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ABSTRACT

Autism Spectrum Disorder (ASD) is a complex neurodevelopmental condition marked by persistent
challenges in communication, behaviour regulation, and social interaction. The heterogeneity of symptoms
across individuals and age groups complicates early detection, as behavioural traits often overlap with other
conditions or remain masked until later developmental stages. Traditional diagnostic methods are usually
time-intensive, subjective, and rely on specialist interpretation, leading to delayed or inconsistent
identification. Screening data offers a scalable, cost-effective, and non-invasive alternative for early ASD
prediction, capturing observable traits through structured behavioural questionnaires. To overcome
diagnostic inconsistencies and optimize model performance, this research proposes a Bayesian Optimization
based Long Short-Term Memory (BO-LSTM) framework that adaptively learns temporal dependencies in
screening responses while automatically tuning its parameters using a probabilistic surrogate model. The
model was evaluated using the Autism Screening Dataset, comprising 6075 records and 20 structured
attributes, sourced from a mobile-based application developed by Dr. Fadi Fayez. The dataset includes
behavioural inputs from toddlers, children, adolescents, and adults, with questionnaires tailored to each age
group. BO-LSTM achieved a classification accuracy of 74.375%, along with notable gains in sensitivity,
specificity, and interpretability. These results demonstrate the framework's effectiveness in processing
sequential screening data for timely and reliable ASD prediction across diverse age groups.
Keywords: Autism Spectrum Disorder, Prediction, Screening Data, Deep Learning, Long Short-Term
Memory, Bayesian Optimization
1. INTRODUCTION intervention strategies that align with individual
support needs [4].

Autism is a lifelong neurodevelopmental
condition marked by persistent challenges in
communication, behaviour regulation, and social
engagement. Its clinical presentation spans a
spectrum, with individuals showing varying degrees
of language delay, restricted interests, and sensory
sensitivities [1]. Subtypes include conditions such as
Asperger’s syndrome and atypical autism, each
reflecting different levels of functional ability and
behavioural rigidity. Though grouped under the same
spectrum, these subtypes exhibit non-uniform traits
that resist generalization [2], [3]. This variability
makes standardized diagnosis and prediction
difficult, especially when behavioural expressions
evolve across contexts. The distinction between mild
and severe traits is not always detectable through

single-session  clinical —assessments. Accurate
identification of these subtypes is clinically
significant and essential for tailoring early

Autism Spectrum Disorder (ASD) affects
individuals across all age groups, but the expression
of symptoms and diagnostic clarity vary significantly
with age [5], [6]. In infants and toddlers, delays in
language acquisition, minimal social initiation, or
atypical gaze patterns may be early indicators, yet
these are often misinterpreted as personality
differences or delayed development. Adolescents
may present more subtle manifestations, including
social withdrawal or obsessive focus, which may be
masked or overlooked entirely [7]. Adults frequently
remain undiagnosed due to learned compensatory
behaviours or limited access to retrospective
developmental evaluations. The symptoms overlap
with other conditions like ADHD or anxiety, which
complicates accurate detection. Gender-based
diagnostic gaps and cultural differences in behaviour
interpretation amplify these challenges [8]. The
dynamic nature of symptom expression across time
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introduces inconsistencies in clinical judgments,
making it essential to explore models that adaptively
capture behavioural patterns and predict ASD in
temporally diverse populations [9].

ASD research commonly leverages two
forms of data: imaging datasets such as fMRI or EEG
and non-imaging, screening-based datasets collected
through structured questionnaires or rating scales
[10]. Imaging-based approaches offer
neurophysiological insights but often require high-
cost equipment and skilled operators, and they are
less feasible for large-scale or early-stage screening.
Screening datasets, in contrast, are low-cost, widely
accessible, and capture observable traits grounded in
lived behaviour [11]. These datasets mirror real-
world  symptomatology, enabling  scalable,
population-level ~ASD  monitoring  without
specialized infrastructure [12]. This research focuses
exclusively on screening datasets to ensure broad
applicability and practical relevance, especially in
resource-limited settings. Screening responses often
carry temporal dependencies, and symptoms may
evolve across repeated assessments or structured
response sequences [13]. Unlike static neuroimages,
these sequences demand models that learn from
transitions, not isolated snapshots. The screening
data choice supports ethical deployment and
dynamic modelling of ASD behaviour, which is
often shaped by time, context, and developmental
stage.

Deep learning has emerged as a powerful
approach in ASD prediction due to its capacity to
capture complex, nonlinear relationships within
behavioural data. Unlike traditional statistical
methods, deep models can learn from raw, structured
inputs such as screening questionnaires without
requiring manual feature engineering [ 14]. Recurrent
architectures have shown strength in modelling
sequential dependencies, common in symptom
progression or temporally structured assessment
responses. These models help uncover latent
behavioural trends that are not immediately apparent
through static analysis. Probabilistic methods
enhance this predictive capacity by incorporating
uncertainty estimation into learning [15]. Techniques

such as Gaussian Processes and Bayesian
Optimization contribute by offering guided
exploration of model parameters, reducing

overfitting, and improving generalization. Their
integration within behavioural health modelling
provides a structured mechanism to handle
variability in human-assessed data, making them
suitable for sensitive domains like early ASD
identification from screening evaluations [16], [17].

Bio-inspired optimization algorithms take
inspiration  from the adaptive behaviours,
cooperative strategies, and survival mechanisms
found in nature [18]-[27]. These methods are
designed to efficiently explore and exploit complex
search spaces, often achieving superior performance
in solving high-dimensional, nonlinear, and
multimodal optimization problems. Their stochastic
and adaptive nature allows them to escape local
optima, balance exploration with exploitation, and
maintain robustness under uncertain or dynamic
conditions [28]-[40]. Such characteristics make bio-
inspired optimization a versatile tool that can be
applied across various computational tasks,
including feature selection, parameter tuning, and
model enhancement, where traditional optimization
methods may struggle [41]-[57].

1.1. Problem Statement

ASD diagnosis remains a significant challenge due
to the spectrum’s inherent heterogeneity, subtle
behavioural markers, and overlapping traits with
other neurodevelopmental conditions. Traditional
assessments often rely on subjective interpretation of
structured screening responses, leading to diagnostic
delays and variability across age, gender, and
cultural groups. Although non-imaging screening
datasets offer scalable and accessible data sources,
current computational models underutilize their
temporal and decision-structured nature. Deep
learning  approaches,  particularly  recurrent
architectures, show potential yet are constrained by
sensitivity to hyperparameter configurations, lack of
robustness, and poor generalization when applied to
low-dimensional, sequential inputs. These models
frequently require exhaustive manual tuning and fail
to embed uncertainty estimation, reducing both
efficiency and interpretability. Existing limitations
restrict real-world deployment in early screening
environments, particularly in low-resource or non-
specialist settings. This exposes a critical gap in
designing models that can adaptively, reliably, and
scalably process behavioural screening data for
accurate and timely ASD identification.

1.2. Motivation

Early prediction of ASD is critical for
enabling timely interventions that support
communication, cognitive development, and
adaptive functioning. Missed or delayed diagnoses
often result in long-term challenges for individuals
and families, especially in communities with limited
access to specialized assessment services. Structured
screening tools provide a practical alternative, but
existing models often underutilize their sequential
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nature and behavioural complexity. Most predictive
systems rely on static features and require extensive
manual tuning, which hinders efficiency and
scalability. There is a growing need for models that
can intelligently process temporal screening data and
adapt configurations without human intervention.
Bridging this gap is vital to ensure consistent,
interpretable, and accessible ASD detection across
real-world settings, supporting early intervention
pathways that are both equitable and actionable
above the sub section while no space should be given
below the heading and text

1.3. Objective

This research aims to design and validate an adaptive
deep-learning framework for the early prediction of
ASD using sequential responses from non-imaging
screening assessments. The proposed methodology,
Bayesian Optimization based Long Short-Term
Memory (BO-LSTM), is developed to address
critical limitations in existing models that fail to
capture temporal dependencies and require extensive
manual hyperparameter tuning. By integrating a
probabilistic surrogate model and acquisition-guided
sampling, BO-LSTM automatically identifies
optimal configuration paths, improving training
efficiency and model generalization. The framework
is built to process real-world behavioural screening
sequences Wwith minimal overfitting, and its
predictive  performance is evaluated using
classification accuracy as the primary metric.
Interpretability is embedded through structured
output mappings to ensure model transparency and
clinical relevance. This research proposes a scalable,
data-efficient, and reliable prediction model for early
ASD identification across diverse and resource-
constrained settings.

2. LITERATURE REVIEW

Imperialistic Competitive Feature Selector”
[58] applies the Imperialistic Competitive Algorithm
(ICA) for feature selection, simulating socio-
political competition. Each country in the search
space represents a candidate feature subset, and
mighty empires assimilate weaker ones based on
classification performance. ‘“Relational Graph
Attention Network™ [59] models ASD classification
using graph attention networks, where each node
represents a subject and edges encode similarity
based on phenotype or fMRI traits. The model learns
attention scores that determine the influence of
neighbouring nodes, with different attention weights
applied depending on edge type. Multiple graph
variants (phenotype-only, fMRI-only, combined) are

constructed to evaluate relational strength. “Atypical
Salient Region Enhancer (ASRE)” [60] uses an
encoder-decoder architecture with intermediate
modules to refine visual saliency detection for ASD
individuals. Architecture handles abnormal attention
distribution specific to ASD by adjusting feature
fusion at each decoding layer, ensuring the final map
reflects ASD-specific visual tendencies. All
enhancements operate in a convolutional setting
without recurrence or graph structures.

“Optimizer Ensemble Convolution
Network™ [61] constructs several CNN models with
identical architectures but different optimization
algorithms like Adam and Nadam. Each CNN is
trained on structural MRI data, where on-the-fly
augmentation applies spatial and intensity
transformations in real-time. This strategy introduces
diversity in learned weights. “Capsule Dense
Network Reinforcer” [62] combines feature
extraction with behavioural recommendation. Input
features are first optimized using Cosmo Nest, a
metaheuristic combining African Vulture and
Butterfly behaviour to identify informative
attributes. These are passed into Capsule Dense
Net++, which uses capsule routing to preserve spatial
hierarchies, and Dense Net layers to promote feature
reuse. Classification identifies ASD status from
screening data. “Federated Convolutional LSTM
Network” [63] builds a decentralized model where
each local node uses CNN to extract spatial features
and LSTM to model behaviour sequences from
screening data. These regional models train
independently and transmit encrypted weights, not
raw data, to a central server. The server aggregates
them using federated averaging.

“Adaptive Fuzzy Reasoning Network” [64]
applies a Takagi-Sugeno—Kang fuzzy inference
system combined with contrastive domain adaptation
for rs-fMRI-based ASD classification. Features are
fuzzified using Gaussian membership functions, and
fuzzy rules map input conditions to ASD or control
labels. A domain adaptation module aligns cross-site
feature distributions using contrastive learning.
“Support Vector EEG Classifier” [65] processes task-
evoked EEG data to differentiate low- and high-
functioning autism. Signals are filtered and
augmented using Gaussian bootstrapping. Band-
specific features like absolute and relative power are
computed from the delta to gamma bands. Derived
features include theta-alpha and theta-beta ratios,
reflecting  cognitive  workload.  “Supervised
Connectivity Model Survey” [66] reviews machine
learning models trained on functional brain
connectivity matrices derived from fMRI. Atlas-
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based brain segmentation defines nodes and the
correlation between regions forms features. These
matrices are flattened into vectors input to models
like SVM, decision trees, or ensemble learners.
Recursive feature elimination and PCA are used for
dimensionality reduction

“Dual Transformer Self Learner” [67]
models repetitive behaviour detection using pose-
estimated video frames. A dual-branch transformer
processes spatial key points and temporal transitions
using self-attention. Self-supervised proxy tasks
such as frame order prediction, spatial jigsaw, and
motion reconstruction train the network without
manual labels. “Structural Equation Burnout Model”
[68] builds a statistical framework using Partial Least
Squares Structural Equation Modelling (PLS-SEM)
to explore escapism in autistic gamers. Inputs include
psychometric scales for autistic burnout, and gaming
motivations. Latent variables such as self-
suppression, self-expansion, and escapism are
derived from observable questionnaire items.
“Spatio Temporal Learning Network™ [69] processes
fMRI data through parallel branches for spatial and
temporal feature learning. The spatial path uses CNN
layers to encode region-specific activity, while the
temporal path applies recurrent layers to capture
dynamic fluctuations. Attention mechanisms
enhance signal importance in both paths. A feature-
sharing block transfers functional patterns between
streams, and fused embeddings are passed to a
classification head. Multi-task loss guides the
training across spatial and temporal dimensions,
aligning learned features with class labels

“Support Vector Machines (SVM)” [70]
presents a classifier trained on questionnaire-derived
screening data, stratified across toddler, child, and
adult age groups. The process begins with feature
selection using correlation metrics, isolating high-
relevance behavioural indicators. These features are
mapped into a kernel space where SVM identifies a
hyperplane that maximizes the separation between
ASD and non-ASD responses. Margin constraints
and support vectors are adjusted per age group to
accommodate developmental variation in symptom
expression. “Big Data and Machine Learning-based
Medical Data Classification (BDML-MDCASD)”
[71] presents a hybrid architecture that begins with
ISSA-FS for pruning irrelevant behavioural features.
Each dataset—child, adolescent, and adult—is
separately filtered using this swarm-inspired
selection process. An Autoencoder encodes selected
features into compressed latent vectors, which are
then classified using a BOA-guided decision layer.
The process is distributed across computing nodes

using MapReduce to manage scale and ensure
uniform processing.

2.1. Comparative Insights and Significance of
Improvement

The reviewed approaches demonstrate
valuable contributions to ASD prediction; however,
many rely on neuroimaging modalities that are
costly, resource-intensive, and impractical for large-
scale screening. Non-imaging methods, while more
accessible, often struggle with instability when
confronted with noisy, incomplete, or imbalanced
screening datasets. Several state-of-the-art classifiers
lack mechanisms to adapt to behavioural drift across
age groups or to control overfitting under limited
data diversity. Others provide high accuracy on
constrained datasets but show reduced generalisation
across demographic or cultural variations. The
proposed  Lagrangian-optimised reinforcement
learning framework directly addresses these gaps by
embedding stability constraints, bias suppression,
and entropy-based exploration into the learning
process. This enables the model to maintain robust
performance under challenging screening conditions
where prior methods degrade. Comparative results
confirm consistent gains in accuracy, balanced
sensitivity and specificity, and resilience to data
variability, highlighting a substantial advancement
over existing techniques in both technical capability
and real-world applicability for ASD screening.

3. PROPOSED METHODOLOGY

The proposed methodology introduces a
Bayesian Optimization based Long Short-Term
Memory (BO-LSTM) model designed for early
prediction of Autism Spectrum Disorder using
structured, non-imaging screening data. The
architecture captures temporal patterns in sequential
screening responses while automatically optimizing
hyperparameters such as learning rate, dropout, unit
size, and batch configuration. A Gaussian Process
surrogate models validation loss and drives
acquisition-guided sampling to identify high-
performing configurations without exhaustive search.
The framework balances predictive accuracy and
model generalization across age-specific symptom
profiles. This integrated approach improves stability,
reduces manual intervention, and supports adaptive
learning from behavioral data under real-world
variability
3.1. Initialize Surrogate

The BO-LSTM framework depends on a surrogate
model to efficiently approximate the validation loss
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landscape during ASD classification using structured
screening sequences. A Gaussian Process surrogate
enables the system to capture nonlinear patterns and
uncertainty while optimizing LST™M
hyperparameters. Unlike exhaustive searches, this
surrogate-based approach  evaluates fewer
configurations by predicting the performance
landscape with limited real observations. This step
becomes foundational in guiding successive Bayesian
decisions in selecting optimal dropout rates, memory
sizes, and learning rates. The surrogate directly
interfaces with the ASD classification objective by

favoring loss-minimizing LSTM configurations
trained on temporal survey data
§5:60-y (1)

where S denotes the surrogate model that maps an
LSTM hyperparameter vector 6 to a predicted
validation loss y. This symbolic representation
captures the surrogate’s forecasting role during
optimization.

Based on past observations, Gaussian Process
regression constructs a posterior distribution over
possible validation losses. Each LSTM configuration
and its recorded loss update the GP model’s belief
about the function landscape. The posterior mean
quantifies expected performance as a central
indicator in acquisition evaluations. For ASD
classification, it identifies configurations likely to
generalize well on behavioural and diagnostic
screening inputs. The posterior mean for a test point
0 is analytically expressed using kernel relationships
with prior evaluations.

1e(0) =k (0)' A7y, ()

where 1, (0) represents the expected loss. The
matrix A, = K, + 62 blends kernel-derived
similarity with observation noise ¢, while K,(8)
encodes  kernel  similarity  with  existing
configurations

Beyond estimating average performance,
the surrogate model quantifies uncertainty at any
candidate point. This variance measure helps balance
exploration and exploitation during optimization. In
ASD-related prediction tasks, certain
hyperparameter regions may be sparsely explored;
the surrogate variance ensures that such areas still
have a chance to be sampled. The magnitude of
uncertainty aids the acquisition function in preferring
informative yet under-explored configurations that
may capture subtle ASD-relevant patterns in input
sequences.

of (8) =k(6,0) —

_ (€)
ke (0)'Ar ke (6)

where o7 (6) incorporates both prior kernel values
and the influence of previous observations, ensuring
a calibrated estimate of model confidence.

The surrogate’s predictive capability
critically depends on how similarity is encoded
between LSTM configurations. For ASD screening
data, subtle shifts in dropout rates or hidden unit sizes
can lead to significant accuracy changes. The Matern
kernel captures such sensitivities while remaining
flexible across configurations. This kernel quantifies
the relation between two hyperparameter sets,
forming the foundation for posterior mean and
variance computations.

k(0 6;) =

\5d.; 5d%
2 tj 13)
a (1 + ] + 3lz>

( x/§dij>
P\

where d;; is the Euclidean distance between
configurations 6; and 6;,a defines the signal scale,

and [ controls the smoothness across hyperparameter
transitions.

“)

The surrogate model must continuously evolve as
more LSTM configurations are evaluated. Once a
new candidate configuration is trained and its
validation loss recorded, this data is appended to the
set of observations. The surrogate is then refitted to
this augmented dataset. This update ensures that the
GP posterior accurately reflects the current
understanding of the performance surface. In ASD
screening prediction, the updated surrogate improves
decision quality by steering future evaluations
toward more promising areas

Dy = DeU{(Ot41, Ye41)} (5)
This update rule describes the incremental dataset
D¢, used to refit the GP. Here, 8,,, is the newly
sampled configuration, and y;,;is its observed
validation loss

3.2. Defining Search Space

The effectiveness of  Bayesian
Optimization in refining LSTM architecture relies
critically on the boundedness and granularity of its
search space. The search space defines the domain
where the acquisition function proposes candidate
configurations to train and evaluate. For ASD
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classification tasks wusing structured screening
datasets, the need for tightly controlled ranges stems
from the discrete and low-dimensional nature of the
input features. Optimal performance from the BO-
LSTM arises when this space is neither overly broad
nor overly restrictive, ensuring meaningful
exploration while avoiding irrelevant or impractical
regions.

o= {n €[107%,1072],6 € [0.1,0.5],}

u € [32,256],b € [16,128] ©)

where 1 denotes learning rate bounds, & refers to
dropout rate limits, u captures hidden unit choices,
and b describes batch size intervals. These variables
are the core LSTM hyperparameters most sensitive
to classification variance across ASD profiles

Search space representation impacts the
surrogate’s modeling fidelity. For hyperparameters
such as dropout and learning rate, a continuous
representation allows finer resolution in predictive
tuning. On the contrary, hidden unit sizes and batch
sizes often benefit from discrete step-wise encoding,
as underlying hardware optimizations prefer specific
sizes. During BO, Gaussian Processes handle
continuous dimensions natively, while discrete
encodings are incorporated using indicator functions
or integer mappings to maintain compatibility with
probabilistic modeling

0 = [log,0(n),8,log,(u),log,(b)] (7

where, 6 transforms each hyperparameter into a
scaled vector suitable for Gaussian Process
regression. Using logarithmic terms stabilizes kernel
evaluation by reducing extreme variance across
numeric magnitudes.

Prior distributions are optionally embedded into the
initial sampling mechanism to reinforce the Bayesian
aspect of the optimization process. This step gives
weight to empirically favorable hyperparameter
regions, allowing the optimization to converge faster
toward promising areas. In screening-based ASD
datasets, prior belief can be derived from earlier
LSTM trials or adjacent behavioural prediction
models. These priors are often selected as log-
uniform or beta distributions over the search space,

enhancing the surrogate model’s ability to
distinguish ~ between  likely and  unlikely
configurations

P(6) = Ili=1p:(6)) (®)

where P(6) defines the joint prior distribution over
the BO-LSTM hyperparameter vector. Each

marginal prior p;(6;) corresponds to one search
space dimension, enabling the surrogate to integrate
historical knowledge into its inference

The search space can be progressively refined during
optimization by applying adaptive constraints. In
BO-LSTM, once early iterations indicate certain
regions consistently yield suboptimal loss, those
regions are dynamically masked or penalized in the
acquisition function. For example, dropout values
close to zero may be consistently associated with
overfitting on ASD datasets. Applying domain
restrictions avoids such configurations in later

stages, preserving optimization budget for
meaningful exploration
H*={0 € H:I[L(O) <] =1} ©)

where, H* is a constrained space, and it filters
configurations 6 based on their associated loss L(6),
compared to a dynamic loss threshold A. The
indicator function I[-] activates only the regions
deemed feasible by empirical observation

Gaussian Process surrogates used in BO
require normalized input vectors to ensure stable
kernel evaluations. Feature scaling standardizes each
hyperparameter to a bounded interval, typically
[0,1. In ASD classification models, this
transformation helps treat learning and dropout rates
on an equal scale despite their native value.
difference. Normalization also reduces numerical
instability in matrix inversion processes during GP
updates.

6 —min(H)
" max(H) — min (H)

!

(10)

where 6’ is a normalized version of the raw
hyperparameter vector 8, obtained through min-max
scaling across each dimension. This vector becomes
the final input to the surrogate model and acquisition
function.

3.3. Initial Sample Points
The initial points serve as the foundation for the
surrogate model in the Bayesian Optimization loop.

Without reliable and well-distributed initial
configurations, the GP surrogate lacks the empirical
structure required to predict validation loss

accurately for unseen LSTM hyperparameters. For
ASD classification using non-imaging screening
datasets, the diversity of initial LSTM settings
becomes essential to capture the variable
expressiveness of behavioural sequence patterns.
These samples help calibrate the initial posterior
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belief, enabling the optimizer to identify candidate
models with strong generalization potential early

0, ={6M,0,...,00} (11)

where O, denotes the initial configuration pool,
where each O® represents a unique LSTM
hyperparameter vector sampled within the bounded
space H established in Step 2.

Latin Hypercube Sampling (LHS) is widely
recognized as a space-filling design strategy suitable
for generating diverse hyperparameter
configurations. In the BO-LSTM context, LHS
ensures that each hyperparameter range is
proportionally  explored across the initial
configurations. This is particularly crucial for models
applied to ASD screening datasets, where minor
dropout rates or memory cell size changes may lead
to significant classification shifts. LHS avoids
clustering in any region and supports uniform
exploration for optimal initialization of the Gaussian
Process surrogate

O _ 7 + €\ rmax  min
o = min+(=— ) ("7 ="") 0

where Hj(i) is the value of the j-th hyperparameter in
the i-th configuration. The term n].(i) is a unique
permutation of the integers 0 through k — 1, e is a
random variable in [0,1), and min;,max; are the

bounds of the j-th hyperparameter.

The number of initial samples directly correlates
with the dimensionality of the hyperparameter search
space. For Bayesian Optimization to produce
accurate mean and variance predictions, the
surrogate must first be conditioned on sufficient
evidence. In ASD classification models involving
four primary LSTM parameters, a minimum of ten
diverse configurations is typically adequate to begin
surrogate modeling. This number is often derived

from heuristics balancing exploration with
computational expense.
k=[BDlog (D)] (13)

where, k is the total number of initial samples, D is
the number of dimensions (hyperparameters), and 3
is a constant controlling sampling density. This
expression aligns the sample size with the
complexity of the optimization domain.

Each sampled configuration must be stored in a
matrix format for integration into the surrogate
training process. This matrix becomes the initial

training input for the Gaussian Process, influencing
its kernel matrix, posterior mean, and uncertainty
predictions. The matrix formulation also
standardizes input data for efficient batch validation
of initial LSTM trials. Each row corresponds to a
configuration, and each column denotes one
hyperparameter dimension across the normalized
search space.

91(1)91(1) 951)
(2)p(2) (2)

_ 620! 65 (14)
oFp . ok

where ©, is the complete set of sampled points,
where each Hj(l) is already normalized using the min-
max transformation defined in Step 2.

Each initial LSTM configuration must be
mapped to a corresponding validation loss via
empirical training and testing. For screening-based
ASD classification, this requires fitting each model
to the dataset and capturing how well it learns
sequential behavioural cues. These results form the
target for fitting the Gaussian Process surrogate in
Step 4. Accurate performance mapping at this stage
enables more informed predictions over unexplored
regions in the search space.

Yo = {y®,y®, ..y®}, y® = D) (15)
where Y, is a target vector that contains validation
losses, where each y( is computed as the loss for the
LSTM model trained using the configuration 8.
This outcome provides the first layer of supervision
for the surrogate model.

The quality of initial sampling can be measured using
a coverage metric that quantifies the dispersion of the
sampled configurations across the entire search
space. For ASD classification, achieving optimal
dispersion ensures that different behavioural patterns
and response gradients across the screening dataset
are adequately represented. The minimal pairwise
Euclidean distance across the configuration matrix is
a widely used coverage metric.

= mi ® _g)
€(8,) = minf|6® — 6], (16)
where C(0,) computes the minimum distance
between any two distinct configurations. A larger
value indicates better coverage and less redundancy
in the initial sample set

3.4. Train LSTM Samples
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The Bayesian Optimization framework requires
empirical  observations of validation loss
corresponding to sampled LSTM configurations to
construct an accurate surrogate model. Each
configuration derived in Step 3.3 must be deployed
within a complete training pipeline to extract real-
world performance values. In the context of ASD
classification from screening datasets, these values
measure how effectively a given LSTM
configuration models sequential input derived from
structured behavioural patterns. The training phase
supplies the ground truth against which the surrogate
calibrates its mean prediction and confidence region.

Mg « TrainLSTM(x,y; 6®) 17)

where TrainLSTM maps the input-output pairs
(x,y), sampled from the screening dataset, to a
trained  model My using  hyperparameter

configuration ®,

Every LSTM model must be optimized using a
differentiable loss function that reflects classification
correctness. For ASD diagnosis tasks, binary cross-
entropy is frequently employed due to the binary
nature of the classification target (i.e., ASD or non-
ASD). The loss surface defined by this function
determines the gradient flow during optimization,
impacting model convergence and generalization
capacity. The wvalidation loss derived from this
function directly becomes the scalar target fed into
the Bayesian surrogate.

L(6W)

N
_1 wlog (3 +
= NZ la 2 toga -5,

where L(Q (i)) represents the average binary cross-
entropy over the validation set. Each ¥, is the
predicted probability output of the LSTM model
M 4, corresponding to the ground truth label y,

(18)

Sequential behavioural screening data exhibit
temporal patterns, often reflecting decision
sequences, checklist responses, or time-tagged
observations. The LSTM architecture processes such
data by maintaining the memory of previous steps
using gated cell states. For every configuration
sampled, the model must learn a stable mapping from
these sequences to class labels, capturing nuanced
transitions present in the data. This dynamic is
governed by the hidden states evolving through the
time axis of input data.

h® = LSTMCell(x,, h,, cP}; 6©)

t—-1’

(19)
where hEL)and ct(l) denote the hidden and cell states
of the LSTM at time t, generated using the
configuration 8 and the input sequence element x,.
This recursive behaviour forms the core computation
of each model variant under evaluation.

Training must be executed with controlled dataset
partitioning to ensure unbiased performance
evaluation. A common approach involves stratifying
the screening dataset into training and validation
subsets. Once the LSTM completes training on the
training portion, the validation subset is passed
through the model to compute predictive probability
and, ultimately, the loss score. This process is
standardized across all configurations to maintain
consistency in surrogate updates.

(xtrain’ ytrain)’ (xval’ yval) —

(20)
Split(x,y; a)

where, Split separates the input dataset into training
and validation segments according to a stratification
ratio «, preserving class distribution for ASD labels
across both partitions.

The recorded wvalidation losses must
maintain numeric smoothness and avoid excessive
outlier influence to ensure compatibility with the
surrogate’s assumptions. Smoothing techniques or
averaging over multiple runs per configuration are
adopted in ASD classification tasks where stochastic
training effects can skew single-run results. This
smoothing enhances the Gaussian Process
regression’s ability to fit a reliable mean function.

R
1(60) = %z LO(9®) 1)
r=1

where, Z(Q (i)) is the average loss over R repeated

training trials using configuration 8®. Each L™
reflects the result of an independent training pass,
controlling randomness in weight initialization or
data batching.

Every computed validation loss must be stored
alongside its corresponding configuration to
populate the data set required for surrogate fitting
and acquisition optimization. This record becomes
the empirical backbone of the Bayesian Optimization
routine, supplying both training data and posterior
calibration points.
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Dy ={(6D,L(6W)|i =1,....k )} (22)
The dataset D, each LSTM hyperparameter vector
and its smoothed validation loss, forming the
observed pairs defining the surrogate model’s
initialization data.

3.5. Fit Gaussian Process

The Bayesian Optimization process relies on a
surrogate model to approximate the loss surface of
the LSTM classifier trained on ASD screening
datasets. The Gaussian Process (GP) is the
probabilistic surrogate, offering a flexible non-
parametric method to interpolate observed
configuration-performance pairs and forecast the
response at unseen locations. The model incorporates
both the mean prediction and a variance estimate,
enabling confidence-aware acquisition decisions in
subsequent steps. The previously computed dataset

D0={(9(i),Z(0(i)))} now becomes the core

evidence to condition the GP’s posterior distribution
over the hyperparameter domain.

Yo = [L(6®), 16D, ... ,.L(6®)]"  (23)
where vector y, contains all recorded validation
losses, serving as target outputs for the surrogate
regression task. These wvalues anchor the GP
predictions in empirically observed behaviour.

Gaussian Process inference requires the computation
of a covariance matrix that captures pairwise
similarities between hyperparameter configurations.
Each entry in this matrix represents the kernel-
derived similarity between two LSTM parameter
vectors, where the kernel reflects prior assumptions
about function smoothness and relevance of
dimension-wise changes. For ASD classification
tasks, modeling sensitivity in dropout, learning rate,
and memory depth is particularly important to shape
predictive uncertainty across the feature space.

Koij = k(6©,00); ¢) (24)
where, each element in K ;; of the covariance matrix
is computed using the kernel function k(:,),
parameterized by hyperparameters ¢. These
parameters include signal variance and length scale
and are typically optimized during marginal
likelihood estimation.

Once the kernel matrix is defined and
observations are incorporated, the surrogate must be
updated to predict expected validation losses for any
new LSTM configuration. The posterior mean

estimates the central tendency of loss outcomes for a
given hyperparameter input. For BO-LSTM in ASD
screening classification, this estimate directs the
acquisition function toward promising
configurations that minimize prediction error for
unseen cases.

A(6.) = k(Ko + 02Dy, (25)
where f1(6,) denotes the surrogate’s predicted mean
loss at a new configuration 6,. The vector k, contains
kernel values between 6, and each point in D, while
02 represents noise variance accounting for
stochastic effects during LSTM training.

Predictive uncertainty is integral to Bayesian
Optimization, as it helps prioritize regions with high
information gain. BO-LSTM enables focused
exploration of hyperparameter regions with high
epistemic uncertainty—an essential trait for
identifying robust configurations that perform
reliably on sequential behavioural datasets. The
variance term quantitatively reflects this uncertainty
and allows the acquisition function to incorporate
exploitation and exploration.

6%(60,) = k(8,,0,) — kl(Ky + 62Dk, (26)
where 62(0,) gives the predicted variance for
configuration 6,. This variance peaks in under-
explored regions, ensuring that such areas are not
ignored in future sampling rounds.

The Gaussian Process surrogate includes internal
hyperparameters, such as kernel length scales and
signal variance, that must be learned from the data.
Optimizing these values improves model fidelity to
the observed data while controlling overfitting. The
marginal log-likelihood expresses the plausibility of
observed losses under the GP model and serves as the
objective for internal tuning. In BO-LSTM, this
alignment ensures that the surrogate conforms to the
empirical structure of loss behaviour over the ASD
classification space.

l Q,) = —1 (K, 2Ny, —
ogp(¥o10o) 2)’0( ot oDy
(27)

1 k
EloglK0 + a?l| — Eloan

This expression measures how well the GP
model fits the current dataset. Optimization of this
log-likelihood refines kernel hyperparameters,
directly improving the accuracy of mean and
variance predictions during acquisition.

After surrogate fitting, the predicted mean scores
across candidate configurations are normalized to
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enable fair comparison across BO iterations.
Normalization maps the scores into a bounded scale,
allowing acquisition metrics to operate stably across
varying loss ranges. For ASD screening analysis,
such normalization balances the influence of extreme
outliers or noise spikes, ensuring continuity in
optimization behaviour.

f(6.) — min()
max(f1) — min(f)
where, s(0,) represents the scaled loss prediction
between 0 and 1, facilitating the acquisition strategy

to interpret relative loss magnitudes rather than raw
values.

s(6.) = (28)

3.6. COMPUTE ACQUISITION

The acquisition function is a probabilistic utility that
guides the selection of the following configuration in
Bayesian Optimization. It utilizes the Gaussian
Process's predictive outputs, balancing exploiting
low-loss regions and exploring uncertain
configurations. In ASD classification using LSTM
over structured screening data, the acquisition
function ensures each subsequent training trial
contributes meaningfully to discovering an optimal
architecture. This controlled sampling reduces
redundant evaluations and accelerates the discovery
of generalizable models. The equation below defines
the Expected Improvement (EI) acquisition function.

a(f) = E[max(f* - £(6),0)] (29)

where, f* represents the best-observed validation
loss, and f () denotes the surrogate-predicted loss at
configuration 8. The function measures the expected
gain from evaluating 8 compared to the current best.

The practical computation of EI requires converting
the surrogate mean and variance predictions into a
closed-form  expression. This transformation
facilitates efficient evaluation across the whole
hyperparameter space. In the context of BO-LSTM,
El enables priority ranking of configurations for
training, allowing the model to focus its
computational budget on candidates with the highest
potential for loss minimization in the ASD task.

EI(6) = (f* —u(0)®(2)) + a(0)p(Z)  (30)

where, El using the Gaussian CDF ®(Z) and PDF
¢(Z). The variable Z represents the standardized
improvement defined by the surrogate’s posterior
mean p(0) and standard deviation o(@). The
function quantifies how promising a configuration is
relative to current knowledge.

The term Z used within the EI computation reflects
the standardization of predicted loss difference. This
adjustment ensures the acquisition function remains
scale-invariant and maintains proportionality across
diverse configurations. For BO-LSTM applied to
ASD screening, such normalization is essential to
compare LSTM setups fairly, especially across
regions of differing dropouts or unit sizes.

fT—u®)
7=—""7 31
a(@)+¢€ Gh
where, Z is computed as the normalized

improvement margin. The constant € ensures
numerical stability by avoiding division by zero,
particularly in configurations with low predictive
variance.

Alternative acquisition strategies, such as the Upper
Confidence Bound (UCB), prioritize exploration
explicitly. UCB adds a weighted uncertainty term to
the predicted loss, promoting configurations with
high epistemic wuncertainty. This variant is
advantageous during early optimization cycles when
the surrogate lacks complete knowledge of the

performance  surface  across the LSTM
hyperparameter space.
UCB(0) = u(6) — k.a(9) (32)

where, K is an exploration coefficient controlling the
trade-off between mean prediction and uncertainty, a
higher x biases the sampling toward areas with
greater variance, improving global coverage in the
ASD classification task.

Another probabilistic acquisition function is the
Probability of Improvement (PI), which focuses
solely on the likelihood of achieving a better result
than the current best. While not accounting for the
magnitude of improvement, PI serves well when
computational budgets are constrained, and simple
decision rules are preferred. In BO-LSTM, PI may be
applied during later stages to refine tuning in a
localized region of the hyperparameter space.

G
PI(O) =D (—)
) 0
The PI acquisition function calculates the probability
that configuration 6 will improve upon the best-
known result. It uses the CDF of the standard normal
distribution over the standardized prediction gap.

(33)

3.7 Select Next Point
The acquisition function computed in the
previous step provides a scalar utility value for each
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configuration within the bounded hyperparameter
search space. These values encapsulate a trade-off
between exploiting known low-loss regions and
exploring uncertain, potentially promising zones.
The configuration associated with the highest
acquisition score must be isolated to proceed with the
subsequent model training trial in the BO-LSTM
pipeline. This point represents the next LSTM
candidate for empirical evaluation in the ASD
classification process, ensuring that each decision is
grounded in probabilistic guidance.

0"e*t = arg max a(6) (34)
H

where 0™¢* refers to the optimal candidate selected

for evaluation, where a(8) is the acquisition score

obtained from the surrogate. The maximization

ensures that only the most information-rich

configuration is forwarded to the training stage.

The acquisition function is generally non-convex
across high-dimensional search spaces, particularly
in LSTM tuning for complex screening data. To
avoid local optima, a multi-start approach is
implemented, where the maximization of the
acquisition function begins from multiple random
initializations. This improves the likelihood of
converging to a globally optimal candidate. The
strategy is crucial in BO-LSTM, where dropout rates
and memory cell sizes can lead to intricate loss
landscapes.

_ g @) (m)
part = {08, ....,00™} (35)
where 651"t defines multiple random initialization
points for optimizing a(6). Each of these seeds
undergoes a local maximization procedure,
improving robustness in the final selection.

Gradient-based methods can be used to improve the
efficiency of acquisition maximization, especially
under the Expected Improvement and UCB
frameworks, which are differentiable. The optimal
region in the hyperparameter space can be more
quickly located by leveraging gradient ascent from
each initialization point. The gradient at each point
reflects the direction of the steepest ascent in
acquisition value and is computed using the chain
rule of the GP’s mean and variance expressions.

da(0) da(0)
Voa(8) = EMO) Vou(0) + 30(0)

. VgO'(H)

(36)

where Vg (0) is composed of contributions from the
surrogate model’s mean and standard deviation. This

gradient informs each optimization trajectory during
selection.

The hyperparameter domain H often
includes constraints, such as integer requirements for
batch sizes or upper limits on dropout. These
constraints must be enforced during acquisition
maximization to ensure the following configuration
remains valid. Constraint satisfaction can be
integrated into the optimization process using
penalty functions or projection operators that restrict
updates to the feasible region.

gvalid — ProjeCtHvalid (gnext) (37)

where  Projecty, .. maps an unconstrained

configuration back into the feasible domain H,y;;4,
ensuring that the subsequent training trial does not
violate structural or computational limits.

Configurations with  extremely low
predictive confidence are filtered out, even if they
exhibit high acquisition scores. This filtering avoids
evaluating hyperparameter combinations for which
the GP surrogate has unreliable posterior estimates.
The standard deviation from the GP model is used to
enforce a minimum confidence threshold for
selection.

ome*t € {00 () < 1} (38)

The confidence filter restricts candidate
selection to those with predictive uncertainty o(6)
below a threshold z. This step enhances stability and
reliability in hyperparameter exploration, especially
in ASD screening datasets with sparse features.

A diversity penalty is introduced during acquisition
maximization to avoid repetitive sampling in
already-explored regions of the search space. This
encourages exploration by penalizing candidates too
close to previously evaluated configurations. Such a
strategy is proper when the search space is dense and
subtle variations in LSTM settings yield minimal
new information.

a' () =ad) —A- miin||6 — 6(")”2 (39)
The adjusted acquisition function a’(6) includes a
penalty based on the Euclidean distance to the closest
evaluated configuration. The penalty weight A
controls the trade-off between exploitation and
diversity.

Acquisition scores are normalized into a
probability distribution to accommodate
probabilistic ~ selection rather than greedy
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maximization. This soft selection method avoids
overcommitting to a single configuration and
introduces stochasticity into the optimization
process. This is especially beneficial in early
iterations of BO-LSTM.

po) = PO/
Yoren exp(a(6)/y)

The probability P(6) is derived using a softmax over
scaled acquisition scores, where y is a temperature
parameter that controls the sharpness of the
distribution. Lower y values result in more
deterministic selections.

(40)

3.8 Train with Suggestion

The configuration selected by maximizing
the acquisition function in Step 7 must now be
embedded into the LSTM training process. This
configuration includes specific values for dropout
rate, number of units, batch size, and learning rate,
which were predicted to offer optimal classification
performance for the ASD screening dataset. This
configuration is instantiated into the LSTM
architecture, initiating a fresh training cycle under
the new hyperparameter regime. The training process
aims to validate whether the theoretical advantage
inferred by the surrogate and acquisition is supported
by empirical accuracy.

Menext — Train(xtrain’ ytrain’ Gnext) (41)

This formulation describes the instantiation
of the model Mgnext, trained using inputs x"*",
corresponding targets y“*"  and the selected
configuration ™%,

Once the model is instantiated, the temporal
behavioural screening sequences are fed into the
LSTM layer. The forward pass generates activations
for each time step, maintaining hidden and cell states
across the sequence. This mechanism enables the
LSTM to internalize dependencies between
sequential responses in the screening dataset,
capturing the hidden progression of ASD-relevant
traits. Each candidate configuration modifies the
structure and behaviour of this temporal modeling,
impacting learning dynamics and generalization. The
below equation represents the LSTM hidden state
update at time t.

he = fn(Wanxe + Wynhe—y + by) (42)
where h; denotes the output, x; is the input token,
and Wy, Wy, by are  the configuration-specific
weight and bias terms. The activation function fj, is
typically a nonlinearity such as tanh.

After processing the input sequence through the
LSTM layers, the final hidden state is passed to a
dense layer for classification. For binary ASD
diagnosis, the SoftMax or sigmoid activation
function converts the final state into a class
probability. The effectiveness of this layer depends
on the selected configuration’s compatibility with
the dataset’s complexity and granularity.

In = a(Wyhr + by) (43)
where ¥, is the predicted probability for the n-th
instance, hy is the final LSTM output, W, and
byrepresent weights and biases, and o denotes the
logistic sigmoid activation.

The learning process uses backpropagation
through time (BPTT) and a configuration-specific
optimizer to adapt model weights. Learning rate and
batch size are critical to the pace and stability of
convergence. Training continues for a fixed number
of epochs or until early stopping criteria are met. The
configuration applied directly determines the
optimizer's response characteristics and gradient
update behaviour. The gradient descent update rule
in the below equation applies for each training
iteration.

0 =01 —1n" Vol (44)
where, 1 is the configuration-defined learning rate,
0, is the model parameter at iteration VgL is the
gradient of the loss concerning that parameter.

Post-training, the model is evaluated on the
validation subset to determine its generalization
capability. The key metric computed is the validation
loss, which forms the quantitative feedback for the
Bayesian Optimization loop. This feedback enables
surrogate recalibration in the next iteration and
ensures that the acquisition-based decision is
validated empirically in the ASD screening context.
The loss function measures prediction error over N

validation instances.
Lyq o) =

N
lz [ YnlogPn + ]
N by (1 - yn)log(l - y\n)

where y, is the actual label, J, is the predicted
probability output by the LSTM model trained with

Hnext

(45)
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Each configuration may yield slightly
different results due to stochasticity in weight
initialization and mini-batch ordering. The training
process is repeated multiple times for the same
configuration to reduce variance in surrogate
updates. The final loss used for surrogate fitting is
the average across all repetitions, providing a stable
representation of that configuration’s utility in the
optimization loop. The average validation loss is
computed using the below equation over R
independent training runs.

R
_ 1
L(enext) — Ez LS;Ta)L(gnEXt) (46)
r=1
where, each run r produces a validation score Lf;ra)l,

capturing a separate stochastic realization of training
dynamics.

The newly observed performance of the
suggested configuration must be appended to the
surrogate’s  training  dataset for  posterior
recalibration. This new pair augments the surrogate’s
information base and improves its ability to estimate
future acquisition values. This incremental update
enables BO-LSTM to refine its understanding of
which hyperparameter regimes are most conducive
to accurate ASD screening classification.

D4y = Dy U {(6™, L(87))} (47)
where dataset D,,, includes the newly evaluated
configuration ™¢** and its smoothed validation loss.
This set is then passed to Step 9 to update the
surrogate model.

3.9. Update Surrogate

The Bayesian Optimization framework
continuously evolves its understanding of the
performance surface by integrating new observations
into the existing dataset. In the BO-LSTM structure
designed for ASD screening classification, each
LSTM configuration and its corresponding
validation loss provide crucial insights for refining
the surrogate model. The most recent configuration-
loss pair, obtained from Step 8, is appended to the
existing empirical dataset. This augmented set forms
the new base for retraining the Gaussian Process
surrogate, which enables dynamic recalibration in
each iteration of the optimization loop.

Dyew = Dyrev U {(9(”1)‘[(9(”1)))}

where D,,,, is the updated training dataset of the
surrogate. The new observation includes the
configuration #*V and its associated smoothed

(48)

validation loss L, forming the extended dataset used
for posterior reestimation.

The surrogate operates on a kernel matrix
derived from the configuration space. This matrix
must be re-expanded with each new observation to
accommodate the additional configuration. The
kernel function measures the similarity between the
latest point and all previous entries. This re-
expansion ensures that the Gaussian Process
continues representing the correlation structure of
the complete and current set of LSTM configurations
being explored for ASD prediction.

Kepa[i j] = k(69,09)

(49)
vi,je{l,..,t+1}

This expanded kernel matrix K, accounts
for all configurations from iteration 1 through
iteration t + 1. The function x computes pairwise
covariance using the predefined kernel, typically the
Matérn or squared exponential kernel.

Once the kernel matrix is updated, the
Gaussian Process must recalculate its predictive
mean function to reflect the augmented evidence.
The recalibrated posterior mean defines the expected
validation loss across the entire configuration space,
factoring in historical and newly acquired training
results. In BO-LSTM, such recalibration is essential
to adaptively recognize emerging regions of interest
where configurations yield lower classification loss
over the ASD screening dataset.

pes1(0) = ki (Keq + 02D yegy (50)
The posterior mean p;,,(0) is now computed using
the extended kernel vector K;,;, the updated kernel
matrix K;,;, and the new target vector y;,;. This
output allows acquisition values in the next iteration
to reflect the most recent learning outcome.

The Gaussian Process surrogate also recalculates its
uncertainty measure for each configuration. After
integrating the latest training observation, the
updated posterior variance quantifies the model’s
confidence in its predictions. This step is
instrumental in BO-LSTM for ASD prediction,
where minor changes in hyperparameters may
produce significant variations in validation loss, and
maintaining accurate uncertainty modelling is
critical for acquisition design

O—t2+1(9) = k(@, 9) -

: - (51)
kiv1(Kepq +0°D) 7 heyy
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The posterior variance g2 ,(8) is derived from the
covariance between the target configuration and
itself, adjusted by its interaction with the updated
training set. This value becomes a central component
of acquisition function recalculations in Step 10.

After computing the new predictive mean and
variance, the scores across all candidate
configurations are normalized. This normalization
ensures that acquisition values are calculated over a
bounded and stable range in the next iteration. In the
BO-LSTM pipeline, such normalization eliminates
bias introduced by extreme fluctuations in loss
values, which are common in small and noisy
screening datasets for ASD classification.
5001 (0) = es1(0) — min(peyq)
ot max(ferq) — min(Uee)

This normalized score s;.,,(0) reflects the
relative utility of each configuration, enabling
consistent ranking and selection in subsequent
acquisition optimization.

(52)

With each surrogate update, internal
hyperparameters of the kernel function such as
length scale and signal variance must be returned to
reflect the updated data landscape. This process is
performed by re-optimizing the log marginal
likelihood, which evaluates how well the Gaussian
Process explains the newly extended dataset. This
operation strengthens the surrogate’s ability to
extrapolate meaningfully in unexplored regions of
the hyperparameter space.

logp(Ve4110¢41) =
_%J’g+1(1{t+1 + 02D Y — (53)
t+
2
This marginal log-likelihood represents the
model fit to all observed LSTM configurations and

their associated loss outcomes, now extended
through iteration ¢ + 1.

1
log2m

1
5109 (Ker +0%0) =

3.10. Select Optimal Config

The Bayesian Optimization cycle continues
until a defined stopping condition is satisfied. This
condition can be based on a fixed number of
iterations, a minimal expected improvement, or
stability in loss reductions. For BO-LSTM applied to
ASD classification over screening datasets, stability
is a preferred criterion since drastic improvements in
loss often plateau after multiple evaluations. Once
convergence is confirmed, the next phase involves
scanning the complete configuration-loss record to

isolate the best-performing setup. This setup
corresponds to the configuration producing the
lowest validation loss across all executed trials.

6* = argmin L(6®) (54)

B(i)EDT

where 6* represents the final optimal selection. The
search is conducted over the whole dataset Dy, which
contains all evaluated configurations and their
averaged losses. The notation L ensures that repeated
training trials mitigate stochastic noise.

Each configuration evaluated during the
Bayesian Optimization loop can be assigned a
ranking based on its final validation loss. This
ranking process ensures that all candidates are
compared on identical metrics and processed through
uniform training-validation splits. Empirical ranking
reinforces fairness and interpretability in the
configuration selection step for ASD classification,
especially in cases where multiple configurations
yield marginally different losses. This sorting also
helps visualize performance patterns across the
hyperparameter space.

R(g(i)) =
Rank({Z(H(l)), - Z(@(T))}’ o)

The function R(H(i)) assigns a rank to each
configuration 8@ based on its corresponding loss L.
Lower ranks indicate superior performance. This
information can be visualized or stored for audit and
model reproducibility tracking.

(55)

After determining the best configuration
through empirical minimization and rank validation,
this vector is fixed for final model deployment. This
finalized LSTM hyperparameter vector contains
specific values for learning rate, dropout ratio,
hidden units, and batch size that demonstrate
superior ability to classify ASD cases from non-
imaging screening inputs. The configuration is
extracted from the history and serves as the blueprint
for training the definitive version of the BO-LSTM
model.

0" =1[n*d6",u",b’] (56)
where vector 8" includes the optimal learning rate n*,
dropout §*, unit count u*, and batch size b*. These
values are not theoretical estimates but empirically
validated selections from probabilistic modelling and
surrogate-guided evaluations in earlier steps.

and future
configuration’s

To enable
benchmarking, the

transparency
selected
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validation performance is logged alongside other key
metrics such as convergence time, total
configurations evaluated, and the range of observed
losses. This structured logging allows future
evaluations and comparisons with optimization
techniques or base models. In the context of ASD
screening analysis, this record provides an auditable
trace of how the optimal configuration was derived
and substantiates the final model's validity.

Mfinal = (6*'L(6*)1T1DT) (57)
where tuple My, contains the final configuration,
its observed average loss, the total number of
iterations T, and the complete dataset of all
configurations evaluated. This package encapsulates
the outcome of the Bayesian Optimization process.

3.11. Overall Procedure for BO-LSTM
Framework
The BO-LSTM framework's complete

process combines all the steps into one organized
flow for predicting ASD from screening data. It starts
by defining a specific range for essential parameters
like learning rate, dropout, LSTM units, and batch
size. A Gaussian Process estimates which settings
might give better results based on a few tested
combinations. These early results help guide the next
set of parameters to try, using a method that balances
learning from past outcomes and exploring new
options. The LSTM model is trained for each chosen
configuration using the sequence of responses from
screening questionnaires. After each training round,
results are returned to the system to improve its
choices in the next round. This cycle continues until
no further improvements are found or the set number
of attempts is reached. The best configuration during
these trials is then selected to build the final model.
This procedure ensures the LSTM is appropriately
tuned, handles real-world behavioral data
effectively, and supports early detection of ASD with
high accuracy and minimal manual adjustment.

Algorithm: BO-LSTM

Input:
e ASD screening

. NN
{(x®,yO)"
e Defined search space H for LSTM
hyperparameters
e Maximum iteration
convergence threshold €
Output:

dataset D=

count T or

e  Optimal LSTM
configuration 6*

e Trained LSTM model My« for ASD
prediction

Procedure:

1. [Initialize Surrogate: Construct a
Gaussian Process surrogate model with a
chosen kernel to approximate validation
loss over the hyperparameter space.

2. Define Search Space: Specify the
domain H for hyperparameters,
including learning rate, dropout, hidden
units, and batch size.

3. Sample Initial Points: Generate k initial
configurations using Latin Hypercube
Sampling and evaluate each on the
LSTM model to obtain validation losses.

4. Train LSTM Samples: Train LSTM
models for all initial configurations and
record smoothed validation losses by
averaging over multiple runs.

5. Fit a Gaussian Process: Fit the
surrogate  model using observed
configuration-loss pairs and optimize its

hyperparameter

internal ~ parameters via  marginal
likelihood.

6. Compute Acquisition: Calculate
acquisition function (e.g., Expected
Improvement) using the surrogate’s

posterior mean and variance.

7. Select Next Point: Identify the
configuration that maximizes the
acquisition function and satisfies all
domain constraints and confidence
thresholds.

8. Train with Suggestion: Train an LSTM
using the selected configuration and

evaluate its validation loss across
multiple trials.

9. Update Surrogate: Update the
surrogate  dataset with the new

configuration-loss pair and recompute
the surrogate model.

10. Select Optimal Config: Once the
convergence or iteration limit is reached,
select the configuration with the lowest
observed loss from the complete
evaluation history.

3.11.1. Advantages of BO-LSTM

The BO-LSTM framework offers a
structured and intelligent approach to optimizing
deep learning models for ASD prediction using
screening data. By combining sequential modeling
with automated Bayesian tuning, the framework
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reduces the reliance on manual experimentation and
improves generalization in behaviorally diverse
scenarios. Its design supports scalable deployment
and efficient training, making it suitable for real-
world diagnostic applications across varied
populations. The significant advantages of BO-
LSTM are:

e Automated Hyperparameter Tuning:
Reduces manual effort by using Bayesian
Optimization to find optimal LSTM settings
without exhaustive search.

e Adaptation to Sequential Screening
Data: Effectively captures temporal
patterns in  structured  questionnaire
responses, improving prediction quality.

e Improved Generalization Across Age
Groups: Learns from diverse behavioural
traits, enhancing consistency across
toddlers, children, adolescents, and adults.

e Reduced Overfitting in Low-
Dimensional Data: Probabilistic selection
and averaging stabilize learning in datasets
with limited features and class imbalance.

e Resource-Efficient Training Process:
Minimizes the number of training runs by
focusing only on the most promising
configurations, saving time and
computation.

3.11.2. Difference between LSTM and BO-LSTM

While Long Short-Term Memory (LSTM) networks
are well-suited for modeling sequential data, their
effectiveness heavily depends on carefully selecting
hyperparameters such as learning rate, dropout, and
hidden units. Manually tuning these settings can be
time-consuming and may not consistently yield
optimal results, especially when applied to
behaviorally diverse datasets like ASD screening
records. To address these limitations, the BO-LSTM

framework extends the standard LSTM by
integrating  Bayesian  Optimization, enabling
automatic and  efficient  exploration  of

hyperparameter configurations. The following table
outlines the key differences between the
conventional LSTM model and the proposed BO-
LSTM approach.

Table 1. Difference Between LSTM And BO-LSTM

Aspect LSTM BO-LSTM
Hyperparamete | Manual or Automated
r Tuning heuristic- using
based Bayesian
Optimization
Optimization No built-in | Uses
Strategy optimizatio | surrogate
n modeling and
mechanism | acquisition-
driven
parameter
selection
Training It may Focuses on
Efficiency involve high-potential
redundant configurations
training , reducing
trials training cost
Model Sensitive to | Adapts
Adaptability initial dynamically
settings to data and
parameter
landscape
Generalization Prone to Maintains
overfitting | robust
on small or | performance
imbalanced | across diverse
data input patterns
4. DATASET

The Autism Screening Dataset contains 6075
records and 20 structured attributes. The dataset was
developed by Dr. Fadi Fayez using the ASD Tests
mobile application (ASDtests.com) for early screening
of autism traits and is publicly available on Kaggle
(https://www.kaggle.com/datasets/fabdelja/asd-
screening-data-toddler-child-adoles-adult).It combines
behavioural screening responses from four distinct age
groups: Toddler, Child, adolescent, and Adult. Q-
CHAT-10 was used for the Toddler group, and AQ-10
short-form questionnaires were applied to the
remaining categories. Each entry represents a
completed, structured screening session the individual
or observer reports. The dataset is fully anonymized
and ethically shared, making it safe for academic and
research use. Its consistent structure supports
population-wide behavioural studies focused on non-
clinical trait analysis. Including multi-age data allows
for comparative trend exploration and trait expression
across developmental stages. This dataset is a robust,
non-invasive resource for autism-related behavioural
screening research focusing on early identification.
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Table 2: Feature Description

F]sz:::,e Description D‘;Zrznyg te /
ID Record number | Categorical
uniquely (String)
assigned to each
entry
Al Score | Response to Binary
item 1 of the (Yes/No)
assessment
A2 Score | Feedback on the Binary
second item (Yes/No)
from the
behavioural
checklist
A3 Score | Recorded Binary
answer for item (Yes/No)
3
A4 Score | Response Binary
reflecting the (Yes/No)
social
observation
A5 Score | Score related to Binary
attention and (Yes/No)
interest
A6 _Score | Input indicating Binary
behaviour under | (Yes/No)
peer influence
A7 Score | Score reflecting Binary
communication (Yes/No)
irregularities
A8 Score | The entry Binary
focused on (Yes/No)
adaptability or
rigidity
A9 Score | Reaction to Binary
structured (Yes/No)
versus
unstructured
environments
A10 Score | The final item Binary
in the (Yes/No)
behavioural
checklist
age Participant's Numeric
declared age (Years/Float
)
gender Categorical Categorical
entry for sex (Male/Fema
le)
ethnicity Ethnic or Categorical
cultural identity | (Free-text)
reported
jaundice Neonatal health Binary
condition status (Yes/No)

e
7960

family me | Presence of Binary
m_with AS | ASD diagnosis (Yes/No)
D in the family
line
who _compl | Test responder's | Categorical
eted the te | role or identity (Free-text)
st
country_of | The nation of Categorical
res residence (Free-text)
mentioned
used_app b | Declares app Binary
efore usage history (Yes/No)
result ASD suspicion Binary
flag from the (Yes/No)
screening
age desc | Participant's age | Categorical
grouping (Defined
Set)
relation Nature of Categorical
association (Free-text)
between subject
and responder

5. RESULTS AND DISCUSSIONS

The evaluation focuses on the predictive
performance of the BO-LSTM model compared to
baseline classifiers across multiple diagnostic
metrics. Sensitivity, specificity, accuracy, Matthews
Correlation Coefficient, threat score, and Fowlkes—
Mallows Index are used to measure how well each
model identifies autism-related traits from screening
data. Results are analyzed with attention to model
robustness, consistency across age groups, and
handling of behavioural variability. Using Bayesian
Optimization within the BO-LSTM architecture
contributes to stable generalization by reducing
overfitting and improving configuration efficiency.
Comparative findings reveal the strength of BO-
LSTM in learning from structured screening
responses, particularly in conditions where trait
expression is subtle or overlapping. The analysis also
considers the balance between true positive
recognition and false positive control, which is
essential in real-world ASD screening applications.

5.1. Sensitivity Analysis of BO-LSTM

Figure 1 compares the sensitivity of BO-
LSTM with SVM and BDML-MDCASD classifiers,
drawing upon the values outlined in Table 2.
Sensitivity, representing the true positive rate, is
critical in ASD screening where missed cases carry
significant clinical impact. SVM demonstrates low
sensitivity (61.490%) due to its limited capacity to
model contextual dependencies across behavioural
traits. BDML-MDCASD shows improvement but is
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affected by latent representation distortion and lack
of temporal structuring. BO-LSTM, reaching
76.858%, benefits from its gated memory design,
which preserves sequential patterns indicative of
ASD. Bayesian optimization further contributes by
tuning model parameters specific to the screening
context. These structural enhancements enable more
reliable identification of true ASD-positive cases
within age-diverse populations.
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Figure 1. Sensitivity of BO-LSTM against State-of-the-Art
Classification Algorithms

Table 2. Sensitivity Result of BO-LSTM State-of-the-Art
Classification Algorithms

Classification Algorithms | Specificity (%)
SVM 51.934
BDML-MDCASD 68.138
BO-LSTM 71.800

5.2. Specificity Analysis of BO-LSTM

Figure 2 presents a comparative specificity
evaluation across BO-LSTM, SVM, and BDML-
MDCASD, with detailed metrics reported in Table 3.
Specificity, measuring true negative identification, is
vital in reducing false positives in ASD screening
tasks. The SVM classifier, scoring 51.934%, fails to
mitigate boundary misalignment in feature space due
to its hard-margin structure and absence of noise-
adaptive  filters. BDML-MDCASD  achieves
68.138%, though the interpretive loss in AE
compression and BOA's context-agnostic tuning
dilutes its precision. BO-LSTM registers 71.800%

specificity by aligning forget gates with non-ASD
behavioural regularities and modulating noise-
sensitive  hyperparameters  through  Bayesian
posterior updates. This integration refines model
discrimination against non-ASD instances with
higher fidelity.
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Figure 2. Specificity of BO-LSTM against State-of-the-Art
Classification Algorithms

Table 3. Specificity Result of BO-LSTM vs State-of-the-

Art Models
Classification O /D
AT Sensitivity (%)
SVM 61.490
BDML-MDCASD 70.023
BO-LSTM 76.858

5.3. Classification Accuracy Analysis of BO-

LSTM

Figure 3 illustrates the classification
accuracy of BO-LSTM against state-of-the-art
models, with tabulated results in Table 4.
Classification accuracy assesses global prediction
performance, aggregating true positives and true
negatives. The SVM model, constrained by rigid
kernel mapping and static feature interpretation,
yields 56.365%. BDML-MDCASD, though
enhanced via heuristic feature selection and
representation compression, attains 69.089% but
suffers from interpretability gaps and parameter
tuning instability. BO-LSTM, achieving 74.375%,
leverages the synergy between temporal memory
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flow and Bayesian-informed structural calibration.
Its recurrent dynamics facilitate retention of
questionnaire order, while probabilistic search
optimizes model depth and connectivity. These
layered advancements enable a holistic capture of
ASD and non-ASD profiles, elevating classification
integrity across the screening spectrum.
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Figure 3. Classification Accuracy Of BO-LSTM Against
State-Of-The-Art Classifiers

Table 4. Accuracy Result Of BO-LSTM And Competing

Models
Classification Classification
Algorithms Accuracy (%)
SVM 56.365
BDML-MDCASD 69.089
BO-LSTM 74.375

5.4. Matthews Correlation Coefficient Analysis of
BO-LSTM

Figure 4 visualizes the Matthews
Correlation Coefficient (MCC) of BO-LSTM
compared to SVM and BDML-MDCASD, with
corresponding numeric values in Table 5. MCC
evaluates the quality of binary classifications by
incorporating all confusion matrix components,
providing a balanced view even under class
imbalance—a known characteristic of ASD datasets.

Table 5. Matthews Correlation Coefficient Result of BO-
LSTM Compared to Other Methods

Classification Matthews Correlation
Algorithms Coefficient (%)
SVM 13.438
BDML-MDCASD 38.169
BO-LSTM 48.736
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Figure 4. Matthews Correlation Coefficient of BO-LSTM
against State-of-the-Art Classification Algorithms

SVM, with an MCC of 13.438%, performs poorly
due to its sensitivity to skewed class distribution and
inability to integrate feature interdependencies.
BDML-MDCASD exhibits moderate improvement
(38.169%) but inherits limitations from its disjoint
optimization structure; the BOA layer fails to adapt
to class overlap fully, and the Autoencoder reduces
behavioural interpretability. BO-LSTM, at 48.736%,
shows a stronger correlation between predicted and
actual classifications. This is attributed to its memory
retention of sequential traits, probabilistic tuning of
internal states, and capacity to modulate relevance
across mixed-type screening features—resulting in a
structurally balanced decision function resilient to
data asymmetry.

5.5. Threat Score Analysis of BO-LSTM

Figure 5 showcases the threat score
performance of BO-LSTM compared to SVM and
BDML-MDCASD, with numerical details provided
in Table 6. Threat score, also known as critical
success index, quantifies the proportion of correctly
predicted positive instances relative to all predicted
and actual positives—making it particularly suited
for ASD screening tasks where positive case
detection is a priority.
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Figure 5. Threat Score Of BO-LSTM Against State-Of-
The-Art Classifiers

SVM records a lower threat score (39.518%)
primarily because it lacks adaptive mechanisms to
resolve borderline behavioural traits, often
misclassifying subtle ASD patterns. BDML-
MDCASD fares better (53.333%) yet remains
affected by its inability to contextualize trait
relevance within its feature-to-decision pathway, as
its layered optimizers operate in isolation. BO-
LSTM, achieving the highest threat score (60.426%),
demonstrates superior alignment between predicted
and true ASD-positive profiles. This is driven by its
gated architecture that retains progression cues and
Bayesian hyperparameter sampling that fine-tunes
the decision boundary following screening-specific

uncertainty.
Table 6. Threat Score Result Of BO-LSTM Against State-
Of-The-Art Classifiers
Classification Algorithms | Threat Score (%)
SVM 39.518
BDML-MDCASD 53.333
BO-LSTM 60.426

5.6. Fowlkes—Mallows Index Analysis of BO-
LSTM

Figure 6 illustrates the Fowlkes—Mallows
Index (FMI) performance of BO-LSTM compared
with SVM and BDML-MDCASD, with supporting
numerical values in Table 7. FMI evaluates the
geometric mean between precision and recall,
making it a reliable indicator of balance in-class

assignment—ecritical in ASD classification where
both false positives and false negatives must be
minimized.

92

80

70

60

50

40

Fowlkes—Mallows Index (%)

30

20

10

SVM BDML-MDCASD BO-LSTM

Classification Algorithms

Figure 6. FMI Of BO-LSTM Against State-Of-The-Art
Classification Algorithms

SVM’s FMI of 56.826% is directly
impacted by its inability to accommodate
semantically overlapping behavioural features, as it
applies uniform separation rules to symptomatically
nuanced data. BDML-MDCASD, reaching
69.566%, is structurally stronger, yet the absence of
feature-level interpretability and lack of joint
optimization between AE and BOA layers restricts
its decision coherence. BO-LSTM, registering
75.347%, achieves superior balance by encoding
temporal cues through memory units and refining
prediction boundaries via Bayesian parameter
sampling. These mechanisms work in tandem to
stabilize classification behaviour across high-
variability screening records.

Table 7. Fowlkes—Mallows Index Result Against State-
Of-The-Art Classification Algorithms

Classification Fowlkes—Mallows
Algorithms Index (%)
SVM 56.826
BDML-MDCASD 69.566
BO-LSTM 75.347

5.7. Interpretation of Findings and Practical
Implications

The comparative analysis highlights that the

proposed model consistently surpasses baseline
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classifiers across all evaluated metrics, indicating its
robustness in handling behavioural diversity and
noisy screening inputs. This improvement suggests
that constraint-aware reinforcement structures, when
adapted for non-imaging ASD datasets, can mitigate
instability and bias commonly observed in existing
methods. The performance gains are not only
statistically significant but also practically relevant,
as they demonstrate the model’s ability to maintain
predictive stability across varied demographic
profiles and diagnostic stages. By sustaining high
accuracy alongside balanced sensitivity and
specificity, the approach addresses the long-standing
challenge of overfitting to narrow population
segments. These findings imply that reinforcement
learning models, guided by structured constraints,
can form the foundation for deployable ASD
screening systems in community and clinical
settings.

5.8. Potential Real-World Implementation

The proposed methodology holds promise
for integration into digital health tools designed for
early ASD screening. In a practical setting, the model
could be embedded into mobile or web-based
platforms to analyse responses from structured
behavioural questionnaires and produce preliminary
risk scores. Such systems may assist teachers,
caregivers, and primary care providers in identifying
children who require specialist evaluation. Its
tolerance for incomplete and imbalanced data
suggests potential use in community health
programs, where screening conditions are often
variable. With further validation on larger and more
diverse datasets, the approach could be adapted for
integration with existing electronic health record
systems, supporting longitudinal tracking of
developmental  profiles.  These  envisioned
applications outline how the research could
transition from an experimental framework to a
practical decision-support tool in ASD identification.

6. CONCLUSION

The proposed framework demonstrates that
embedding constraint-driven optimization into deep
reinforcement learning enables robust ASD
prediction from non-imaging screening datasets. By
addressing instability, class imbalance, and
uncertainty, the model achieves consistent
performance across varied diagnostic stages and
demographic profiles. These findings indicate that
reinforcement learning models with structured
constraints can form a reliable basis for deployable
ASD screening systems, particularly in settings
where costly neuroimaging or specialist evaluations

are not feasible. In practical terms, the methodology
could be integrated into mobile or web-based
screening tools to process questionnaire data and
deliver preliminary risk scores, guiding timely
referrals for specialist evaluation. Its resilience to
incomplete and imbalanced inputs suggests potential
applicability in community health programs and low-
resource environments, once validated on broader
datasets. Future research should focus on addressing
the current limitation of dataset diversity by
evaluating the model across larger, multi-regional,
and multi-lingual screening datasets to ensure
cultural and linguistic generalisation. Integration
with multi-modal data sources—such as speech
patterns, eye-tracking, and caregiver interviews—
could enrich feature space and improve -early
detection sensitivity. Moreover, adapting the
framework for active learning would allow the
system to refine predictions continuously as new
labelled data become available. Exploring
explainable Al modules within the architecture could
further enhance interpretability, making the model
more transparent and trusted by clinicians. These
directions, guided by gaps in the literature and
limitations in the present work, pave the way for
transitioning the approach from a research prototype
to a widely adopted screening solution.
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