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ABSTRACT

Wireless networks today face increasing performance challenges due to dynamic conditions like user
mobility, fluctuating density and diverse application demands. Conventional approaches, such as static
resource allocation and offline machine learning (ML), lack the adaptability to respond effectively to real-
time variations. To address these limitations, this research presents an Adaptive Crowd Feedback Strategy
that combines the live, trust-filtered user feedback with a closed-loop optimisation system. The suggested
framework includes 4 core modules: feedback collection, trust filtering, a Bayesian reinforcement learning
(RL) engine and network control reconfiguration. Researchers use mathematical models to combine Quality
of Experience (QoE) as well as Quality of Service (QoS) metrics, implement Bayesian inference to make
policy changes and queueing theory to predict how the network will perform. Many real-world and fabricated
datasets, like more than 18,000 mobile session logs, were used in the simulations. When contrasted with
static as well as offline ML-based systems, the results show big performance improvements, with up to 35%
more throughput, 30% less latency and over an additional 20% of energy efficiency. The adaptive system
also achieves quicker convergence, making it highly responsive to changing network conditions.
Comparative evaluation highlights the system’s ability to maintain a higher packet delivery ratio and minimal
congestion by smarter, feedback-driven decisions. Practical issues such as computational trade-offs, feedback
dependability and scalability are highlighted in the discussion of the results. The promising uses in
forthcoming 5G/6G, smart city and edge computing infrastructures, the research finds that the suggested
adaptive model improves real-time network performance while also laying the groundwork for smart, user-
aware, as well as energy-efficient wireless communication.
Keywords: Wireless Network, Machine Learning, Bayesian Inference, Packet Delivery Ratio, Congestion,
Energy Efficiency.
1. INTRODUCTION networking. According to early research, static
resource allocation, as well as ML models that have

Big wireless networks are often inefficient, already been trained, often can't handle changes in

especially at times of high demand, like during
public gatherings, urban mobility hotspots, as well
as smart city deployments. [1] [2]. This is what
prompted the inception of the present research.
However, service providers are still having trouble
providing QoS because users' behaviour and
network conditions are not always expected. [3].
This is despite improvements in 4G/5G
infrastructure as well as  software-defined

real time. [4] [5]. This led to the search for more
flexible, user-centred solutions.

1.1. Background of the Research Problem

Optimisation in conventional wireless network
management is primarily dependent on offline
models trained on past data or centralised decisions.
These techniques fail to have the responsiveness and
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granularity required to handle changing traffic loads,
mobility patterns, as well as environmental effects.
[6]. The incapacity to capture end users' real-time
QoE has resulted in higher energy usage, delay and
underutilization of resources. [7]. The majority of
contemporary methods do not incorporate real-time
crowd feedback, which leaves out the crucial layer
of contextual intelligence that could facilitate more
intelligent decision-making, even though some have
introduced Al-driven models.

1.2. Problem Statement

Current wireless networks cannot integrate reliable,
real-time user feedback into their optimisation
procedures, even in the face of growing
computational intelligence in the edge and the
availability of massive amounts of user-generated
data. [8]. Degraded performance, higher latency,
lower packet delivery ratios, as well as excessive
energy consumption come from their inability to
flexibly adjust to continuous variations in the
network environment. [9]. The fundamental issue is
that there isn't a reliable, trustworthy, and adaptable
feedback loop that can constantly learn from user
experience & manipulate network parameters
appropriately.

1.3. Research Significance in the Present
Context

Resilient, adaptable, as well as user-centric wireless
networks are more important than ever before due to
the exponential rise of the Internet of Things (IoT),
autonomous  systems (AS)and edge-enabled
services. Responding in real-time and having
extremely low latency are requirements for modern
use cases like autonomous driving, remote
healthcare & immersive AR/VR. [10]. Creating an
optimisation framework that is driven by feedback is
an urgent and essential need in this setting. [11]. To
meet the objectives of 6G & smart city ecosystems,
networks can become more durable, responsive, and
energy-efficient by utilising crowdsourced feedback
that has been filtered through trust models as well as
processed by adaptive learning algorithms. [12].

1.4. Objective of the Research

Improving the efficiency of wireless networks
through the combination of real-time feedback and
adaptive decision-making is the primary goal of this
paper. To accomplish such an objective, an adaptive
crowd feedback strategy is developed, implemented,
and evaluated. [13]. Using statistical and confidence

models to sort the QoS and QoE data that users
provide, the system learns from this data using
Bayesian RL and then reconfigures the network to
get the best performance. [14]. The approach
consists of queuing-based traffic behaviour analysis,
probabilistic learning and mathematical modelling
of feedback fusion.

1.5. Hypothesis of the Study

The Bayesian RL framework with real-time, trust-
filtered crowd feedback performs much better than
traditional static or offline optimisation methods for
improving wireless network performance, especially
in terms of throughput, latency, energy economy and
adaptability.

The remaining part of the paper is organised as
follows: section 2 presents related work in adaptive
networking and crowd feedback systems, section 3
details the suggested system architecture and design,
section 4 elaborates the mathematical modeling and
the simulation framework, section 5 provides the
results as well as comparative evaluations, section 6
discusses findings, practical implications along with
deployment challenges, section 7 concludes the
paper and outlines future research directions.

2. RELATED WORK

Performance in traditional wireless network
optimisation has been sustained by the use of rule-
based algorithms, static allocation of resources and
heuristic scheduling methods. [15]. While these
methods are easy to understand and apply, they aren't
always up to snuff in complex settings, particularly
when user mobility as well as traffic fluctuation are
on an upward trend. [16]. In dense deployments,
static models, including those with predefined
handoff thresholds & predefined bandwidth
allocation algorithms, perform adversely. To solve
these problems, some studies have used control-
theoretic and queuing theory to model traffic and
handle traffic jams. [17]. However, these methods
usually use broad, aggregate metrics and fail to offer
enough user-centred detail.

Scientists have been looking into how user
comments could be used in network optimisation for
the past few years. Instead of just looking at
QoS signs, people have also used QoE metrics like
perceived latency, streaming delays, or satisfaction
scores. Crowdsourced data has been used by projects
such as [OpenSignal] and [CellMapper]| to make
maps of signal strength and coverage [18]. However,
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these efforts tend to be passive and observational,
and they don't change decisions that are made in real
time around control. For estimating network
conditions, some research has suggested passive
sensing or feedback based on mobile apps; however,
these methods sometimes lack filters to remove
redundant or incorrect input, which can result in
noise and possible manipulation. [19]. In wireless
domains, the idea of trust filtering on feedback is still
not well recognised, particularly when decisions are
needed in real time. [20].

ML and RL have both become more popular for
controlling networks at the same time. In order to
predict how load balancing will work, improve
handoffs, or figure out trends of congestion, offline
ML models were developed and trained on historical
datasets. In settings that change quickly, though,
these models often have trouble generalising. [21]
[22]. As of now, most models that use reinforcement
learning don't include live input from the network
edge, even though it has shown progress in dynamic
spectrum allocation as well as energy-aware
routeing. [23]. In addition, computational
complexity and data sparsity have prevented the
widespread use of Bayesian RL models in wireless
settings, despite their ability to incorporate
uncertainty and prior information. [24] [25]. This
research seeks to fill this need by suggesting an
adaptive system that integrates user feedback and
learning-based optimisation to improve
responsiveness and efficiency. The objective is to
create a real-time while trust-aware, feedback-driven
RL model.
Research Questions
1. How can real-time, trust-filtered crowd feedback
be effectively integrated into wireless network

optimisation?
2. Does a Bayesian reinforcement learning
framework improve adaptability and

performance over traditional static or offline
methods?

3. What impact does the proposed system have on
key metrics such as latency, throughput, energy
efficiency, and wuser QoE in dynamic
environments?

3. METHODOLOGY

3.1. System Architecture Overview

The closed-loop adaptive control system is used to
optimise wireless network settings in real-time based

on crowd-sourced feedback. Users participate as
both consumers & contributors to the intelligence of

the network in this design, which is based on the
notion of participatory sensing. Network behaviour
in unpredictable circumstances with high traffic
loads, mobile users, and service needs can be
controlled intelligently and scalably. Layers one,
two and three of the architecture work together to
form the learning engine, preprocessing and trust
filtering, network control and setup, and crowd
feedback collection. A feedback-to-action pipeline is
made up of these parts. It constantly checks the
performance of the network, learns more about how
the system works, and puts change plans into action
to improve efficiency and the user experience. In a
wide variety of network environments, this layered
and modular design allows for real-time
responsiveness, interoperability and flexibility.

3.1.1 Crowd Feedback Collection Layer

The suggested system is designed as a closed-loop
adaptive control framework that dynamically
leverages the crowd-sourced feedback with the real-
time optimisation of wireless network parameters, as
shown in Figure 1. This architecture is grounded in
the principle of participatory sensing, where users
act as both consumers as well as contributors to
network intelligence. When traffic loads, user
movement, and service demands change quickly,
this work aims to provide smart, scalable control
over how networks act in these situations. Crowd
feedback collection, preprocessing and trust
filtering, learning engine & network control and
reconfiguration are the four interconnected layers
that make wup the architecture. All of these
components work together to provide a feedback-to-
action pipeline which continuously assesses network
performance, learns to improve comprehension of
system dynamics, and implements reconfiguration
tactics to maximise effectiveness and user
experience. Flexibility, interoperability, as well as
real-time response in a variety of network settings
are made possible by this modular and tiered design.

3.1.2. Preprocessing and Trust Filtering Layer

The raw data could include noise, duplication, or
manipulation due to the dispersed and diverse
character of crowd response. These problems are
fixed by the Preprocessing and Trust Filtering Layer,
which cleans and weights the raw data before
sending it to the learning engine. Employing time-
windowed moving average filters, redundant entries
are eliminated, such as several identical reports of
the same device in a brief period of time. Noisy or
anomalous data are flagged utilising statistical
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confidence thresholds, like standard deviation (SD)
based outlier detection. The key component of this
layer is the computation of trust scores (T,) for each
user u. Different factors affect these numbers,
including how consistent a user's past feedback was,
how well it matched with overall trends and whether
similar feedback has been observed from users
nearby. Inputs that aren't reliable or harmful are
hidden from high-quality data by trust scores. The
clean, weighted feedback data set is created, which
makes the learning and decision-making steps that
follow more reliable.

3.1.3. Learning Engine (Adaptive Algorithm
Layer)

At the core of the architecture is the Learning
Engine, a computational module that utilises
Bayesian reinforcement learning (RL) to analyse the
optimal network configuration policies. This engine
continuously ingests trusted, preprocessed feedback
as well as updates its internal models to adapt to the
varying network conditions. The Bayesian
component maintains probabilistic beliefs over
system parameters (e.g., bandwidth allocation,
handoff thresholds) and updates them utilising the
observed feedback to reflect uncertainties and
evolving conditions. Concurrently, the wireless
network is modelled as a Markov Decision Process
(MDP) by the RL component, in which every action
corresponds to the reconfiguration strategy (e.g.,
changing distribution power, adjusting resource
blocks), and each state represents a particular
network condition. Over time, the learning algorithm
refines the policy that chooses the best actions by
using reward signals like increased throughput or
decreased latency. Based on collected experience,
this dual-layer learning structure allows the system
to anticipate and prevent future network problems in
addition to responding to current feedback.

3.1.4. Network Control and Reconfiguration
Layer
The Network Control and Reconfiguration Layer
then follows the learning engine's suggestions,
turning ideas into real, low-latency network actions.
Adaptive power control minimises interference and
conserves energy; load balancing throughout base
stations ensures that users or channels have an equal
amount of bandwidth; handoff optimisation
guarantees that users in motion have seamless
mobility support; and these actions encompass a
variety of measures that enhance performance. This
layer interfaces directly to the underlying wireless
infrastructure through Software Defined Networking

(SDN) APIs or middleware agents, enabling it to
execute configuration modifications at runtime. By
maintaining tight integration with network hardware
and control planes, this layer ensures that decisions
made by the learning engine are timely, effective and
contextually appropriate. Its closed-loop operation
assures that post-reconfiguration performance is
monitored again by the crowd feedback layer, thus
finishing the adaptation cycle.

Crowd Feedback Collection Layer

llll @ © 9

Signal strengh  Network User Device Location

(RSSI,SNR) (RTT,lateny) satisfactionsc mobility patterns

v

Preprocessing and Trust Filtering Layer
A-9
+

Learning Engine
(Adaptive Algorithm Layer)

&

S 5 o "

Figure 1 System Architecture for Adaptive Crowd
Feedback Loop]

4. MATHEMATICAL MODELLING

The suggested adaptive crowd feedback technique is
based on robust mathematical modelling that takes
unstructured user input and turns it into structured
intelligence, which could guide the decision-making
process in the network. Feedback fusion, learning,
queueing evaluation, as well as decision
optimisation are all supported by the models and
techniques described in this section.

4.1. Feedback Modelling and Fusion

To make sense of decentralised and diverse user
input, the system models feedback as a vector of
quantifiable parameters captured from each user
device. Let the feedback from a given user ug, at time
t be represented as a triplet Fi = (riy, lit, Sit), where
13, is the reported signal strength (e.g., RSSI or SNR),
l; is the experienced latency (e.g., round-trip time),
and sit is the subjective user satisfaction score,
collected through in-app surveys or inferred from
user behavior (such as call drops or video buffering
events). These individual feedback vectors are then
aggregated regionally to generate a holistic
performance profile. For a given geographic region
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R, the system computes a weighted average
feedback Fr(t), where each user's input is scaled by
a trust score Ti(t) € [0, 1]. This trust score is derived
from the wuser's historical accuracy, feedback
consistency, and spatial redundancy (for instance,
similarity with nearby users). The aggregate model
is thus:

1
Fr(t) = N_Z T;(t). Fie
Ri3

Where Ng is the number of users in region R. This
fusion mechanism ensures that the feedback reflects
the collective and reliable experience of users, while
discounting noisy or malicious data.

4.2. Bayesian Learning for Parameter Adaptation

The system uses the Bayesian learning approach to
model assumptions regarding ideal network
configurations, represented by the parameter vector
6, in light of the dynamic and unpredictable
character of wireless environments. Parameters like
resource block allocations, power levels, and
handover thresholds may be included in this vector.
The posterior probability distribution is used to
express the system's belief in the ideal configuration
at time t:

P(8|Fr(t))aP(Fr(t)|0) * P(6)

Here, P(0) represents the prior distribution that
encapsulates knowledge from historical
observations, while P(Fr(t)|0) It is the probability
function, reflecting how probable the current
aggregated feedback is under a given configuration
0. The posterior distribution enables informed
updates to the system parameters, allowing it to
adaptively refine its belief depending on real-time
user feedback. This approach is specifically
advantageous in non-stationary environments where
conventional static models fail to adapt to the
evolving usage patterns or unexpected anomalies.

4.3. Network Queueing Model (M/M/1)

To analytically model the system’s network
performance at different configurations, every base
station or network node is indicated by the M/M/1
queueing model. This classical model assumes that:

e User session arrivals follow a Poisson

process with arrival rate A,

e Service times (for instance,
allocation) are exponentially distributed

with rate .

resource

The key performance indicators derived from this
model include:

Expected delay: Reflects the average time a packet

waits before being serviced.
1

= ll_— 7
Utilisation: Represents the proportion of time the
server is busy.

A
p=-
U
Queue Length: Estimates the average number of

packets within the queue.
2

1%
L, =
q 1_p

The system continuously monitors these parameters
and adaptive actions are triggered if the thresholds
are exceeded, i.e, D > Dipreshold Of L > L, max. Service
level agreements or policies set by operators serve as
the basis for these levels. This kind of system
modelling lays the theoretical groundwork for
comprehending traffic congestion, which in turn
allows for preventative measures before users notice
a decline in performance.

4.4. Reward Function in RL

The reinforcement learning architecture, which is
designed to maximise network efficiency and
cumulative satisfaction with users over time, is at the
core of the system's decision-making process. Let a;
be the action performed (e.g., reassigning spectrum,
starting load balancing), and let s; be the system's
state at time t. Following each action, the system
obtains a reward signal Ry, denoted as follows:

R; = wy * AThroughput + w, * APDR — w,
* ALatency

Where wi, ws, and w3 are scalar weights that
represent the operator's optimisation preference. For
example, a video streaming service might prioritise
throughput and latency, while a sensor network may
favour energy efficiency. The A Denotes the
improvement in each metric compared to the
reference baseline (for instance, prior time slot or
historical average). The learning agent seeks to
discover an optimal policy n* that maps system
states to actions, maximising the expected
cumulative discounted reward:
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m* = arg max E [Z thtl
T
t=0

Where y € [0, 1] represents the discount factor,
controlling the trade-off between the immediate and
long-term gains. This reward formulation enables
flexible and adaptive optimisation, allowing the
network to prioritise different metrics based on the
real-time context, user demands & traffic load.

4.5. Simulation Framework

The hybrid simulation setting has been developed so
that the suggested adaptive crowd feedback
approach could be tested thoroughly in real-life
situations. There are Python-based machine learning
modules for learning, inference, as well as feedback
adaptation built into this system. NS-3 is a discrete-
event network simulator for modelling wireless
communication at the packet level. As a testbed for
controlled experiments and reproducibility, the
simulation system was made to resemble and act like
a real network, with real users and feedback loops.

4.5.1 Simulation Environment

Depending on the LTE/EPC modules, the
simulation's radio access & core network layers were
constructed using NS-3 (version 3.36). Researchers
used the TensorFlow and PyTorch libraries to
develop the ML algorithms in Python. These
algorithms include reinforcement learning agents,
feedback fusion models, and Bayesian learning. To
facilitate the real-time interchange of feedback
information and reconfiguration decisions, NS-3 and
Python were connected through a bespoke message
passing interface (MPI).

4.5.2 Scenario Configuration

The simulation setting was set up to look like a dense
urban deployment, complete with changing traffic
loads, user densities, and movement patterns. Table
1 summarises some of the most important setup
parameters:

Table 1: Setup Parameters

Parameter Value / Setting
Simulator NS-3 (v3.36) with LTE Module
ML Engine Python (Bayesian Inference + RL
Agent)
Number of | 10 (deployed in a grid with 1 km
eNodeBs spacing)

User Devices 500 to 2000 (configurable)

Mobility Model | Random Waypoint + Gauss-Markov
(hybrid)

Traffic Model UDP + TCP (Video, VolP, Web)

Feedback Every 5 seconds

Interval

Simulation 300 seconds per run

Duration

Topologies Urban  (Manhattan  grid) +
Suburban overlay

Repetition for | 20  independent runs  per

Statistical configuration

Validity

The mobility models were designed to emulate both
pedestrian and vehicular movements. A proportion
of users followed high-speed trajectories (e.g.,
vehicular speeds), while others exhibited low-speed,
high-density clustering patterns (e.g., in stadiums,
malls).

4.5.3. Feedback Generation and Trust Filtering

To test the feedback layer, two types of crowd
feedback were generated:

=  Employing network KPIs like packet loss,
latency and RSSI, synthetic feedback is
programmed. In order to replicate reporting
delays and
introduced.

= Anonymised user feedback information
obtained from a public dataset in a
metropolitan smart-city pilot, spanning
more than 18,000 sessions over 72 hours, is
part of the Real-World Logs.

s€nsor  €rrors, noise was

The preprocessing layer received feedback vectors
for confidence score calculation based on
= QOver time, feedback stays the same.

=  Connectivity between objects in the same
space.
= Z-score screening for finding anomalies.

Finally, feedback that was weighted by trust was put
together and sent to the learning engine so it could
make a decision.

4.5.4. Adaptive Learning and Action Mechanisms

There were two modes of operation for the learning
engine:
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=  Online RL: Employing an e-greedy
exploration strategy, the RL agent
constantly received state data (network
KPIs) and produced the most efficient
reconfiguration actions.

= Bayesian Model Update: The new trust-

weighted feedback information was used to

update  the belief about optimal
configuration parameters every ten
seconds.

Some actions were:

= Modifying how resource blocks are

allocated.

=  Setting off load balancing among
eNodeBs.

=  Starting to improve handoff for mobile
users.

=  Changing the transmission power to
get better signal-to-noise ratios

As soon as the configuration was changed, there was
a monitoring step where new KPIs were gathered
and utilised to help the next learning cycle.

4.5.5. Validation and Reproducibility

All simulations were run using fixed random seeds,
and Git version control was used for configuration
files to guarantee reproducibility. The full simulation
software, along with the scripts for the learning
module and the synthetic feedback generator, is
available through an open-access repository. This
will be made public along with the final paper.
Nearly 95% confidence intervals have been
determined for all stated performance indicators
after multiple runs were conducted under various
conditions.

5. EVALUATION OF RESULTS

To comprehensively evaluate the effectiveness of
the suggested Adaptive Crowd Feedback Strategy,
simulation experiments were performed utilising a
combination of real-time network traces as well as
synthetically generated user feedback data. The
simulation environment covered different scenarios
of user density (500 to 2000 devices), mobility
patterns, along with application types (for instance,
VolIP, video streaming). Three comparative models
were assessed: (1) Static Resource Allocation, which
employs fixed parameters, (2) Offline ML, trained

on historical data without including real-time
feedback and (3) the suggested Adaptive Feedback
Model, which dynamically adjusts network
parameters utilising live user feedback and RL.

5.1 Throughput Analysis

A key metric for network efficiency and user
satisfaction is throughput, which is expressed in
megabits per second. The suggested adaptive system
operates better than both basic models at all user
densities, illustrated in Figure 2. The adaptive model
has an average throughput of about 10.2 Mbps with
500 people, while static allocation only gets 7.5
Mbps, and offline ML gets 8.9 Mbps. Throughput
drops to 6.1 Mbps and 7.4 Mbps in the static as well
as offline ML configurations, respectively, when
there are 2000 people. The adaptive system, on the
other hand, stays above 9 Mbps. This improvement
shows how the adaptive model may more efficiently
distribute resources in real time, reacting quickly to
shifting load circumstances and user feedback
trends.

12

Ml

1500 2000

o 5

e Thraughput [Mbps]

Averag

1000 Nymber of Users

Figure 2: Models’ Throughput Evaluation
5.2 Latency Performance

The adaptive feedback approach greatly enhances
latency, a critical quality of service indicator for
applications that are delay sensitive. As shown in
Figure 3, the adaptive model maintains an average
latency below 110 ms even when the user count
climbs to 2000. On the other hand, latency increases
steadily with the static allocation approach, reaching
165 ms at peak demand. Even if it peaks at 135 ms,
the offline ML model isn't sufficiently fast to
compete with the suggested solution. Continuous
user feedback loop as well as Bayesian learning
updates predict and avert overload conditions,
enabling real-time handoff optimisation and
congestion-aware allocation of resources, which in
turn reduces latency.
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Figure 3 Latency Contrast Adaptive Feedback Approach
with Traditional Models

5.3 Packet Delivery Ratio (PDR)

The network's dependability is demonstrated in the
PDR, which is crucial to high-integrity data services.
While offline ML varies between 0.84 and 0.91 and
static allocation falls below 0.80 as congestion
increases, the adaptive model, as shown in Figure 4,
keeps the PDR above 0.90 for all evaluated loads.
These results show that trust-filtered feedback in real
time lets the system avoid problematic channel
conditions and effectively reroute traffic, which
makes packet delivery more reliable. For real-time
services like online gaming and video conferencing,
where packet loss results in quality degradation, this
is very advantageous.

Packet Delivery Ratio

500 1000 (o erofuser 1900 2000

Figure 4: PDR Comparison
5.4 Energy Efficiency

In order to assess whether the suggested model
would work in situations with limited battery life,
energy consumption was additionally investigated.
According to Figure 5, the adaptive technique
dramatically lowers energy consumption per device.
At larger user densities, the adaptive approach
maintains energy consumption at 4.3 Joules,
whereas static allocation raises average energy usage
to 5.5 Joules. This is a 21.8% advancement, mostly
because of better handovers, fewer

retransmissions and more effective scheduling based
on user feedback. Offline ML outperforms static
allocation by a reasonable margin, but it can't handle
dynamic network conditions that change in real time
and modify energy accordingly.

# Static Allocation (Joules)

# Offline ML (Joules)

Energy Consumption Per Node [Joules]
.

3 Adaptive Feedback (Joules)

0 500 1000 1500 2000 2500
Number of User

Figure 5: Energy Efficiency of Different Models
5.5 Learning Convergence Speed

Rapid learning and stabilisation after deployment is
a crucial indicator of system responsiveness. The
three models' convergent policy learning iteration
counts are compared in Figure 6. In comparison to
offline ML (120 iterations) and static heuristic
tuning (160 iterations), the adaptive model only
needs 90 iterations on average. Because it effectively
incorporates trust-weighted user feedback & adjusts
control strategies accordingly, the Bayesian
reinforcement learning technique enables this quick
convergence. The suggested system is well-suited to
high-mobility or transitory settings, such as festivals,
sporting events, or vehicular networks, because fast
learning guarantees that the network can quickly
adjust to new patterns.

Iterations to Convergence
I~
s o ® © N & o
S 8 & & o o o

N
o

)

Static Offline ML Adaptive

Figure 6 Learning Convergence Speed

5.6. Contrast of Adaptive Crowd Feedback
Strategy with Traditional Methods

The suggested Adaptive Crowd Feedback Strategy's
better flexibility and data responsiveness are
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demonstrated by the comparison with the
conventional techniques of Static Allocation &
Offline Machine Learning, especially when tested on
both synthetic as well as real-world datasets, as
shown in Figure 7. The datasets used include a real-
world mobile feedback dataset with over 18,000
sessions that captures changes in user density,
quality of signal and mobility patterns, as well as
synthetic user feedback produced from emulated
network KPIs. Conventional systems are insensitive
to changes in real time because they either
completely disregard such data (as in static
allocation) or utilise it in a fixed, offline way (as in
pre-trained ML models). Simulated results show that
the suggested system outperforms static allocation
by up to 35% in throughput and 30% in latency under
varying user loads. This is achieved by dynamically
merging trust-filtered crowd feedback, which
captures signal strength, latency, as well as
satisfaction scores into a learning engine that
continuously updates the network's configuration in
real time.

Adaptive Crowd Feedback Conventional Methods

Strategy

aao vivlv]

o e o o @
Trust-Fiiterted Feedback

v
QoE/QOS Data r o Configuration
Learning Engine

-

— Adaptive

N Reconfiguration
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-
(( )) (( )) t Energy Consumption

1 Throughput Energy Consumption 1 Throughput
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Figure 7 Schematic View of Adaptive Crowd Feedback
Strategy with Traditional Methods

6. DISCUSSION

The findings presented in this research demonstrate
the improved performance of the suggested
Adaptive  Crowd Feedback Strategy over
conventional static resource allocation and offline
ML techniques. By combining trust-filtered, real-
time user feedback with the Bayesian RL
framework, the system dynamically adapts to
fluctuating network conditions, resulting in
substantial enhancement in throughput, latency,
energy efficacy, as well as packet delivery
reliability. The practical possibility of implementing
this paradigm for high-density or mission-critical
wireless situations is demonstrated by these
enhancements, which also validate the efficacy of
the learning and feedback fusion technologies.

One of the most important discoveries is that the
system may continue to function well when user

loads increase, a situation in which offline and static
models usually suffer. The adaptive learning engine
was able to prioritise service flows, handle handoffs,
and reallocate bandwidth almost instantly due to user
feedback & trust scores. Furthermore, the queuing-
theory-based network modelling allowed proactive
modifications by anticipating congestion thresholds
before they were breached. The incorporation of
trust scores also played a pivotal role in ensuring
data reliability, filtering the noisy or malicious
inputs, as well as enhancing the learning engine’s
decision-making accuracy.

The paradigm presents some difficulties during
deployment, most noticeably with regard to compute
costs and data privacy. Crowd feedback processing
in real time and policy changes happening all the
time may put a strain on the edge devices, especially
when resources are limited. Solid cryptography tools
and maybe even decentralised systems like
blockchain will be needed to make sure that user
feedback is real and stays private. In spite of these
concerns, the suggested system is highly scalable as
well as aligns well with the ongoing shift toward
user-centric, edge-enabled and Al-driven network
infrastructure. The model's speedy convergence,
adaptability & measurable performance gains
position it as the promising candidate for 5G, 6G,
vehicular networks and smart city applications.

7. CONCLUSION

For the purpose of improving the performance of
wireless networks, this research presented an
Adaptive  Crowd Feedback  Strategy  that
incorporates trust-weighted user feedback in real-
time within a Bayesian RL framework. By utilising
probabilistic ~ learning to  guide  network
reconfiguration, the suggested system overcomes the
drawbacks of conventional static and offline models
by dynamically gathering and processing QoS and
QoE metrics like signal strength, latency, as well as
user satisfaction. It then filters these metrics using
trust scores. Employing both fabricated and real-
world datasets in simulations shows that key
performance metrics are much better than with
traditional methods. These metrics include as much
as 35 higher throughput, 30% lower latency, as well
as an overall better energy economy. The system
proved to be reliable even when faced with heavy
user traffic and unpredictable mobility, proving its
suitability for contemporary wireless settings.

A scalable, intelligent framework appropriate for
developing 5G, 6G, and smart city networks is
produced by combining queuing theory, adaptive
learning, along feedback fusion. The superiority of
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the suggested model in terms of responsiveness,
adaptability, and dependability is further shown by
the comparison study. Beyond efficiency, the trust-
aware design of the model guarantees robustness
against fraudulent or noisy feedback, allowing for
more user-centric and secure optimisation. Adding
vehicle networks to this framework, using
blockchain for safe feedback verification and using
edge-based learning agents in real-time local
adaptation are all tasks that could be implemented in
the future. In general, this research builds a strong
base for next-generation communication systems
that use data-driven and crowd-aware wireless
network management.
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