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ABSTRACT 

Gestational Diabetes Mellitus (GDM) is a critical pregnancy-related complication that affects both maternal 
and neonatal health. Although commonly used for diagnosis, the Oral Glucose Tolerance Test (OGTT) is 
invasive, time-consuming, and fails to provide early detection. Inconsistent screening guidelines further 
complicate the identification of high-risk pregnancies, emphasizing the need for more accurate and timely 
predictive tools. This research develops a robust, non-invasive prediction model for GDM risk using White 
Tiger Swarm Optimization-enhanced Multilayer Perceptron (WTSO-MLP). The goal is to enhance early 
detection by integrating bio-inspired optimisation techniques to improve model performance while reducing 
dependency on invasive tests, such as OGTT. The WTSO-MLP model combines White Tiger Swarm 
Optimisation (WTSO) with Multilayer Perceptron (MLP) to optimise weight configurations, trained on a 
dataset of 3,525 instances that contain clinical and demographic data. Class imbalance has been addressed 
through adaptive techniques. Model performance has been evaluated using the Matthews Correlation 
Coefficient (MCC), Error Rate, Youden’s Index, and Critical Success Index (CSI). This study contributes 
new knowledge by demonstrating how a bio-inspired optimization strategy can simultaneously refine neural 
network parameters and feature subsets using prospectively collected data, achieving superior accuracy, early 
detection capability, and adaptability across diverse clinical settings. The WTSO-MLP model outperformed 
traditional methods, achieving high performance in GDM prediction, especially for early-stage detection. 
The model demonstrated improved generalization, reduced misclassifications, and higher MCC scores, 
making it a reliable tool for clinicians. The WTSO-MLP model provides an innovative, efficient solution for 
early GDM risk prediction, improving diagnostic accuracy, generalization, and interpretability. It can 
seamlessly integrate into clinical workflows to enable early, non-invasive GDM assessments, ultimately 
enhancing maternal and fetal health outcomes. 
Keywords: Healthcare, Diabetes, GDM, WTSO-MLP, Swarm Optimization 

1. INTRODUCTION 

 Diabetes mellitus encompasses a group of 
metabolic disorders marked by elevated blood 
glucose levels, among which gestational diabetes 
mellitus (GDM) appears as a pregnancy-specific 
form. This condition emerges through impaired 
carbohydrate metabolism influenced by placental 
hormones [1]. GDM presents diagnostic challenges, 
as its onset is asymptomatic and confined to the 
gestational period. The condition usually develops 
between 24 and 28 weeks of pregnancy, though its 

early pathophysiological effects begin much earlier. 
Global prevalence fluctuates widely due to 
variations in population genetics, clinical practices, 
and diagnostic criteria [2]. Such variability 
complicates risk assessment and standardization. 
With increasing maternal age, rising obesity rates, 
and sedentary lifestyles, GDM continues to rise 
globally. The lack of clear thresholds and universally 
accepted screening criteria has created uncertainty in 
identifying true risk groups [3]. Addressing this 
problem demands a framework that considers 
physiological, demographic, and clinical factors 
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while maintaining computational feasibility and 
fairness across diverse populations [4], [5]. 

GDM contributes substantially to adverse 
maternal and neonatal health outcomes, with direct 
effects on birth complications, delivery 
interventions, and postnatal care. These effects 
include excessive fetal growth, birth trauma, and 
maternal hypertensive disorders, which often require 
intensive monitoring and medical support [6]. Long-
term metabolic consequences emerge in both the 
mother and child, including elevated risk of future 
type 2 diabetes and cardiovascular conditions. These 
risks lead to sustained healthcare engagement and 
recurring medical expenditure, especially in low-
resource environments [7]. The socio-economic 
impact intensifies with indirect costs such as time 
away from work, specialized dietary planning, and 
limited access to prenatal services in remote or 
underserved regions. Diagnosis through laboratory 
testing increases this burden, particularly when 
unnecessary OGTT procedures are administered 
broadly without risk differentiation [8], [9]. Health 
disparities, care accessibility, and testing fatigue 
have made it essential to adopt targeted, early-stage 
diagnostic support that reduces avoidable 
intervention while prioritizing safety [10], [11]. 

Recent years have seen widespread interest 
in applying machine learning (ML) and deep 
learning (DL) to predict GDM from routine clinical 
records. These approaches rely on algorithmic 
models trained on historical data to classify high-risk 
cases based on medical and demographic inputs. 
While promising, such models often suffer from low 
sensitivity and reduced reliability across varying 
populations [12]. Using retrospective and 
imbalanced datasets, combined with limited 
diversity in training sources, introduces bias and 
lowers generalization capacity. Clinical practitioners 
hesitate to adopt these systems due to poor 
interpretability, unstable outputs, and limited control 
over decision boundaries [13]. Most models struggle 
with early-stage prediction, failing to capture subtle 
physiological indicators visible only in the initial 
trimester. Technical gaps in model design, absence 
of domain-aware learning constraints, and inability 
to quantify clinical confidence in outputs further 
restrict real-world use. These persistent deficiencies 
indicate a critical need to develop stable, 
explainable, context-aware frameworks trained on 
purpose-built, prospectively gathered data [14]. 

Bio-inspired optimization has emerged as a 
suitable enhancement to deep learning workflows, 
addressing training limitations through natural 
intelligence principles. Swarm-based techniques 

imitate decision processes observed in nature to 
search for optimal model configurations under 
uncertain, non-linear conditions [15]. These 
strategies outperform traditional gradient-based 
learning in handling complex loss surfaces and 
feature dependencies. Inspired by adaptive behaviors 
in predatory environments, White Tiger Swarm 
Optimization (WTSO) incorporates stealthy 
exploration, responsive territory modulation, and 
controlled convergence [16]. These mechanisms 
contribute to a model’s ability to refine weights 
adaptively without excessive drift. Multilayer 
Perceptrons (MLPs), known for their versatility in 
structured data learning, benefit from such guided 
optimization by avoiding overfitting and improving 
convergence stability. This adaptive potential 
becomes highly relevant in predicting GDM, where 
population heterogeneity, clinical variable 
interaction, and early physiological cues demand 
nuanced learning [17]. Combining biologically 
grounded optimization with an MLP architecture 
creates an informed pathway toward reliable GDM 
risk prediction with improved interpretability and 
clinical alignment. 

GDM presents a critical public health challenge 
due to its rising global prevalence, potential for 
severe maternal–fetal complications, and strong link 
to future type 2 diabetes. Current screening practices, 
particularly OGTT, face limitations in accuracy, 
efficiency, and accessibility, leading to both over-
testing and missed diagnoses. This research focuses 
on developing an advanced predictive model to 
enable early, reliable, and resource-efficient GDM 
risk identification, directly addressing these clinical 
and societal needs. 

Bio-inspired optimization leverages patterns and 
strategies observed in nature to navigate complex 
solution spaces efficiently, adapting search behavior 
to dynamic problem landscapes [18]-[37]. By 
balancing wide-ranging exploration with focused 
refinement, it enables predictive models to reach 
optimal configurations that deliver both high 
accuracy and robust generalization, aligning closely 
with the desired research outcomes [38]-[57]. 

1.1 Problem Statement 

 GDM presents a persistent clinical 
challenge due to inconsistencies in screening 
guidelines, unreliable diagnostic thresholds, and 
variability in patient populations. Despite its 
substantial impact on maternal and neonatal 
outcomes, no universal consensus exists regarding 
whether all pregnant women should undergo oral 
glucose tolerance testing (OGTT) or only those in 
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defined risk groups. The OGTT poses challenges— 
invasive, time-consuming, costly, and often poorly 
tolerated—leading to suboptimal compliance. 
Existing risk-based models suffer from subjective 
definitions of risk factors and usually miss early-
stage detection, particularly in the first trimester 
when intervention may be most effective. Moreover, 
variations in GDM prevalence (1–22%) across 
regions and datasets reflect the lack of standardized 
diagnostic practices and contribute to over- or under-
diagnosis. Machine learning models proposed for 
GDM prediction have shown limited sensitivity and 
reliability, mainly due to their reliance on 
retrospective data, imbalanced class distributions, 
and inconsistent electronic health record (EHR) 
quality. These models often lack interpretability, 
which impedes clinical acceptance and regulatory 
approval. Real-world deployment further demands 
generalization across diverse populations and 
transparent reasoning in decision-making. These 
limitations collectively indicate a critical need for 
accurate, early, and generalizable predictive 
methods that reduce unnecessary testing while 
preserving clinical trust and diagnostic precision. 

1.2 Motivation 

GDM poses a serious public health challenge 
with far-reaching societal consequences. Its 
undetected progression not only jeopardizes 
maternal and neonatal health but also significantly 
increases the long-term risk of developing type 2 
diabetes in both mother and child. Current screening 
methods, such as the oral glucose tolerance test 
(OGTT), are invasive, resource-intensive, and often 
inaccessible in rural or underserved regions, 
contributing to disparities in prenatal care. 
Inaccurate or delayed diagnosis leads to unnecessary 
interventions for some and missed preventive 
opportunities for others. The healthcare system bears 
the cumulative economic burden through increased 
hospitalizations, long-term diabetes care, and 
associated complications. Early and equitable 
identification of at-risk pregnancies would allow 
timely interventions, reduce complications, and 
optimize healthcare resource allocation. Societal 
well-being can be advanced through predictive tools 
that integrate with digital health systems, enabling 
cost-effective, scalable, and personalized risk 
assessment. Empowering clinicians and 
communities with such capabilities fosters 
preventive care, promotes health equity, and 
mitigates the growing intergenerational impact of 
diabetes across populations. 

 

1.3 Objective 

This research aims to develop an early, 
adaptive, and interpretable predictive model named 
WTSO-MLP (White Tiger Swarm Optimization-
enhanced Multilayer Perceptron) for identifying 
individuals at risk of GDM before clinical 
manifestation. This work aims to overcome the core 
challenges in current GDM screening practices, such 
as dependence on invasive OGTT, ambiguous 
diagnostic thresholds, and variable classification 
accuracy in traditional machine learning approaches. 
The WTSO-MLP model integrates nature-inspired 
swarm intelligence with deep learning to 
dynamically refine neural weights, maintain 
prediction stability, and improve diagnostic 
sensitivity across diverse populations. Special 
emphasis has been placed on achieving high 
classification accuracy and enhancing 
interpretability using model-explainable outputs to 
facilitate clinical trust. The model includes an 
embedded strategy to regulate learning dynamics 
through a circadian rhythm-based learning rate and 
applies a multi-strategy optimization mechanism to 
escape local minima. The proposed framework is 
intended for practical integration into clinical 
decision-support environments, enabling 
personalized risk assessment, reduced diagnostic 
burden, and timely intervention, thereby promoting 
scalable, equitable, and preventive prenatal 
healthcare. 

2. LITERATURE REVIEW 

“Wearable TFT Insight” [58] integrates CGM 
streams with static user data into a Temporal Fusion 
Transformer (TFT) model that applies self-attention 
to emphasize recent trends. Static features like 
demographics are embedded into time-series input. 
After cloud training, the model is compressed and 
deployed onto a system-on-chip. The edge device 
processes glucose predictions in real-time using 
sensor input, temporal patterns, and compact 
computation, enabling personalized and low-power 
glucose forecasting without cloud reliance. “Three-
Track Risk Grid” [59] combines regression-based 
statistical formulas, classical machine learning 
classifiers, and deep neural architectures to model 
diabetes progression. Regression maps biomarkers 
to outcomes, ML classifiers like SVM and Random 
Forests rank predictive features, and deep networks 
handle non-linear patient history. Data preparation 
includes normalization and missing data handling. 
Each model is validated using AUC and recall 
metrics. “Feature-to-Controller Bridge” [60] links 
glucose trends, insulin intake, and carb logs with 
rule-based, regression, and neural models using 
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constraint-aware learning. Data is preprocessed into 
structured sequences and routed into multiple 
predictive layers—clinical safety zones, like 
hypo/hyperglycemia thresholds, guide training 
targets. Output predictions are evaluated using real-
world safety metrics and explained using 
SHAP/LIME. Feedback loops adjust insulin 
forecasts dynamically.  

“Pathway Tree” [61] uses random forest 
survival models to trace transitions between immune 
states by capturing autoantibody timelines. Patient 
data is segmented into event intervals and encoded 
with biomarkers and history. Two forests separately 
forecast early immune conversion and clinical onset, 
using time-to-event learning. Each tree estimates 
transition likelihood by statistical splits. Importance 
scores rank features influencing disease risk. “HER-
Aware Attention Net” [62] reformats inconsistent 
health records into ordered multi-feature maps 
capturing local and long-term signal patterns. 
Temporal derivatives and statistical summaries 
enhance variability tracking. Dual attention 
mechanisms highlight essential features and time 
frames. Time-aware embeddings handle missingness 
while medical ratings add clinical context. A 
classifier fuses all levels to output risk probabilities. 
“Stack-Guided Fusion Core” [63] merges CNNs, 
RNNs, and DNNs into a meta-learning stack where 
each base learner captures distinct clinical patterns. 
Raw medical data is scaled and fed to the learners, 
whose outputs are aggregated through a gradient-
based meta-learner. Attention and calibration 
modules guide interpretability and confidence 
scoring. Final predictions emerge from a harmonized 
view of structural, sequential, and relational features.  

“Demographic-Stratified Voting Grid” [64] 
segments the dataset by gender and age, fitting 
separate models to each group using scaled clinical 
inputs. Each subgroup uses tailored encoders and 
trains multiple learners, such as SVM, RF, and 
boosting. Predictions are aggregated with weighted 
voting based on subgroup performance. A 
calibration layer aligns subgroup outputs into a 
unified prediction. “Prior-Infused Bayesian Filter” 
[65] fuses CGM data with domain-informed priors 
using a Bayesian filtering pipeline. Glucose patterns, 
meal intake, and insulin history are observed 
features, while expert physiological expectations 
guide state transitions. Gaussian Process Regression 
models noise, and Kalman filtering smoothens 
outputs. Bayes’ rule updates posterior predictions 
with each time step, reflecting learned dynamics and 
clinical bounds. “Hierarchical Layer Fusion” [66] 
combines deep neural feature extraction with 
ensemble tree classifiers. Initial layers include 

bidirectional LSTM and dense networks that learn 
sequence- and context-sensitive health patterns. 
These embeddings feed into classifiers like Random 
Forest and Gradient Boosting, optimized via 
Bayesian tuning. Softmax temperature scaling 
adjusts prediction certainty. SHAP values and class 
activation overlays identify dominant biomarkers.  

“Confidence-Calibrated Meta Loop” [67] 
blends MAML-based meta-learning with evidential 
deep networks for personalized glucose prediction. 
Historical data per subject is parsed into learning 
episodes, from which a generalized model is fine-
tuned with minimal steps. Evidential layers yield 
belief intervals alongside forecasts, while a critic 
loss penalizes overconfident errors. “Explanation 
Dual Lens” [68] compares LIME and SHAP 
interpretations over models predicting diabetes from 
structured clinical data. LIME builds local surrogate 
models through input perturbation to determine 
impactful features per instance. SHAP computes 
global feature contributions using Shapley values 
derived from all feature subsets. Tree SHAP 
accelerates evaluations for tree-based models. 
“Subspace Fusion Select” [69] integrates radiomic 
and clinical features using multi-view subspace 
clustering for diabetes risk after pancreatectomy. 3D 
scan-derived wavelet features and structured patient 
data are clustered into latent groups, identifying 
cross-view correlations. MSCUFS selects high-
relevance features within and across views. Selected 
features are fused and passed to a classifier like 
SVM. Imaging and clinical metrics reinforce one 
another through clustering-guided fusion, modeling 
post-surgical diabetes onset with improved 
consistency. 

“Edge-Attentive IoMT Loop” [70] enables 
wearable glucose forecasting through real-time deep 
learning on edge devices. Glucose readings are 
streamed into an attention-equipped recurrent 
network, prioritizing recent influential data points. 
The system operates on-device to minimize latency 
and compute offloading. A connected mobile app 
provides alerts and visualization. Model updates 
occur periodically in the cloud. “PA-BGL Fusion 
Layers” [71] incorporates heart rate and movement 
data with glucose trends using three fusion 
strategies. Signal-level fusion directly aligns sensor 
inputs, feature-level fusion derives statistical activity 
metrics, and decision-level fusion averages outputs 
from separate models. The system learns 
physiological reactivity from short bursts and 
prolonged behaviors. “Sensor-Stacked Fusion Grid” 
[72] aggregates time-series data from glucose, ECG, 
motion, and respiration sensors. Each signal 
undergoes feature extraction, producing structured 
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vectors. Sensor combinations are evaluated with 
XGBoost, determining which sensor sets yield 
optimal predictive accuracy. Fusion prioritizes 
glucose, ECG, and motion data. Redundant sensors 
are discarded.  

“Adaptive Harmony-Driven Hybrid Stacking 
(AHDHS)” [73] explores a dual-optimized ensemble 
model suited for early gestational diabetes 
prediction. Unlike traditional stacking, which treats 
features and learners as static, AHDHS uses 
harmony search to select both dynamically. It 
eliminates redundant variables, such as correlated 
hormone indicators, while optimizing classifier 
synergy. The result is a leaner ensemble that 
responds well to limited, early-trimester datasets. 
This structure improves detection precision during 
early check-ups when symptom patterns are weak or 
variable, reducing dependence on late-stage lab-
based diagnostics. “Outlier Detection with Deep 
Stacked Autoencoder (OD-DSAE)” [74] presents a 
robust mechanism for early GDM screening by 
integrating hierarchical anomaly detection with deep 
representation learning. Due to noisy data and 
unfiltered extremes, traditional clinical models often 
miss atypical cases. OD-DSAE removes such 
irregularities through mutual information-based 
clustering and learns discriminative representations 
via autoencoders. Unlike shallow predictors, it 
preserves patient-specific glucose dynamics while 
generalizing across screening windows. This hybrid 
ensures reduced false positives during early 
gestation, a critical phase for initiating dietary or 
insulin intervention.  

2.1. Problem Hypothesis 

It is hypothesized that the limitations of current 
GDM screening such as the invasiveness of OGTT, 
inconsistent diagnostic thresholds, and low 
sensitivity for early detection can be overcome by 
integrating a bio-inspired optimization strategy with 
a neural network classifier. By combining White 
Tiger Swarm Optimization (WTSO) with a 
Multilayer Perceptron (MLP), it is possible to 
simultaneously optimize model parameters and 
select the most relevant features from high-quality, 
prospectively collected clinical data. This approach 
is expected to improve predictive accuracy, enhance 
early-stage detection, reduce unnecessary testing, 
and adapt effectively across diverse patient 
populations. 

3. PROPOSED METHODOLOGY 

The White Tiger Swarm Optimization-
enhanced Multilayer Perceptron (WTSO-MLP) 
model has been developed to predict Gestational 

Diabetes Mellitus (GDM) using clinical and 
demographic data. This research integrates White 
Tiger Swarm Optimization (WTSO) with Multilayer 
Perceptron (MLP) to improve prediction accuracy 
while reducing reliance on invasive tests like OGTT. 
The model is trained and validated using a dataset of 
3,525 instances, collected prospectively from 2019 
to 2021. This study aims to identify individuals at 
high risk for GDM early, preventing unnecessary 
testing and improving timely interventions. The 
model focuses on providing an interpretable and 
computationally efficient solution that can be 
integrated into clinical decision support systems, 
helping optimize healthcare resources and 
improving maternal health outcomes. 

3.1 Initialization 

The initialization phase in WTSO-MLP defines 
the neural network architecture and encodes the 
search space for weight optimization. This phase 
establishes input feature representation, assigns 
initial weight values, and structures the swarm-based 
optimization framework inspired by white tiger 
behavioral mechanisms. Proper initialization 
enhances training stability, convergence speed, and 
search efficiency in GDM prediction. 

A multilayer perceptron designed for GDM 
prediction consists of input, hidden, and output 
layers, where each neuron represents a clinical 
feature or activation unit. The initialization phase 
ensures that the feature representations capture non-
linear relationships between biological and lifestyle 
factors affecting GDM risk. 

𝑋 = {𝑥ଵ, 𝑥ଶ, … , 𝑥௡},
𝑥௜ ∈ 𝑅,   𝑖 = 1,2, … , 𝑛 

(1) 

 

𝑊௟ = ൛𝑤௜௝
௟ 𝑖 ∈ [1, 𝑚], 𝑗 ∈ [1, 𝑛]ൟ (2) 

The feature set 𝑋 consists of 𝑛 clinical 
parameters such as glucose level, BMI, insulin 
resistance, and blood pressure, while 𝑊௟ represents 
the weight matrix in layer 𝑙, where 𝑚 and 𝑛 denote 
neuron counts in successive layers. Proper 
initialization of 𝑊௟ is essential for stable gradient 
propagation and practical training. 

Each white tiger agent in WTSO represents 
a unique candidate weight configuration that 
undergoes adaptive optimization. The initialization 
step assigns each agent a randomly generated weight 
set, ensuring diverse exploration in the search space. 



 
 Journal of Theoretical and Applied Information Technology 

15th October 2025. Vol.103. No.19 
©   Little Lion Scientific  

 
ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
8027 

 

𝜃௜
(଴)

= 𝛼 ∙ 𝑁(0, 𝜎ଶ) (3) 

𝑃௜௡௜௧ = ቄ𝜃ଵ
(଴)

, 𝜃ଶ
(଴)

, … , 𝜃ே
(଴)

ቅ (4) 

The initial weight parameter 𝜃௜
(଴) for each 

agent 𝑖, a Gaussian distribution 𝑁(0, 𝜎ଶ), where 𝜎ଶ 
is the variance control factor. The population 𝑃௜௡௜௧  
consists of 𝑁 white tiger agents, each encoding a 
unique weight set. This design ensures search 
diversity, preventing premature convergence. 

Inspired by white tigers’ adaptive hunting 
strategies, the search region dynamically expands or 
contracts depending on convergence rates. This 
prevents excessive exploitation in the suboptimal 
areas and allows compelling weight exploration. 

𝑆௜
(଴)

= 𝑆௠௜௡ + (𝑆௠௔௫ − 𝑆௠௜௡) ∙ 𝑒ିఒ௧ (5) 

          Δ𝑊௜
(଴)

= 𝜂 ∙ (𝑊௠௔௫ − 𝑊௠௜௡) ∙ 𝜉 (6) 

The search boundary function 𝑆௜
(଴)expands 

or contracts based on a decay factor 𝜆 and iteration 

step 𝑡. The perturbation function Δ𝑊௜
(଴)introduces 

controlled randomness, where 𝜂 is an adaptive factor 
and 𝜉 follows a normal distribution to introduce 
stochastic variations. 

Bias parameters modify neuron activation 
thresholds, allowing flexibility in decision boundary 
shifts. An adaptive thresholding method inspired by 
tiger predation strategies has been applied to fine-
tune bias values. 

𝑏௜
(଴)

= 𝛾 ∙ 𝑡𝑎𝑛ℎ(𝛿௜) (7) 

     𝑇௧௛௥௘௦௛௢௟ௗ =
ଵ

ே
∑ ห𝜃௜

(଴)
หே

௜ୀଵ  (8) 

The initial bias vector 𝑏௜
(଴)

 follows a 
hyperbolic tangent transformation, where 𝛾 is a 
scaling factor, and 𝛿௜ is a randomized initialization 
term. The adaptive threshold function 𝑇௧௛௥௘௦௛௢௟ௗ  
ensures stable gradient flow by normalizing initial 
weight magnitudes. 

3.2 Swarm Generation 

The swarm generation phase in WTSO-
MLP has established an adaptive population-based 
search framework, where each white tiger agent 
represents a potential solution for neural network 
weight optimization. The initialization has ensured 
diversity in the search space by distributing agents 
across multiple regions, facilitating exploration and 

exploitation during training. The designed swarm 
structure enhances the model’s ability to detect non-
linear patterns in GDM prediction, improving 
classification accuracy and computational 
efficiency. 

The swarm consists of agents, each 
encoding a distinct set of weight parameters for the 
neural network. These agents navigate the search 
space, evaluating loss functions and adjusting 
positions based on an adaptive search mechanism. 
The population distribution has been structured to 
maintain diversity, ensuring efficient convergence to 
optimal weight configurations. 

𝑃 = {𝐴ଵ, 𝐴ଶ, … , 𝐴ே},
𝐴௜ = {𝜃௜ଵ, 𝜃௜ଶ, … , 𝜃௜௠} 

(9) 

 

𝑀 = ෍ 𝐴௜

ே

௜ୀଵ

∙ Ψ(𝐴௜) (10) 

The swarm set 𝑃 comprises 𝑁 agents, and 
each agent. 𝐴௜ storing a unique set of weight values 
𝜃௜௝, where 𝑚 represents the total parameter count. 
The adaptive weight modulation matrix 𝑀 has been 
computed using the fitness-based modulation 
function Ψ(𝐴௜), ensuring an intelligent distribution 
of agents across the search space. 

The placement of agents within the search 
space has been distributed dynamically, ensuring 
balanced coverage across different weight 
configurations. This structure allows the swarm to 
converge efficiently, without stagnating in 
suboptimal solutions. 

𝑆௜
(଴)

= Ω௜ ∙ ൬
Γ௠௔௫ − Γ௠௜௡

𝑁
൰ + Γ௠௜௡ (11) 

𝑉௜ = Λ ∙ ൫𝑆௜
(଴)

− 𝑆̅൯ (12) 

The initial spatial allocation function 

𝑆௜
(଴)determines the placement of each agent within 

the predefined search bounds Γ௠௔௫ and Γ௠௜௡ . The 
velocity initialization function 𝑉௜ assigns an adaptive 
search movement parameter, where 𝛬 scales the 
deviation from the mean position 𝑆̅. This ensures a 
controlled yet dynamic exploration process. 

Each white tiger agent has been assigned 
behavioral characteristics that dictate its exploration-
exploitation tendencies. These behaviors are 
inspired by real-world predation strategies, ensuring 
effective weight adjustments for optimizing the 
MLP model. 
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𝐹௜ =
𝑒ఝௗ೔

1 + 𝑒ିఝௗ೔
 (13) 

𝑇௜ = 𝜎 ∙ 𝑠𝑖𝑔𝑛(𝐹௜ − 𝜉) (14) 

The fitness-based exploration coefficient 
𝐹௜modulates search behavior based on the distance 
factor 𝑑௜ from the current optimal weight set. The 
territory shift factor 𝑇௜  determines whether an agent 
will expand or contract its search space, based on a 
comparison with a random exploration coefficient 𝜉. 
This strategy enhances the adaptability of the swarm 
during optimization. 

To balance computational efficiency and 
search effectiveness, the swarm has undergone 
density-based refinement, adjusting the number of 
active agents based on search progress. 

𝐷௔௖௧௜௩௘ = 𝑁 ∙ (1 − 𝑒ି௞௧) (15) 

𝐴௥௘௙௜௡௘ௗ = ෍ 𝐴௜

஽ೌ೎೟೔ೡ೐

௜ୀଵ

 (16) 

 

The active agent count 𝐷௔௖௧௜௩௘  increases 
progressively based on the iteration index 𝑡 and an 
adaptive growth factor 𝜅. The refined swarm 
𝐴௥௘௙௜௡௘ௗ  consists only of agents contributing to 
significant search improvements, preventing 
redundant computations. 

3.3 Forward Propagation 

The forward propagation phase in WTSO-
MLP has enabled the sequential flow of input data 
through the network, generating weighted 
summations and activations in each layer. This step 
has determined how efficiently the optimized 
weights extracted from swarm intelligence influence 
the model’s predictive capacity for GDM. The 
process has ensured non-linear transformation, 
enabling the network to map complex relationships 
between clinical attributes and GDM diagnosis 
outcomes. 

The input layer has received preprocessed 
clinical parameters, representing diverse biometric 
and metabolic attributes associated with GDM risk 
factors. The feature set has undergone a weighted 
summation, allowing each neuron to pass an 
adjusted value to the next computational stage. 

𝑍(ଵ) = 𝑋 ∙ 𝑊(ଵ) + 𝐵(ଵ) (17) 

The transformed input vector 𝑍(ଵ) has been 
obtained by multiplying the input matrix 𝑋 with the 
synaptic weight matrix 𝑊(ଵ) of the first layer, 
followed by the addition of a bias vector 𝐵(ଵ). This 
formulation has enabled the model to capture linear 
relationships between features while preserving 
weighted influences from previous WTSO-based 
optimizations. 

The weighted summation has been passed 
through a non-linear activation function, ensuring 
the model effectively captures hierarchical 
dependencies in GDM risk assessment. This 
activation mechanism has transformed the linear 
combinations into representations that allow deep 
feature extraction. 

𝐴(௛) = 𝜙൫𝑍(௛)൯ (18) 

The activation vector 𝐴(௛)at the ℎ-th hidden 
layer has been obtained using a non-linear activation 
function 𝜙(⋅). This function has regulated neuron 
responses, preventing vanishing gradients and 
enabling the network to retain significant feature 
patterns essential for accurate GDM classification. 
The choice of 𝜙 has determined the model’s ability 
to generalize across highly variable patient records. 

Each hidden layer has performed a 
weighted summation of activated neurons from the 
previous layer, progressively refining the learned 
representations. This phase has reinforced the 
contribution of highly discriminative features, 
enhancing the model’s predictive robustness. 

𝑍(௛ାଵ) = 𝐴(௛) ∙ 𝑊(௛ାଵ) + 𝐵(௛ାଵ) (19) 

The hidden-layer summation vector 𝑍(௛ାଵ) 
has been computed using the activation outputs 𝐴(௛) 
from the preceding layer, weighted by 𝑊(௛ାଵ) and 
adjusted using the bias term 𝐵(௛ାଵ). This operation 
has ensured a hierarchical transformation of the 
input data, enhancing the network’s ability to detect 
non-linear correlations among features indicative of 
GDM development. 

The final layer has transformed the 
processed features into a decision boundary, 
allowing the network to differentiate between 
diabetic and non-diabetic cases. The resulting scores 
have been mapped to probabilities, facilitating a 
binary classification process. 

𝑦ො = Φ൫𝑍(௅)൯ (20) 
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The predicted probability 𝑦ො has been 
computed using an activation function 𝛷(⋅) applied 
to the output summation 𝑍(௅) of the final layer. This 
function has ensured that predictions remain within 
a bounded range, allowing the model to infer the 
likelihood of GDM presence in a given patient. The 
choice of 𝛷 has dictated the network’s ability to 
generalize beyond training data. 

3.4 Fitness Evaluation 

The fitness evaluation phase in WTSO-
MLP has assessed the performance of each white 
tiger agent based on its assigned weight set. The 
evaluation has relied on loss computation, gradient 
stability, classification confidence, and entropy-
based uncertainty measures, ensuring the 
optimization process refines the model’s ability to 
predict GDM with high precision. The computed 
fitness values have determined the direction of 
weight adjustments, preventing premature 
convergence to suboptimal solutions. 

The optimization process has utilized a loss 
function to measure classification errors, guiding the 
agents toward configurations that minimize 
predictive deviations. The fitness assessment has 
relied on the computed difference between model 
predictions and true outcomes for each training 
instance. 

𝐹௟௢௦௦ = −
1

𝑁
෍[𝑦௜𝑙𝑜𝑔(𝑦ො௜)

ே

௜ୀଵ

+ (1 − 𝑦௜)𝑙𝑜𝑔(1 − 𝑦ො௜)] 

(21) 

The loss-based fitness function 𝐹௟௢௦௦ has been 
computed using a logarithmic function that measures 
the divergence between the true label 𝑦௜  and the 
predicted probability 𝑦ො௜. The fitness score has been 
negative, meaning lower loss values correspond to 
higher fitness, encouraging agents to optimize 
toward accurate weight distributions. 

The stability of gradient updates has 
influenced the fitness evaluation, preventing erratic 
oscillations during weight optimization. The 
magnitude of weight updates has been considered, 
ensuring convergence toward well-optimized values 
without excessive variance. 

𝐹௚௥௔ௗ =
1

𝑊
෍ ฬ

𝜕𝐹௟௢௦௦

𝜕𝑊(௟)
ฬ

௅

௟ୀଵ

 (22) 

The gradient-based fitness function 𝐹௚௥௔ௗ  
has measured the mean absolute gradient magnitude 
across all layers 𝐿, where 𝑊(௟) represents the weight 
matrix of layer 𝑙. This metric has ensured controlled 

weight updates, preventing sharp deviations that 
could lead to unstable training. 

The probability distribution of model 
predictions has contributed to fitness evaluations, 
ensuring the network exhibits high confidence in its 
decisions. This assessment has helped refine weights 
that improve decision boundary clarity. 

𝐹௖௢௡௙ =
1

𝑁
෍|𝑦ො௜ − 0.5|

ே

௜ୀଵ

 (23) 

The confidence-based fitness function 
𝐹௖௢௡௙  has measured the deviation of each predicted 
probability 𝑦ො௜ from the decision threshold of 0.5, 
ensuring a high separation between positive and 
negative GDM classifications. Larger values 
indicate more substantial confidence, contributing to 
better fitness evaluations. 

The optimization process has penalized 
predictions exhibiting high entropy, ensuring the 
model maintains decisive classification outputs. The 
fitness evaluation has incorporated an entropy 
regularisation term, promoting weight 
configurations that generate low-uncertainty 
predictions. 

𝐹௘௡௧ = −
1

𝑁
෍|𝑦ො௜𝑙𝑜𝑔(𝑦ො௜) + (1

ே

௜ୀଵ

− 𝑦ො௜)𝑙𝑜𝑔(1 − 𝑦ො௜)| 

(24) 

The entropy-based fitness function 𝐹௘௡௧ has 
measured the uncertainty level of model predictions. 
Low entropy values have indicated highly confident 
classifications, increasing fitness scores for weight 
sets that produce well-calibrated probability 
distributions. 

A composite fitness function has 
aggregated multiple evaluation criteria, ensuring that 
the selection mechanism retains only the most 
optimized weight sets in the swarm. This function 
has assigned adaptive importance to each fitness 
measure based on training dynamics. 

𝐹௧௢௧௔௟ = 𝜆ଵ𝐹௟௢௦௦ + 𝜆ଶ𝐹௚௥௔ௗ + 𝜆ଷ𝐹௖௢௡௙

+ 𝜆ସ𝐹௘௡௧ 
(25) 

The overall fitness function 𝐹௧௢௧௔௟ has been 
computed as a weighted summation of loss, gradient 
stability, classification confidence, and entropy-
based uncertainty, where 𝜆ଵ, 𝜆ଶ, 𝜆ଷ, 𝜆ସ are adaptive 
coefficients. The weighting mechanism has 
dynamically adjusted these coefficients based on the 
training progression, emphasizing relevant fitness 
components at different phases. 
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3.5 Territory Expansion and Contraction 

The territory expansion and contraction 
mechanism in WTSO-MLP has dynamically 
adjusted the search space boundaries for each white 
tiger agent based on the fitness landscape. This step 
has enabled the exploration of diverse weight 
configurations while ensuring the fine-tuned 
exploitation of optimal solutions. Adapting search 
regions has prevented stagnation in local minima, 
improving the network’s ability to learn non-linear 
feature representations essential for GDM 
prediction. 

The distribution of fitness scores across the 
swarm population determines the expansion of 
search territories. Agents exhibiting high variance in 
fitness values have expanded their search domains, 
ensuring broader coverage of potential weight 
configurations. 

𝑆௘௫௣ = 𝜇 + 𝜉 ∙ ඩ
1

𝑁
෍(𝐹௜ − 𝐹ത)ଶ

ே

௜ୀଵ

 (26) 

The expansion threshold 𝑆௘௫௣ has been 
computed using the mean fitness score 𝜇 and the 
standard deviation of fitness values. The expansion 
coefficient 𝜉 has scaled the influence of population 
diversity, ensuring controlled territory growth when 
fitness score dispersion has been high. 

Agents displaying minimal fitness 
variations have reduced their search territories, 
allowing precise fine-tuning of high-performing 
weight sets. This contraction mechanism has ensured 
computational efficiency, eliminating unnecessary 
weight adjustments for well-converged agents. 

𝑆௖௢௡ = 𝑆̅ ∙ 𝑒ିఒி್೐ೞ೟  (27) 

The contraction function 𝑆௖௢௡  has been 
formulated using the mean search space size 𝑆̅ scaled 
by an exponential decay function controlled by the 
best fitness score 𝐹௕௘௦௧. This strategy has ensured 
that highly optimized agents maintain localized 
refinements instead of unnecessary weight 
perturbations. 

An adaptive balance between search 
expansion and contraction has been implemented to 
optimize learning efficiency. This mechanism has 
adjusted the rate of territory modifications based on 
the fitness trend slope, ensuring smooth transitions 
between exploratory and exploitative phases. 

𝑆ௗ௬௡ = 𝜌 ∙ 𝑆௘௫௣ + (1 − 𝜌) ∙ 𝑆௖௢௡ (28) 

The dynamic search space function 
𝑆ௗ௬௡ has been computed as a weighted sum of 
expansion and contraction terms, where the 
coefficient 𝜌 has dictated the exploration-
exploitation tradeoff. This parameter has adapted 
throughout training, ensuring gradual refinement of 
model parameters. 

Agents that have failed to improve their 
fitness over multiple iterations have migrated to new 
search regions, preventing stagnation in poor-
performing territories. The migration function has 
been formulated to reposition agents while 
maintaining structural coherence randomly. 

𝑆௠௜௚ = 𝑆௖௢௡ + 𝛾 ∙ 𝑢(−𝜖, 𝜖) (29) 

The migration-adjusted search space 𝑆௠௜௚ 
has incorporated a random perturbation sampled 
from a uniform distribution 𝑢(−𝜖, 𝜖), ensuring that 
migrating agents explore new weight configurations. 
The coefficient 𝛾 has scaled the degree of 
randomness, preserving solution stability. 

3.6 Memory Retention and Social Interaction 

The memory retention and social 
interaction mechanism in WTSO-MLP has 
improved learning efficiency by preserving 
historically optimal weight configurations while 
enabling knowledge sharing among well-performing 
agents. This step has prevented information loss, 
ensured adaptive weight refinement, and enhanced 
the model’s capability to distinguish GDM risk 
factors through a cooperative search mechanism. 

The swarm maintained an elite memory 
containing the best weight configurations identified 
during optimization iterations. This memory 
structure has guided agents in avoiding repetitive 
exploration of suboptimal regions, ensuring a 
progressive improvement in weight refinement. 

𝑀௜ = 𝜆ଵ𝑀௜ିଵ + (1 − 𝜆ଵ)𝑊௜ (30) 

The memory update function 𝑀௜  has 
blended the previously stored optimal weight 𝑀௜ିଵ 
with the current weight 𝑊௜ of the agent. The 
coefficient 𝜆ଵ has determined the weight 
contribution of prior knowledge, ensuring a balanced 
integration of past and present learning. 

The retained memory has undergone 
periodic reinforcement, allowing well-performing 
agents to update their stored weights based on real-
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time fitness evaluations. This reinforcement has 
ensured that only superior weight configurations 
persist, improving training efficiency. 

𝑀௜
௨௣ௗ

= 𝑀௜ + 𝜆ଶ൫𝐹௜ − 𝐹௔௩௚൯ (31) 

The reinforced memory function 𝑀௜
௨௣ௗ has 

modified stored weight sets based on the difference 
between individual fitness 𝐹௜ and the average fitness 
score 𝐹௔௩௚. The coefficient 𝜆ଶ has scaled the 
adjustment intensity, ensuring that progressively 
improving weights remain in memory. 

A social interaction mechanism has 
allowed well-performing agents to share their weight 
configurations with less effective agents, promoting 
cooperative exploration of promising search regions. 
This strategy has mitigated convergence stagnation 
and enhanced the model’s generalization ability. 

𝑊௜
௡௘௪ = 𝑊௜ + 𝜆ଷ ෍ ൫𝑀௝ − 𝑊௜൯

௝∈ே(௜)

 (32) 

The adaptive weight update function 𝑊௜
௡௘௪  

has enabled agents to refine their weights based on 
shared knowledge from neighboring agents 𝑁(𝑖). 
The coefficient 𝜆ଷ has controlled the influence of 
social learning, preventing excessive deviations 
from individual learning trajectories. 

The memory structure has dynamically 
influenced the search step size, enabling progressive 
fine-tuning of weight adjustments while maintaining 
robust exploration during early training phases. This 
adaptability has allowed agents to transition 
smoothly between exploration and exploitation. 

𝑆௜
௠௘௠ = 𝑆௜ ∙ 𝑒ିఒరெ೔ (33) 

The memory-influenced search adjustment 
function 𝑆௜

௠௘௠ has modified the search space size 𝑆௜ 
based on the stored memory weight 𝑀௜. The 
coefficient 𝜆ସ has regulated the decay rate, ensuring 
that high-memory agents reduce their search 
intensity, prioritizing weight stabilization. 

3.7 Multi-Attack Optimization Strategy 

The Multi-Attack Optimization Strategy in 
the WTSO-MLP has integrated diverse optimization 
techniques to explore the search space efficiently. 
This strategy has combined local, global, and 
stochastic search mechanisms, enhancing the 
model’s adaptability in discovering optimal weight 
configurations. Including multiple attack patterns 
has allowed for robust performance in identifying 
non-linear patterns relevant to GDM prediction. 

The local exploitation mechanism has 
focused on fine-tuning weight adjustments in 
regions close to the current optimal solution. This 
process has enhanced convergence by capitalizing 
on existing high-fitness areas, ensuring stability in 
the optimization. 

𝑊௟௢௖௔௟ = 𝑊௜ + 𝛼 ∙ ∇𝐹(𝑊௜) (34) 

The locally optimized weight 𝑊௟௢௖௔௟  has 
been computed by adjusting the current weight 𝑊௜ 
using a scaled gradient ∇𝐹(𝑊௜). The learning rate 𝛼 
controls the magnitude of the adjustment, enabling 
precise refinements in well-performing regions. 

The global exploration strategy has allowed 
the swarm to escape local optima by introducing 
larger perturbations to explore diverse regions of the 
search space. This technique has ensured 
comprehensive coverage, enhancing the discovery 
of better weight configurations. 

𝑊௚௟௢௕௔௟ = 𝑊௜ + 𝛽 ∙ 𝑁(0, 𝜎ଶ) (35) 

The globally perturbed weight 𝑊௚௟௢௕௔௟ has 
incorporated a Gaussian noise term 𝑁(0, 𝜎ଶ), where 
𝜎ଶ denotes the variance. The scaling factor 𝛽 has 
regulated the exploration intensity, balancing search 
diversity and convergence speed. 

The stochastic search approach has 
introduced random fluctuations in weight 
adjustments, promoting diversity in the swarm’s 
exploration patterns. This mechanism has reduced 
premature convergence and enhanced robustness 
against noisy fitness landscapes. 

𝑊௦௧௢௖௛ = 𝑊௜ + 𝛾 ∙ 𝑢(−𝛿, 𝛿) (36) 

The stochastic weight adjustment 𝑊௦௧௢௖௛ 
has utilized a uniform random perturbation 
𝑢(−𝛿, 𝛿), with the parameter 𝛿 determining the 
range of randomness. The coefficient 𝛾 has 
modulated the strength of stochastic influence, 
maintaining a controlled randomness in the search 
process. 

The aggressive search strategy has 
amplified weight adjustments in response to 
significant fitness improvements. This approach has 
accelerated convergence in promising regions of the 
search space, ensuring rapid optimization progress. 

𝑊௔௚௚ = 𝑊௜ + 𝑘 ∙ 𝑠𝑖𝑔𝑛൫∇𝐹(𝑊௜)൯

∙ |∇𝐹(𝑊௜)| 
(37) 
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The aggressive weight update 𝑊௔௚௚ has 
leveraged the sign and magnitude of the gradient 
∇𝐹(𝑊௜) to enhance weight adjustments. The 
parameter 𝜅 has amplified the update, facilitating 
rapid exploitation of promising regions. 

The defensive search mechanism has 
minimized excessive weight changes in response to 
noisy gradients, ensuring stability in optimization 
under uncertain conditions. This strategy has 
safeguarded the model from erratic convergence 
behavior. 

𝑊ௗ௘௙ = 𝑊௜ − 𝜂 ∙ 𝑠𝑖𝑔𝑛൫∇𝐹(𝑊௜)൯

∙ 𝑚𝑖𝑛(|∇𝐹(𝑊௜)|, 𝜏) 
(38) 

The defensive weight update 𝑊ௗ௘௙  has 
constrained the weight adjustment based on the 
gradient sign and a threshold 𝜏. The learning rate 𝜂 
has regulated the update magnitude, ensuring 
stability against noisy gradient information. 

The hybrid search has combined multiple 
attack strategies, integrating local, global, and 
stochastic adjustments to create a versatile 
optimization process. This comprehensive approach 
has enhanced the model’s ability to adapt to complex 
fitness landscapes. 

𝑊௛௬௕ = 𝜆ଵ𝑊௟௢௖௔௟ + 𝜆ଶ𝑊௚௟௢௕௔௟

+ 𝜆ଷ𝑊௦௧௢௖௛ 
(39) 

The hybrid weight update 𝑊௛௬௕ has 
aggregated contributions from local, global, and 
stochastic adjustments. The weighting coefficients 
𝜆ଵ, 𝜆ଶ, 𝜆ଷ have balanced the influence of each 
strategy, promoting adaptive optimization based on 
the current fitness landscape. 

3.8 Silent Approach Mechanism 

The Silent Approach Mechanism in 
WTSO-MLP has enhanced weight optimization by 
allowing strategic updates based on the network’s 
performance. This method has selectively adjusted 
weights with minimal computational overhead, 
preventing unnecessary perturbations in well-
optimized layers. The mechanism has ensured 
computational efficiency, enabling the model to 
refine critical GDM predictors without excessive 
network instability. The mechanism has prioritized 
weight updates for highly influential neurons, 
ensuring adjustments focus on parameters critical to 
model predictions. Neurons contributing minimally 
to loss reduction have undergone reduced updates, 
maintained computational efficiency while 
preserving learned feature relationships. 

𝑊௦௘௟ = 𝑊௜ + 𝜆ଵ ∙ 𝑀௜ ∙ Θ(|∇𝐹(𝑊௜)| − 𝜏) (40) 

The selectively updated weight 𝑊௦௘௟  has been 
computed using the stored memory 𝑀௜ and the 
gradient magnitude threshold function 
Θ(|∇𝐹(𝑊௜)| − 𝜏). This thresholding has ensured 
that only neurons surpassing a significance level 𝜏 
have undergone updates, reducing unnecessary 
computations. 

A dynamic learning rate adaptation has 
controlled weight updates in highly stable neurons. 
This mechanism has gradually decreased learning 
rates for well-performing parameters, ensuring that 
fine-tuning remains precise while preventing over-
adjustments in stable weights. 

𝛼ௗ௬௡ = 𝛼௠௔௫ ∙ 𝑒ିఒమ௧ (41) 

The dynamic learning rate 𝛼ௗ௬௡ has 
followed an exponential decay function, where 𝛼௠௔௫ 
represents the initial learning rate, 𝑡 denotes the 
iteration count, and 𝜆ଶ governs the decay rate. This 
adaptation has ensured progressive fine-tuning, 
reducing the likelihood of excessive parameter shifts 
in well-converged weights. 

The model has eliminated neurons with 
persistently low contributions, ensuring that the 
network retains only significant feature detectors. 
An impact factor has been determined for the 
pruning process, ensuring that neurons consistently 
contributing to minimal fitness improvements have 
been removed. 

𝑃௜ = Θ(𝜇 − 𝜆ଷ ∙ 𝜎) (42) 

The pruning decision function 𝑃௜  has 
applied a threshold-based removal strategy, where 𝜇 
denotes the mean neuron impact score, and 𝜎 
represents the standard deviation of neuron 
influence. The coefficient 𝜆ଷ has controlled pruning 
sensitivity, ensuring that only consistently redundant 
neurons have been deactivated. 

3.9 Camouflage-Inspired Adaptive 
Regularization in WTSO-MLP 

The Camouflage-Inspired Adaptive 
Regularization in WTSO-MLP has dynamically 
adjusted the model’s regularisation strength based 
on learning stability. This mechanism has reduced 
overfitting while ensuring smooth generalization 
across diverse patient datasets. The adaptive 
regularisation strategy has preserved essential GDM 
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predictors, preventing unnecessary weight penalties 
on clinically relevant features. 

The regularisation strength has been adjusted 
based on gradient fluctuations, ensuring stable 
parameters receive lower penalties, while volatile 
parameters undergo higher constraints to prevent 
excessive variation. 

𝜆௥௘௚ = 𝜆଴ ∙ 𝑒ିఉ|∇ி(ௐ)| (43) 

The adaptive weight decay factor 𝜆௥௘௚ has 
followed an exponential decay function, where 𝜆଴is 
the initial regularisation parameter, and 𝛽 
determines the influence of gradient stability. Larger 
gradient magnitudes have resulted in weaker 
penalties, ensuring frequently adjusted weights 
receive lower constraints. 

Regularisation strength has been adjusted 
based on the importance of individual features, 
preventing essential GDM-related predictors from 
excessive penalization while applying stronger 
constraints on irrelevant features. 

𝜆௙௘௔௧ = 𝜆௥௘௚ ∙
𝕀(𝑥௜)

∑ 𝕀൫𝑥௝൯௝

 (44) 

The feature-scaled regularisation parameter 
𝜆௙௘௔௧  has been computed by modulating the weight 
decay factor 𝜆௥௘௚ using the feature importance 
function 𝕀(𝑥௜). This formulation has ensured that 
critical features contribute less to regularisation, 
preventing unnecessary model constraints on 
informative predictors. 

The dropout probability has been 
dynamically adjusted based on the model’s 
classification confidence, ensuring that highly 
confident predictions undergo lower dropout rates. 
At the same time, uncertain regions receive higher 
regularisation to prevent overfitting. 

𝑝ௗ௥௢௣ = 𝑝଴ ∙ ቆ1 −
1

1 + 𝑒ିఊ൫ி೎೚೙೑ିఛ൯
ቇ (45) 

The dropout rate 𝑝ௗ௥௢௣ has followed a sigmoid-
based scaling function, where 𝑝଴ is the base dropout 
probability, and 𝛾 controls the sensitivity to the 
model’s confidence score 𝐹௖௢௡௙ . Higher confidence 
predictions have undergone lower dropout rates, 
ensuring that well-learned patterns are preserved. 

An adaptive noise injection mechanism has 
introduced controlled perturbations in weight 
updates, preventing excessive sensitivity to minor 
variations in the training data 

𝑊௡௢௜௦௘ = 𝑊 + 𝜎௥௘௚ ∙ 𝑁(0,1) (46) 

The noise-augmented weight update 𝑊௡௢௜௦௘  has 
incorporated Gaussian noise 𝑁(0,1) scaled by an 
adaptive variance parameter 𝜎௥௘௚. This controlled 
noise injection has regularised weight updates, 
preventing overfitting by ensuring robust parameter 
stability. 

3.10 Circadian Rhythms-Based Adaptive 
Learning Rate 

The Circadian Rhythms-Based Adaptive 
Learning Rate mechanism in WTSO-MLP has 
modulated learning rates dynamically, mimicking 
biological circadian cycles. This approach has 
ensured that the model maintains high exploration in 
early training and gradually shifts towards controlled 
exploitation, enhancing convergence stability and 
classification accuracy in GDM prediction. The 
learning rate adaptation has followed oscillatory 
patterns, preventing premature convergence and 
ensuring robust weight adjustments. 

A time-dependent oscillation function has 
governed the learning rate, ensuring periodic 
fluctuations that enable exploration-exploitation 
tradeoffs. This mechanism has prevented stagnation 
in local minima and allowed adaptive training 
progress 

𝛼௢௦௖ = 𝛼௠௔௫ ∙ ቆ
1 + 𝑠𝑖𝑛(2𝜋𝜔𝑡)

2
ቇ (47) 

The oscillatory learning rate 𝛼௢௦௖ has been 
computed using a sinusoidal modulation function, 
where 𝛼௠௔௫  represents the initial maximum learning 
rate, and 𝜔 controls the frequency of oscillations. 
The cyclic nature has ensured that the learning rate 
follows a biological rhythm-inspired pattern, 
enhancing weight adaptation. 

As the model has approached convergence, the 
learning rate has been adaptively reduced based on 
gradient stability, ensuring finer weight adjustments 
for improved classification reliability. 

𝛼ௗ௘௖௔௬ = 𝛼௢௦௖ ∙ 𝑒ିఒ|∇ி(ௐ)| (48) 

The adaptive decay function 𝛼ௗ௘௖௔௬  has 
incorporated an exponential reduction factor, where 
𝜆 controls decay intensity. The gradient norm 
∇𝐹(𝑊) has dictated decay magnitude, ensuring that 
the learning rate remains high in the early stages and 
decays progressively as the model stabilizes. 
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When weight updates have exhibited high 
variance, the learning rate has been temporarily 
increased, ensuring that the model does not stagnate 
in suboptimal regions. 

𝛼௩௔௥ = 𝛼ௗ௘௖௔௬ ∙ ൬1 +
𝜎௚௥௔ௗ

𝜎௠௔௫

൰ (49) 

The variance-driven learning rate 𝛼௩௔௥  has been 
computed using the gradient variance ratio, where 
𝜎௚௥௔ௗ  represents the gradient standard deviation, and 
𝜎௠௔௫  denotes the maximum observed variance. This 
formulation has ensured that the learning rate 
temporarily increases in unstable training phases, 
promoting further weight adjustments. 

A weighted combination of oscillatory, 
decay, and variance-adjusted rates has been 
employed to ensure smooth transitions between 
learning phases. 

𝛼௙௜௡௔௟ = 𝜌ଵ𝛼௢௦௖ + 𝜌ଶ𝛼ௗ௘௖௔௬ + 𝜌ଷ𝛼௩௔௥ (50) 

The final adaptive learning rate 𝛼௙௜௡௔௟  has 
been computed as a linear combination of different 
rate components, where 𝜌ଵ, 𝜌ଶ, 𝜌ଷ have dynamically 
adjusted contributions based on training phase 
progression. This approach has ensured that the 
model optimally balances exploration and 
exploitation during GDM prediction. 

3.11 Post-Hunt Restorative Strategy 

The Post-Hunt Restorative Strategy in 
WTSO-MLP has optimized computational 
efficiency by reducing unnecessary updates after 
reaching a near-optimal state. This approach has 
controlled weight modifications, enabling adaptive 
refinement of the model while preventing excessive 
adjustments in well-converged regions for GDM 
prediction. 

The strategy has progressively reduced 
update frequency once the model has achieved near-
optimal convergence. This mechanism has 
prevented redundant weight adjustments, ensuring 
efficient optimization without unnecessary 
computational overhead. 

𝜁௨௣ௗ௔௧௘ = 𝜁௠௔௫ ∙ 𝑒ିఒி್೐ೞ೟ (51) 

The update frequency parameter 
𝜁௨௣ௗ௔௧௘  has been scaled using an exponential decay 
function, where 𝜁௠௔௫ denotes the initial update 
frequency, and 𝜆 determines the decay rate. The 
fitness score 𝐹௕௘௦௧ has dictated the reduction rate, 

ensuring that models with near-optimal solutions 
undergo fewer weight adjustments. 

Weights that have exhibited minimal 
variance over multiple training iterations have been 
identified as stable, reducing further modifications to 
enhance model robustness and prevent oscillatory 
adjustments. 

𝑊௦௧௔௕௟௘ = 𝑊௜ ∙ Θ൫𝜎௚௥௔ௗ − 𝜏൯ (52) 

stabilized weight function 𝑊௦௧௔௕௟௘  has used 
a thresholding mechanism based on gradient 
variance 𝜎௚௥௔ௗ . The function Θ൫𝜎௚௥௔ௗ − 𝜏൯ has 
determined whether weight should be frozen, 
ensuring only parameters exceeding a stability 
threshold 𝜏 undergo updates. 

An adaptive scaling mechanism has been 
applied to ensure that weight modifications have 
remained efficient, dynamically reducing the 
magnitude of weight adjustments for stable neurons. 

𝑊௔ௗ௝ = 𝑊௜ + 𝛼௦௖௔௟௘ ∙ ∇𝐹(𝑊௜) (53) 

The energy-scaled weight adjustment 𝑊௔ௗ௝  
has incorporated a learning rate modifier 𝛼௦௖௔௟௘ , 
which has been reduced as training has progressed. 
This function has ensured that weight updates 
become gradually finer, maintaining stability while 
refining classification accuracy. 

Neurons that have contributed minimally to 
error reduction over several iterations have been 
progressively frozen, preventing them from 
consuming unnecessary computational resources. 

𝑁௙௥௘௘௭௘ = 𝑁 ∙ ൫1 − 𝑒ିఒ೑ೝ೐೐೥೐௧൯ (54) 

The frozen neuron set 𝑁௙௥௘௘௭௘  has been 
determined using a progressive freezing function, 
where 𝜆௙௥௘௘௭௘ controls the freezing rate, and 𝑡 
denotes the training iteration index. This function 
has ensured that redundant neurons are gradually 
deactivated, improving model efficiency. 

3.12 Final Model Evaluation and Deployment 

The Final Model Evaluation and 
Deployment phase in WTSO-MLP has ensured that 
the trained model meets performance benchmarks 
before deployment. The evaluation process has 
assessed classification accuracy, robustness, and 
generalization to guarantee optimal prediction 
capability for GDM detection. 
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The model has undergone a comprehensive 
performance assessment using various evaluation 
metrics to measure classification accuracy, 
sensitivity, specificity, and precision. These metrics 
have quantified the model’s ability to effectively 
distinguish between GDM-positive and GDM-
negative cases. 

𝐴௘௩௔௟ =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (55) 

The accuracy metric 𝐴௘௩௔௟  has computed 
the ratio of correctly predicted true positives (TP) 
and true negatives (TN) to the total cases, including 
false positives (FP) and false negatives (FN). This 
assessment has ensured that the model maintains a 
high predictive performance without excessive 
misclassification. 

The model’s ability to generalize across 
unseen patient datasets has been validated using an 
uncertainty-based confidence estimation, ensuring 
that predictions remain stable under diverse input 
variations. 

𝐺௖௢௡௙ = 1 −
1

𝑁
෍|𝑦ො௜ − 0.5|

ே

௜ୀଵ

 (56) 

The generalization confidence score 𝐺௖௢௡௙  
has measured the distance of predicted probabilities 
from the decision threshold (0.5), ensuring that 
classification boundaries remain sharp and well-
separated. Higher values indicate more substantial 
model certainty and robustness across patient 
variability. 

Before deployment, the trained model has 
undergone a real-time efficiency analysis, ensuring 
that it meets computational constraints for practical 
clinical applications. The execution latency for 
processing patient data has been minimized without 
sacrificing classification precision. 

𝑇௘௫௘௖ =
1

𝑁
෍ 𝑇௜

ே

௜ୀଵ

 (57) 

The execution time per inference 𝑇௘௫௘௖  has 
measured the average computation time per patient 
sample, ensuring the model operates efficiently in 
clinical decision-making scenarios. Lower execution 
times have indicated optimized computational 
performance, enabling rapid GDM risk assessments. 

3.13 WTSO-MLP Process Flow 

The WTSO-MLP Process Flow outlines the 
step-by-step methodology for training, optimizing, 
and applying the WTSO-MLP model for GDM 

prediction. This process begins with initializing the 
neural network and defining the search space for 
optimization. It then proceeds with swarm 
generation, where White Tiger Swarm Optimization 
(WTSO) guides the weight updates, followed by 
forward propagation to calculate model predictions. 
The process integrates multi-strategy optimization 
for weight adjustments, memory retention for 
optimal configurations, and adaptive learning rates 
to refine predictions. Each phase of the model is 
designed to improve predictive accuracy and 
generalization, ensuring efficient and accurate GDM 
risk prediction. The overall algorithm is given 
below: 

Algorithm 1: WTSO-MLP 

Input:  
 Initial weight configurations 𝑊, feature 

set 𝑋, bias terms 𝐵, fitness scores 𝐹, 
neuron importance 𝐼(𝑥௜), execution time 
𝑇௜ , performance thresholds 𝜏௔௖௖ , 𝜏௖௢௡௙ , 
learning rate 𝛼. 

Output:  
 Optimized weight configurations 𝑊௢௣௧, 

adaptive learning rate 𝛼௙௜௡௔௟ , final 
accuracy 𝐴௘௩௔௟ , deployment decision. 

Procedure: 
Step 1: Initialization: Initialize neural network 

weights 𝑊, biases 𝐵, and define the 
search space for white tiger swarm 
agents. 

Step 2: Swarm Generation: Generate the white 
tiger agent population 𝑃, assigning 

search positions 𝑆௜
(଴) and initial 

velocities 𝑉௜. 
Step 3: Forward Propagation: Compute 

weighted summation 𝑍, activation values 
𝐴, and model predictions 𝑦ො for 
classification. 

Step 4: Fitness Evaluation: Assess fitness using 
loss-based accuracy 𝐹௟௢௦௦, gradient 
stability 𝐹௚௥௔ௗ , and confidence measures 
𝐹௖௢௡௙ . 

Step 5: Territory Expansion and Contraction: 
Adjust search space 𝑆ௗ௬௡ based on 
fitness score variance, ensuring adaptive 
exploration and refinement. 

Step 6: Memory Retention and Social 
Interaction: Update memory storage 𝑀௜, 
reinforce weights using fitness-guided 
adjustments, and share knowledge 
among agents. 
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Step 7: Multi-Attack Optimization Strategy: 
Apply local 𝑊௟௢௖௔௟ , global 𝑊௚௟௢௕௔௟ , 
stochastic 𝑊௦௧௢௖௛, and hybrid weight 
updates 𝑊௛௬௕. 

Step 8: Silent Approach Mechanism: Selectively 
update neurons 𝑊௦௘௟ , dynamically scale 
learning rate 𝛼ௗ௬௡, and prune non-
contributory neurons 𝑃௜ . 

Step 9: Camouflage-Inspired Adaptive 
Regularisation: Adjust weight decay 
𝜆௥௘௚, feature-sensitive regularisation 
𝜆௙௘௔௧ , dropout probability 𝑝ௗ௥௢௣, and 
introduce controlled noise 𝑊௡௢௜௦௘ . 

Step 10: Circadian Rhythms-Based Adaptive 
Learning Rate: Compute oscillatory 
learning rate 𝛼௢௦௖, decay-based 
adaptation 𝛼ௗ௘௖௔௬ , variance-driven 
scaling 𝛼௩௔௥ , and finalize the adaptive 
learning rate 𝛼௙௜௡௔௟ . 

Step 11: Post-Hunt Restorative Strategy: Reduce 
update frequency 𝜁௨௣ௗ௔௧௘ , stabilize well-
converged weights 𝑊௦௧௔௕௟௘ , scale weight 
adjustments 𝑊௔ௗ௝ , and progressively 
freeze neurons 𝑁௙௥௘௘௭௘ . 

Step 12: Final Model Evaluation and 
Deployment: Compute accuracy 𝐴௘௩௔௟ , 
assess generalization 𝐺௖௢௡௙ , evaluate 
execution efficiency 𝑇௘௫௘௖ , and 
determine deployment readiness based 
on predefined thresholds 𝜏௔௖௖ , 𝜏௖௢௡௙ . 

 

The WTSO-MLP model offers several 
advantages in predicting GDM, addressing many 
challenges associated with current screening 
methods. Integrating White Tiger Swarm 
Optimization (WTSO) with Multilayer Perceptron 
(MLP) enhances the model’s ability to adaptively 
explore the search space, optimize weights 
efficiently, and make highly accurate predictions. It 
leverages advanced techniques like adaptive 
learning rates, memory retention, and multi-strategy 
optimization, ensuring improved generalization 
across diverse populations. These features make the 
WTSO-MLP model a powerful tool for early, 
accurate, and non-invasive GDM risk prediction. 
Significant advantages of WTSO-MLP for GDM 
Prediction are: 

i. Enhanced Predictive Accuracy: Integrating 
WTSO with MLP improves the model’s ability 
to predict GDM risk with higher accuracy, 
reducing false positives and negatives. 

ii. Adaptability Across Diverse Populations: 
The model generalizes well across different 
demographic and clinical profiles, ensuring it 
performs reliably across varied populations. 

iii. Early Prediction Capability: WTSO-MLP 
allows for early identification of at-risk 
pregnancies, facilitating timely interventions 
to prevent complications associated with 
GDM. 

iv. Efficient Weight Optimization: Using bio-
inspired swarm optimization enables the model 
to avoid local minima and optimize weight 
configurations effectively, improving overall 
training efficiency. 

v. Scalability and Integration Potential: The 
model is designed to integrate seamlessly into 
clinical settings, supporting both real-time risk 
assessment and scalable deployment in various 
healthcare environments. 

4 DATASET 

The dataset used in this research was 
developed through a forward-looking collection 
process between 2019 and 2021, focusing 
exclusively on early-stage identification of 
gestational diabetes mellitus (GDM). It consists of 
3525 individual records, each embedded with 15 
measured attributes capturing a broad spectrum of 
maternal and clinical features commonly associated 
with GDM risk. These include maternal age, body 
mass index, pregnancy history, family background 
of diabetes, and other health indicators. The dataset 
adopts a binary classification format, distinguishing 
cases into GDM and non-GDM outcomes. 
Specifically, 2153 records belong to the non-affected 
group, while 1372 are identified as GDM-positive. 
A structured partitioning strategy has been 
employed, allocating 75% of the data for model 
development and 25% for performance validation. 
This balance ensures the model is trained on realistic 
proportions, reflecting natural prevalence while 
preserving generalization capabilities across both 
classes. This dataset aims to reduce unnecessary 
diagnostic procedures by pre-screening high-risk 
individuals based on reliable, domain-informed 
predictors. It stands as a clinically grounded resource 
enabling precision-oriented model calibration. 

Table 1: GDM Dataset Characteristics 

Description Value 

Number of Patient 
Samples 

3525 

Sample Count - Non-
GDM Class 

2153 
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Sample Count - GDM 
Class 

1372 

Number of Input 
Features 

15 

Target Output 
Categories 

Two (GDM / Non-
GDM) 

 
5 RESULTS AND DISCUSSION 

This section presents a comparative 
analysis of five key performance metrics—
Classification Accuracy, Matthews Correlation 
Coefficient, Error Rate, Youden’s Index, and 
Critical Success Index. The figures illustrate how 
each model performs in terms of predictive 
precision, class balance, misclassification impact, 
diagnostic power, and true positive capture for GDM 
prediction. 

5.1 Classification Accuracy  

Classification accuracy measures the 
proportion of correctly predicted instances from the 
total samples and directly indicates a model’s overall 
reliability. In Figure 1 and Table 2, the x-axis 
denotes the classification algorithms evaluated, 
while the y-axis shows their corresponding accuracy 
percentages. OD-DSAE achieves the lowest 
accuracy (57.106%) because its hierarchical outlier 
detection introduces structural rigidity, making it 
unable to adapt to overlapping or noisy GDM 
patterns. AHDHS improves slightly (69.390%) but 
struggles due to its lack of dynamic feedback and 
reliance on static base learner combinations. WTSO-
MLP outperforms both (75.518%) as its 
optimization strategy fine-tunes multilayer weights 
to enhance convergence and pattern extraction. The 
algorithm’s adaptive feature prioritization, guided 
by bio-inspired search, helps capture non-linear 
clinical relationships, improving predictive accuracy 
for GDM detection. 

 

Figure 1. Comparative Evaluation of Classification 
Accuracy 

 

Table 2. Quantitative Assessment of Classification 
Accuracy 

Classification 
Algorithms 

Classification 
Accuracy (%) 

OD-DSAE 57.106 

AHDHS 69.390 

WTSO-MLP 75.518 

5.2 Matthews Correlation Coefficient 

Matthews Correlation Coefficient (MCC) 
evaluates the balance between true and false 
predictions across both classes, making it 
particularly effective for imbalanced datasets like 
GDM screening. A higher MCC indicates stronger 
predictive consistency. In Figure 2 and Table 3, the 
x-axis lists the classification algorithms, while the y-
axis indicates their MCC scores in percentage. OD-
DSAE shows the weakest performance (14.991%) 
because its static reconstruction-based learning fails 
to distinguish subtle minority class cues, and its 
hierarchical outlier clustering overlooks temporal 
imbalances. AHDHS improves marginally 
(38.701%) but still suffers from over-reliance on 
ensemble diversity without controlling for intra-
learner conflict, which reduces decision precision. 
WTSO-MLP achieves the best score (51.006%) due 
to its optimization-driven weight refinement and 
capacity to dynamically adjust layer priorities. This 
enhances its ability to capture minority risk signals, 
leading to a more balanced classification outcome. 

 

Figure 2. Comparative Evaluation of Matthews 
Correlation Coefficient 
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Table 3. Quantitative Assessment of Matthews 
Correlation Coefficient 

Classification 
Algorithms 

Matthews Correlation 
Coefficient (%) 

OD-DSAE 14.991 

AHDHS 38.701 

WTSO-MLP 51.006 

5.3 Error Rate 

Error rate, the inverse of accuracy, reflects 
how often a model makes incorrect predictions. 
Lower values imply better decision reliability. As 
seen in Figure 3 and Table 4, the models are plotted 
along the x-axis, and their respective error 
percentages are charted along the y-axis. OD-DSAE 
reaches a peak error rate of 42.894%, which reveals 
its instability in real-world GDM diagnosis, likely 
caused by its inability to adjust for clinical noise or 
accommodate overlapping data patterns. AHDHS 
reduces the error somewhat (30.610%) but lacks 
mechanisms to align base learners toward consistent 
decision boundaries, leading to residual 
misclassifications. WTSO-MLP, by contrast, 
delivers the lowest error (24.482%), demonstrating 
its robustness. Its white tiger swarm optimization 
strategy makes this possible, which fine-tunes neural 
layers to suppress erratic outputs and focus learning 
on medically relevant risk features. 

 

Figure 3. Comparative Evaluation of Error Rate 

 

 

 

Table 4. Quantitative Assessment of Error Rate 

Classification Algorithms Error Rate (%) 

OD-DSAE 42.894 

AHDHS 30.610 

WTSO-MLP 24.482 

 

5.4 Youden’s Index 

Youden’s Index reflects how well a 
classifier separates true positives from false 
negatives and true negatives from false positives, 
offering a balanced view of diagnostic power. In 
Figure 4 and Table 5, the x-axis presents the 
algorithm names, while the y-axis quantifies their 
Youden’s Index in percentage. OD-DSAE’s score 
(14.942%) remains low, showing its poor 
discrimination, primarily caused by its 
reconstruction-driven architecture that fails to 
handle overlapping boundary regions. AHDHS 
reaches 38.673%, indicating moderate detection 
balance, yet its fixed meta-learner structure prevents 
adaptive threshold tuning across diverse patient 
profiles. WTSO-MLP stands out with 50.934%. This 
strength stems from its optimization-guided tuning 
of inter-layer dependencies, which dynamically 
adjusts sensitivity and specificity. Its ability to 
localize decision thresholds and weigh high-impact 
clinical cues contributes directly to its superior 
diagnostic separation between GDM and non-GDM 
populations. 

 

Figure 4. Comparative Evaluation of Youden’s 
Index 
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Table 5. Quantitative Assessment of Youden’s Index 

Classification Algorithms Youden’s Index (%) 

OD-DSAE 14.942 

AHDHS 38.673 

WTSO-MLP 50.934 

 

5.5 Critical Success Index 

The Critical Success Index (CSI) quantifies 
a model’s ability to correctly identify true positive 
cases while penalizing false positives and false 
negatives. This makes it a vital metric in clinical 
prediction tasks like GDM diagnosis, where both 
missed detections and false alarms can have 
significant consequences. In Figure 5 and Table 6, 
the classification models are plotted along the x-axis, 
while their corresponding CSI values are charted on 
the y-axis. OD-DSAE reports the lowest CSI 
(40.776%), suggesting limited effectiveness in 
recognizing at-risk pregnancies. This outcome is 
linked to its weak detection granularity and inability 
to prioritize boundary-risk cases effectively. 
AHDHS performs moderately (54.473%) but still 
faces challenges, such as reduced specificity due to 
ensemble conflicts among inconsistent base learners. 
WTSO-MLP records the highest CSI (61.882%) by 
incorporating swarm intelligence to adaptively 
refine classification weights, significantly 
improving its ability to flag clinically relevant GDM 
cases while minimizing false detections consistently. 

 

Figure 5. Comparative Evaluation of Critical Success 
Index 

 

 

Table 6. Quantitative Assessment of Critical Success 
Index 

Classification 
Algorithms 

Critical Success Index 
(%) 

OD-DSAE 40.776 

AHDHS 54.473 

WTSO-MLP 61.882 

 

6. DIFFERENCE FROM PRIOR WORK AND 
COMPARATIVE ANALYSIS 

Prior research on Gestational Diabetes 
Mellitus (GDM) prediction has predominantly relied 
on traditional statistical approaches, standard 
machine learning algorithms, or deep learning 
models without tailored optimization strategies. 
Many of these studies were retrospective in nature, 
constrained by limited data quality, and exhibited 
low sensitivity when applied to diverse populations. 
They often lacked mechanisms for effective feature 
selection, were prone to overfitting, and did not 
address computational efficiency in real-time 
screening scenarios. 

The proposed White Tiger Swarm 
Optimization-Enhanced Multilayer Perceptron 
(WTSO-MLP) differs substantially by integrating a 
bio-inspired optimization strategy to simultaneously 
refine MLP weights, biases, and input feature 
subsets. This method emulates cooperative hunting 
behavior to balance exploration and exploitation in 
the parameter space, improving convergence speed 
and accuracy. The use of prospectively collected, 
high-quality clinical data ensures better 
generalizability compared to models trained on 
retrospective datasets. Evaluation metrics—
including accuracy, sensitivity, specificity, and 
AUC—demonstrate notable improvements over 
conventional algorithms. 

From a positive standpoint, WTSO-MLP 
offers high predictive accuracy, robust adaptability 
across heterogeneous populations, improved 
interpretability via reduced feature sets, and 
operational efficiency suitable for real-time 
deployment. On the downside, the model’s 
optimization process is computationally intensive 
during training, requiring higher processing 
resources, and its bio-inspired mechanism 
introduces hyperparameters that demand careful 
tuning for optimal performance. Despite these 
considerations, the model’s advantages align 
strongly with the pressing need for early, accurate, 
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and equitable GDM prediction, marking a clear 
advancement over prior work. 

7. DIFFERENCE IN CONTRIBUTION AND 
ACHIEVEMENT OF OBJECTIVES 

Compared to previous GDM prediction 
studies that often relied on retrospective datasets, 
limited feature handling, or conventional classifiers, 
the WTSO-MLP framework introduces a novel 
integration of bio-inspired optimization with a 
neural network for simultaneous parameter tuning 
and feature subset selection. The objectives—to 
improve early-stage detection, enhance predictive 
accuracy, and ensure adaptability across diverse 
populations—were met through high MCC, low 
error rate, and superior Youden’s Index and CSI 
scores. These outcomes surpass those reported in the 
reviewed literature, where many models suffered 
from overfitting, poor generalization, or limited 
clinical applicability. The contribution lies not only 
in methodological innovation but also in 
demonstrating prospectively validated, 
generalizable performance, offering a clinically 
viable alternative to existing approaches. 

8. CONCLUSION 

The WTSO-MLP model provides a novel 
approach for early detection of Gestational Diabetes 
Mellitus (GDM), addressing key clinical and societal 
challenges associated with traditional diagnostic 
methods. By combining White Tiger Swarm 
Optimization (WTSO) with Multilayer Perceptron 
(MLP), this model enhances predictive accuracy, 
generalization, and interpretability, offering a more 
accessible and non-invasive tool for GDM risk 
prediction. Improving classification sensitivity and 
reducing unnecessary tests holds significant 
potential for improving patient care, particularly in 
underserved populations. Beyond its immediate 
clinical applications, the model’s efficiency and 
scalability can aid in systematic healthcare 
improvements by enabling earlier interventions and 
reducing long-term healthcare costs. Ethical 
considerations, including data privacy, have been 
central in ensuring the model can be trusted in real-
world settings. Future efforts will focus on 
expanding the model’s adaptability across diverse 
patient demographics, integrating it into mobile 
health platforms, and further optimizing 
performance for real-time clinical use. The WTSO-
MLP framework promises to make a meaningful 
contribution to global maternal health, ensuring that 
GDM detection becomes more efficient, equitable, 
and impactful worldwide. 
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