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ABSTRACT 

 
The segmentation of a small polyp present in intestinal regions, which tend to be malignant, is a basic and 
essential task for the detection of colon cancer. Segmenting a small polyp is challenging due to the higher 
similarity of tissues.  Inaccurate segmentation results in higher false positives for colorectal cancer 
classification. This work suggests a two-stage deep learning network for polyp segmentation. In the first 
stage, the colonoscopy image is preprocessed to generate salient regions. In the second stage, the salient 
regions are processed by a novel U-Net structure network called LIC-Net, which integrates transfer learning 
and multiscale feature extraction to increase the segmentation accuracy. Testing with Kvasir-Seg and CVC-
ClinicDB, both in direct and cross-learning mode, the proposed solution achieved more than 90% accuracy. 
The false positives are at least 2% lower compared to the most recent deep learning based segmentation 
works.   
Keywords: Convolutional Neural Network, Fuzzy-TAN, Colonoscopy, Dilated Convolution, Polyp 

Segmentation, U-Shaped Model 

1.    INTRODUCTION 

 
Colorectal cancer (CRC) is a highly malignant 

cancer and the second biggest contributor to cancer-
related fatalities all over the world [1].  Food 
consumption behaviors like processed meats, junk 
foods, obesity, smoking, and alcohol consumption 
are associated with the development of CRC. 
Worldwide, 9% of total cancer cases are CRC. If a 
CRC is found in the advanced stage, then there are 
very few options for treatment [2]. This leads to a 
critical need for timely detection and treatment 
initiation [3]. Manual analysis of a polyp is tedious 
due to blurry input complicated with different 
textures and slight differences in the background. 
The nature of the image acquired introduces higher 
error in manual analysis. Computer-assisted 
diagnosis is a solution to this problem. These 
methods extract various features from significant 
regions of the image and train machine learning 
classifiers to recognize cancer classes from the 
features. CRC is detected using the colonoscopy 
screening technique. In this method, the internal 

colon and rectum regions are imaged with a camera, 
and this image is examined by a physician to detect 
CRC. This is the most adopted method for detecting 
CRC.  
 

Despite its success, colonoscopy has certain 
drawbacks, ie. possibility of missing polyps, which 
raises the risk of cancer. Because polyps differ in 
size, shape, and appearance, it can be challenging to 
identify them apart from surrounding tissue and may 
be precursors to colorectal cancer (CRC), which  
increases the significance of identifying and 
removing them during a colonoscopy.  

Much of the work has been done in  solving 
these problems. Various automatic polyp 
segmentation approaches [4-6] based on active 
shape models, texture feature-based classification, 
graph-based methods, etc., have been proposed in 
earlier works with limited accuracy. Hand-crafted 
feature-based methods' segmentation accuracy is 
insufficient to meet clinical practice criteria. 
 

Deep learning is a recent revolution that 
avoids the need for handcrafted features and 
processes the image as a whole to classify cancer 
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classes. Structural similarity to neighboring tissues 
and smaller granularity make segmenting polyp 
regions very challenging. The problem with training 
deep learning classifiers is that they need large 
training images. The models become overfit and 
have higher false positives when handling polyp 
regions with higher similarity to nearby tissues and 
backgrounds.  
 
To enhance colonoscopy analysis, detection systems 
should ideally have the following essential features: 

1. To handle patient variances, computer 
systems must constantly produce outcomes 
that can be relied upon and that are both 
flexible and trustworthy.  

2. When it comes to clinical applications, real-
time functionality is essential for rapid 
analysis and timely decision-making by 
medical experts during procedures such as 
colonoscopies.  

3. Medical professionals must be able to 
readily navigate a system interface, which 
requires user-friendly design.  

4. For this system to be widely used, cost and 
resource efficiency are essential, meaning 
that their economic viability and 
accessibility are required for widespread 
adoption.  
 
To effectively contribute to the initial 

identification as well as the avoidance of colon 
cancer on a larger scale, the optimal system for 
colonoscopy analysis should combine reliability, 
high performance, real-time capability, user-friendly 
design, and cost-effectiveness. 
 

In rural areas, there are various challenges, 
including the lack of proper healthcare monitoring 
systems. These areas lack skilled medical 
professionals, advanced diagnostic infrastructure, 
and timely access to screening technologies. 
Consequently, late detection of CRC and other 
critical diseases results in poor health outcomes. A 
lightweight and efficient solution that can be adapted 
for real-time and offline use is crucial to bridge this 
healthcare gap. This context points out that societies 
require automated, accurate, and computationally 
efficient frameworks like the one proposed in this 
work. 
 

Addressing this problem, this work 
suggests a lightweight integrated convolutional 
network. The solution has two stages. At the first 
stage, topological active net (TAN) with energy 

minimization is applied to remove similar tissue and 
background regions to polyp regions. This 
preprocessing allows learning more effective feature 
representations in the second stage. In the second 
stage a lightweight U-Net structure network with a 
novel encoder-decoder structure called LIC-Net is 
applied to the output of the first stage to get the polyp 
regions. With this two-stage processing, the poly 
regions can be segmented accurately with lower 
false positives.  This work suggests the following 
contributions.  
(i) A two-stage lightweight integrated deep learning 
network to segment polyp regions with higher 
accuracy. This network integrates a transfer learning 
encoder with a multi-scale feature extraction based 
decoder, which can segment the polyp regions with 
comparatively reduced training volume.  
(ii) Fuzzy energy minimization based topological 
active net segmentation model is proposed for first 
stage filtering which isolates similar tissue and 
background regions affecting the polyp 
segmentation accuracy. 
 

The layout of this paper is as follows. The 
existing works on polyp segmentation and their 
issues are described in Section 2. Section 3 explains  
the proposed deep learning model for polyp 
segmentation. Following it, the results of the 
proposed segmentation model and its comparison to 
existing works are detailed in Section 4. Discussion 
about the results is in section 5. The final section, 6, 
summarizes the work and provides concluding 
remarks.  
 
2. RELATED WORK 
 

Yao et al [4] used flexible model in combination 
with clustering for polyp segmentation. The 
knowledge guided adjustment process used to 
identify potential polyp regions works only for 
certain polyp shapes and fails for highly irregular 
shapes. Gross et al [5] proposed a template matching 
approach to identify polyp contour in the image. The 
images were de-noised using linear diffusion 
filtering (LDF). Use of LDF subdued smaller blood 
vessels and emphasized major edges. The approach 
does not detect polyp contours with irregular shapes. 
Wang et al [6] did a pixel-level classification of 
polyp regions using a deep learning network. Local 
visual features extracted by small receptive fields are 
passed to convolutional layers and finally to 
classification. The false positives are higher in this 
method. Lee et al [7] used YOLOV2 deep learning 
algorithm for polyp segmentation. The volume of 
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training images was increased using data 
augmentation procedures. The images were 
downsized and processed by YOLOV2, due to this 
the small-sized polyps can be missed during 
detection. Also the approach has considered the 
problem of background similarity and polyp 
irregular shapes. 
 

Ronneberger et al [8] segmented polyp regions 
using U-Net model. The architecture required less 
training volume. Though this architecture had good 
performance, it was not tested for the segmentation 
of smaller regions like a polyp. Zhang et al [9] 
extracted Densenet features and classified them for 
the presence of polyps using a softmax classifier. 
This method can only classify the image into two 
classes of polyp present or absent, and cannot 
provide the location of polyp. Livovsky et al [10] 
proposed two different deep learning architectures: 
RetinaNet and LSTM-SSD to segment polyp regions 
from videos. Though the polyp detection 
performance is higher, the volume of training data is 
higher. The method performs well for polyp lasting 
for a longer duration across video frames. Jha et al. 
[11-12] designed the ResUNet deep learning 
network for segmenting the polyps. This improved 
architecture provided better segmentation results 
with multiple residual and attention blocks. The 
improved ResUNet was able to achieve only 0.81 
dice coefficient. Chen et al. [13] used convolutional 
neural networks for image segmentation.  The 
network is made up of a deep convolutional network 
using convolution with upsampled filters, multiscale 
pyramid feature extraction and integration with 
probabilistic graphical networks. Though the 
method was able to achieve 79.7% mIOU, it was not 
tested against a complex environment like polyp 
segmentation. Srivastava et al [14] segmented 
polyps using deep learning network with a multi-
scale residual architecture. Use of multi-scale 
features improved the segmentation performance. 
The feature fusion has allowed the solution to 
perform better even for small granular polyp regions. 
The method fails in the presence of low contrast and 
higher similarity to the background.  

 
Dumitru et al [15] suggested DUCK-Net 

architecture, which performs accurate segmentation 
with lower training volume. DUCK-Net is an 
encoder-decoder structure with residual down-
sampling and processing at multiple resolutions at 
the encoder side. The method can handle a polyp of 
various granularities. Fan et al [16] suggested 
PraNet, a deep learning architecture which uses two 

stages of processing. At first stage, feature 
aggregation at higher layers with parallel partial 
decoding is done to establish a guidance area. In 
second stage, reverse attention is done to remove the 
background areas. Though this solution works for 
varied polyp size, homogeneous regions, and 
different kinds of texture, it was able to achieve Dice 
only in range of 0.7 to 0.87. Diakogiannis et al. [21] 
used residual connection architecture to enhance U-
Net. But the method was not tested for polyp 
segmentation. Zhou et al [22] proposed UNet++, 
solving the problems in the previous Unet model. 
Skip connections were redesigned at the decoder end 
to aggregate multiscale features. Though this 
redesign improved the segmentation efficiency, it 
was not tested for a challenging environment like 
polyp segmentation. Huang et al [23] segmented 
polyp using encoder decoder architecture. Cascaded 
partial decoder is used at decoder end for multi scale 
feature aggregation. This is realized using skip 
connections. The method was not tested for case of 
higher similar background and irregular polyp 
shapes. Tomar et al [24] proposed feedback attention 
network. Recurrent learning is implemented at the 
encoder, decoder sides to improve the segmentation 
effectiveness. The feedback mechanism increases 
the strength of feature representation. Though the 
method was able to achieve mIoU of 0.8153, it was 
not tested for polyp segmentation. Valanarasu et al 
[25] segmented regions in the image using UNeXt 
network. It is an encoder-decoder structure with 
tokenized MLP generation at the encoder end. 
Feature resolution is increased at the decoder end 
with skip connections between the encoder and 
decoder. The effectiveness of this approach for 
polyp segmentation was not tested. Ige et al. [26] 
used ConvSegNet for segmenting images. It relied 
on context feature refinement with multiple kernel 
sizes to increase segmentation accuracy. But the 
method could not work for smaller granular polyp 
regions.  
 

From the survey, it can be inferred that 
most deep learning solutions for segmentation are 
based on the encoder-decoder structure. Multi scale 
feature representations with residual learning were 
optimized in each solution to achieve effective 
segmentation. But the problem of similar 
background, irregular-shaped polyps occurring is 
close proximity to similar tissues, and low-contrast 
noises are effectively handled through preprocessing 
in existing works. As a result, these noises too get 
amplified in feature representation, resulting in 
reduced accuracy and higher false positives. This 
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problem of the impact of noise amplification factors 
on the segmentation accuracy and false positives is 
investigated in this work, and a solution is proposed 
for the same.                 
 
3.  PROPOSED SOLUTION 
 

The architecture of the suggested two-stage 
deep learning based technique for segmenting the 
polyp region is given in Figure 1.  The background 
tissue similarity impact on segmentation is resolved 
in the first stage, and the output is given to the LIC-
Net deep learning structure to localize the polyp 
segments. 

 
3.1 System Methodology 
In the first stage, TAN [27] is applied on the 
colonoscopy image. A mesh is placed on the image 
on size 𝐿 × 𝐿. For each node 𝑛𝑥, energy is found in 
terms of external energy(𝐸௘) and internal energy (𝐸௜) 
as  
 

𝑒(𝑛𝑥) =
ா೐(௡௫)

ா೐(௡௫)ା ா೔(௡௫)
                                       (1) 

 
External energy of node is computed in 

terms of average value of external energy of each 
pixel in its neighborhood region as 

 
𝐸௘൫𝑣(𝑎, 𝑏)൯ =  𝜔𝑓ൣ𝐼൫𝑣(𝑎, 𝑏)൯൧ +                           

  
ఘ

|ே௞(௔,௕)|
∑ ⬚⬚

௣ɛே(௔,௕)
ଵ

||௩(௔,௕)ି௩(௣)||
𝑓𝑖[𝐼൫𝑣(𝑝)൯]             

(2) 

 

Where 𝐼൫𝑣(𝑎, 𝑏)൯ is the value of the 
intensity of the pixel at position 𝑣(𝑎, 𝑏). 𝑁𝑘(𝑎, 𝑏) 
represents the neighbors of the node at (𝑎, 𝑏). The 
function 𝑓𝑖 divides the intensity values between the 
original and the gradient image at the position 
𝑣(𝑎, 𝑏). 
 
The internal energy is computed in terms of the 
average value of the internal energy of each pixel in 
its neighborhood region as 
 
𝐸௜(𝑣(𝑎, 𝑏)) = 𝛼(|𝑣௔(𝑎, 𝑏)|ଶ+|𝑣௕(𝑎, 𝑏)|ଶ) +
 𝛽( |𝑣௔௔(𝑎, 𝑏)|ଶ +  |𝑣௔௕(𝑎, 𝑏)|ଶ) +  
|𝑣௕௕(𝑎, 𝑏)|ଶ)                                                          (3)                                        
                                             
In the above equation 𝛼, 𝛽 are the coefficients whose 
value is from 0 to 1.  
 

The default TAN removes the mesh node by 
checking the energy of node against threshold which 
is not adaptive to image characteristics and 
background. So this work modifies it by applying 
fuzzy logic. The decision to remove the mesh node 
is made in terms of energy values of 8 neighboring 
nodes as shown in Figure 2 below. A training dataset 
of 9 feature vectors (energy values of corresponding 
nodes) and whether the node belongs to the 
foreground or background is created from the 
training images. The dataset is clustered using the 
fuzzy c-means clustering algorithm. 
 

 
Figure 1: Two stage Solution Architecture 
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Figure 2: Eight Neighboring Nodes  

 
 

The centroids of the cluster are defined in 
terms of coordinate (𝑞) of the features belonging to 
cluster (𝐷௘,௤) as 
 
𝐷 = { 𝐷௫,௬ , 𝑥 = 1,2 𝑎𝑛𝑑 𝑦 = 1,2. .9}      (4) 
 
Where 𝑥 is cluster and 𝑦 is feature coordinate.  
 

The closeness of a feature point 𝑟 to the 
cluster centroid 𝐷௫,௬ is calculated in terms of 
Gaussian function to each feature coordinate as  
 

𝐺൫𝑓௥,௬ , 𝐷௫,௬ , 𝜎௫,௬൯ = 𝑒

(೑ೝ,೤షವೣ,೤)మ

഑೐,೛
మ

                  
                  (5) 
 
Where 

𝜎௫,௬ =  
ଵ

ேೣ
∑ ⬚

ேೣ
௥ୀଵ (𝑓௥,௬ − 𝐷௫,௬)ଶ                          

 (6) 
 

Once the closeness to the feature coordinate 
is found, the closeness to the entire feature vector is 
calculated as the product of function on each 
coordinate as  
 
Ѱ௥,௫ = ∏ ⬚௉

௬ୀଵ 𝐺൫𝑓௥,௬ , 𝐷௫,௬ , 𝜎௫,௬൯                           
    (7) 

 
Ѱ௥,௫ can also calculated in terms of linear 
regression over feature coordinates as  
In terms of fuzzy C mean clustering, the data point 
(r) membership to clusters is given as  
 
𝑁(𝑟) =  ∑ ⬚௉

௘ୀଵ Ѱ௥,௘𝛷௥,௘                               
    (8) 
 
Where 
𝛷௥,௘ = 𝑊௘,଴ + ∑ ⬚௉

௤ୀଵ 𝑊௘,௤,௙ೝ,೜
                          (9)                   

 
In the above equation, 𝑊 are the weights associated 
with feature coordinates in a linear regression setup. 
 

Thus, two cluster membership functions are 
created, which take nine energy values as features 
and provide the membership value for the cluster 
(background or foreground). When the cluster 
membership value for the class background is higher 
compared to the foreground, the breakdown starts 
from this node. The node with the highest energy on 
its link to this node is removed. This process is 
repeated iteratively. A mask with 0 for the 
background area found by this method is created, 
and it is applied to the original image to get salient 
regions free from background for polyp 
segmentation.   
 

The output of the first stage is passed to the 
second stage, where LIC-Net is invoked to segment 
the polyp. It uses pretrained ResNet50 at the 
encoder. It is used to extract numerous feature maps 
at various levels by using convolutions and 
downsampling processes. When the training samples 
are smaller, to get optimization without adding 
computational complexity, a pretrained network is 
used. Each feature map at four layers of 
ResNet50[11] is passed through skip connections 
having a basic 3X3 convolution. Following it, ReLU 
activation is done before decoder connectivity.  
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Figure 3: LIC-Net Architecture
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Figure 4: Various Convolutions with Variations of Kernel Sizes and Dilation Rates

Figure 5: Summary of the Ten Multi-Feature Blocks (MFB) Used at the Decoder
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Figure 3 summarizes the network structure. 
The preprocessed image of resized size (256X256, 
3) is passed through the ResNet50 encoder. The 
initial layer sizes are (256X256, 3), (128X128, 64), 
(64X64, 126), (32X32, 512), and (16X16, 1024). 
These features are passed through a convolutional 
skip connection, producing (256 x 256, 64), (128 x 
128, 64), (64 x 64, 64), (32 x 32, 64), and (16 x 16, 
64), respectively. Due to the convolutional 
operation, every feature map at various levels of 
ResNet50 is converted to 64 numbers of channels at 
the decoder concatenation. Skip connections 
maintain the global parameters of polyps and usually 
handle the large-scale variation of polyps.  A 
refinement module at the decoder with various 
combinations of convolutions and atrous dilation is 
used in this work. This lightweight refining module 
helps in the extraction of multi-scale information. In 
the network, the decoder MFB block is shown in 
Figure 3b. Input features from the prior decoder 
block are upsampled and concatenated with the skip 
connection of the respective layer of the encoder. 
Then these features in the decoder are convolved 
with different conv blocks in parallel. Conv blocks 
of dimension 3X3 and 5X5 are used, which achieved 
the maximum performance with less complexity. 
Then, further, these feature maps are joined and sent 
through a 1X1 conv layer, followed by BN and 
ReLU. To provide spatial and channel attention 
again, the convolution block attention module [18] is 
used. Combinations of convolutions (with and 
without dilation) in series and parallel are 
implemented to capture global and local semantic 
features. Further different kernel sizes are kept in the 
convolution layers to capture contextual information 
effectively.  
 

Combining the convolution kernel with 
various receptive fields allowed for the development 
of ten different types of multi-feature blocks (MFB) 
with scale changes. The various MFBs are displayed 
in Figure 5. Different dilations are represented in 
Figure 4. a) to f) shows Convolution layers with 
dilation rate=1 and g) to i) Atrous Spatial Pyramids 
(ASPP) with dilation rate = 2,3 and 4. Via atrous 
convolution layers with various dilation rates, ASPP 
retrieves semantic information. Keeping the same 
complexity results in an increase in the receptive 
fields that stimulate convolution layers. As 
illustrated in Figure 4, kernels of various dimensions 
1 × 1, 3 × 3, 5 × 5, 7 x 7, and 9 x 9 are implemented 
to filter the input channels to resolve this problem. 
The filtered channels are then concatenated. For 
MFB(1-3-3d2-5d2) it means it is a parallel network 

consisting of 1X1, 3X3, and 3X3 with a dilation rate 
of 2 and 5X5 with a dilation rate of 2. Similarly, all 
other networks are designed. This design can help 
mitigate the issue of the undetermined structure of 
the segmented area. This method is suitable for 
demanding prediction tasks requiring precise spatial 
data. The model is trained using Kvasir-SEG and 
CVC-ClinicDB datasets, each of which divided into 
distinct subsets for testing, validation, and training. 
For training, augmented samples are used. 
 
3.2 Algorithm of the Proposed LPC-Net Model  
 

An algorithm describes the flow of the 
Polyp segmentation using LIC-Net. First it starts 
with input as a colonoscopy image of any size 
producing output image of 256X256X1 mask, 
indicating a polyp region. 

Table 1: Algorithm for the Polyp Segmentation using 
LIC-Net  

Input Colonoscopy image (I) 
Output Binary segmentation mask 

(M) highlighting polyp 
region 

Step1 : 
Preprocessing 
(Fuzzy TAN) 

• Overlay mesh on image 
• Compute external & 
internal energy 
• Fuzzy c-means clustering 
• Remove high-energy 
background nodes 
• Generate saliency mask 
S and apply to image 

Step 2 : Initialize 
Model, Load 
Pretrained ResNet-
50 encoder 

• Resize image to 
256×256×3 
• Extract multiscale 
features at 4 levels 

Step 3 : Skip 
Connections 

• Apply 3×3 conv +BN+ 
ReLU on encoder outputs 
as skip connections. 
• Pass features to decoder 
via skip connections 

Step 4 : 
Concatenation 

•  Concatenation of skip 
connections and lower 
branch after upsampling to 
match the Image size. 

Step 5: Decoder 
(MFB Blocks) 

• Concatenated branches 
to pass through Decoder 
• Use parallel 
convolutions (3×3, 5×5, 
etc.) in the decoder 
• Fuse with 1×1 conv → 
BN → ReLU 
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• Add CBAM attention 
module 

Step 6: Final 
Prediction 

• Apply Conv 1X1 + 
sigmoid activation 
• Generate final binary 
mask (M) of size 
256X256X1 

Training Details • Optimizer: Adam 
• Loss: Dice + BCE 
• LR: 1e-4 (with decay) 
• Epochs: 60 
• Framework: PyTorch 
(Colab V100) 
• Batch Size: 16 

 
 
3.3 Implementation details 

The proposed system and state-of-the-art 
(SOTA) benchmark architectures were trained on 
Google Colab Pro with GPU V100 and implemented 
using the PyTorch framework. We trained these 
using the same hyperparameters to ensure a fair 
comparison. The Adam optimizer with a learning 
rate of 1 × 10−4 is used with an adaptive learning 
rate after every 10 epochs. The training process 
continued for 60 epochs for each model. For 
experimentation (which consists of a huge training 
process with various combinations of MFB blocks 
and different sets of datasets), we have trained only 
for 60 epochs. The loss function is dice loss and 
binary crossentropy, with a batch size of 16. 
 
4. EXPERIMENTATION AND RESULTS 

 
The proposed model’s efficacy was 

demonstrated and then thoroughly tested using both 
qualitative and quantitative approaches. The 
characteristics of the two datasets used for 
performance evaluation are summarized in Table 2. 
 
4.1 Datasets and preprocessing 

We have used two datasets Kvasir-SEG[19] 
and CVC-ClinicDB [20] with a maximum number of 
images for training, to evaluate the proposed model. 

 
Kvasir-SEG [19] -This dataset was acquired at the 
Norwegian Vestre Viken Health Trust and consists 
of endoscopic images that have been thoroughly 
annotated and verified. It contains the Kvasir-SEG 
subset, which concentrates on the polyp class. 
Kvasir-Seg offers bounding box information, 
matching masks, and 1000 polyp images obtained 
from electromagnetic imaging. The images in this 

collection range in size from 332 × 487 to 1920 × 
1072 pixels. 
 
CVC-ClinicDB [20] - It consists of 612 frame 
images extracted from colonoscopy videos. Each 
image has dimensions of 384x288 pixels and 
originates from 31 distinct colonoscopy sequences. 
 

Annotating new images takes time and is 
costly, and creating it is a laborious process. High-
quality annotations require expensive medical 
understanding. Privately generated datasets were 
used in some of the earlier research. Sharing medical 
data is challenging due to privacy and ethical 
concerns. There are not many publicly available 
medical image datasets. Due to the data h ungry 
nature of CNN-based models, it is well 
acknowledged that larger data sets yield better 
results. Thus, we use data augmentation to make it  
more resilient. Data augmentation techniques such 
as coarse dropout, flipping in both directions, and 
random rotation were applied after resizing images 
and masks to 256 × 256 pixels, and the pixel values 
were normalized. 
  

Six common metrics—Jaccard, Dice, 
Precision, Recall, Accuracy, and F2 measure—are 
used for performance measurement and comparison 
to existing works.  In this work, the background area 
is denoted by the negative label of zero, and the 
polyp area is indicated by the positive label of one. 
Studies on ablation were performed on various 
combinations of MFB blocks that are used in the 
decoder. Also, a computational complexity 
comparison of the proposed model with benchmark 
architectures is stated at the end. A total of four 
Experiments were conducted. The datasets were 
divided in 80:10:10 and trained and tested for same 
as well as cross-validation to assess the proposed 
scheme.  
 
4.2 Quantitative Results 

Table 3 shows the results with training and 
testing on the same datasets. On both datasets, the 
proposed model performed better than all the SOTA 
models. On Kvasir-Seg, Jaccard and Dice achieved 
2.88% and 2.52%, respectively, more than the 
highest-performing network. On CVC-ClinicDB, 
3.95% and 3.07%, which is much higher than 
ConvSegNet [26] and all other SOTA models.  

 
Results for the cross datasets for both 

datasets are shown in Tables 4. On the cross dataset, 
the suggested model performed better than the 
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existing SOTA models in terms of all performance 
parameters.  

 
4.3 Qualitative results: 

Qualitative segmentation results for 
Kvasir-Seg are shown in Figure 6 and for CVC-
ClinicDB in Figure 7 for the same as well as cross 
datasets. The test image, ground truth mask, U-Net 
[8] predicted output, and ConvSegNet [26] predicted 
output are shown in the first four columns, 
respectively. These models are compared with the 
proposed model’s predicted mask, which is shown in 
the fifth column. The proposed model provides more 
accurate masks as ground truth compared to U-Net 
and ConvSegNet. A segmented polyp’s green 
bounding box indicates the area that was accurately 
detected, and red indicates the area that is 
performing effectively. The results show that the 
model excels, particularly with small-size polyp 
datasets, highlighting its robustness. Qualitatively, 
our model’s segmentation mask effectively captures 
fine details even when image quality is distorted. 
Although the segmentation may not be flawless, the 
mask’s additional shape information enables 
potential correction using image post-processing 
techniques. When it comes to more challenging 
images, including flat and tiny polyps, which are 
typically overlooked during colonoscopy exams, the 
model performs rather well. 

 
4.4 Ablation Study 

The Kvasir-SEG dataset is used for an 
ablation analysis of MFB since it contains maximal 
polyp changes. Table 5 displays the experimental 
outcomes of various MFBs on the dataset. To 
construct the best network out of all of them, we also 
measured the number of trainable parameters for 
each of the ten networks. It has been observed 
following important conclusions:1) Unnecessarily 
making the network more complex by increasing the 
number of convolutions in parallel doesn’t improve 
network performance. 2) By adopting dilation, it also 
does not improve network performance. 3) 
MFb(3X5) performs better on all other 
configurations, and the number of trainable 
parameters have been reduced significantly over all 
other designs. 
 
4.5 Computational Complexity 

Table 6 provides a comparison of the 
suggested solution in comparison to SOTA models 
against the computational complexity metrics. The 
11M parameter value obtained by the suggested 
model, when in comparison to SOTA models, makes 
it less complex than U-Net, HardDNet-MSEG, and 

ConvSegNet. The suggested model has 43.37 Flops 
which is less than most of the SOTA models as stated 
in the table, which also proves it is reasonably better 
than these models. This number is also significantly 
better than almost all other models except HardNet-
MSEG and U-Net++. The proposed model recorded 
59 FPS, demonstrating here as well that it functions 
fairly well. 
 

To illustrate the various network’s learning 
properties, Figure 8 displays variations in training 
and validation loss, Jaccard, and F1 of two datasets. 
The effectiveness of the suggested model is 
noticeably better. These learning curves thus provide 
a summary of the fact that the proposed network 
converges quicker and approaches the optimal 
performing states in a significantly shorter amount 
of epochs. 
 
5. DISCUSSIONS 
 

The proposed LIC-Net framework 
demonstrates significant improvements in polyp 
segmentation, validated across two publicly 
available datasets: CVC-ClinicDB and Kvasir-SEG. 
These datasets offer diverse sets of polyp images 
with expert annotations, and the results confirm that 
the model achieves higher segmentation accuracy, 
reduced false positives, and improved computational 
efficiency compared to existing approaches. 

Performance gains can be attributed to two 
main innovations. First, the fuzzy Topological 
Active Net (TAN) in the preprocessing stage 
effectively suppresses structurally similar 
background regions, enabling clearer polyp 
localization. Second, the LIC-Net architecture, 
integrating a ResNet50 encoder and Multi-Feature 
Block decoder with CBAM attention, enhances the 
model’s ability to capture features across multiple 
scales and complexities. 

The existing works against which the 
proposed model was compared were all based on the 
U-Net encoder-decoder structure. Prior efforts 
involved residual connections [21], multiscale 
aggregation [22, 23], recurrent feedback [24], MLP 
tokenization [25], and context enhancement [26]. 
The proposed model continues in this direction, 
incorporating ResNet50 at the encoder and a refined 
decoder, while uniquely combining it with fuzzy 
TAN as a preprocessing stage—an element 
overlooked in previous approaches. 
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Despite promising results, limitations exist. 
The reliance on public datasets may limit the 
generalization to diverse real-world clinical settings. 
Furthermore, the model has not been validated on 
embedded hardware platforms for real-time use. 

Future research will focus on domain 
adaptation and semi-supervised learning to improve 
robustness in varied clinical environments. 
Additionally, efforts will be made to optimize the 
model for real-time deployment and validate its 
effectiveness through clinical trials. 

6. CONCLUSION 
   

A deep learning-based polyp segmentation 
technique is proposed in this work. The solution had 
two stages to improve segmentation efficiency. In 
the first stage, the fuzzy TAN model was used to 
remove the interference of background/ surrounding 
tissue similarities. In the second stage, LIC-Net is 
proposed to accurately segment the polyp. LIC-Net 
improved the U-Net architecture with ResNet50 at 
the encoder and MFB at the decoder end. As a result, 
the feature extraction from multiple receptive fields 
was effective. Performance comparison shows that 

the proposed solution achieves 2% higher accuracy 
compared to existing deep learning models. In 
addition, the proposed solution has 20% lower 
computation complexity compared to U-Net 
structure. 
Beyond colorectal polyp segmentation, this simple 
method could serve as a basis for various medical 
imaging tasks, including lesion or tumor 
segmentation in radiology and dermatology. Its low 
computational demand makes it suitable for real-
time deployment on portable devices, especially in 
rural or resource-limited healthcare environments. 
 
This work strives to set a first step towards the 
development of visually enabled AI based solutions 
for early diagnosis. Future work could be the 
extension of this framework to multi-class 
segmentation, validation on more datasets, and 
integration in embedded systems. An 
interdisciplinary cooperation between AI 
researchers and clinicians will be necessary to 
translate this solution into resource-limited health-
care applications. 
 

 

 
 
Table 2: The Specifics of the Datasets used in our Tests. The terms "Train," "Val," and "Test" Stand for the Quantity 

of Training, Validation and Testing Samples 
 

Experiment Training Dataset Testing Dataset Images Size Train Val Test 

1 Kvasir-SEG Kvasir-SEG 1000 720X576 to 1920X1072 792 88 120 
2 CVC-ClinicDB CVC-ClinicDB 612 384X288 490 61 61 

        

Table 3: Comparison of Performance Metrics: Training and Testing on the Same Dataset (Kvasir-SEG and CVC-
ClinicDB) 

Kvasir-SEG 
Network Dice mIoU Recall Precision Accuracy F2 

U-Net [8] 0.7350 0.8150 0.8340 0.8692 0.9465 0.8216 

ResU-Net [21] 0.6634 0.7642 0.8025 0.8200 0.9341 0.7740 

U-Net++ [22] 0.7419 0.8228 0.8437 0.8607 0.9491 0.8295 

HardNet-MSEG [23] 0.7459 0.8260 0.8485 0.8652 0.9492 0.8358 

FANet [24] 0.6941 0.7815 0.8452 0.8159 0.9220 0.8002 

UNeXt [25] 0.6284 0.7318 0.7840 0.7656 0.9208 0.7507 

ConvSegNet [26] 0.7987 0.8665 0.8922 0.8924 0.9637 0.8776 

Proposed model 0.8275 0.8917 0.9261 0.8937 0.9685 0.9079 

 
CVC-ClinicDB 

Network Dice mIoU Recall Precision Accuracy F2 
U-Net [8] 0.8072 0.8734 0.8939 0.8840 0.9829 0.8834 

ResU-Net [21] 0.7892 0.8648 0.8836 0.8804 0.9793 0.8722 
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U-Net++ [22] 0.8337 0.8913 0.9129 0.8988 0.9859 0.9026 

HardNet-MSEG [23] 0.8388 0.8967 0.8929 0.9216 0.9871 0.8938 

FANet [24] 0.7958 0.8625 0.8570 0.9151 0.9772 0.8569 

UNeXt [25] 0.6676 0.7673 0.7546 0.8167 0.9722 0.7563 

ConvSegNet [26] 0.8490 0.9083 0.9354 0.8980 0.9883 0.9205 

Proposed model 0.8885 0.9390 0.9585 0.9245 0.9890 0.9501 
       

 
 

Table 4: Comparison of Performance Metrics on Cross Dataset 
Training: Kvasir-SEG and Testing : CVC-ClinicDB 

Network Dice mIoU Recall Precision Accuracy F2 
U-Net [8] 0.5514 0.6382 0.6888 0.8039 0.9546 0.6571 

ResU-Net [21] 0.4967 0.5970 0.6210 0.8005 0.9465 0.5991 

U-Net++ [22] 0.5475 06350 0.6933 0.7967 0.9504 0.6556 

HardNet-MSEG [23] 0.6057 0.6960 0.7173 0.8528 0.9592 0.7010 

FANet [24] 0.5345 0.6306 0.7707 0.6957 0.9283 0.6762 

UNeXt [25] 0.3901 0.4915 0.6125 0.6609 0.9216 0.5318 

ConvSegNet [26] 0.7178 0.7960 0.8220 0.8124 0.9737 0.8070 

Proposed model 0.7208 0.7983 0.8184 0.8563 0.9623 0.8055 

 
Training: CVC-ClinicDB and Testing: Kvasir-SEG 

Network Dice mIoU Recall Precision Accuracy F2 
U-Net [8] 0.3330 0.4592 0.8051 0.4095 0.7327 0.5648 

ResU-Net [21] 0.2789 0.4000 0.8801 0.3087 0.6293 0.5348 

U-Net++ [22] 0.3489 0.4692 0.8294 0.4095 0.7143 0.5772 

HardNet-MSEG [23] 0.4338 0.5521 0.7585 0.5479 0.8142 0.6128 

FANet [24] 0.4110 0.5189 0.8656 0.4762 0.7138 0.6163 

UNeXt [25] 0.3163 0.4363 0.7203 0.4175 0.7475 0.5204 

ConvSegNet [26] 0.6080 0.7156 0.9106 0.6664 0.8911 0.7835 

Proposed model 0.6595 0.7573 0.8871 0.7344 0.9190 0.8013 

 
 

Table 5: Multi-Feature Blocks(MFB) at the Decoder 
 

Network 
Trainable 
Parameters 

Dice 
mIoU Recall Precision Accuracy F2 

MFB(1-3) 10,150,986 0.8054 0.8935 0.9209 0.8745 0.9623 0.8923 

MFB(3-5) 11,330,634 0.8275 0.8917 0.9261 0.8937 0.9685 0.9079 

MFB(3-7) 12,510,282 0.8205 0.8902 0.9266 0.8757 0.9642 0.9003 

MFB(3-9) 14,083,146 0.8178 0.8830 0.9233 0.8838 0.9679 0.9010 

MFB(1-3-5) 11,397,706 0.8048 0.8759 0.9170 0.8779 0.9650 0.8950 

MFB(3-5-7) 13,876,298 0.8027 0.8752 0.9142 0.8739 0.9620 0.8902 

MFB(3-5-9) 15,449,162 0.7948 0.8670 0.9102 0.8629 0.9608 0.8901 

MFB(3-7-9) 16,509,514 0.8016 0.8715 0.9197 0.8715 0.9634 0.8919 
MFB(1-3-5-7) 13,824,074 0.8111 0.8819 0.9233 0.8791 0.9669 0.9002 
MFB(3-5-7-9) 17,756,234 0.7873 0.8627 0.9105 0.8592 0.9595 0.8838 
MFB 11,857,994 0.8068 0.8765 0.9234 0.8727 0.9626 0.8966 
MFB(1-3d2-5d2) 11,397,706 0.8025 0.8734 0.9266 0.8675 0.9648 0.8964 
        
MFB(3-7-9d2) 16,509,514 0.8054 0.8762 0.9258 0.8756 0.9639 0.8988 



 
 Journal of Theoretical and Applied Information Technology 

15th October 2025. Vol.103. No.19 
©   Little Lion Scientific  

 
ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
7982 

 

 
MFB(1-3-5d4) 11,397,706 0.8030 0.8732 0.9164 0.8756 0.9638 0.8909 
        
        

 
 
 

Table 6: Computational Complexity Comparison of the Proposed Model with state-of-the-art Models 
 

Network Dice mIoU Recall 
U-Net [8] 31.04 54.75 156.83 

ResU-Net [21] 8.22 45.42 196.85 

U-Net++ [22] 9.16 34.65 126.14 

HardNet-MSEG [23] 33.34 6.02 42 

FANet [24] 7.72 94.75 44 

UNeXt [25] 1.47 569.56 88.89 

ConvSegNet [26] 15.58 135.98 64 

 
Proposed method 11.45 43.37 59.82 

 
 

 

Figure 6:  Qualitative Analysis of the Input Colonoscopic Images on Kvasir-SEG
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Figure 7:  Qualitative Analysis of the Input Colonoscopic Images on CVC-ClinicDB

Figure 8:  Training and Testing Curves a) Kvasir-SEG b) CVC-ClinicDB
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