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ABSTRACT 

 
Autism Spectrum Disorder (ASD) is a complex neurodevelopmental condition marked by persistent 
challenges in communication, behaviour regulation, and social interaction. The heterogeneity of symptoms 
across individuals and age groups complicates early detection, as behavioural traits often overlap with other 
conditions or remain masked until later developmental stages. Traditional diagnostic methods are usually 
time-intensive, subjective, and rely on specialist interpretation, leading to delayed or inconsistent 
identification. Screening data offers a scalable, cost-effective, and non-invasive alternative for early ASD 
prediction, capturing observable traits through structured behavioural questionnaires. To overcome 
diagnostic inconsistencies and optimize model performance, this research proposes a Bayesian Optimization 
based Long Short-Term Memory (BO-LSTM) framework that adaptively learns temporal dependencies in 
screening responses while automatically tuning its parameters using a probabilistic surrogate model. The 
model was evaluated using the Autism Screening Dataset, comprising 6075 records and 20 structured 
attributes, sourced from a mobile-based application developed by Dr. Fadi Fayez. The dataset includes 
behavioural inputs from toddlers, children, adolescents, and adults, with questionnaires tailored to each age 
group. BO-LSTM achieved a classification accuracy of 74.375%, along with notable gains in sensitivity, 
specificity, and interpretability. These results demonstrate the framework's effectiveness in processing 
sequential screening data for timely and reliable ASD prediction across diverse age groups. 
Keywords: Autism Spectrum Disorder, Prediction, Screening Data, Deep Learning, Long Short-Term 

Memory, Bayesian Optimization 
 
1. INTRODUCTION  
 

Autism is a lifelong neurodevelopmental 
condition marked by persistent challenges in 
communication, behaviour regulation, and social 
engagement. Its clinical presentation spans a 
spectrum, with individuals showing varying degrees 
of language delay, restricted interests, and sensory 
sensitivities [1]. Subtypes include conditions such as 
Asperger’s syndrome and atypical autism, each 
reflecting different levels of functional ability and 
behavioural rigidity. Though grouped under the same 
spectrum, these subtypes exhibit non-uniform traits 
that resist generalization [2], [3]. This variability 
makes standardized diagnosis and prediction 
difficult, especially when behavioural expressions 
evolve across contexts. The distinction between mild 
and severe traits is not always detectable through 
single-session clinical assessments. Accurate 
identification of these subtypes is clinically 
significant and essential for tailoring early 

intervention strategies that align with individual 
support needs [4]. 

Autism Spectrum Disorder (ASD) affects 
individuals across all age groups, but the expression 
of symptoms and diagnostic clarity vary significantly 
with age [5], [6]. In infants and toddlers, delays in 
language acquisition, minimal social initiation, or 
atypical gaze patterns may be early indicators, yet 
these are often misinterpreted as personality 
differences or delayed development. Adolescents 
may present more subtle manifestations, including 
social withdrawal or obsessive focus, which may be 
masked or overlooked entirely [7]. Adults frequently 
remain undiagnosed due to learned compensatory 
behaviours or limited access to retrospective 
developmental evaluations. The symptoms overlap 
with other conditions like ADHD or anxiety, which 
complicates accurate detection. Gender-based 
diagnostic gaps and cultural differences in behaviour 
interpretation amplify these challenges [8]. The 
dynamic nature of symptom expression across time 
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introduces inconsistencies in clinical judgments, 
making it essential to explore models that adaptively 
capture behavioural patterns and predict ASD in 
temporally diverse populations [9]. 

ASD research commonly leverages two 
forms of data: imaging datasets such as fMRI or EEG 
and non-imaging, screening-based datasets collected 
through structured questionnaires or rating scales 
[10]. Imaging-based approaches offer 
neurophysiological insights but often require high-
cost equipment and skilled operators, and they are 
less feasible for large-scale or early-stage screening. 
Screening datasets, in contrast, are low-cost, widely 
accessible, and capture observable traits grounded in 
lived behaviour [11]. These datasets mirror real-
world symptomatology, enabling scalable, 
population-level ASD monitoring without 
specialized infrastructure [12]. This research focuses 
exclusively on screening datasets to ensure broad 
applicability and practical relevance, especially in 
resource-limited settings. Screening responses often 
carry temporal dependencies, and symptoms may 
evolve across repeated assessments or structured 
response sequences [13]. Unlike static neuroimages, 
these sequences demand models that learn from 
transitions, not isolated snapshots. The screening 
data choice supports ethical deployment and 
dynamic modelling of ASD behaviour, which is 
often shaped by time, context, and developmental 
stage. 

 
Deep learning has emerged as a powerful 

approach in ASD prediction due to its capacity to 
capture complex, nonlinear relationships within 
behavioural data. Unlike traditional statistical 
methods, deep models can learn from raw, structured 
inputs such as screening questionnaires without 
requiring manual feature engineering [14]. Recurrent 
architectures have shown strength in modelling 
sequential dependencies, common in symptom 
progression or temporally structured assessment 
responses. These models help uncover latent 
behavioural trends that are not immediately apparent 
through static analysis. Probabilistic methods 
enhance this predictive capacity by incorporating 
uncertainty estimation into learning [15]. Techniques 
such as Gaussian Processes and Bayesian 
Optimization contribute by offering guided 
exploration of model parameters, reducing 
overfitting, and improving generalization. Their 
integration within behavioural health modelling 
provides a structured mechanism to handle 
variability in human-assessed data, making them 
suitable for sensitive domains like early ASD 
identification from screening evaluations [16], [17]. 

Bio-inspired optimization algorithms take 
inspiration from the adaptive behaviours, 
cooperative strategies, and survival mechanisms 
found in nature [18]-[27]. These methods are 
designed to efficiently explore and exploit complex 
search spaces, often achieving superior performance 
in solving high-dimensional, nonlinear, and 
multimodal optimization problems. Their stochastic 
and adaptive nature allows them to escape local 
optima, balance exploration with exploitation, and 
maintain robustness under uncertain or dynamic 
conditions [28]-[40]. Such characteristics make bio-
inspired optimization a versatile tool that can be 
applied across various computational tasks, 
including feature selection, parameter tuning, and 
model enhancement, where traditional optimization 
methods may struggle [41]-[57].  
 
1.1. Problem Statement 
ASD diagnosis remains a significant challenge due 
to the spectrum’s inherent heterogeneity, subtle 
behavioural markers, and overlapping traits with 
other neurodevelopmental conditions. Traditional 
assessments often rely on subjective interpretation of 
structured screening responses, leading to diagnostic 
delays and variability across age, gender, and 
cultural groups. Although non-imaging screening 
datasets offer scalable and accessible data sources, 
current computational models underutilize their 
temporal and decision-structured nature. Deep 
learning approaches, particularly recurrent 
architectures, show potential yet are constrained by 
sensitivity to hyperparameter configurations, lack of 
robustness, and poor generalization when applied to 
low-dimensional, sequential inputs. These models 
frequently require exhaustive manual tuning and fail 
to embed uncertainty estimation, reducing both 
efficiency and interpretability. Existing limitations 
restrict real-world deployment in early screening 
environments, particularly in low-resource or non-
specialist settings. This exposes a critical gap in 
designing models that can adaptively, reliably, and 
scalably process behavioural screening data for 
accurate and timely ASD identification. 
 
1.2. Motivation 

Early prediction of ASD is critical for 
enabling timely interventions that support 
communication, cognitive development, and 
adaptive functioning. Missed or delayed diagnoses 
often result in long-term challenges for individuals 
and families, especially in communities with limited 
access to specialized assessment services. Structured 
screening tools provide a practical alternative, but 
existing models often underutilize their sequential 
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nature and behavioural complexity. Most predictive 
systems rely on static features and require extensive 
manual tuning, which hinders efficiency and 
scalability. There is a growing need for models that 
can intelligently process temporal screening data and 
adapt configurations without human intervention. 
Bridging this gap is vital to ensure consistent, 
interpretable, and accessible ASD detection across 
real-world settings, supporting early intervention 
pathways that are both equitable and actionable 
above the sub section while no space should be given 
below the heading and text 
 
1.3. Objective 
This research aims to design and validate an adaptive 
deep-learning framework for the early prediction of 
ASD using sequential responses from non-imaging 
screening assessments. The proposed methodology, 
Bayesian Optimization based Long Short-Term 
Memory (BO-LSTM), is developed to address 
critical limitations in existing models that fail to 
capture temporal dependencies and require extensive 
manual hyperparameter tuning. By integrating a 
probabilistic surrogate model and acquisition-guided 
sampling, BO-LSTM automatically identifies 
optimal configuration paths, improving training 
efficiency and model generalization. The framework 
is built to process real-world behavioural screening 
sequences with minimal overfitting, and its 
predictive performance is evaluated using 
classification accuracy as the primary metric. 
Interpretability is embedded through structured 
output mappings to ensure model transparency and 
clinical relevance. This research proposes a scalable, 
data-efficient, and reliable prediction model for early 
ASD identification across diverse and resource-
constrained settings.  
 
2. LITERATURE REVIEW 

 
Imperialistic Competitive Feature Selector” 

[58] applies the Imperialistic Competitive Algorithm 
(ICA) for feature selection, simulating socio-
political competition. Each country in the search 
space represents a candidate feature subset, and 
mighty empires assimilate weaker ones based on 
classification performance. “Relational Graph 
Attention Network” [59] models ASD classification 
using graph attention networks, where each node 
represents a subject and edges encode similarity 
based on phenotype or fMRI traits. The model learns 
attention scores that determine the influence of 
neighbouring nodes, with different attention weights 
applied depending on edge type. Multiple graph 
variants (phenotype-only, fMRI-only, combined) are 

constructed to evaluate relational strength. “Atypical 
Salient Region Enhancer (ASRE)” [60] uses an 
encoder-decoder architecture with intermediate 
modules to refine visual saliency detection for ASD 
individuals. Architecture handles abnormal attention 
distribution specific to ASD by adjusting feature 
fusion at each decoding layer, ensuring the final map 
reflects ASD-specific visual tendencies. All 
enhancements operate in a convolutional setting 
without recurrence or graph structures. 

“Optimizer Ensemble Convolution 
Network” [61] constructs several CNN models with 
identical architectures but different optimization 
algorithms like Adam and Nadam. Each CNN is 
trained on structural MRI data, where on-the-fly 
augmentation applies spatial and intensity 
transformations in real-time. This strategy introduces 
diversity in learned weights. “Capsule Dense 
Network Reinforcer” [62] combines feature 
extraction with behavioural recommendation. Input 
features are first optimized using Cosmo Nest, a 
metaheuristic combining African Vulture and 
Butterfly behaviour to identify informative 
attributes. These are passed into Capsule Dense 
Net++, which uses capsule routing to preserve spatial 
hierarchies, and Dense Net layers to promote feature 
reuse. Classification identifies ASD status from 
screening data. “Federated Convolutional LSTM 
Network” [63] builds a decentralized model where 
each local node uses CNN to extract spatial features 
and LSTM to model behaviour sequences from 
screening data. These regional models train 
independently and transmit encrypted weights, not 
raw data, to a central server. The server aggregates 
them using federated averaging.  

 
“Adaptive Fuzzy Reasoning Network” [64] 

applies a Takagi–Sugeno–Kang fuzzy inference 
system combined with contrastive domain adaptation 
for rs-fMRI-based ASD classification. Features are 
fuzzified using Gaussian membership functions, and 
fuzzy rules map input conditions to ASD or control 
labels. A domain adaptation module aligns cross-site 
feature distributions using contrastive learning. 
“Support Vector EEG Classifier” [65] processes task-
evoked EEG data to differentiate low- and high-
functioning autism. Signals are filtered and 
augmented using Gaussian bootstrapping. Band-
specific features like absolute and relative power are 
computed from the delta to gamma bands. Derived 
features include theta-alpha and theta-beta ratios, 
reflecting cognitive workload. “Supervised 
Connectivity Model Survey” [66] reviews machine 
learning models trained on functional brain 
connectivity matrices derived from fMRI. Atlas-
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based brain segmentation defines nodes and the 
correlation between regions forms features. These 
matrices are flattened into vectors input to models 
like SVM, decision trees, or ensemble learners. 
Recursive feature elimination and PCA are used for 
dimensionality reduction 

“Dual Transformer Self Learner” [67] 
models repetitive behaviour detection using pose-
estimated video frames. A dual-branch transformer 
processes spatial key points and temporal transitions 
using self-attention. Self-supervised proxy tasks 
such as frame order prediction, spatial jigsaw, and 
motion reconstruction train the network without 
manual labels. “Structural Equation Burnout Model” 
[68] builds a statistical framework using Partial Least 
Squares Structural Equation Modelling (PLS-SEM) 
to explore escapism in autistic gamers. Inputs include 
psychometric scales for autistic burnout, and gaming 
motivations. Latent variables such as self-
suppression, self-expansion, and escapism are 
derived from observable questionnaire items. 
“Spatio Temporal Learning Network” [69] processes 
fMRI data through parallel branches for spatial and 
temporal feature learning. The spatial path uses CNN 
layers to encode region-specific activity, while the 
temporal path applies recurrent layers to capture 
dynamic fluctuations. Attention mechanisms 
enhance signal importance in both paths. A feature-
sharing block transfers functional patterns between 
streams, and fused embeddings are passed to a 
classification head. Multi-task loss guides the 
training across spatial and temporal dimensions, 
aligning learned features with class labels 
 

“Support Vector Machines (SVM)” [70] 
presents a classifier trained on questionnaire-derived 
screening data, stratified across toddler, child, and 
adult age groups. The process begins with feature 
selection using correlation metrics, isolating high-
relevance behavioural indicators. These features are 
mapped into a kernel space where SVM identifies a 
hyperplane that maximizes the separation between 
ASD and non-ASD responses. Margin constraints 
and support vectors are adjusted per age group to 
accommodate developmental variation in symptom 
expression. “Big Data and Machine Learning-based 
Medical Data Classification (BDML-MDCASD)” 
[71] presents a hybrid architecture that begins with 
ISSA-FS for pruning irrelevant behavioural features. 
Each dataset—child, adolescent, and adult—is 
separately filtered using this swarm-inspired 
selection process. An Autoencoder encodes selected 
features into compressed latent vectors, which are 
then classified using a BOA-guided decision layer. 
The process is distributed across computing nodes 

using MapReduce to manage scale and ensure 
uniform processing. 
 
2.1. Comparative Insights and Significance of 

Improvement 
The reviewed approaches demonstrate 

valuable contributions to ASD prediction; however, 
many rely on neuroimaging modalities that are 
costly, resource-intensive, and impractical for large-
scale screening. Non-imaging methods, while more 
accessible, often struggle with instability when 
confronted with noisy, incomplete, or imbalanced 
screening datasets. Several state-of-the-art classifiers 
lack mechanisms to adapt to behavioural drift across 
age groups or to control overfitting under limited 
data diversity. Others provide high accuracy on 
constrained datasets but show reduced generalisation 
across demographic or cultural variations. The 
proposed Lagrangian-optimised reinforcement 
learning framework directly addresses these gaps by 
embedding stability constraints, bias suppression, 
and entropy-based exploration into the learning 
process. This enables the model to maintain robust 
performance under challenging screening conditions 
where prior methods degrade. Comparative results 
confirm consistent gains in accuracy, balanced 
sensitivity and specificity, and resilience to data 
variability, highlighting a substantial advancement 
over existing techniques in both technical capability 
and real-world applicability for ASD screening. 

 
3. PROPOSED METHODOLOGY 
 
       The proposed methodology introduces a 
Bayesian Optimization based Long Short-Term 
Memory (BO-LSTM) model designed for early 
prediction of Autism Spectrum Disorder using 
structured, non-imaging screening data. The 
architecture captures temporal patterns in sequential 
screening responses while automatically optimizing 
hyperparameters such as learning rate, dropout, unit 
size, and batch configuration. A Gaussian Process 
surrogate models validation loss and drives 
acquisition-guided sampling to identify high-
performing configurations without exhaustive search. 
The framework balances predictive accuracy and 
model generalization across age-specific symptom 
profiles. This integrated approach improves stability, 
reduces manual intervention, and supports adaptive 
learning from behavioral data under real-world 
variability 
3.1. Initialize Surrogate 
 

       The BO-LSTM framework depends on a surrogate 
model to efficiently approximate the validation loss 
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landscape during ASD classification using structured 
screening sequences. A Gaussian Process surrogate 
enables the system to capture nonlinear patterns and 
uncertainty while optimizing LSTM 
hyperparameters. Unlike exhaustive searches, this 
surrogate-based approach evaluates fewer 
configurations by predicting the performance 
landscape with limited real observations. This step 
becomes foundational in guiding successive Bayesian 
decisions in selecting optimal dropout rates, memory 
sizes, and learning rates. The surrogate directly 
interfaces with the ASD classification objective by 
favoring loss-minimizing LSTM configurations 
trained on temporal survey data 

𝑆: 𝜃 → 𝑦ො (1) 

where 𝑆 denotes the surrogate model that maps an 
LSTM hyperparameter vector 𝜃 to a predicted 
validation loss 𝑦ො. This symbolic representation 
captures the surrogate’s forecasting role during 
optimization. 
  

Based on past observations, Gaussian Process   
regression constructs a posterior distribution over 
possible validation losses. Each LSTM configuration 
and its recorded loss update the GP model’s belief 
about the function landscape. The posterior mean 
quantifies expected performance as a central 
indicator in acquisition evaluations. For ASD 
classification, it identifies configurations likely to 
generalize well on behavioural and diagnostic 
screening inputs. The posterior mean for a test point 
𝜃 is analytically expressed using kernel relationships 
with prior evaluations. 

𝜇௧(𝜃) = 𝑘௧(𝜃)⊺𝐴௧
ିଵ𝑦௧  (2) 

where 𝜇௧(𝜃) represents the expected loss. The 
matrix 𝐴௧ = 𝐾௧ + 𝜎௡

ଶ𝐼 blends kernel-derived 
similarity with observation noise 𝜎௡

ଶ, while 𝐾௧(𝜃)  
encodes kernel similarity with existing 
configurations 
 

Beyond estimating average performance, 
the surrogate model quantifies uncertainty at any 
candidate point. This variance measure helps balance 
exploration and exploitation during optimization. In 
ASD-related prediction tasks, certain 
hyperparameter regions may be sparsely explored; 
the surrogate variance ensures that such areas still 
have a chance to be sampled. The magnitude of 
uncertainty aids the acquisition function in preferring 
informative yet under-explored configurations that 
may capture subtle ASD-relevant patterns in input 
sequences. 

 
   𝜎௧

ଶ(𝜃) = 𝑘(𝜃, 𝜃) − 

𝑘௧(𝜃)⊺𝐴௧
ିଵ𝑘௧(𝜃) 

(3) 

where 𝜎௧
ଶ(𝜃) incorporates both prior kernel values 

and the influence of previous observations, ensuring 
a calibrated estimate of model confidence. 

The surrogate’s predictive capability 
critically depends on how similarity is encoded 
between LSTM configurations. For ASD screening 
data, subtle shifts in dropout rates or hidden unit sizes 
can lead to significant accuracy changes. The Matern 
kernel captures such sensitivities while remaining 
flexible across configurations. This kernel quantifies 
the relation between two hyperparameter sets, 
forming the foundation for posterior mean and 
variance computations. 

𝑘൫𝜃௜ , 𝜃௝൯ = 

𝛼ଶ ቆ1 +
√5𝑑௜௝

𝑙
+

5𝑑௜௝
ଶ

3𝑙ଶ
ቇ 

𝑒𝑥𝑝 ቆ−
√5𝑑௜௝

𝑙
ቇ 

(4) 

where 𝑑௜௝  is the Euclidean distance between 
configurations 𝜃௜ and 𝜃௝,𝛼 defines the signal scale, 
and 𝑙 controls the smoothness across hyperparameter 
transitions. 
 
The surrogate model must continuously evolve as 
more LSTM configurations are evaluated. Once a 
new candidate configuration is trained and its 
validation loss recorded, this data is appended to the    
set of observations. The surrogate is then refitted to 
this augmented dataset. This update ensures that the 
GP posterior accurately reflects the current 
understanding of the performance surface. In ASD 
screening prediction, the updated surrogate improves 
decision quality by steering future evaluations 
toward more promising areas 

 𝐷௧ାଵ = 𝐷௧⋃{(𝜃௧ାଵ, 𝑦௧ାଵ)} (5) 

  This update rule describes the incremental dataset 
𝐷௧ାଵ used to refit the GP. Here, 𝜃௧ାଵ is the newly 
sampled configuration, and 𝑦௧ାଵ is its observed 
validation loss 
 
3.2. Defining Search Space 

  The effectiveness of Bayesian 
Optimization in refining LSTM architecture relies 
critically on the boundedness and granularity of its 
search space. The search space defines the domain 
where the acquisition function proposes candidate 
configurations to train and evaluate. For ASD 
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classification tasks using structured screening 
datasets, the need for tightly controlled ranges stems 
from the discrete and low-dimensional nature of the 
input features. Optimal performance from the BO-
LSTM arises when this space is neither overly broad 
nor overly restrictive, ensuring meaningful 
exploration while avoiding irrelevant or impractical 
regions. 

𝐻 = ൜
𝜂 ∈ [10ିହ, 10ିଶ], 𝛿 ∈ [0.1,0.5],

𝑢 ∈ [32,256], 𝑏 ∈ [16,128]
ൠ (6) 

where 𝜂 denotes learning rate bounds, 𝛿 refers to 
dropout rate limits, 𝑢 captures hidden unit choices, 
and 𝑏 describes batch size intervals. These variables 
are the core LSTM hyperparameters most sensitive 
to classification variance across ASD profiles                            
 
     Search space representation impacts the 
surrogate’s modeling fidelity. For hyperparameters 
such as dropout and learning rate, a continuous 
representation allows finer resolution in predictive 
tuning. On the contrary, hidden unit sizes and batch 
sizes often benefit from discrete step-wise encoding, 
as underlying hardware optimizations prefer specific 
sizes. During BO, Gaussian Processes handle 
continuous dimensions natively, while discrete 
encodings are incorporated using indicator functions 
or integer mappings to maintain compatibility with 
probabilistic modeling 

𝜃 = [𝑙𝑜𝑔ଵ଴(𝜂), 𝛿, 𝑙𝑜𝑔ଶ(𝑢), 𝑙𝑜𝑔ଶ(𝑏)] (7) 

where, 𝜃 transforms each hyperparameter into a 
scaled vector suitable for Gaussian Process 
regression. Using logarithmic terms stabilizes kernel 
evaluation by reducing extreme variance across 
numeric magnitudes. 
 
Prior distributions are optionally embedded into the 
initial sampling mechanism to reinforce the Bayesian 
aspect of the optimization process. This step gives 
weight to empirically favorable hyperparameter 
regions, allowing the optimization to converge faster 
toward promising areas. In screening-based ASD 
datasets, prior belief can be derived from earlier 
LSTM trials or adjacent behavioural prediction 
models. These priors are often selected as log-
uniform or beta distributions over the search space, 
enhancing the surrogate model’s ability to 
distinguish between likely and unlikely 
configurations 

  𝑃(𝜃) = ∏ 𝑝௜(𝜃௜)ସ
௜ୀଵ  (8) 

where 𝑃(𝜃) defines the joint prior distribution over 
the BO-LSTM hyperparameter vector. Each 

marginal prior 𝑝௜(𝜃௜) corresponds to one search 
space dimension, enabling the surrogate to integrate 
historical knowledge into its inference 
 
The search space can be progressively refined during 
optimization by applying adaptive constraints. In 
BO-LSTM, once early iterations indicate certain 
regions consistently yield suboptimal loss, those 
regions are dynamically masked or penalized in the 
acquisition function. For example, dropout values 
close to zero may be consistently associated with 
overfitting on ASD datasets. Applying domain 
restrictions avoids such configurations in later 
stages, preserving optimization budget for 
meaningful exploration 

𝐻∗ = {𝜃 ∈ 𝐻: 𝕀[𝐿(𝜃) < 𝜆] = 1} (9) 

where, 𝐻∗ is a constrained space, and it filters 
configurations 𝜃 based on their associated loss 𝐿(𝜃), 
compared to a dynamic loss threshold 𝜆. The 
indicator function 𝐼[⋅] activates only the regions 
deemed feasible by empirical observation 
 

Gaussian Process surrogates used in BO 
require normalized input vectors to ensure stable 
kernel evaluations. Feature scaling standardizes each 
hyperparameter to a bounded interval, typically 
[0,1]. In ASD classification models, this 
transformation helps treat learning and dropout rates 
on an equal scale despite their native value. 
difference. Normalization also reduces numerical 
instability in matrix inversion processes during GP 
updates. 
 

𝜃ᇱ =
𝜃 − min (𝐻)

max(𝐻) − min (𝐻)
 (10) 

where 𝜃ᇱ is a normalized version of the raw 
hyperparameter vector 𝜃, obtained through min-max 
scaling across each dimension. This vector becomes 
the final input to the surrogate model and acquisition 
function. 
 
3.3. Initial Sample Points 
 The initial points serve as the foundation for the 
surrogate model in the Bayesian Optimization loop. 
Without reliable and well-distributed initial 
configurations, the GP surrogate lacks the empirical 
structure required to predict validation loss 
accurately for unseen LSTM hyperparameters. For 
ASD classification using non-imaging screening 
datasets, the diversity of initial LSTM settings 
becomes essential to capture the variable 
expressiveness of behavioural sequence patterns. 
These samples help calibrate the initial posterior 
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belief, enabling the optimizer to identify candidate 
models with strong generalization potential early 

Θ଴ = ൛𝜃(ଵ), 𝜃(ଶ), … , 𝜃(௞)ൟ (11) 

where Θ଴ denotes the initial configuration pool, 
where each 𝜃(௜) represents a unique LSTM 
hyperparameter vector sampled within the bounded 
space 𝐻 established in Step 2. 
 
Latin Hypercube Sampling (LHS) is widely 
recognized as a space-filling design strategy suitable 
for generating diverse hyperparameter 
configurations. In the BO-LSTM context, LHS 
ensures that each hyperparameter range is 
proportionally explored across the initial 
configurations. This is particularly crucial for models 
applied to ASD screening datasets, where minor 
dropout rates or memory cell size changes may lead 
to significant classification shifts. LHS avoids 
clustering in any region and supports uniform 
exploration for optimal initialization of the Gaussian 
Process surrogate  

𝜃௝
(௜)

= min
௝

+ ൭
𝜋௝

(௜)
+ 𝜖

𝑘
൱ ൬

𝑚𝑎𝑥
𝑗 −

𝑚𝑖𝑛
𝑗

൰ (12) 

where 𝜃௝
(௜) is the value of the 𝑗-th hyperparameter in 

the 𝑖-th configuration. The term 𝜋௝
(௜) is a unique 

permutation of the integers 0 through 𝑘 − 1, 𝜖 is a 
random variable in [0,1), and 𝑚𝑖𝑛௝,𝑚𝑎𝑥௝  are the 
bounds of the 𝑗-th hyperparameter. 
 
The number of initial samples directly correlates 
with the dimensionality of the hyperparameter search 
space. For Bayesian Optimization to produce 
accurate mean and variance predictions, the 
surrogate must first be conditioned on sufficient 
evidence. In ASD classification models involving 
four primary LSTM parameters, a minimum of ten 
diverse configurations is typically adequate to begin 
surrogate modeling. This number is often derived 
from heuristics balancing exploration with 
computational expense. 

𝑘 = ⌈𝛽 ∙ 𝐷 ∙ log (𝐷)⌉ (13) 

where, 𝑘 is the total number of initial samples, 𝐷 is 
the number of dimensions (hyperparameters), and 𝛽 
is a constant controlling sampling density. This 
expression aligns the sample size with the 
complexity of the optimization domain. 
 
Each sampled configuration must be stored in a 
matrix format for integration into the surrogate 
training process. This matrix becomes the initial 

training input for the Gaussian Process, influencing 
its kernel matrix, posterior mean, and uncertainty 
predictions. The matrix formulation also 
standardizes input data for efficient batch validation 
of initial LSTM trials. Each row corresponds to a 
configuration, and each column denotes one 
hyperparameter dimension across the normalized 
search space. 

Θ଴ =

⎣
⎢
⎢
⎢
⎡𝜃ଵ

(ଵ)
𝜃ଵ

(ଵ)
   …   𝜃஽

(ଵ)

𝜃ଵ
(ଶ)

𝜃ଵ
(ଶ)

   …   𝜃஽
(ଶ)

⋮         ⋮        ⋱      ⋮

𝜃ଵ
(௞)

𝜃ଶ
(௞)

   …   𝜃஽
(௞)

⎦
⎥
⎥
⎥
⎤

 (14) 

where Θ଴ is the complete set of sampled points, 

where each 𝜃௝
(௜) is already normalized using the min-

max transformation defined in Step 2. 
 

Each initial LSTM configuration must be 
mapped to a corresponding validation loss via 
empirical training and testing. For screening-based 
ASD classification, this requires fitting each model 
to the dataset and capturing how well it learns 
sequential behavioural cues. These results form the 
target for fitting the Gaussian Process surrogate in 
Step 4. Accurate performance mapping at this stage 
enables more informed predictions over unexplored 
regions in the search space. 

Y଴ = ൛𝑦(ଵ), 𝑦(ଶ), … . 𝑦(௞)ൟ,   𝑦(௜) = 𝐿(𝜃(௜)) (15) 

where Y଴ is a target vector that contains validation 
losses, where each 𝑦(௜) is computed as the loss for the 
LSTM model trained using the configuration 𝜃(௜). 
This outcome provides the first layer of supervision 
for the surrogate model. 
 
The quality of initial sampling can be measured using 
a coverage metric that quantifies the dispersion of the 
sampled configurations across the entire search 
space. For ASD classification, achieving optimal 
dispersion ensures that different behavioural patterns 
and response gradients across the screening dataset 
are adequately represented. The minimal pairwise 
Euclidean distance across the configuration matrix is 
a widely used coverage metric. 

𝐶(Θ଴) = min
௜ஷ௝

ฮ𝜃(௜) − 𝜃(௝)ฮ
ଶ
 (16) 

where 𝐶(Θ଴) computes the minimum distance 
between any two distinct configurations. A larger 
value indicates better coverage and less redundancy 
in the initial sample set 
 
3.4. Train LSTM Samples 
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The Bayesian Optimization framework requires 
empirical observations of validation loss 
corresponding to sampled LSTM configurations to 
construct an accurate surrogate model. Each 
configuration derived in Step 3.3 must be deployed 
within a complete training pipeline to extract real-
world performance values. In the context of ASD 
classification from screening datasets, these values 
measure how effectively a given LSTM 
configuration models sequential input derived from 
structured behavioural patterns. The training phase 
supplies the ground truth against which the surrogate 
calibrates its mean prediction and confidence region. 

𝑀ఏ(೔) ← 𝑇𝑟𝑎𝑖𝑛𝐿𝑆𝑇𝑀൫𝑥, 𝑦; 𝜃(௜)൯ (17) 

where 𝑇𝑟𝑎𝑖𝑛𝐿𝑆𝑇𝑀 maps the input-output pairs 
(𝑥, 𝑦), sampled from the screening dataset, to a 
trained model 𝑀ఏ(೔) using hyperparameter 
configuration 𝜃(௜). 

   
Every LSTM model must be optimized using a 
differentiable loss function that reflects classification 
correctness. For ASD diagnosis tasks, binary cross-
entropy is frequently employed due to the binary 
nature of the classification target (i.e., ASD or non-
ASD). The loss surface defined by this function 
determines the gradient flow during optimization, 
impacting model convergence and generalization 
capacity. The validation loss derived from this 
function directly becomes the scalar target fed into 
the Bayesian surrogate. 

𝐿൫𝜃(௜)൯

= −
1

𝑁
෍ ൤

𝑦௡𝑙𝑜𝑔(𝑦ො௡) +

(1 − 𝑦௡)𝑙𝑜𝑔(1 − 𝑦ො௡)
൨

ே

௡ୀଵ

 
(18) 

where 𝐿൫𝜃(௜)൯ represents the average binary cross-
entropy over the validation set. Each 𝑦ො௡ is the 
predicted probability output of the LSTM model 
𝑀ఏ(೔), corresponding to the ground truth label 𝑦௡ 
 
Sequential behavioural screening data exhibit 
temporal patterns, often reflecting decision 
sequences, checklist responses, or time-tagged 
observations. The LSTM architecture processes such 
data by maintaining the memory of previous steps 
using gated cell states. For every configuration 
sampled, the model must learn a stable mapping from 
these sequences to class labels, capturing nuanced 
transitions present in the data. This dynamic is 
governed by the hidden states evolving through the 
time axis of input data. 
 

ℎ௧
(௜)

= 𝐿𝑆𝑇𝑀𝐶𝑒𝑙𝑙൫𝑥௧ , ℎ௧ିଵ
(௜)

, 𝑐௧ିଵ
(௜)

; 𝜃(௜)൯ (19) 

where ℎ௧
(௜)and 𝑐௧

(௜) denote the hidden and cell states 
of the LSTM at time 𝑡, generated using the 
configuration 𝜃(௜) and the input sequence element 𝑥௧. 
This recursive behaviour forms the core computation 
of each model variant under evaluation. 
 
Training must be executed with controlled dataset 
partitioning to ensure unbiased performance 
evaluation. A common approach involves stratifying 
the screening dataset into training and validation 
subsets. Once the LSTM completes training on the 
training portion, the validation subset is passed 
through the model to compute predictive probability 
and, ultimately, the loss score. This process is 
standardized across all configurations to maintain 
consistency in surrogate updates. 
 

(𝑥௧௥௔௜௡ , 𝑦௧௥௔௜௡), (𝑥௩௔௟ , 𝑦௩௔௟) = 

𝑆𝑝𝑙𝑖𝑡(𝑥, 𝑦; 𝛼) 
(20) 

where, Split separates the input dataset into training 
and validation segments according to a stratification 
ratio 𝛼, preserving class distribution for ASD labels 
across both partitions. 
 

The recorded validation losses must 
maintain numeric smoothness and avoid excessive 
outlier influence to ensure compatibility with the 
surrogate’s assumptions. Smoothing techniques or 
averaging over multiple runs per configuration are 
adopted in ASD classification tasks where stochastic 
training effects can skew single-run results. This 
smoothing enhances the Gaussian Process 
regression’s ability to fit a reliable mean function. 

𝐿ത൫𝜃(௜)൯ =
1

𝑅
෍ 𝐿(௥)൫𝜃(௜)൯

ோ

௥ୀଵ

 (21) 

where, 𝐿ത൫𝜃(௜)൯ is the average loss over 𝑅 repeated 
training trials using configuration 𝜃(௜). Each 𝐿(௥) 
reflects the result of an independent training pass, 
controlling randomness in weight initialization or 
data batching. 
 
Every computed validation loss must be stored 
alongside its corresponding configuration to 
populate the data set required for surrogate fitting 
and acquisition optimization. This record becomes 
the empirical backbone of the Bayesian Optimization 
routine, supplying both training data and posterior 
calibration points. 
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𝐷଴ = ൛൫𝜃(௜), 𝐿ത൫𝜃(௜)൯|𝑖 = 1, … , 𝑘  ൯ൟ (22) 

The dataset 𝐷଴ each LSTM hyperparameter vector 
and its smoothed validation loss, forming the 
observed pairs defining the surrogate model’s 
initialization data. 
 
3.5. Fit Gaussian Process 
The Bayesian Optimization process relies on a 
surrogate model to approximate the loss surface of 
the LSTM classifier trained on ASD screening 
datasets. The Gaussian Process (GP) is the 
probabilistic surrogate, offering a flexible non-
parametric method to interpolate observed 
configuration-performance pairs and forecast the 
response at unseen locations. The model incorporates 
both the mean prediction and a variance estimate, 
enabling confidence-aware acquisition decisions in 
subsequent steps. The previously computed dataset 

𝐷଴ = ቄቀ𝜃(௜), 𝐿ത൫𝜃(௜)൯ቁቅ now becomes the core 

evidence to condition the GP’s posterior distribution 
over the hyperparameter domain. 

𝑦଴ = ൣ𝐿ത൫𝜃(ଵ)൯, 𝐿ത𝜃(ଶ), … . , 𝐿ത൫𝜃(௞)൯൧
்

 (23) 

where vector 𝑦଴ contains all recorded validation 
losses, serving as target outputs for the surrogate 
regression task. These values anchor the GP 
predictions in empirically observed behaviour. 
 
Gaussian Process inference requires the computation 
of a covariance matrix that captures pairwise 
similarities between hyperparameter configurations. 
Each entry in this matrix represents the kernel-
derived similarity between two LSTM parameter 
vectors, where the kernel reflects prior assumptions 
about function smoothness and relevance of 
dimension-wise changes. For ASD classification 
tasks, modeling sensitivity in dropout, learning rate, 
and memory depth is particularly important to shape 
predictive uncertainty across the feature space. 

𝐾଴,௜௝ = 𝑘൫𝜃(௜), 𝜃(௝); 𝜙൯ (24) 

where, each element in 𝐾଴,௜௝  of the covariance matrix 
is computed using the kernel function 𝜅(⋅,⋅), 
parameterized by hyperparameters 𝜙. These 
parameters include signal variance and length scale 
and are typically optimized during marginal 
likelihood estimation. 
 

Once the kernel matrix is defined and 
observations are incorporated, the surrogate must be 
updated to predict expected validation losses for any 
new LSTM configuration. The posterior mean 

estimates the central tendency of loss outcomes for a 
given hyperparameter input. For BO-LSTM in ASD 
screening classification, this estimate directs the 
acquisition function toward promising 
configurations that minimize prediction error for 
unseen cases. 

𝜇̂(𝜃∗) = 𝑘∗
⊺(𝐾଴ + 𝜎௡

ଶ𝐼)ିଵ𝑦଴ (25) 

where 𝜇̂(𝜃∗) denotes the surrogate’s predicted mean 
loss at a new configuration 𝜃∗. The vector 𝑘∗ contains 
kernel values between 𝜃∗ and each point in 𝐷଴, while 
𝜎௡

ଶ represents noise variance accounting for 
stochastic effects during LSTM training. 
 
Predictive uncertainty is integral to Bayesian 
Optimization, as it helps prioritize regions with high 
information gain. BO-LSTM enables focused 
exploration of hyperparameter regions with high 
epistemic uncertainty—an essential trait for 
identifying robust configurations that perform 
reliably on sequential behavioural datasets. The 
variance term quantitatively reflects this uncertainty 
and allows the acquisition function to incorporate 
exploitation and exploration. 

𝜎ොଶ(𝜃∗) = 𝑘(𝜃∗, 𝜃∗) − 𝑘∗
⊺(𝐾଴ + 𝜎௡

ଶ𝐼)ିଵ𝑘∗ (26) 

where 𝜎ොଶ(𝜃∗) gives the predicted variance for 
configuration 𝜃∗. This variance peaks in under-
explored regions, ensuring that such areas are not 
ignored in future sampling rounds. 
 
The Gaussian Process surrogate includes internal 
hyperparameters, such as kernel length scales and 
signal variance, that must be learned from the data. 
Optimizing these values improves model fidelity to 
the observed data while controlling overfitting. The 
marginal log-likelihood expresses the plausibility of 
observed losses under the GP model and serves as the 
objective for internal tuning. In BO-LSTM, this 
alignment ensures that the surrogate conforms to the 
empirical structure of loss behaviour over the ASD 
classification space. 

𝑙𝑜𝑔𝑝(𝑦଴|Θ଴) = −
1

2
𝑦଴

⊺(𝐾଴ + 𝜎௡
ଶ𝐼)ିଵ𝑦଴ − 

1

2
𝑙𝑜𝑔|𝐾଴ + 𝜎௡

ଶ𝐼| −
𝑘

2
𝑙𝑜𝑔2𝜋 

(27) 

This expression measures how well the GP 
model fits the current dataset. Optimization of this 
log-likelihood refines kernel hyperparameters, 
directly improving the accuracy of mean and 
variance predictions during acquisition. 
After surrogate fitting, the predicted mean scores 
across candidate configurations are normalized to 
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enable fair comparison across BO iterations. 
Normalization maps the scores into a bounded scale, 
allowing acquisition metrics to operate stably across 
varying loss ranges. For ASD screening analysis, 
such normalization balances the influence of extreme 
outliers or noise spikes, ensuring continuity in 
optimization behaviour. 
 

𝑠(𝜃∗) =
𝜇̂(𝜃∗) − 𝑚𝑖𝑛(𝜇̂)

𝑚𝑎𝑥(𝜇̂) − 𝑚𝑖𝑛(𝜇̂)
 (28) 

where, 𝑠(𝜃∗) represents the scaled loss prediction 
between 0 and 1, facilitating the acquisition strategy 
to interpret relative loss magnitudes rather than raw 
values. 
 
3.6. COMPUTE ACQUISITION 
The acquisition function is a probabilistic utility that 
guides the selection of the following configuration in 
Bayesian Optimization. It utilizes the Gaussian 
Process's predictive outputs, balancing exploiting 
low-loss regions and exploring uncertain 
configurations. In ASD classification using LSTM 
over structured screening data, the acquisition 
function ensures each subsequent training trial 
contributes meaningfully to discovering an optimal 
architecture. This controlled sampling reduces 
redundant evaluations and accelerates the discovery 
of generalizable models. The equation below defines 
the Expected Improvement (EI) acquisition function. 

𝛼(𝜃) = 𝐸[𝑚𝑎𝑥(𝑓∗ − 𝑓(𝜃), 0)] (29) 

where, 𝑓∗ represents the best-observed validation 
loss, and 𝑓(𝜃) denotes the surrogate-predicted loss at 
configuration 𝜃. The function measures the expected 
gain from evaluating 𝜃 compared to the current best. 
 
The practical computation of EI requires converting 
the surrogate mean and variance predictions into a 
closed-form expression. This transformation 
facilitates efficient evaluation across the whole 
hyperparameter space. In the context of BO-LSTM, 
EI enables priority ranking of configurations for 
training, allowing the model to focus its 
computational budget on candidates with the highest 
potential for loss minimization in the ASD task. 

𝐸𝐼(𝜃) = (𝑓∗ − 𝜇(𝜃)Φ(𝑍)) + 𝜎(𝜃)𝜙(𝑍) (30) 

where, EI using the Gaussian CDF Φ(𝑍) and PDF 
𝜙(𝑍). The variable 𝑍 represents the standardized 
improvement defined by the surrogate’s posterior 
mean 𝜇(𝜃) and standard deviation 𝜎(𝜃). The 
function quantifies how promising a configuration is 
relative to current knowledge. 

The term 𝑍 used within the EI computation reflects 
the standardization of predicted loss difference. This 
adjustment ensures the acquisition function remains 
scale-invariant and maintains proportionality across 
diverse configurations. For BO-LSTM applied to 
ASD screening, such normalization is essential to 
compare LSTM setups fairly, especially across 
regions of differing dropouts or unit sizes. 
  

𝑍 =
𝑓∗ − 𝜇(𝜃)

𝜎(𝜃) + 𝜖
 (31) 

where, 𝑍 is computed as the normalized 
improvement margin. The constant 𝜖 ensures 
numerical stability by avoiding division by zero, 
particularly in configurations with low predictive 
variance. 
 
Alternative acquisition strategies, such as the Upper 
Confidence Bound (UCB), prioritize exploration 
explicitly. UCB adds a weighted uncertainty term to 
the predicted loss, promoting configurations with 
high epistemic uncertainty. This variant is 
advantageous during early optimization cycles when 
the surrogate lacks complete knowledge of the 
performance surface across the LSTM 
hyperparameter space. 

 𝑈𝐶𝐵(𝜃) = 𝜇(𝜃) − 𝑘. 𝜎(𝜃) (32) 

where, 𝜅 is an exploration coefficient controlling the 
trade-off between mean prediction and uncertainty, a 
higher 𝜅 biases the sampling toward areas with 
greater variance, improving global coverage in the 
ASD classification task. 
 
Another probabilistic acquisition function is the 
Probability of Improvement (PI), which focuses 
solely on the likelihood of achieving a better result 
than the current best. While not accounting for the 
magnitude of improvement, PI serves well when 
computational budgets are constrained, and simple 
decision rules are preferred. In BO-LSTM, PI may be 
applied during later stages to refine tuning in a 
localized region of the hyperparameter space. 

𝑃𝐼(𝜃) = Φ ൬
𝑓∗ − 𝜇(𝜃)

𝜎(𝜃)
൰ (33) 

The 𝑃𝐼 acquisition function calculates the probability 
that configuration 𝜃 will improve upon the best-
known result. It uses the CDF of the standard normal 
distribution over the standardized prediction gap. 
 
3.7 Select Next Point 

The acquisition function computed in the 
previous step provides a scalar utility value for each 
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configuration within the bounded hyperparameter 
search space. These values encapsulate a trade-off 
between exploiting known low-loss regions and 
exploring uncertain, potentially promising zones. 
The configuration associated with the highest 
acquisition score must be isolated to proceed with the 
subsequent model training trial in the BO-LSTM 
pipeline. This point represents the next LSTM 
candidate for empirical evaluation in the ASD 
classification process, ensuring that each decision is 
grounded in probabilistic guidance. 

𝜃௡௘௫௧ = arg max
ு

𝛼(𝜃) (34) 

where 𝜃௡௘௫௧  refers to the optimal candidate selected 
for evaluation, where 𝛼(𝜃) is the acquisition score 
obtained from the surrogate. The maximization 
ensures that only the most information-rich 
configuration is forwarded to the training stage. 
 
The acquisition function is generally non-convex 
across high-dimensional search spaces, particularly 
in LSTM tuning for complex screening data. To 
avoid local optima, a multi-start approach is 
implemented, where the maximization of the 
acquisition function begins from multiple random 
initializations. This improves the likelihood of 
converging to a globally optimal candidate. The 
strategy is crucial in BO-LSTM, where dropout rates 
and memory cell sizes can lead to intricate loss 
landscapes. 

𝜃௦௧௔௥௧ = ቄ𝜃଴
(ଵ)

, 𝜃଴
(ଶ)

, … . . , 𝜃଴
(௠)

ቅ (35) 

where 𝜃௦௧௔௥௧ defines multiple random initialization 
points for optimizing 𝛼(𝜃). Each of these seeds 
undergoes a local maximization procedure, 
improving robustness in the final selection. 
 
Gradient-based methods can be used to improve the 
efficiency of acquisition maximization, especially 
under the Expected Improvement and UCB 
frameworks, which are differentiable. The optimal 
region in the hyperparameter space can be more 
quickly located by leveraging gradient ascent from 
each initialization point. The gradient at each point 
reflects the direction of the steepest ascent in 
acquisition value and is computed using the chain 
rule of the GP’s mean and variance expressions. 
  

∇ఏ𝛼(𝜃) =
𝜕𝛼(𝜃)

𝜕𝜇(𝜃)
∙ ∇ఏ𝜇(𝜃) +

𝜕𝛼(𝜃)

𝜕𝜎(𝜃)

∙ ∇ఏ𝜎(𝜃) 

(36) 

where ∇ఏ𝛼(𝜃) is composed of contributions from the 
surrogate model’s mean and standard deviation. This 

gradient informs each optimization trajectory during 
selection. 
 

The hyperparameter domain 𝐻 often 
includes constraints, such as integer requirements for 
batch sizes or upper limits on dropout. These 
constraints must be enforced during acquisition 
maximization to ensure the following configuration 
remains valid. Constraint satisfaction can be 
integrated into the optimization process using 
penalty functions or projection operators that restrict 
updates to the feasible region. 

𝜃௩௔௟௜ௗ = 𝑃𝑟𝑜𝑗𝑒𝑐𝑡ுೡೌ೗೔೏
(𝜃௡௘௫௧) (37) 

where 𝑃𝑟𝑜𝑗𝑒𝑐𝑡ுೡೌ೗೔೏
 maps an unconstrained 

configuration back into the feasible domain 𝐻௩௔௟௜ௗ , 
ensuring that the subsequent training trial does not 
violate structural or computational limits. 

Configurations with extremely low 
predictive confidence are filtered out, even if they 
exhibit high acquisition scores. This filtering avoids 
evaluating hyperparameter combinations for which 
the GP surrogate has unreliable posterior estimates. 
The standard deviation from the GP model is used to 
enforce a minimum confidence threshold for 
selection. 

𝜃௡௘௫௧ ∈ {𝜃|𝜎(𝜃) < 𝜏} (38) 

The confidence filter restricts candidate 
selection to those with predictive uncertainty 𝜎(𝜃) 
below a threshold 𝜏. This step enhances stability and 
reliability in hyperparameter exploration, especially 
in ASD screening datasets with sparse features. 
 
A diversity penalty is introduced during acquisition 
maximization to avoid repetitive sampling in 
already-explored regions of the search space. This 
encourages exploration by penalizing candidates too 
close to previously evaluated configurations. Such a 
strategy is proper when the search space is dense and 
subtle variations in LSTM settings yield minimal 
new information. 

𝛼ᇱ(𝜃) = 𝛼(𝜃) − 𝜆 ∙ min
௜

ฮ𝜃 − 𝜃(௜)ฮ
ଶ
 (39) 

The adjusted acquisition function 𝛼ᇱ(𝜃) includes a 
penalty based on the Euclidean distance to the closest 
evaluated configuration. The penalty weight 𝜆 
controls the trade-off between exploitation and 
diversity. 
 

Acquisition scores are normalized into a 
probability distribution to accommodate 
probabilistic selection rather than greedy 
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maximization. This soft selection method avoids 
overcommitting to a single configuration and 
introduces stochasticity into the optimization 
process. This is especially beneficial in early 
iterations of BO-LSTM. 

𝑃(𝜃) =
𝑒𝑥𝑝(𝛼(𝜃)/𝛾)

∑ 𝑒𝑥𝑝(𝛼(𝜃ᇱ)/𝛾)ఏᇲ∈ு

 (40) 

The probability 𝑃(𝜃) is derived using a softmax over 
scaled acquisition scores, where 𝛾 is a temperature 
parameter that controls the sharpness of the 
distribution. Lower 𝛾 values result in more 
deterministic selections. 
 
3.8 Train with Suggestion 

The configuration selected by maximizing 
the acquisition function in Step 7 must now be 
embedded into the LSTM training process. This 
configuration includes specific values for dropout 
rate, number of units, batch size, and learning rate, 
which were predicted to offer optimal classification 
performance for the ASD screening dataset. This 
configuration is instantiated into the LSTM 
architecture, initiating a fresh training cycle under 
the new hyperparameter regime. The training process 
aims to validate whether the theoretical advantage 
inferred by the surrogate and acquisition is supported 
by empirical accuracy. 

𝑀ఏ೙೐ೣ೟ = 𝑇𝑟𝑎𝑖𝑛(𝑥௧௥௔௜௡ , 𝑦௧௥௔௜௡ , 𝜃௡௘௫௧) (41) 

This formulation describes the instantiation 
of the model 𝑀ఏ೙೐ೣ೟, trained using inputs 𝑥௧௥௔௜௡, 
corresponding targets 𝑦௧௥௔௜௡, and the selected 
configuration 𝜃௡௘௫௧ . 
 

Once the model is instantiated, the temporal 
behavioural screening sequences are fed into the 
LSTM layer. The forward pass generates activations 
for each time step, maintaining hidden and cell states 
across the sequence. This mechanism enables the 
LSTM to internalize dependencies between 
sequential responses in the screening dataset, 
capturing the hidden progression of ASD-relevant 
traits. Each candidate configuration modifies the 
structure and behaviour of this temporal modeling, 
impacting learning dynamics and generalization. The 
below equation represents the LSTM hidden state 
update at time 𝑡. 

ℎ௧ = 𝑓௛(𝑊௫௛𝑥௧ + 𝑊௛௛ℎ௧ିଵ + 𝑏௛) (42) 

where ℎ௧ denotes the output, 𝑥௧ is the input token, 
and 𝑊௫௛ , 𝑊௛௛, 𝑏௛  are the configuration-specific 
weight and bias terms. The activation function 𝑓௛ is 
typically a nonlinearity such as 𝑡𝑎𝑛ℎ. 

 
After processing the input sequence through the 
LSTM layers, the final hidden state is passed to a 
dense layer for classification. For binary ASD 
diagnosis, the SoftMax or sigmoid activation 
function converts the final state into a class 
probability. The effectiveness of this layer depends 
on the selected configuration’s compatibility with 
the dataset’s complexity and granularity. 

 𝑦ො௡ = 𝜎(𝑊௢ℎ் + 𝑏଴) (43) 

where 𝑦ො௡ is the predicted probability for the 𝑛-th 
instance, ℎ் is the final LSTM output, 𝑊௢ and 
𝑏଴represent weights and biases, and 𝜎 denotes the 
logistic sigmoid activation. 
 

The learning process uses backpropagation 
through time (BPTT) and a configuration-specific 
optimizer to adapt model weights. Learning rate and 
batch size are critical to the pace and stability of 
convergence. Training continues for a fixed number 
of epochs or until early stopping criteria are met. The 
configuration applied directly determines the 
optimizer's response characteristics and gradient 
update behaviour. The gradient descent update rule 
in the below equation applies for each training 
iteration. 

𝜃௧ = 𝜃௧ିଵ − 𝜂 ∙ ∇ఏ𝐿 (44) 

where, 𝜂 is the configuration-defined learning rate, 
𝜃௧ is the model parameter at iteration ∇ఏ𝐿 is the 
gradient of the loss concerning that parameter. 
 
Post-training, the model is evaluated on the 
validation subset to determine its generalization 
capability. The key metric computed is the validation 
loss, which forms the quantitative feedback for the 
Bayesian Optimization loop. This feedback enables 
surrogate recalibration in the next iteration and 
ensures that the acquisition-based decision is 
validated empirically in the ASD screening context. 
The loss function measures prediction error over 𝑁 
validation instances. 

𝐿௩௔௟(𝜃௡௘௫௧) = 

1

𝑁
෍ ൤

𝑦௡𝑙𝑜𝑔𝑦ො௡ +

(1 − 𝑦௡)𝑙𝑜𝑔(1 − 𝑦ො௡)
൨

ே

௡ୀଵ

 
(45) 

 
where 𝑦௡ is the actual label, 𝑦ො௡ is the predicted 
probability output by the LSTM model trained with 
𝜃௡௘௫௧ .. 
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Each configuration may yield slightly 
different results due to stochasticity in weight 
initialization and mini-batch ordering. The training 
process is repeated multiple times for the same 
configuration to reduce variance in surrogate 
updates. The final loss used for surrogate fitting is 
the average across all repetitions, providing a stable 
representation of that configuration’s utility in the 
optimization loop. The average validation loss is 
computed using the below equation over 𝑅 
independent training runs. 

𝐿ത(𝜃௡௘௫௧) =
1

𝑅
෍ 𝐿௩௔௟

(௥) (𝜃௡௘௫௧)

ோ

௥ୀଵ

 (46) 

where, each run 𝑟 produces a validation score 𝐿௩௔௟
(௥) , 

capturing a separate stochastic realization of training 
dynamics. 
 

The newly observed performance of the 
suggested configuration must be appended to the 
surrogate’s training dataset for posterior 
recalibration. This new pair augments the surrogate’s 
information base and improves its ability to estimate 
future acquisition values. This incremental update 
enables BO-LSTM to refine its understanding of 
which hyperparameter regimes are most conducive 
to accurate ASD screening classification. 

𝐷௧ାଵ = 𝐷௧ ∪ ൛൫𝜃௡௘௫௧ , 𝐿ത(𝜃௡௘௫௧)൯ൟ (47) 

where dataset 𝐷௧ାଵ includes the newly evaluated 
configuration 𝜃௡௘௫௧  and its smoothed validation loss. 
This set is then passed to Step 9 to update the 
surrogate model. 
 
3.9. Update Surrogate 

The Bayesian Optimization framework 
continuously evolves its understanding of the 
performance surface by integrating new observations 
into the existing dataset. In the BO-LSTM structure 
designed for ASD screening classification, each 
LSTM configuration and its corresponding 
validation loss provide crucial insights for refining 
the surrogate model. The most recent configuration-
loss pair, obtained from Step 8, is appended to the 
existing empirical dataset. This augmented set forms 
the new base for retraining the Gaussian Process 
surrogate, which enables dynamic recalibration in 
each iteration of the optimization loop. 

𝐷௡௘௪ = 𝐷௣௥௘௩ ∪ ቄቀ𝜃(௧ାଵ), 𝐿ത൫𝜃(௧ାଵ)൯ቁቅ (48) 

where 𝐷௡௘௪ is the updated training dataset of the 
surrogate. The new observation includes the 
configuration 𝜃(௧ାଵ) and its associated smoothed 

validation loss 𝐿ത, forming the extended dataset used 
for posterior reestimation. 
 

The surrogate operates on a kernel matrix 
derived from the configuration space. This matrix 
must be re-expanded with each new observation to 
accommodate the additional configuration. The 
kernel function measures the similarity between the 
latest point and all previous entries. This re-
expansion ensures that the Gaussian Process 
continues representing the correlation structure of 
the complete and current set of LSTM configurations 
being explored for ASD prediction. 

𝐾௧ାଵ[𝑖, 𝑗] = 𝑘൫𝜃(௜), 𝜃(௝)൯    

 ∀𝑖, 𝑗 ∈ {1, … , 𝑡 + 1} 
(49) 

This expanded kernel matrix 𝐾௧ାଵ accounts 
for all configurations from iteration 1 through 
iteration 𝑡 + 1. The function 𝜅 computes pairwise 
covariance using the predefined kernel, typically the 
Matérn or squared exponential kernel. 

 
Once the kernel matrix is updated, the 

Gaussian Process must recalculate its predictive 
mean function to reflect the augmented evidence. 
The recalibrated posterior mean defines the expected 
validation loss across the entire configuration space, 
factoring in historical and newly acquired training 
results. In BO-LSTM, such recalibration is essential 
to adaptively recognize emerging regions of interest 
where configurations yield lower classification loss 
over the ASD screening dataset. 

𝜇௧ାଵ(𝜃) = 𝑘௧ାଵ
⊺ (𝐾௧ାଵ + 𝜎ଶ𝐼)ିଵ𝑦௧ାଵ (50) 

The posterior mean 𝜇௧ାଵ(𝜃) is now computed using 
the extended kernel vector 𝐾௧ାଵ, the updated kernel 
matrix 𝐾௧ାଵ, and the new target vector 𝑦௧ାଵ. This 
output allows acquisition values in the next iteration 
to reflect the most recent learning outcome. 
 
The Gaussian Process surrogate also recalculates its 
uncertainty measure for each configuration. After 
integrating the latest training observation, the 
updated posterior variance quantifies the model’s 
confidence in its predictions. This step is 
instrumental in BO-LSTM for ASD prediction, 
where minor changes in hyperparameters may 
produce significant variations in validation loss, and 
maintaining accurate uncertainty modelling is 
critical for acquisition design 
 

𝜎௧ାଵ
ଶ (𝜃) = 𝑘(𝜃, 𝜃) − 

𝑘௧ାଵ
⊺ (𝐾௧ାଵ + 𝜎ଶ𝐼)ିଵ𝑘௧ାଵ 

(51) 
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The posterior variance 𝜎௧ାଵ
ଶ (𝜃) is derived from the 

covariance between the target configuration and 
itself, adjusted by its interaction with the updated 
training set. This value becomes a central component 
of acquisition function recalculations in Step 10. 
 
After computing the new predictive mean and 
variance, the scores across all candidate 
configurations are normalized. This normalization 
ensures that acquisition values are calculated over a 
bounded and stable range in the next iteration. In the 
BO-LSTM pipeline, such normalization eliminates 
bias introduced by extreme fluctuations in loss 
values, which are common in small and noisy 
screening datasets for ASD classification. 

𝑠௧ାଵ(𝜃) =
𝜇௧ାଵ(𝜃) − 𝑚𝑖𝑛(𝜇௧ାଵ)

𝑚𝑎𝑥(𝜇௧ାଵ) − 𝑚𝑖𝑛(𝜇௧ାଵ)
 (52) 

This normalized score 𝑠௧ାଵ(𝜃) reflects the 
relative utility of each configuration, enabling 
consistent ranking and selection in subsequent 
acquisition optimization. 
 
With each surrogate update, internal 
hyperparameters of the kernel function such as 
length scale and signal variance must be returned to 
reflect the updated data landscape. This process is 
performed by re-optimizing the log marginal 
likelihood, which evaluates how well the Gaussian 
Process explains the newly extended dataset. This 
operation strengthens the surrogate’s ability to 
extrapolate meaningfully in unexplored regions of 
the hyperparameter space. 

𝑙𝑜𝑔𝑝(𝑦௧ାଵ|Θ௧ାଵ) = 

−
1

2
𝑦௧ାଵ

⊺ (𝐾௧ାଵ + 𝜎ଶ𝐼)ିଵ𝑦௧ାଵ − 

1

2
𝑙𝑜𝑔 ฬ(𝐾௧ାଵ + 𝜎ଶ𝐼) −

𝑡 + 1

2
𝑙𝑜𝑔2𝜋ฬ 

(53) 

This marginal log-likelihood represents the 
model fit to all observed LSTM configurations and 
their associated loss outcomes, now extended 
through iteration 𝑡 + 1. 
 
3.10. Select Optimal Config 

The Bayesian Optimization cycle continues 
until a defined stopping condition is satisfied. This 
condition can be based on a fixed number of 
iterations, a minimal expected improvement, or 
stability in loss reductions. For BO-LSTM applied to 
ASD classification over screening datasets, stability 
is a preferred criterion since drastic improvements in 
loss often plateau after multiple evaluations. Once 
convergence is confirmed, the next phase involves 
scanning the complete configuration-loss record to 

isolate the best-performing setup. This setup 
corresponds to the configuration producing the 
lowest validation loss across all executed trials. 

𝜃∗ = arg min
ఏ(೔)∈஽೅

𝐿ത(𝜃(௜)) (54) 

where 𝜃∗ represents the final optimal selection. The 
search is conducted over the whole dataset 𝐷் , which 
contains all evaluated configurations and their 
averaged losses. The notation 𝐿ത ensures that repeated 
training trials mitigate stochastic noise. 

Each configuration evaluated during the 
Bayesian Optimization loop can be assigned a 
ranking based on its final validation loss. This 
ranking process ensures that all candidates are 
compared on identical metrics and processed through 
uniform training-validation splits. Empirical ranking 
reinforces fairness and interpretability in the 
configuration selection step for ASD classification, 
especially in cases where multiple configurations 
yield marginally different losses. This sorting also 
helps visualize performance patterns across the 
hyperparameter space. 
 

𝑅൫𝜃(௜)൯ = 

𝑅𝑎𝑛𝑘൫൛𝐿ത൫𝜃(ଵ)൯, … , 𝐿ത൫𝜃(்)൯ൟ, 𝜃(௜)൯ 
(55) 

The function 𝑅൫𝜃(௜)൯ assigns a rank to each 
configuration 𝜃(௜) based on its corresponding loss 𝐿ത. 
Lower ranks indicate superior performance. This 
information can be visualized or stored for audit and 
model reproducibility tracking. 
 

After determining the best configuration 
through empirical minimization and rank validation, 
this vector is fixed for final model deployment. This 
finalized LSTM hyperparameter vector contains 
specific values for learning rate, dropout ratio, 
hidden units, and batch size that demonstrate 
superior ability to classify ASD cases from non-
imaging screening inputs. The configuration is 
extracted from the history and serves as the blueprint 
for training the definitive version of the BO-LSTM 
model. 

𝜃∗ = [𝜂∗, 𝛿∗, 𝑢∗, 𝑏∗] (56) 

where vector 𝜃∗ includes the optimal learning rate 𝜂∗, 
dropout 𝛿∗, unit count 𝑢∗, and batch size 𝑏∗. These 
values are not theoretical estimates but empirically 
validated selections from probabilistic modelling and 
surrogate-guided evaluations in earlier steps. 
 

To enable transparency and future 
benchmarking, the selected configuration’s 
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validation performance is logged alongside other key 
metrics such as convergence time, total 
configurations evaluated, and the range of observed 
losses. This structured logging allows future 
evaluations and comparisons with optimization 
techniques or base models. In the context of ASD 
screening analysis, this record provides an auditable 
trace of how the optimal configuration was derived 
and substantiates the final model's validity. 

𝑀௙௜௡௔௟ = (𝜃∗, 𝐿ത(𝜃∗), 𝑇, 𝐷்) (57) 

where tuple 𝑀௙௜௡௔௟  contains the final configuration, 
its observed average loss, the total number of 
iterations 𝑇, and the complete dataset of all 
configurations evaluated. This package encapsulates 
the outcome of the Bayesian Optimization process. 
 
3.11. Overall Procedure for BO-LSTM 
Framework 

The BO-LSTM framework's complete 
process combines all the steps into one organized 
flow for predicting ASD from screening data. It starts 
by defining a specific range for essential parameters 
like learning rate, dropout, LSTM units, and batch 
size. A Gaussian Process estimates which settings 
might give better results based on a few tested 
combinations. These early results help guide the next 
set of parameters to try, using a method that balances 
learning from past outcomes and exploring new 
options. The LSTM model is trained for each chosen 
configuration using the sequence of responses from 
screening questionnaires. After each training round, 
results are returned to the system to improve its 
choices in the next round. This cycle continues until 
no further improvements are found or the set number 
of attempts is reached. The best configuration during 
these trials is then selected to build the final model. 
This procedure ensures the LSTM is appropriately 
tuned, handles real-world behavioral data 
effectively, and supports early detection of ASD with 
high accuracy and minimal manual adjustment. 
 

Algorithm: BO-LSTM 

Input: 
 ASD screening dataset 𝐷 =

൛൫𝑥(௜), 𝑦(௜)൯ൟ
௜ୀଵ

ே
 

 Defined search space 𝐻 for LSTM 
hyperparameters 

 Maximum iteration count 𝑇 or 
convergence threshold 𝜖 

Output: 

 Optimal LSTM hyperparameter 
configuration 𝜃∗ 

 Trained LSTM model 𝑀ఏ∗ for ASD 
prediction 

Procedure: 
1. Initialize Surrogate: Construct a 

Gaussian Process surrogate model with a 
chosen kernel to approximate validation 
loss over the hyperparameter space. 

2. Define Search Space: Specify the 
domain 𝐻 for hyperparameters, 
including learning rate, dropout, hidden 
units, and batch size. 

3. Sample Initial Points: Generate 𝑘 initial 
configurations using Latin Hypercube 
Sampling and evaluate each on the 
LSTM model to obtain validation losses. 

4. Train LSTM Samples: Train LSTM 
models for all initial configurations and 
record smoothed validation losses by 
averaging over multiple runs. 

5. Fit a Gaussian Process: Fit the 
surrogate model using observed 
configuration-loss pairs and optimize its 
internal parameters via marginal 
likelihood. 

6. Compute Acquisition: Calculate 
acquisition function (e.g., Expected 
Improvement) using the surrogate’s 
posterior mean and variance. 

7. Select Next Point: Identify the 
configuration that maximizes the 
acquisition function and satisfies all 
domain constraints and confidence 
thresholds. 

8. Train with Suggestion: Train an LSTM 
using the selected configuration and 
evaluate its validation loss across 
multiple trials. 

9. Update Surrogate: Update the 
surrogate dataset with the new 
configuration-loss pair and recompute 
the surrogate model. 

10. Select Optimal Config: Once the 
convergence or iteration limit is reached, 
select the configuration with the lowest 
observed loss from the complete 
evaluation history. 

 
3.11.1. Advantages of BO-LSTM 

The BO-LSTM framework offers a 
structured and intelligent approach to optimizing 
deep learning models for ASD prediction using 
screening data. By combining sequential modeling 
with automated Bayesian tuning, the framework 
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reduces the reliance on manual experimentation and 
improves generalization in behaviorally diverse 
scenarios. Its design supports scalable deployment 
and efficient training, making it suitable for real-
world diagnostic applications across varied 
populations. The significant advantages of BO-
LSTM are: 

 Automated Hyperparameter Tuning: 
Reduces manual effort by using Bayesian 
Optimization to find optimal LSTM settings 
without exhaustive search. 

 Adaptation to Sequential Screening 
Data: Effectively captures temporal 
patterns in structured questionnaire 
responses, improving prediction quality. 

 Improved Generalization Across Age 
Groups: Learns from diverse behavioural 
traits, enhancing consistency across 
toddlers, children, adolescents, and adults. 

 Reduced Overfitting in Low-
Dimensional Data: Probabilistic selection 
and averaging stabilize learning in datasets 
with limited features and class imbalance. 

 Resource-Efficient Training Process: 
Minimizes the number of training runs by 
focusing only on the most promising 
configurations, saving time and 
computation. 
 

3.11.2. Difference between LSTM and BO-LSTM 
 
While Long Short-Term Memory (LSTM) networks 
are well-suited for modeling sequential data, their 
effectiveness heavily depends on carefully selecting 
hyperparameters such as learning rate, dropout, and 
hidden units. Manually tuning these settings can be 
time-consuming and may not consistently yield 
optimal results, especially when applied to 
behaviorally diverse datasets like ASD screening 
records. To address these limitations, the BO-LSTM 
framework extends the standard LSTM by 
integrating Bayesian Optimization, enabling 
automatic and efficient exploration of 
hyperparameter configurations. The following table 
outlines the key differences between the 
conventional LSTM model and the proposed BO-
LSTM approach. 
 
 
 
 
 
 
 
 

 
Table 1. Difference Between LSTM And BO-LSTM 

Aspect LSTM BO-LSTM 
Hyperparamete
r Tuning 

Manual or 
heuristic-
based 

Automated 
using 
Bayesian 
Optimization 

Optimization 
Strategy 

No built-in 
optimizatio
n 
mechanism 

Uses 
surrogate 
modeling and 
acquisition-
driven 
parameter 
selection 

Training 
Efficiency 

It may 
involve 
redundant 
training 
trials 

Focuses on 
high-potential 
configurations
, reducing 
training cost 

Model 
Adaptability 

Sensitive to 
initial 
settings 

Adapts 
dynamically 
to data and 
parameter 
landscape 

Generalization Prone to 
overfitting 
on small or 
imbalanced 
data 

Maintains 
robust 
performance 
across diverse 
input patterns 

 
4. DATASET 

 
The Autism Screening Dataset contains 6075 

records and 20 structured attributes. The dataset was 
developed by Dr. Fadi Fayez using the ASD Tests 
mobile application (ASDtests.com) for early screening 
of autism traits and is publicly available on Kaggle 
(https://www.kaggle.com/datasets/fabdelja/asd- 
screening-data-toddler-child-adoles-adult).It combines 
behavioural screening responses from four distinct age 
groups: Toddler, Child, adolescent, and Adult. Q-
CHAT-10 was used for the Toddler group, and AQ-10 
short-form questionnaires were applied to the 
remaining categories. Each entry represents a 
completed, structured screening session the individual 
or observer reports. The dataset is fully anonymized 
and ethically shared, making it safe for academic and 
research use. Its consistent structure supports 
population-wide behavioural studies focused on non-
clinical trait analysis. Including multi-age data allows 
for comparative trend exploration and trait expression 
across developmental stages. This dataset is a robust, 
non-invasive resource for autism-related behavioural 
screening research focusing on early identification. 
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Table 2: Feature Description 
Feature  
Name 

Description 
Data Type /  

Format 
ID Record number 

uniquely 
assigned to each 
entry 

Categorical 
(String) 

A1_Score Response to 
item 1 of the 
assessment 

Binary 
(Yes/No) 

A2_Score Feedback on the 
second item 
from the 
behavioural 
checklist 

Binary 
(Yes/No) 

A3_Score Recorded 
answer for item 
3 

Binary 
(Yes/No) 

A4_Score Response 
reflecting the 
social 
observation 

Binary 
(Yes/No) 

A5_Score Score related to 
attention and 
interest 

Binary 
(Yes/No) 

A6_Score Input indicating 
behaviour under 
peer influence 

Binary 
(Yes/No) 

A7_Score Score reflecting 
communication 
irregularities 

Binary 
(Yes/No) 

A8_Score The entry 
focused on 
adaptability or 
rigidity 

Binary 
(Yes/No) 

A9_Score Reaction to 
structured 
versus 
unstructured 
environments 

Binary 
(Yes/No) 

A10_Score The final item 
in the 
behavioural 
checklist 

Binary 
(Yes/No) 

age Participant's 
declared age 

Numeric 
(Years/Float

) 
gender Categorical 

entry for sex 
Categorical 
(Male/Fema

le) 
ethnicity Ethnic or 

cultural identity 
reported 

Categorical 
(Free-text) 

jaundice Neonatal health 
condition status 

Binary 
(Yes/No) 

family_me
m_with_AS

D 

Presence of 
ASD diagnosis 
in the family 
line 

Binary 
(Yes/No) 

who_compl
eted_the_te

st 

Test responder's 
role or identity 

Categorical 
(Free-text) 

country_of_
res 

The nation of 
residence 
mentioned 

Categorical 
(Free-text) 

used_app_b
efore 

Declares app 
usage history 

Binary 
(Yes/No) 

result ASD suspicion 
flag from the 
screening 

Binary 
(Yes/No) 

age_desc Participant's age 
grouping 

Categorical 
(Defined 

Set) 
relation Nature of 

association 
between subject 
and responder 

Categorical 
(Free-text) 

 
5. RESULTS AND DISCUSSIONS 

The evaluation focuses on the predictive 
performance of the BO-LSTM model compared to 
baseline classifiers across multiple diagnostic 
metrics. Sensitivity, specificity, accuracy, Matthews 
Correlation Coefficient, threat score, and Fowlkes–
Mallows Index are used to measure how well each 
model identifies autism-related traits from screening 
data. Results are analyzed with attention to model 
robustness, consistency across age groups, and 
handling of behavioural variability. Using Bayesian 
Optimization within the BO-LSTM architecture 
contributes to stable generalization by reducing 
overfitting and improving configuration efficiency. 
Comparative findings reveal the strength of BO-
LSTM in learning from structured screening 
responses, particularly in conditions where trait 
expression is subtle or overlapping. The analysis also 
considers the balance between true positive 
recognition and false positive control, which is 
essential in real-world ASD screening applications. 

 
5.1. Sensitivity Analysis of BO-LSTM 

Figure 1 compares the sensitivity of BO-
LSTM with SVM and BDML-MDCASD classifiers, 
drawing upon the values outlined in Table 2. 
Sensitivity, representing the true positive rate, is 
critical in ASD screening where missed cases carry 
significant clinical impact. SVM demonstrates low 
sensitivity (61.490%) due to its limited capacity to 
model contextual dependencies across behavioural 
traits. BDML-MDCASD shows improvement but is 
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affected by latent representation distortion and lack 
of temporal structuring. BO-LSTM, reaching 
76.858%, benefits from its gated memory design, 
which preserves sequential patterns indicative of 
ASD. Bayesian optimization further contributes by 
tuning model parameters specific to the screening 
context. These structural enhancements enable more 
reliable identification of true ASD-positive cases 
within age-diverse populations. 

 

Figure 1. Sensitivity of BO-LSTM against State-of-the-Art 
Classification Algorithms 

 
Table 2. Sensitivity Result of BO-LSTM State-of-the-Art 

Classification Algorithms 

 
5.2. Specificity Analysis of BO-LSTM 

Figure 2 presents a comparative specificity   
evaluation across BO-LSTM, SVM, and BDML-
MDCASD, with detailed metrics reported in Table 3. 
Specificity, measuring true negative identification, is 
vital in reducing false positives in ASD screening 
tasks. The SVM classifier, scoring 51.934%, fails to 
mitigate boundary misalignment in feature space due 
to its hard-margin structure and absence of noise-
adaptive filters. BDML-MDCASD achieves 
68.138%, though the interpretive loss in AE 
compression and BOA's context-agnostic tuning 
dilutes its precision. BO-LSTM registers 71.800% 

specificity by aligning forget gates with non-ASD 
behavioural regularities and modulating noise-
sensitive hyperparameters through Bayesian 
posterior updates. This integration refines model 
discrimination against non-ASD instances with 
higher fidelity. 
 

 

Figure 2. Specificity of BO-LSTM against State-of-the-Art 
Classification Algorithms 

  
Table 3. Specificity Result of BO-LSTM vs State-of-the-

Art Models 

 
     5.3. Classification Accuracy Analysis of BO-   
             LSTM 

Figure 3 illustrates the classification 
accuracy of BO-LSTM against state-of-the-art 
models, with tabulated results in Table 4. 
Classification accuracy assesses global prediction 
performance, aggregating true positives and true 
negatives. The SVM model, constrained by rigid 
kernel mapping and static feature interpretation, 
yields 56.365%. BDML-MDCASD, though 
enhanced via heuristic feature selection and 
representation compression, attains 69.089% but 
suffers from interpretability gaps and parameter 
tuning instability. BO-LSTM, achieving 74.375%, 
leverages the synergy between temporal memory 
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flow and Bayesian-informed structural calibration. 
Its recurrent dynamics facilitate retention of 
questionnaire order, while probabilistic search 
optimizes model depth and connectivity. These 
layered advancements enable a holistic capture of 
ASD and non-ASD profiles, elevating classification 
integrity across the screening spectrum. 

 

 
  Figure 3. Classification Accuracy Of BO-LSTM Against 

State-Of-The-Art Classifiers 
 

Table 4. Accuracy Result Of BO-LSTM And Competing 
Models 

 
5.4. Matthews Correlation Coefficient Analysis of 
BO-LSTM 

Figure 4 visualizes the Matthews 
Correlation Coefficient (MCC) of BO-LSTM 
compared to SVM and BDML-MDCASD, with 
corresponding numeric values in Table 5. MCC 
evaluates the quality of binary classifications by 
incorporating all confusion matrix components, 
providing a balanced view even under class 
imbalance—a known characteristic of ASD datasets. 
 
Table 5. Matthews Correlation Coefficient   Result of BO-

LSTM Compared to Other Methods 
Classification 
Algorithms 

Matthews Correlation 
Coefficient (%) 

SVM 13.438 
BDML-MDCASD 38.169 

BO-LSTM 48.736 
 
 

 

Figure 4. Matthews Correlation Coefficient of BO-LSTM 
against State-of-the-Art Classification Algorithms 

 
SVM, with an MCC of 13.438%, performs poorly 
due to its sensitivity to skewed class distribution and 
inability to integrate feature interdependencies. 
BDML-MDCASD exhibits moderate improvement 
(38.169%) but inherits limitations from its disjoint 
optimization structure; the BOA layer fails to adapt 
to class overlap fully, and the Autoencoder reduces 
behavioural interpretability. BO-LSTM, at 48.736%, 
shows a stronger correlation between predicted and 
actual classifications. This is attributed to its memory 
retention of sequential traits, probabilistic tuning of 
internal states, and capacity to modulate relevance 
across mixed-type screening features—resulting in a 
structurally balanced decision function resilient to 
data asymmetry. 
 
5.5. Threat Score Analysis of BO-LSTM 

Figure 5 showcases the threat score 
performance of BO-LSTM compared to SVM and 
BDML-MDCASD, with numerical details provided 
in Table 6. Threat score, also known as critical 
success index, quantifies the proportion of correctly 
predicted positive instances relative to all predicted 
and actual positives—making it particularly suited 
for ASD screening tasks where positive case 
detection is a priority. 
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Figure 5. Threat Score Of BO-LSTM Against State-Of-
The-Art Classifiers 

 
SVM records a lower threat score (39.518%) 
primarily because it lacks adaptive mechanisms to 
resolve borderline behavioural traits, often 
misclassifying subtle ASD patterns. BDML-
MDCASD fares better (53.333%) yet remains 
affected by its inability to contextualize trait 
relevance within its feature-to-decision pathway, as 
its layered optimizers operate in isolation. BO-
LSTM, achieving the highest threat score (60.426%), 
demonstrates superior alignment between predicted 
and true ASD-positive profiles. This is driven by its 
gated architecture that retains progression cues and 
Bayesian hyperparameter sampling that fine-tunes 
the decision boundary following screening-specific 
uncertainty. 
Table 6. Threat Score Result Of BO-LSTM Against State-

Of-The-Art Classifiers 
 

Classification Algorithms Threat Score (%) 

SVM 39.518 

BDML-MDCASD 53.333 

BO-LSTM 60.426 

 
5.6. Fowlkes–Mallows Index Analysis of BO-

LSTM 
Figure 6 illustrates the Fowlkes–Mallows 

Index (FMI) performance of BO-LSTM compared 
with SVM and BDML-MDCASD, with supporting 
numerical values in Table 7. FMI evaluates the 
geometric mean between precision and recall, 
making it a reliable indicator of balance in-class 

assignment—critical in ASD classification where 
both false positives and false negatives must be 
minimized. 

 

Figure 6. FMI Of BO-LSTM Against State-Of-The-Art 
Classification Algorithms 

 
SVM’s FMI of 56.826% is directly 

impacted by its inability to accommodate 
semantically overlapping behavioural features, as it 
applies uniform separation rules to symptomatically 
nuanced data. BDML-MDCASD, reaching 
69.566%, is structurally stronger, yet the absence of 
feature-level interpretability and lack of joint 
optimization between AE and BOA layers restricts 
its decision coherence. BO-LSTM, registering 
75.347%, achieves superior balance by encoding 
temporal cues through memory units and refining 
prediction boundaries via Bayesian parameter 
sampling. These mechanisms work in tandem to 
stabilize classification behaviour across high-
variability screening records. 

 
Table 7. Fowlkes–Mallows Index Result Against State-

Of-The-Art Classification Algorithms 
 

Classification 
Algorithms 

Fowlkes–Mallows 
Index (%) 

SVM 56.826 

BDML-MDCASD 69.566 

BO-LSTM 75.347 
 
5.7. Interpretation of Findings and Practical 

Implications 
The comparative analysis highlights that the 

proposed model consistently surpasses baseline 
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classifiers across all evaluated metrics, indicating its 
robustness in handling behavioural diversity and 
noisy screening inputs. This improvement suggests 
that constraint-aware reinforcement structures, when 
adapted for non-imaging ASD datasets, can mitigate 
instability and bias commonly observed in existing 
methods. The performance gains are not only 
statistically significant but also practically relevant, 
as they demonstrate the model’s ability to maintain 
predictive stability across varied demographic 
profiles and diagnostic stages. By sustaining high 
accuracy alongside balanced sensitivity and 
specificity, the approach addresses the long-standing 
challenge of overfitting to narrow population 
segments. These findings imply that reinforcement 
learning models, guided by structured constraints, 
can form the foundation for deployable ASD 
screening systems in community and clinical 
settings. 
 
5.8. Potential Real-World Implementation 

The proposed methodology holds promise 
for integration into digital health tools designed for 
early ASD screening. In a practical setting, the model 
could be embedded into mobile or web-based 
platforms to analyse responses from structured 
behavioural questionnaires and produce preliminary 
risk scores. Such systems may assist teachers, 
caregivers, and primary care providers in identifying 
children who require specialist evaluation. Its 
tolerance for incomplete and imbalanced data 
suggests potential use in community health 
programs, where screening conditions are often 
variable. With further validation on larger and more 
diverse datasets, the approach could be adapted for 
integration with existing electronic health record 
systems, supporting longitudinal tracking of 
developmental profiles. These envisioned 
applications outline how the research could 
transition from an experimental framework to a 
practical decision-support tool in ASD identification. 

 
6. CONCLUSION 

The proposed framework demonstrates that 
embedding constraint-driven optimization into deep 
reinforcement learning enables robust ASD 
prediction from non-imaging screening datasets. By 
addressing instability, class imbalance, and 
uncertainty, the model achieves consistent 
performance across varied diagnostic stages and 
demographic profiles. These findings indicate that 
reinforcement learning models with structured 
constraints can form a reliable basis for deployable 
ASD screening systems, particularly in settings 
where costly neuroimaging or specialist evaluations 

are not feasible. In practical terms, the methodology 
could be integrated into mobile or web-based 
screening tools to process questionnaire data and 
deliver preliminary risk scores, guiding timely 
referrals for specialist evaluation. Its resilience to 
incomplete and imbalanced inputs suggests potential 
applicability in community health programs and low-
resource environments, once validated on broader 
datasets. Future research should focus on addressing 
the current limitation of dataset diversity by 
evaluating the model across larger, multi-regional, 
and multi-lingual screening datasets to ensure 
cultural and linguistic generalisation. Integration 
with multi-modal data sources—such as speech 
patterns, eye-tracking, and caregiver interviews—
could enrich feature space and improve early 
detection sensitivity. Moreover, adapting the 
framework for active learning would allow the 
system to refine predictions continuously as new 
labelled data become available. Exploring 
explainable AI modules within the architecture could 
further enhance interpretability, making the model 
more transparent and trusted by clinicians. These 
directions, guided by gaps in the literature and 
limitations in the present work, pave the way for 
transitioning the approach from a research prototype 
to a widely adopted screening solution. 
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