification format, distinguishing
cases into GDM and non-GDM outcomes.
Specifically, 2153 records belong to the non-affected
group, while 1372 are identified as GDM-positive.
A structured partitioning strategy has been
employed, allocating 75% of the data for model
development and 25% for performance validation.
This balance ensures the model is trained on realistic
proportions, reflecting natural prevalence while
preserving generalization capabilities across both
classes. This dataset aims to reduce unnecessary
diagnostic procedures by pre-screening high-risk
individuals based on reliable, domain-informed
predictors. It stands as a clinically grounded resource
enabling precision-oriented model calibration.

Table 1: GDM Dataset Characteristics

Description Value
Number of Patient 3525
Samples
Sample Count - Non-
GDM Class 2133

8036



Journal of Theoretical and Applied Information Technology ~
15 October 2025. Vol.103. No.19 N

© Little Lion Scientific A ma——

-;l'\lll

ISSN: 1992-8645

www jatit.org

E-ISSN: 1817-3195

Sample Count - GDM 1372
Class
Number of Input 15
Features
Target Output Two (GDM / Non-
Categories GDM)

5 RESULTS AND DISCUSSION

This section presents a comparative
of five key performance metrics—
Classification Accuracy, Matthews Correlation
Coefficient, Error Rate, Youden’s Index, and
Critical Success Index. The figures illustrate how
each model performs in terms of predictive
precision, class balance, misclassification impact,
diagnostic power, and true positive capture for GDM
prediction.

analysis

5.1 Classification Accuracy

Classification accuracy measures the
proportion of correctly predicted instances from the
total samples and directly indicates a model’s overall
reliability. In Figure 1 and Table 2, the x-axis
denotes the classification algorithms evaluated,
while the y-axis shows their corresponding accuracy
percentages. OD-DSAE achieves the lowest
accuracy (57.106%) because its hierarchical outlier
detection introduces structural rigidity, making it
unable to adapt to overlapping or noisy GDM
patterns. AHDHS improves slightly (69.390%) but
struggles due to its lack of dynamic feedback and
reliance on static base learner combinations. WTSO-
MLP outperforms both (75.518%) as its
optimization strategy fine-tunes multilayer weights
to enhance convergence and pattern extraction. The
algorithm’s adaptive feature prioritization, guided
by bio-inspired search, helps capture non-linear
clinical relationships, improving predictive accuracy
for GDM detection.

80

75
70

65
60

Result (%)

55

50

OD-DSAE  AHDHS WTSO-MLP
Classification Algorithms

Figure 1. Comparative Evaluation of Classification
Accuracy

Table 2. Quantitative Assessment of Classification

Accuracy
Classification Classification
Algorithms Accuracy (%)
OD-DSAE 57.106
AHDHS 69.390
WTSO-MLP 75.518

5.2 Matthews Correlation Coefficient

Matthews Correlation Coefficient (MCC)
evaluates the balance between true and false
predictions across both classes, making it
particularly effective for imbalanced datasets like
GDM screening. A higher MCC indicates stronger
predictive consistency. In Figure 2 and Table 3, the
x-axis lists the classification algorithms, while the y-
axis indicates their MCC scores in percentage. OD-
DSAE shows the weakest performance (14.991%)
because its static reconstruction-based learning fails
to distinguish subtle minority class cues, and its
hierarchical outlier clustering overlooks temporal
imbalances. = AHDHS  improves  marginally
(38.701%) but still suffers from over-reliance on
ensemble diversity without controlling for intra-
learner conflict, which reduces decision precision.
WTSO-MLP achieves the best score (51.006%) due
to its optimization-driven weight refinement and
capacity to dynamically adjust layer priorities. This
enhances its ability to capture minority risk signals,
leading to a more balanced classification outcome.
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Figure 2. Comparative Evaluation of Matthews
Correlation Coefficient
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Table 3. Quantitative Assessment of Matthews
Correlation Coefficient

Classification Matthews Correlation
Algorithms Coefficient (%)
OD-DSAE 14.991
AHDHS 38.701
WTSO-MLP 51.006

5.3 Error Rate

Error rate, the inverse of accuracy, reflects
how often a model makes incorrect predictions.
Lower values imply better decision reliability. As
seen in Figure 3 and Table 4, the models are plotted
along the x-axis, and their respective error
percentages are charted along the y-axis. OD-DSAE
reaches a peak error rate of 42.894%, which reveals
its instability in real-world GDM diagnosis, likely
caused by its inability to adjust for clinical noise or
accommodate overlapping data patterns. AHDHS
reduces the error somewhat (30.610%) but lacks
mechanisms to align base learners toward consistent
decision  boundaries, leading to residual
misclassifications. WTSO-MLP, by contrast,
delivers the lowest error (24.482%), demonstrating
its robustness. Its white tiger swarm optimization
strategy makes this possible, which fine-tunes neural
layers to suppress erratic outputs and focus learning
on medically relevant risk features.

45

36

27

18

Result (%)

OD-DSAE AHDHS WTSO-MLP

Classification Algorithms

Figure 3. Comparative Evaluation of Error Rate

Table 4. Quantitative Assessment of Error Rate

Classification Algorithms Error Rate (%)
OD-DSAE 42.894
AHDHS 30.610
WTSO-MLP 24.482

5.4 Youden’s Index

Youden’s Index reflects how well a
classifier separates true positives from false
negatives and true negatives from false positives,
offering a balanced view of diagnostic power. In
Figure 4 and Table 5, the x-axis presents the
algorithm names, while the y-axis quantifies their
Youden’s Index in percentage. OD-DSAE’s score
(14.942%) remains low, showing its poor
discrimination,  primarily = caused by its
reconstruction-driven architecture that fails to
handle overlapping boundary regions. AHDHS
reaches 38.673%, indicating moderate detection
balance, yet its fixed meta-learner structure prevents
adaptive threshold tuning across diverse patient
profiles. WTSO-MLP stands out with 50.934%. This
strength stems from its optimization-guided tuning
of inter-layer dependencies, which dynamically
adjusts sensitivity and specificity. Its ability to
localize decision thresholds and weigh high-impact
clinical cues contributes directly to its superior
diagnostic separation between GDM and non-GDM
populations.
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Figure 4. Comparative Evaluation of Youden’s
Index
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Table 5. Quantitative Assessment of Youden'’s Index

Table 6. Quantitative Assessment of Critical Success

Index
Classification Algorithms Youden’s Index (%) - - o
Classification Critical Success Index
1 0
OD-DSAE 14.942 Algorithms (%)

OD-DSAE 40.776
AHDHS 38.673

AHDHS 54.473
WTSO-MLP 50.934

WTSO-MLP 61.882

5.5 Critical Success Index

The Critical Success Index (CSI) quantifies
a model’s ability to correctly identify true positive
cases while penalizing false positives and false
negatives. This makes it a vital metric in clinical
prediction tasks like GDM diagnosis, where both
missed detections and false alarms can have
significant consequences. In Figure 5 and Table 6,
the classification models are plotted along the x-axis,
while their corresponding CSI values are charted on
the y-axis. OD-DSAE reports the lowest CSI
(40.776%), suggesting limited effectiveness in
recognizing at-risk pregnancies. This outcome is
linked to its weak detection granularity and inability
to prioritize boundary-risk cases effectively.
AHDHS performs moderately (54.473%) but still
faces challenges, such as reduced specificity due to
ensemble conflicts among inconsistent base learners.
WTSO-MLP records the highest CSI (61.882%) by
incorporating swarm intelligence to adaptively
refine  classification  weights,  significantly
improving its ability to flag clinically relevant GDM
cases while minimizing false detections consistently.
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Figure 5. Comparative Evaluation of Critical Success
Index

6. DIFFERENCE FROM PRIOR WORK AND
COMPARATIVE ANALYSIS

Prior research on Gestational Diabetes
Mellitus (GDM) prediction has predominantly relied
on traditional statistical approaches, standard
machine learning algorithms, or deep learning
models without tailored optimization strategies.
Many of these studies were retrospective in nature,
constrained by limited data quality, and exhibited
low sensitivity when applied to diverse populations.
They often lacked mechanisms for effective feature
selection, were prone to overfitting, and did not

address computational efficiency in real-time
screening scenarios.

The proposed White Tiger Swarm
Optimization-Enhanced =~ Multilayer ~ Perceptron

(WTSO-MLP) differs substantially by integrating a
bio-inspired optimization strategy to simultaneously
refine MLP weights, biases, and input feature
subsets. This method emulates cooperative hunting
behavior to balance exploration and exploitation in
the parameter space, improving convergence speed
and accuracy. The use of prospectively collected,
high-quality ~ clinical data  ensures better
generalizability compared to models trained on
retrospective  datasets.  Evaluation metrics—
including accuracy, sensitivity, specificity, and
AUC—demonstrate notable improvements over
conventional algorithms.

From a positive standpoint, WTSO-MLP
offers high predictive accuracy, robust adaptability

across heterogeneous populations, improved
interpretability via reduced feature sets, and
operational efficiency suitable for real-time

deployment. On the downside, the model’s
optimization process is computationally intensive
during training, requiring higher processing
resources, and its bio-inspired mechanism
introduces hyperparameters that demand careful
tuning for optimal performance. Despite these
considerations, the model’s advantages align
strongly with the pressing need for early, accurate,
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and equitable GDM prediction, marking a clear
advancement over prior work.

7. DIFFERENCE IN CONTRIBUTION AND
ACHIEVEMENT OF OBJECTIVES

Compared to previous GDM prediction
studies that often relied on retrospective datasets,
limited feature handling, or conventional classifiers,
the WTSO-MLP framework introduces a novel
integration of bio-inspired optimization with a
neural network for simultaneous parameter tuning
and feature subset selection. The objectives—to
improve early-stage detection, enhance predictive
accuracy, and ensure adaptability across diverse
populations—were met through high MCC, low
error rate, and superior Youden’s Index and CSI
scores. These outcomes surpass those reported in the
reviewed literature, where many models suffered
from overfitting, poor generalization, or limited
clinical applicability. The contribution lies not only
in methodological innovation but also in
demonstrating prospectively validated,
generalizable performance, offering a clinically
viable alternative to existing approaches.

8. CONCLUSION

The WTSO-MLP model provides a novel
approach for early detection of Gestational Diabetes
Mellitus (GDM), addressing key clinical and societal
challenges associated with traditional diagnostic
methods. By combining White Tiger Swarm
Optimization (WTSO) with Multilayer Perceptron
(MLP), this model enhances predictive accuracy,
generalization, and interpretability, offering a more
accessible and non-invasive tool for GDM risk
prediction. Improving classification sensitivity and
reducing unnecessary tests holds significant
potential for improving patient care, particularly in
underserved populations. Beyond its immediate
clinical applications, the model’s efficiency and
scalability can aid in systematic healthcare
improvements by enabling earlier interventions and
reducing long-term healthcare costs. Ethical
considerations, including data privacy, have been
central in ensuring the model can be trusted in real-
world settings. Future efforts will focus on
expanding the model’s adaptability across diverse
patient demographics, integrating it into mobile
health  platforms, and further optimizing
performance for real-time clinical use. The WTSO-
MLP framework promises to make a meaningful
contribution to global maternal health, ensuring that
GDM detection becomes more efficient, equitable,
and impactful worldwide.
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