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ABSTRACT

The segmentation of a small polyp present in intestinal regions, which tend to be malignant, is a basic and
essential task for the detection of colon cancer. Segmenting a small polyp is challenging due to the higher
similarity of tissues. Inaccurate segmentation results in higher false positives for colorectal cancer
classification. This work suggests a two-stage deep learning network for polyp segmentation. In the first
stage, the colonoscopy image is preprocessed to generate salient regions. In the second stage, the salient
regions are processed by a novel U-Net structure network called LIC-Net, which integrates transfer learning
and multiscale feature extraction to increase the segmentation accuracy. Testing with Kvasir-Seg and CVC-
ClinicDB, both in direct and cross-learning mode, the proposed solution achieved more than 90% accuracy.
The false positives are at least 2% lower compared to the most recent deep learning based segmentation

works.
Keywords:
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1. INTRODUCTION

Colorectal cancer (CRC) is a highly malignant
cancer and the second biggest contributor to cancer-
related fatalities all over the world [1]. Food
consumption behaviors like processed meats, junk
foods, obesity, smoking, and alcohol consumption
are associated with the development of CRC.
Worldwide, 9% of total cancer cases are CRC. If a
CRC is found in the advanced stage, then there are
very few options for treatment [2]. This leads to a
critical need for timely detection and treatment
initiation [3]. Manual analysis of a polyp is tedious
due to blurry input complicated with different
textures and slight differences in the background.
The nature of the image acquired introduces higher
error in manual analysis. Computer-assisted
diagnosis is a solution to this problem. These
methods extract various features from significant
regions of the image and train machine learning
classifiers to recognize cancer classes from the
features. CRC is detected using the colonoscopy
screening technique. In this method, the internal
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colon and rectum regions are imaged with a camera,
and this image is examined by a physician to detect
CRC. This is the most adopted method for detecting
CRC.

Despite its success, colonoscopy has certain
drawbacks, ie. possibility of missing polyps, which
raises the risk of cancer. Because polyps differ in
size, shape, and appearance, it can be challenging to
identify them apart from surrounding tissue and may
be precursors to colorectal cancer (CRC), which
increases the significance of identifying and
removing them during a colonoscopy.

Much of the work has been done in solving
these problems. Various automatic polyp
segmentation approaches [4-6] based on active
shape models, texture feature-based classification,
graph-based methods, etc., have been proposed in
earlier works with limited accuracy. Hand-crafted
feature-based methods' segmentation accuracy is
insufficient to meet clinical practice criteria.

Deep learning is a recent revolution that
avoids the need for handcrafted features and
processes the image as a whole to classify cancer
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classes. Structural similarity to neighboring tissues
and smaller granularity make segmenting polyp
regions very challenging. The problem with training
deep learning classifiers is that they need large
training images. The models become overfit and
have higher false positives when handling polyp
regions with higher similarity to nearby tissues and
backgrounds.

To enhance colonoscopy analysis, detection systems
should ideally have the following essential features:

1. To handle patient variances, computer
systems must constantly produce outcomes
that can be relied upon and that are both
flexible and trustworthy.

2. When it comes to clinical applications, real-
time functionality is essential for rapid
analysis and timely decision-making by
medical experts during procedures such as
colonoscopies.

3. Medical professionals must be able to
readily navigate a system interface, which
requires user-friendly design.

4. For this system to be widely used, cost and
resource efficiency are essential, meaning

that their economic viability and
accessibility are required for widespread
adoption.

To effectively contribute to the initial
identification as well as the avoidance of colon
cancer on a larger scale, the optimal system for
colonoscopy analysis should combine reliability,
high performance, real-time capability, user-friendly
design, and cost-effectiveness.

In rural areas, there are various challenges,
including the lack of proper healthcare monitoring
systems. These areas lack skilled medical
professionals, advanced diagnostic infrastructure,
and timely access to screening technologies.
Consequently, late detection of CRC and other
critical diseases results in poor health outcomes. A
lightweight and efficient solution that can be adapted
for real-time and offline use is crucial to bridge this
healthcare gap. This context points out that societies
require automated, accurate, and computationally
efficient frameworks like the one proposed in this
work.

Addressing this problem, this work
suggests a lightweight integrated convolutional
network. The solution has two stages. At the first
stage, topological active net (TAN) with energy

minimization is applied to remove similar tissue and
background regions to polyp regions. This
preprocessing allows learning more effective feature
representations in the second stage. In the second
stage a lightweight U-Net structure network with a
novel encoder-decoder structure called LIC-Net is
applied to the output of the first stage to get the polyp
regions. With this two-stage processing, the poly
regions can be segmented accurately with lower
false positives. This work suggests the following
contributions.

(i) A two-stage lightweight integrated deep learning
network to segment polyp regions with higher
accuracy. This network integrates a transfer learning
encoder with a multi-scale feature extraction based
decoder, which can segment the polyp regions with
comparatively reduced training volume.

(ii)) Fuzzy energy minimization based topological
active net segmentation model is proposed for first
stage filtering which isolates similar tissue and
background regions  affecting the  polyp
segmentation accuracy.

The layout of this paper is as follows. The
existing works on polyp segmentation and their
issues are described in Section 2. Section 3 explains
the proposed deep learning model for polyp
segmentation. Following it, the results of the
proposed segmentation model and its comparison to
existing works are detailed in Section 4. Discussion
about the results is in section 5. The final section, 6,
summarizes the work and provides concluding
remarks.

2. RELATED WORK

Yao et al [4] used flexible model in combination
with clustering for polyp segmentation. The
knowledge guided adjustment process used to
identify potential polyp regions works only for
certain polyp shapes and fails for highly irregular
shapes. Gross et al [5] proposed a template matching
approach to identify polyp contour in the image. The
images were de-noised using linear diffusion
filtering (LDF). Use of LDF subdued smaller blood
vessels and emphasized major edges. The approach
does not detect polyp contours with irregular shapes.
Wang et al [6] did a pixel-level classification of
polyp regions using a deep learning network. Local
visual features extracted by small receptive fields are
passed to convolutional layers and finally to
classification. The false positives are higher in this
method. Lee et al [7] used YOLOV2 deep learning
algorithm for polyp segmentation. The volume of
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training 1images was increased using data
augmentation procedures. The images were
downsized and processed by YOLOV2, due to this
the small-sized polyps can be missed during
detection. Also the approach has considered the
problem of background similarity and polyp
irregular shapes.

Ronneberger et al [8] segmented polyp regions
using U-Net model. The architecture required less
training volume. Though this architecture had good
performance, it was not tested for the segmentation
of smaller regions like a polyp. Zhang et al [9]
extracted Densenet features and classified them for
the presence of polyps using a softmax classifier.
This method can only classify the image into two
classes of polyp present or absent, and cannot
provide the location of polyp. Livovsky et al [10]
proposed two different deep learning architectures:
RetinaNet and LSTM-SSD to segment polyp regions
from videos. Though the polyp detection
performance is higher, the volume of training data is
higher. The method performs well for polyp lasting
for a longer duration across video frames. Jha et al.
[11-12] designed the ResUNet deep learning
network for segmenting the polyps. This improved
architecture provided better segmentation results
with multiple residual and attention blocks. The
improved ResUNet was able to achieve only 0.81
dice coefficient. Chen et al. [13] used convolutional
neural networks for image segmentation. The
network is made up of a deep convolutional network
using convolution with upsampled filters, multiscale
pyramid feature extraction and integration with
probabilistic graphical networks. Though the
method was able to achieve 79.7% mIOU, it was not
tested against a complex environment like polyp
segmentation. Srivastava et al [14] segmented
polyps using deep learning network with a multi-
scale residual architecture. Use of multi-scale
features improved the segmentation performance.
The feature fusion has allowed the solution to
perform better even for small granular polyp regions.
The method fails in the presence of low contrast and
higher similarity to the background.

Dumitru et al [15] suggested DUCK-Net
architecture, which performs accurate segmentation
with lower training volume. DUCK-Net is an
encoder-decoder structure with residual down-
sampling and processing at multiple resolutions at
the encoder side. The method can handle a polyp of
various granularities. Fan et al [16] suggested
PraNet, a deep learning architecture which uses two

stages of processing. At first stage, feature
aggregation at higher layers with parallel partial
decoding is done to establish a guidance area. In
second stage, reverse attention is done to remove the
background areas. Though this solution works for
varied polyp size, homogeneous regions, and
different kinds of texture, it was able to achieve Dice
only in range of 0.7 to 0.87. Diakogiannis et al. [21]
used residual connection architecture to enhance U-
Net. But the method was not tested for polyp
segmentation. Zhou et al [22] proposed UNet++,
solving the problems in the previous Unet model.
Skip connections were redesigned at the decoder end
to aggregate multiscale features. Though this
redesign improved the segmentation efficiency, it
was not tested for a challenging environment like
polyp segmentation. Huang et al [23] segmented
polyp using encoder decoder architecture. Cascaded
partial decoder is used at decoder end for multi scale
feature aggregation. This is realized using skip
connections. The method was not tested for case of
higher similar background and irregular polyp
shapes. Tomar et al [24] proposed feedback attention
network. Recurrent learning is implemented at the
encoder, decoder sides to improve the segmentation
effectiveness. The feedback mechanism increases
the strength of feature representation. Though the
method was able to achieve mloU of 0.8153, it was
not tested for polyp segmentation. Valanarasu et al
[25] segmented regions in the image using UNeXt
network. It is an encoder-decoder structure with
tokenized MLP generation at the encoder end.
Feature resolution is increased at the decoder end
with skip connections between the encoder and
decoder. The effectiveness of this approach for
polyp segmentation was not tested. Ige et al. [26]
used ConvSegNet for segmenting images. It relied
on context feature refinement with multiple kernel
sizes to increase segmentation accuracy. But the
method could not work for smaller granular polyp
regions.

From the survey, it can be inferred that
most deep learning solutions for segmentation are
based on the encoder-decoder structure. Multi scale
feature representations with residual learning were
optimized in each solution to achieve effective
segmentation. But the problem of similar
background, irregular-shaped polyps occurring is
close proximity to similar tissues, and low-contrast
noises are effectively handled through preprocessing
in existing works. As a result, these noises too get
amplified in feature representation, resulting in
reduced accuracy and higher false positives. This
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problem of the impact of noise amplification factors
on the segmentation accuracy and false positives is
investigated in this work, and a solution is proposed
for the same.

3. PROPOSED SOLUTION

The architecture of the suggested two-stage
deep learning based technique for segmenting the
polyp region is given in Figure 1. The background
tissue similarity impact on segmentation is resolved
in the first stage, and the output is given to the LIC-
Net deep learning structure to localize the polyp
segments.

3.1 System Methodology

In the first stage, TAN [27] is applied on the
colonoscopy image. A mesh is placed on the image
on size L X L. For each node nx, energy is found in
terms of external energy(E,) and internal energy (E;)
as

Ee(nx)

e(nx) = E¢(nx)+ Eij(nx)

()

External energy of node is computed in
terms of average value of external energy of each
pixel in its neighborhood region as

E.(v(a, b)) = wf[l(v(a, b))] +

Where [ (v(a, b)) is the value of the
intensity of the pixel at position v(a, b). Nk(a, b)
represents the neighbors of the node at (a,b). The
function fi divides the intensity values between the

original and the gradient image at the position
v(a, b).

The internal energy is computed in terms of the
average value of the internal energy of each pixel in
its neighborhood region as

E;(v(a, b)) = a(|va(a, b)|*+|vy(a, b)|?) +
B(|vaa(a b)|* + |vgy(a, b)|?) +
[Vbp (a,b)|2) 3)

In the above equation ¢, [ are the coefficients whose
value is from 0 to 1.

The default TAN removes the mesh node by
checking the energy of node against threshold which
is not adaptive to image characteristics and
background. So this work modifies it by applying
fuzzy logic. The decision to remove the mesh node
is made in terms of energy values of 8 neighboring
nodes as shown in Figure 2 below. A training dataset
of 9 feature vectors (energy values of corresponding
nodes) and whether the node belongs to the
foreground or background is created from the
training images. The dataset is clustered using the

p o 1 ;

|Nk(a,b)| Lpenap) llv(a,b)—v(p)|| fill (v(p))] fuzzy c-means clustering algorithm.
(2)
(First stage) (Second stage)
Image with Image with polyp
colonoscopy image sal!ent segments
regions
e Fuzzy TAN > LIC-Net o

Figure 1: Two stage Solution Architecture
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Figure 2: Eight Neighboring Nodes

The centroids of the cluster are defined in
terms of coordinate (q) of the features belonging to
cluster (D, 4) as

D={D,,,x=12andy=12.9} (4)

X,y
Where x is cluster and y is feature coordinate.

The closeness of a feature point r to the
cluster centroid D, is calculated in terms of
Gaussian function to each feature coordinate as

(fr,y—Dx,y)z
2
G (f‘r,y' Dx,y: O—x,y) =e 7ep
(5)
Where
1 Ny i
Oxy = N_eri{1 (f‘r,y - Dx,y)2

(6)

Once the closeness to the feature coordinate
is found, the closeness to the entire feature vector is
calculated as the product of function on each
coordinate as

(7

W, . can also calculated in terms of linear
regression over feature coordinates as

In terms of fuzzy C mean clustering, the data point
(r) membership to clusters is given as

N(r) = 5:1 Ve Pre
®)

Where
Dy =Weo+Xhog i We . frq 9)

In the above equation, W are the weights associated
with feature coordinates in a linear regression setup.

Thus, two cluster membership functions are
created, which take nine energy values as features
and provide the membership value for the cluster
(background or foreground). When the cluster
membership value for the class background is higher
compared to the foreground, the breakdown starts
from this node. The node with the highest energy on
its link to this node is removed. This process is
repeated iteratively. A mask with 0 for the
background area found by this method is created,
and it is applied to the original image to get salient
regions free from background for polyp
segmentation.

The output of the first stage is passed to the
second stage, where LIC-Net is invoked to segment
the polyp. It uses pretrained ResNet50 at the
encoder. It is used to extract numerous feature maps
at various levels by wusing convolutions and
downsampling processes. When the training samples
are smaller, to get optimization without adding
computational complexity, a pretrained network is
used. Each feature map at four Ilayers of
ResNet50[11] is passed through skip connections
having a basic 3X3 convolution. Following it, ReLU
activation is done before decoder connectivity.
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256X256, 1
Sigmoid

w/ 256X256 1
Conv 1X1

256256, 64
256X256,64 | Dacoder
FOBRER. 3 256X256, 128
——— Cornw3X3, BN, ReLU ——» Concalenation )
G f 256X256, 64

Upsample

128X128, 64 Conv 1X1 + Batch

126%128, 64
| 12BX128, 64 Decndar Norm + ReLU
-~ 128X128, 128 I '
ResNet50 Layer 1 —>  Conv3X3, BN, ReLU Concatenation J > )
- - 128X128, 64 Concatenation
B4X64, 64 | —
B4X64, 256 Conv 3X3 + Batch Conv 5X5 + Batch
v B4x4, 64 Decoder Norm + ReLU Norm + ReLU
~ 64X64, 128 ' T
ResNet50 Layer 2 ——»  GonvaX3, BN, ReLU ——»[ Concatenation J
w - 64X64, 64 Conv 33 + Batch
. Upsample Norm + ReLU
T 32X32, 64 t : | z
32X32, 512 32X32.64 | Decoder 1 Input Features |
32X32, 128 —
ResNet50 Layer3 ———  Conv3X3, BN, RelLU .[ Concatenation
T 32X32, 64
Upsample
16X16, 1024 16X16, 64
16X16, 64
ResNet50 Layer4 —  ConvaX3, BN, RelLU
b} Decader Block with MFB(35)

a) Proposed architecture

Figure 3: LIC-Net Architecture
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a) Conv Kernel: 1X1 b) Conv Kernel:2X2 c) Conv Kernel:3X3
Dilation: 1 Dilation: 1 Dilation: 1

d)Conv Kernel:5X5 e) Conv Kernel: 7X7 f) Conv Kernel:gxg]
Dilation: 1 Dilation: 1 Dilation: 1

g) Conv Kernel:3X3 h) Conwv Kernei:sxaw ri:u Conwv Kemei:3x3‘
Dilation: 2 Dilation: 3 | . Dilation: 4

=

Figure 4: Various Convolutions with Variations of Kernel Sizes and Dilation Rates

i !
ﬂﬂ,
.

MFB (1-3) MFB (3-5) MFB (3-7) MFE (3-8)

H o

Feature input @ Feature Cutput B concatenation

H I I I I I I MFB (1-3.5.7) MFB (3-5-7-9)
J  Convixi [[] convaxa W ConvSX5
Dulation = 1 Dilation = 1 Dilation = 1
Comv7XT  [] Conw X9
MFB (1-3-5) MFB (3-5-7) MFE:3-5:6) WFB (3-8} Pt =1 Diation =3

Figure 5: Summary of the Ten Multi-Feature Blocks (MFB) Used at the Decoder
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Figure 3 summarizes the network structure.
The preprocessed image of resized size (256X256,
3) is passed through the ResNet50 encoder. The
initial layer sizes are (256X256, 3), (128X128, 64),
(64X64, 126), (32X32, 512), and (16X16, 1024).
These features are passed through a convolutional
skip connection, producing (256 x 256, 64), (128 x
128, 64), (64 x 64, 64), (32 x 32, 64), and (16 x 16,
64), respectively. Due to the convolutional
operation, every feature map at various levels of
ResNet50 is converted to 64 numbers of channels at
the decoder concatenation. Skip connections
maintain the global parameters of polyps and usually
handle the large-scale variation of polyps. A
refinement module at the decoder with various
combinations of convolutions and atrous dilation is
used in this work. This lightweight refining module
helps in the extraction of multi-scale information. In
the network, the decoder MFB block is shown in
Figure 3b. Input features from the prior decoder
block are upsampled and concatenated with the skip
connection of the respective layer of the encoder.
Then these features in the decoder are convolved
with different conv blocks in parallel. Conv blocks
of dimension 3X3 and 5X5 are used, which achieved
the maximum performance with less complexity.
Then, further, these feature maps are joined and sent
through a 1X1 conv layer, followed by BN and
ReLU. To provide spatial and channel attention
again, the convolution block attention module [18] is
used. Combinations of convolutions (with and
without dilation) in series and parallel are
implemented to capture global and local semantic
features. Further different kernel sizes are kept in the
convolution layers to capture contextual information
effectively.

Combining the convolution kernel with
various receptive fields allowed for the development
of ten different types of multi-feature blocks (MFB)
with scale changes. The various MFBs are displayed
in Figure 5. Different dilations are represented in
Figure 4. a) to f) shows Convolution layers with
dilation rate=1 and g) to i) Atrous Spatial Pyramids
(ASPP) with dilation rate = 2,3 and 4. Via atrous
convolution layers with various dilation rates, ASPP
retrieves semantic information. Keeping the same
complexity results in an increase in the receptive
fields that stimulate convolution layers. As
illustrated in Figure 4, kernels of various dimensions
1x1,3%x3,5%x5,7x7,and 9 x 9 are implemented
to filter the input channels to resolve this problem.
The filtered channels are then concatenated. For
MFB(1-3-3d2-5d2) it means it is a parallel network

consisting of 1X1, 3X3, and 3X3 with a dilation rate
of 2 and 5X5 with a dilation rate of 2. Similarly, all
other networks are designed. This design can help
mitigate the issue of the undetermined structure of
the segmented area. This method is suitable for
demanding prediction tasks requiring precise spatial
data. The model is trained using Kvasir-SEG and
CVC-ClinicDB datasets, each of which divided into
distinct subsets for testing, validation, and training.
For training, augmented samples are used.

3.2 Algorithm of the Proposed LPC-Net Model

An algorithm describes the flow of the
Polyp segmentation using LIC-Net. First it starts
with input as a colonoscopy image of any size
producing output image of 256X256X1 mask,
indicating a polyp region.

Table 1: Algorithm for the Polyp Segmentation using
LIC-Net

Input Colonoscopy image (1)

Output Binary segmentation mask
(M) highlighting polyp
region

Stepl1 : * Overlay mesh on image

Preprocessing * Compute external &

(Fuzzy TAN) internal energy

* Fuzzy c-means clustering
* Remove high-energy
background nodes

* Generate saliency mask
S and apply to image

* Resize image to

Step 2 : Initialize

Model, Load 256%256%3

Pretrained ResNet- | ¢ Extract multiscale

50 encoder features at 4 levels

Step 3 : Skip * Apply 3x3 conv +BN+

Connections ReLU on encoder outputs
as skip connections.
* Pass features to decoder
via skip connections

Step 4 : » Concatenation of skip

Concatenation connections and lower

branch after upsampling to
match the Image size.
* Concatenated branches

Step 5: Decoder
(MFB Blocks) to pass through Decoder
* Use parallel
convolutions (3x3, 5x5,
etc.) in the decoder

* Fuse with 1x1 conv —

BN - ReLU
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* Add CBAM attention
module
* Apply Conv 1X1 +

Step 6: Final

Prediction sigmoid activation
* Generate final binary
mask (M) of size
256X256X1

Training Details * Optimizer: Adam

* Loss: Dice + BCE

* LR: 1e-4 (with decay)
* Epochs: 60

* Framework: PyTorch
(Colab V100)

* Batch Size: 16

3.3 Implementation details

The proposed system and state-of-the-art
(SOTA) benchmark architectures were trained on
Google Colab Pro with GPU V100 and implemented
using the PyTorch framework. We trained these
using the same hyperparameters to ensure a fair
comparison. The Adam optimizer with a learning
rate of 1 x 10—4 is used with an adaptive learning
rate after every 10 epochs. The training process
continued for 60 epochs for each model. For
experimentation (which consists of a huge training
process with various combinations of MFB blocks
and different sets of datasets), we have trained only
for 60 epochs. The loss function is dice loss and
binary crossentropy, with a batch size of 16.

4. EXPERIMENTATION AND RESULTS

The proposed model’s efficacy was
demonstrated and then thoroughly tested using both
qualitative and quantitative approaches. The
characteristics of the two datasets used for
performance evaluation are summarized in Table 2.

4.1 Datasets and preprocessing

We have used two datasets Kvasir-SEG[19]
and CVC-ClinicDB [20] with a maximum number of
images for training, to evaluate the proposed model.

Kvasir-SEG [19] -This dataset was acquired at the
Norwegian Vestre Viken Health Trust and consists
of endoscopic images that have been thoroughly
annotated and verified. It contains the Kvasir-SEG
subset, which concentrates on the polyp class.
Kvasir-Seg offers bounding box information,
matching masks, and 1000 polyp images obtained
from electromagnetic imaging. The images in this

collection range in size from 332 x 487 to 1920 x
1072 pixels.

CVC-ClinicDB [20] - It consists of 612 frame
images extracted from colonoscopy videos. Each
image has dimensions of 384x288 pixels and
originates from 31 distinct colonoscopy sequences.

Annotating new images takes time and is
costly, and creating it is a laborious process. High-
quality annotations require expensive medical
understanding. Privately generated datasets were
used in some of the earlier research. Sharing medical
data is challenging due to privacy and ethical
concerns. There are not many publicly available
medical image datasets. Due to the data h ungry
nature of CNN-based models, it is well
acknowledged that larger data sets yield better
results. Thus, we use data augmentation to make it
more resilient. Data augmentation techniques such
as coarse dropout, flipping in both directions, and
random rotation were applied after resizing images
and masks to 256 x 256 pixels, and the pixel values
were normalized.

Six common metrics—Jaccard, Dice,
Precision, Recall, Accuracy, and F2 measure—are
used for performance measurement and comparison
to existing works. In this work, the background area
is denoted by the negative label of zero, and the
polyp area is indicated by the positive label of one.
Studies on ablation were performed on various
combinations of MFB blocks that are used in the
decoder. Also, a computational complexity
comparison of the proposed model with benchmark
architectures is stated at the end. A total of four
Experiments were conducted. The datasets were
divided in 80:10:10 and trained and tested for same
as well as cross-validation to assess the proposed
scheme.

4.2 Quantitative Results

Table 3 shows the results with training and
testing on the same datasets. On both datasets, the
proposed model performed better than all the SOTA
models. On Kvasir-Seg, Jaccard and Dice achieved
2.88% and 2.52%, respectively, more than the
highest-performing network. On CVC-ClinicDB,
3.95% and 3.07%, which is much higher than
ConvSegNet [26] and all other SOTA models.

Results for the cross datasets for both
datasets are shown in Tables 4. On the cross dataset,
the suggested model performed better than the
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existing SOTA models in terms of all performance
parameters.

4.3 Qualitative results:

Qualitative  segmentation results for
Kvasir-Seg are shown in Figure 6 and for CVC-
ClinicDB in Figure 7 for the same as well as cross
datasets. The test image, ground truth mask, U-Net
[8] predicted output, and ConvSegNet [26] predicted
output are shown in the first four columns,
respectively. These models are compared with the
proposed model’s predicted mask, which is shown in
the fifth column. The proposed model provides more
accurate masks as ground truth compared to U-Net
and ConvSegNet. A segmented polyp’s green
bounding box indicates the area that was accurately
detected, and red indicates the area that is
performing effectively. The results show that the
model excels, particularly with small-size polyp
datasets, highlighting its robustness. Qualitatively,
our model’s segmentation mask effectively captures
fine details even when image quality is distorted.
Although the segmentation may not be flawless, the
mask’s additional shape information enables
potential correction using image post-processing
techniques. When it comes to more challenging
images, including flat and tiny polyps, which are
typically overlooked during colonoscopy exams, the
model performs rather well.

4.4 Ablation Study

The Kvasir-SEG dataset is used for an
ablation analysis of MFB since it contains maximal
polyp changes. Table 5 displays the experimental
outcomes of various MFBs on the dataset. To
construct the best network out of all of them, we also
measured the number of trainable parameters for
each of the ten networks. It has been observed
following important conclusions:1) Unnecessarily
making the network more complex by increasing the
number of convolutions in parallel doesn’t improve
network performance. 2) By adopting dilation, it also
does not improve network performance. 3)
MFb(3X5) performs Dbetter on all other
configurations, and the number of trainable
parameters have been reduced significantly over all
other designs.

4.5 Computational Complexity

Table 6 provides a comparison of the
suggested solution in comparison to SOTA models
against the computational complexity metrics. The
11M parameter value obtained by the suggested
model, when in comparison to SOTA models, makes
it less complex than U-Net, HardDNet-MSEG, and

ConvSegNet. The suggested model has 43.37 Flops
which is less than most of the SOTA models as stated
in the table, which also proves it is reasonably better
than these models. This number is also significantly
better than almost all other models except HardNet-
MSEG and U-Net++. The proposed model recorded
59 FPS, demonstrating here as well that it functions
fairly well.

To illustrate the various network’s learning
properties, Figure 8 displays variations in training
and validation loss, Jaccard, and F1 of two datasets.
The effectiveness of the suggested model is
noticeably better. These learning curves thus provide
a summary of the fact that the proposed network
converges quicker and approaches the optimal
performing states in a significantly shorter amount
of epochs.

5. DISCUSSIONS

The proposed LIC-Net framework
demonstrates significant improvements in polyp
segmentation, validated across two publicly
available datasets: CVC-ClinicDB and Kvasir-SEG.
These datasets offer diverse sets of polyp images
with expert annotations, and the results confirm that
the model achieves higher segmentation accuracy,
reduced false positives, and improved computational
efficiency compared to existing approaches.

Performance gains can be attributed to two
main innovations. First, the fuzzy Topological
Active Net (TAN) in the preprocessing stage
effectively ~ suppresses  structurally  similar
background regions, enabling clearer polyp
localization. Second, the LIC-Net architecture,
integrating a ResNet50 encoder and Multi-Feature
Block decoder with CBAM attention, enhances the
model’s ability to capture features across multiple
scales and complexities.

The existing works against which the
proposed model was compared were all based on the
U-Net encoder-decoder structure. Prior efforts
involved residual connections [21], multiscale
aggregation [22, 23], recurrent feedback [24], MLP
tokenization [25], and context enhancement [26].
The proposed model continues in this direction,
incorporating ResNet50 at the encoder and a refined
decoder, while uniquely combining it with fuzzy
TAN as a preprocessing stage—an element
overlooked in previous approaches.
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Despite promising results, limitations exist.
The reliance on public datasets may limit the
generalization to diverse real-world clinical settings.
Furthermore, the model has not been validated on
embedded hardware platforms for real-time use.

Future research will focus on domain
adaptation and semi-supervised learning to improve
robustness in varied clinical environments.
Additionally, efforts will be made to optimize the
model for real-time deployment and validate its
effectiveness through clinical trials.

6. CONCLUSION

A deep learning-based polyp segmentation
technique is proposed in this work. The solution had
two stages to improve segmentation efficiency. In
the first stage, the fuzzy TAN model was used to
remove the interference of background/ surrounding
tissue similarities. In the second stage, LIC-Net is
proposed to accurately segment the polyp. LIC-Net
improved the U-Net architecture with ResNet50 at
the encoder and MFB at the decoder end. As a result,
the feature extraction from multiple receptive fields
was effective. Performance comparison shows that

the proposed solution achieves 2% higher accuracy
compared to existing deep learning models. In
addition, the proposed solution has 20% lower
computation complexity compared to U-Net
structure.

Beyond colorectal polyp segmentation, this simple
method could serve as a basis for various medical
imaging tasks, including lesion or tumor
segmentation in radiology and dermatology. Its low
computational demand makes it suitable for real-
time deployment on portable devices, especially in
rural or resource-limited healthcare environments.

This work strives to set a first step towards the
development of visually enabled Al based solutions
for early diagnosis. Future work could be the
extension of this framework to multi-class
segmentation, validation on more datasets, and
integration in  embedded  systems. An
interdisciplinary ~ cooperation =~ between Al
researchers and clinicians will be necessary to
translate this solution into resource-limited health-
care applications.

Table 2: The Specifics of the Datasets used in our Tests. The terms "Train,” "Val," and "Test" Stand for the Quantity
of Training, Validation and Testing Samples

Experiment  Training Dataset Testing Dataset Images  Size Train  Val Test
1 Kvasir-SEG Kvasir-SEG 1000 720X576 to 1920X1072 792 88 120
2 CVC-ClinicDB CVC-ClinicDB 612 384X288 490 61 61

Table 3: Comparison of Performance Metrics: Training and Testing on the Same Dataset (Kvasir-SEG and CVC-

ClinicDB)
Kvasir-SEG
Network Dice mloU Recall Precision Accuracy F2
U-Net [8] 0.7350 0.8150 0.8340 0.8692 0.9465 0.8216
ResU-Net [21] 0.6634 0.7642 0.8025 0.8200 0.9341 0.7740
U-Net++ [22] 0.7419 0.8228 0.8437 0.8607 0.9491 0.8295
HardNet-MSEG [23] 0.7459 0.8260 0.8485 0.8652 0.9492 0.8358
FANet [24] 0.6941 0.7815 0.8452 0.8159 0.9220 0.8002
UNeXt [25] 0.6284 0.7318 0.7840 0.7656 0.9208 0.7507
ConvSegNet [26] 0.7987 0.8665 0.8922 0.8924 0.9637 0.8776
Proposed model 0.8275 0.8917 0.9261 0.8937 0.9685 0.9079
CVC-ClinicDB
Network Dice mloU Recall Precision Accuracy F2
U-Net [8] 0.8072 0.8734 0.8939 0.8840 0.9829 0.8834
ResU-Net [21] 0.7892 0.8648 0.8836 0.8804 0.9793 0.8722

7980



Journal of Theoretical and Applied Information Technology

15 October 2025. Vol.103. No.19

© Little Lion Scientific

d

N

eraY L]

ISSN: 1992-8645

www jatit.org

E-ISSN: 1817-3195

U-Net++ [22] 0.8337 0.8913 0.9129 0.8988 0.9859 0.9026
HardNet-MSEG [23] 0.8388 0.8967 0.8929 0.9216 0.9871 0.8938
FANet [24] 0.7958 0.8625 0.8570 0.9151 0.9772 0.8569
UNeXt [25] 0.6676 0.7673 0.7546 0.8167 0.9722 0.7563
ConvSegNet [26] 0.8490 0.9083 0.9354 0.8980 0.9883 0.9205
Proposed model 0.8885 0.9390 0.9585 0.9245 0.9890 0.9501
Table 4: Comparison of Performance Metrics on Cross Dataset
Training: Kvasir-SEG and Testing : CVC-ClinicDB
Network Dice mloU Recall Precision Accuracy F2
U-Net [8] 0.5514 0.6382 0.6888 0.8039 0.9546 0.6571
ResU-Net [21] 0.4967 0.5970 0.6210 0.8005 0.9465 0.5991
U-Net++ [22] 0.5475 06350 0.6933 0.7967 0.9504 0.6556
HardNet-MSEG [23] 0.6057 0.6960 0.7173 0.8528 0.9592 0.7010
FANet [24] 0.5345 0.6306 0.7707 0.6957 0.9283 0.6762
UNeXt [25] 0.3901 0.4915 0.6125 0.6609 0.9216 0.5318
ConvSegNet [26] 0.7178 0.7960 0.8220 0.8124 0.9737 0.8070
Proposed model 0.7208 0.7983 0.8184 0.8563 0.9623 0.8055
Training: CVC-ClinicDB and Testing: Kvasir-SEG
Network Dice mloU Recall Precision Accuracy F2
U-Net [8] 0.3330 0.4592 0.8051 0.4095 0.7327 0.5648
ResU-Net [21] 0.2789 0.4000 0.8801 0.3087 0.6293 0.5348
U-Net++ [22] 0.3489 0.4692 0.8294 0.4095 0.7143 0.5772
HardNet-MSEG [23] 0.4338 0.5521 0.7585 0.5479 0.8142 0.6128
FANet [24] 0.4110 0.5189 0.8656 0.4762 0.7138 0.6163
UNeXt [25] 0.3163 0.4363 0.7203 0.4175 0.7475 0.5204
ConvSegNet [26] 0.6080 0.7156 0.9106 0.6664 0.8911 0.7835
Proposed model 0.6595 0.7573 0.8871 0.7344 0.9190 0.8013
Table 5: Multi-Feature Blocks(MFB) at the Decoder
Network Trainable Dice mloU Recall Precision Accuracy F2
Parameters
MFB(1-3) 10,150,986 0.8054 0.8935 0.9209 0.8745 0.9623 0.8923
MFB(3-5) 11,330,634 0.8275 0.8917 0.9261 0.8937 0.9685 0.9079
MFB(3-7) 12,510,282 0.8205 0.8902 0.9266 0.8757 0.9642 0.9003
MFB(3-9) 14,083,146 0.8178 0.8830 0.9233 0.8838 0.9679 0.9010
MFB(1-3-5) 11,397,706 0.8048 0.8759 0.9170 0.8779 0.9650 0.8950
MFB(3-5-7) 13,876,298 0.8027 0.8752 0.9142 0.8739 0.9620 0.8902
MFB(3-5-9) 15,449,162 0.7948 0.8670 0.9102 0.8629 0.9608 0.8901
MFB(3-7-9) 16,509,514 0.8016 0.8715 0.9197 0.8715 0.9634 0.8919
MFB(1-3-5-7) 13,824,074 0.8111 0.8819 0.9233 0.8791 0.9669 0.9002
MFB(3-5-7-9) 17,756,234 0.7873 0.8627 0.9105 0.8592 0.9595 0.8838
MFB 11,857,994 0.8068 0.8765 0.9234 0.8727 0.9626 0.8966
MFB(1-3d2-5d2) 11,397,706 0.8025 0.8734 0.9266 0.8675 0.9648 0.8964
MFB(3-7-9d2) 16,509,514 0.8054 0.8762 0.9258 0.8756 0.9639 0.8988
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MFB(1-3-5d4) 11,397,706 0.8030 0.8732 0.9164 0.8756 0.9638 0.8909

Table 6: Computational Complexity Comparison of the Proposed Model with state-of-the-art Models

Network Dice mloU Recall
U-Net [8] 31.04 54.75 156.83
ResU-Net [21] 8.22 45.42 196.85
U-Net++ [22] 9.16 34.65 126.14
HardNet-MSEG [23] 33.34 6.02 42
FANet [24] 7.72 94.75 44
UNeXt [25] 1.47 569.56 88.89
ConvSegNet [26] 15.58 135.98 64
Proposed method 11.45 43.37 59.82
a) Results of Training and Testing on Kvasir-SEG b) Results of Training on Kvasir-SEG and Testing on CVC-Clinic-DB
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Figure 6: Qualitative Analysis of the Input Colonoscopic Images on Kvasir-SEG
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Figure 7: Qualitative Analysis of the Input Colonoscopic Images on CVC-ClinicDB
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