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ABSTRACT 
 

Wireless networks today face increasing performance challenges due to dynamic conditions like user 
mobility, fluctuating density and diverse application demands. Conventional approaches, such as static 
resource allocation and offline machine learning (ML), lack the adaptability to respond effectively to real-
time variations. To address these limitations, this research presents an Adaptive Crowd Feedback Strategy 
that combines the live, trust-filtered user feedback with a closed-loop optimisation system. The suggested 
framework includes 4 core modules: feedback collection, trust filtering, a Bayesian reinforcement learning 
(RL) engine and network control reconfiguration. Researchers use mathematical models to combine Quality 
of Experience (QoE) as well as Quality of Service (QoS) metrics, implement Bayesian inference to make 
policy changes and queueing theory to predict how the network will perform.  Many real-world and fabricated 
datasets, like more than 18,000 mobile session logs, were used in the simulations. When contrasted with 
static as well as offline ML-based systems, the results show big performance improvements, with up to 35% 
more throughput, 30% less latency and over an additional 20% of energy efficiency. The adaptive system 
also achieves quicker convergence, making it highly responsive to changing network conditions. 
Comparative evaluation highlights the system’s ability to maintain a higher packet delivery ratio and minimal 
congestion by smarter, feedback-driven decisions. Practical issues such as computational trade-offs, feedback 
dependability and scalability are highlighted in the discussion of the results. The promising uses in 
forthcoming 5G/6G, smart city and edge computing infrastructures, the research finds that the suggested 
adaptive model improves real-time network performance while also laying the groundwork for smart, user-
aware, as well as energy-efficient wireless communication. 
Keywords: Wireless Network, Machine Learning, Bayesian Inference, Packet Delivery Ratio, Congestion, 

Energy Efficiency. 
 
1. INTRODUCTION  
 
Big wireless networks are often inefficient, 
especially at times of high demand, like during 
public gatherings, urban mobility hotspots, as well 
as smart city deployments. [1] [2]. This is what 
prompted the inception of the present research. 
However, service providers are still having trouble 
providing QoS because users' behaviour and 
network conditions are not always expected. [3]. 
This is despite improvements in 4G/5G 
infrastructure as well as software-defined 

networking. According to early research, static 
resource allocation, as well as ML models that have 
already been trained, often can't handle changes in 
real time. [4] [5]. This led to the search for more 
flexible, user-centred solutions. 
 
1.1.  Background of the Research Problem 

Optimisation in conventional wireless network 
management is primarily dependent on offline 
models trained on past data or centralised decisions. 
These techniques fail to have the responsiveness and 
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granularity required to handle changing traffic loads, 
mobility patterns, as well as environmental effects. 
[6]. The incapacity to capture end users' real-time 
QoE has resulted in higher energy usage, delay and 
underutilization of resources. [7]. The majority of 
contemporary methods do not incorporate real-time 
crowd feedback, which leaves out the crucial layer 
of contextual intelligence that could facilitate more 
intelligent decision-making, even though some have 
introduced AI-driven models. 
 
1.2. Problem Statement 
 
Current wireless networks cannot integrate reliable, 
real-time user feedback into their optimisation 
procedures, even in the face of growing 
computational intelligence in the edge and the 
availability of massive amounts of user-generated 
data. [8]. Degraded performance, higher latency, 
lower packet delivery ratios, as well as excessive 
energy consumption come from their inability to 
flexibly adjust to continuous variations in the 
network environment. [9]. The fundamental issue is 
that there isn't a reliable, trustworthy, and adaptable 
feedback loop that can constantly learn from user 
experience & manipulate network parameters 
appropriately. 
 
1.3. Research Significance in the Present 

Context 
 
Resilient, adaptable, as well as user-centric wireless 
networks are more important than ever before due to 
the exponential rise of the Internet of Things (IoT), 
autonomous systems (AS) and edge-enabled 
services. Responding in real-time and having 
extremely low latency are requirements for modern 
use cases like autonomous driving, remote 
healthcare & immersive AR/VR. [10]. Creating an 
optimisation framework that is driven by feedback is 
an urgent and essential need in this setting. [11]. To 
meet the objectives of 6G & smart city ecosystems, 
networks can become more durable, responsive, and 
energy-efficient by utilising crowdsourced feedback 
that has been filtered through trust models as well as 
processed by adaptive learning algorithms. [12]. 
 
1.4.  Objective of the Research 

Improving the efficiency of wireless networks 
through the combination of real-time feedback and 
adaptive decision-making is the primary goal of this 
paper. To accomplish such an objective, an adaptive 
crowd feedback strategy is developed, implemented, 
and evaluated. [13]. Using statistical and confidence 

models to sort the QoS and QoE data that users 
provide, the system learns from this data using 
Bayesian RL and then reconfigures the network to 
get the best performance. [14]. The approach 
consists of queuing-based traffic behaviour analysis, 
probabilistic learning and mathematical modelling 
of feedback fusion. 
 
1.5.  Hypothesis of the Study 

The Bayesian RL framework with real-time, trust-
filtered crowd feedback performs much better than 
traditional static or offline optimisation methods for 
improving wireless network performance, especially 
in terms of throughput, latency, energy economy and 
adaptability. 
 
The remaining part of the paper is organised as 
follows: section 2 presents related work in adaptive 
networking and crowd feedback systems, section 3 
details the suggested system architecture and design, 
section 4 elaborates the mathematical modeling and 
the simulation framework, section 5 provides the 
results as well as comparative evaluations, section 6 
discusses findings, practical implications along with 
deployment challenges, section 7 concludes the 
paper and outlines future research directions. 
 
2. RELATED WORK 

Performance in traditional wireless network 
optimisation has been sustained by the use of rule-
based algorithms, static allocation of resources and 
heuristic scheduling methods. [15]. While these 
methods are easy to understand and apply, they aren't 
always up to snuff in complex settings, particularly 
when user mobility as well as traffic fluctuation are 
on an upward trend. [16]. In dense deployments, 
static models, including those with predefined 
handoff thresholds & predefined bandwidth 
allocation algorithms, perform adversely. To solve 
these problems, some studies have used control-
theoretic and queuing theory to model traffic and 
handle traffic jams. [17]. However, these methods 
usually use broad, aggregate metrics and fail to offer 
enough user-centred detail. 
 
Scientists have been looking into how user 
comments could be used in network optimisation for 
the past few years. Instead of just looking at 
QoS signs, people have also used QoE metrics like 
perceived latency, streaming delays, or satisfaction 
scores. Crowdsourced data has been used by projects 
such as [OpenSignal] and [CellMapper] to make 
maps of signal strength and coverage [18]. However, 
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these efforts tend to be passive and observational, 
and they don't change decisions that are made in real 
time around control. For estimating network 
conditions, some research has suggested passive 
sensing or feedback based on mobile apps; however, 
these methods sometimes lack filters to remove 
redundant or incorrect input, which can result in 
noise and possible manipulation. [19]. In wireless 
domains, the idea of trust filtering on feedback is still 
not well recognised, particularly when decisions are 
needed in real time. [20]. 
 
ML and RL have both become more popular for 
controlling networks at the same time. In order to 
predict how load balancing will work, improve 
handoffs, or figure out trends of congestion, offline 
ML models were developed and trained on historical 
datasets. In settings that change quickly, though, 
these models often have trouble generalising. [21] 
[22]. As of now, most models that use reinforcement 
learning don't include live input from the network 
edge, even though it has shown progress in dynamic 
spectrum allocation as well as energy-aware 
routeing. [23]. In addition, computational 
complexity and data sparsity have prevented the 
widespread use of Bayesian RL models in wireless 
settings, despite their ability to incorporate 
uncertainty and prior information. [24] [25]. This 
research seeks to fill this need by suggesting an 
adaptive system that integrates user feedback and 
learning-based optimisation to improve 
responsiveness and efficiency. The objective is to 
create a real-time while trust-aware, feedback-driven 
RL model. 
Research Questions 
1. How can real-time, trust-filtered crowd feedback 

be effectively integrated into wireless network 
optimisation? 

2. Does a Bayesian reinforcement learning 
framework improve adaptability and 
performance over traditional static or offline 
methods? 

3.  What impact does the proposed system have on 
key metrics such as latency, throughput, energy 
efficiency, and user QoE in dynamic 
environments? 

 
3. METHODOLOGY  
 
3.1. System Architecture Overview 
 
The closed-loop adaptive control system is used to 
optimise wireless network settings in real-time based 
on crowd-sourced feedback. Users participate as 
both consumers & contributors to the intelligence of 

the network in this design, which is based on the 
notion of participatory sensing. Network behaviour 
in unpredictable circumstances with high traffic 
loads, mobile users, and service needs can be 
controlled intelligently and scalably. Layers one, 
two and three of the architecture work together to 
form the learning engine, preprocessing and trust 
filtering, network control and setup, and crowd 
feedback collection. A feedback-to-action pipeline is 
made up of these parts. It constantly checks the 
performance of the network, learns more about how 
the system works, and puts change plans into action 
to improve efficiency and the user experience. In a 
wide variety of network environments, this layered 
and modular design allows for real-time 
responsiveness, interoperability and flexibility. 
 
3.1.1 Crowd Feedback Collection Layer 
 
The suggested system is designed as a closed-loop 
adaptive control framework that dynamically 
leverages the crowd-sourced feedback with the real-
time optimisation of wireless network parameters, as 
shown in Figure 1. This architecture is grounded in 
the principle of participatory sensing, where users 
act as both consumers as well as contributors to 
network intelligence. When traffic loads, user 
movement, and service demands change quickly, 
this work aims to provide smart, scalable control 
over how networks act in these situations. Crowd 
feedback collection, preprocessing and trust 
filtering, learning engine & network control and 
reconfiguration are the four interconnected layers 
that make up the architecture. All of these 
components work together to provide a feedback-to-
action pipeline which continuously assesses network 
performance, learns to improve comprehension of 
system dynamics, and implements reconfiguration 
tactics to maximise effectiveness and user 
experience. Flexibility, interoperability, as well as 
real-time response in a variety of network settings 
are made possible by this modular and tiered design. 
 
3.1.2. Preprocessing and Trust Filtering Layer 
 
The raw data could include noise, duplication, or 
manipulation due to the dispersed and diverse 
character of crowd response. These problems are 
fixed by the Preprocessing and Trust Filtering Layer, 
which cleans and weights the raw data before 
sending it to the learning engine. Employing time-
windowed moving average filters, redundant entries 
are eliminated, such as several identical reports of 
the same device in a brief period of time. Noisy or 
anomalous data are flagged utilising statistical 
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confidence thresholds, like standard deviation (SD) 
based outlier detection. The key component of this 
layer is the computation of trust scores (Tu) for each 
user u. Different factors affect these numbers, 
including how consistent a user's past feedback was, 
how well it matched with overall trends and whether 
similar feedback has been observed from users 
nearby. Inputs that aren't reliable or harmful are 
hidden from high-quality data by trust scores. The 
clean, weighted feedback data set is created, which 
makes the learning and decision-making steps that 
follow more reliable. 
 
3.1.3. Learning Engine (Adaptive Algorithm 

Layer)
  

At the core of the architecture is the Learning 
Engine, a computational module that utilises 
Bayesian reinforcement learning (RL) to analyse the 
optimal network configuration policies. This engine 
continuously ingests trusted, preprocessed feedback 
as well as updates its internal models to adapt to the 
varying network conditions. The Bayesian 
component maintains probabilistic beliefs over 
system parameters (e.g., bandwidth allocation, 
handoff thresholds) and updates them utilising the 
observed feedback to reflect uncertainties and 
evolving conditions. Concurrently, the wireless 
network is modelled as a Markov Decision Process 
(MDP) by the RL component, in which every action 
corresponds to the reconfiguration strategy (e.g., 
changing distribution power, adjusting resource 
blocks), and each state represents a particular 
network condition. Over time, the learning algorithm 
refines the policy that chooses the best actions by 
using reward signals like increased throughput or 
decreased latency. Based on collected experience, 
this dual-layer learning structure allows the system 
to anticipate and prevent future network problems in 
addition to responding to current feedback. 
 
3.1.4. Network Control and Reconfiguration 

Layer 
The Network Control and Reconfiguration Layer 
then follows the learning engine's suggestions, 
turning ideas into real, low-latency network actions. 
Adaptive power control minimises interference and 
conserves energy; load balancing throughout base 
stations ensures that users or channels have an equal 
amount of bandwidth; handoff optimisation 
guarantees that users in motion have seamless 
mobility support; and these actions encompass a 
variety of measures that enhance performance. This 
layer interfaces directly to the underlying wireless 
infrastructure through Software Defined Networking 

(SDN) APIs or middleware agents, enabling it to 
execute configuration modifications at runtime. By 
maintaining tight integration with network hardware 
and control planes, this layer ensures that decisions 
made by the learning engine are timely, effective and 
contextually appropriate. Its closed-loop operation 
assures that post-reconfiguration performance is 
monitored again by the crowd feedback layer, thus 
finishing the adaptation cycle. 

 
Figure 1 System Architecture for Adaptive Crowd 

Feedback Loop] 
 
4. MATHEMATICAL MODELLING 
 
The suggested adaptive crowd feedback technique is 
based on robust mathematical modelling that takes 
unstructured user input and turns it into structured 
intelligence, which could guide the decision-making 
process in the network. Feedback fusion, learning, 
queueing evaluation, as well as decision 
optimisation are all supported by the models and 
techniques described in this section. 
 
4.1. Feedback Modelling and Fusion 
 
To make sense of decentralised and diverse user 
input, the system models feedback as a vector of 
quantifiable parameters captured from each user 
device. Let the feedback from a given user u¿ at time 
t be represented as a triplet Fi,t = (ri,t, li,t, si,t), where 
ri,t is the reported signal strength (e.g., RSSI or SNR), 
li,t is the experienced latency (e.g., round-trip time), 
and sit is the subjective user satisfaction score, 
collected through in-app surveys or inferred from 
user behavior (such as call drops or video buffering 
events). These individual feedback vectors are then 
aggregated regionally to generate a holistic 
performance profile. For a given geographic region 
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R, the system computes a weighted average 
feedback FR(t), where each user's input is scaled by 
a trust score Ti(t) ∈ [0, 1]. This trust score is derived 
from the user's historical accuracy, feedback 
consistency, and spatial redundancy (for instance, 
similarity with nearby users). The aggregate model 
is thus: 

𝐹തோ(𝑡) =
1

𝑁ோ

෍ 𝑇௜(𝑡). 𝐹௜,௧

ேೃ

௜ୀଵ

 

 
Where NR is the number of users in region R. This 
fusion mechanism ensures that the feedback reflects 
the collective and reliable experience of users, while 
discounting noisy or malicious data. 
 
4.2. Bayesian Learning for Parameter Adaptation 
 
The system uses the Bayesian learning approach to 
model assumptions regarding ideal network 
configurations, represented by the parameter vector 
𝜃, in light of the dynamic and unpredictable 
character of wireless environments. Parameters like 
resource block allocations, power levels, and 
handover thresholds may be included in this vector. 
The posterior probability distribution is used to 
express the system's belief in the ideal configuration 
at time t: 

𝑃൫𝜃ห𝐹തோ(𝑡)൯𝛼𝑃(𝐹തோ(𝑡)|𝜃) ∗ 𝑃(𝜃) 
 
Here, P(θ) represents the prior distribution that 
encapsulates knowledge from historical 
observations, while 𝑃(𝐹തோ(𝑡)|𝜃) It is the probability 
function, reflecting how probable the current 
aggregated feedback is under a given configuration 
θ. The posterior distribution enables informed 
updates to the system parameters, allowing it to 
adaptively refine its belief depending on real-time 
user feedback. This approach is specifically 
advantageous in non-stationary environments where 
conventional static models fail to adapt to the 
evolving usage patterns or unexpected anomalies. 
 
4.3. Network Queueing Model (M/M/1) 
 
To analytically model the system’s network 
performance at different configurations, every base 
station or network node is indicated by the M/M/1 
queueing model. This classical model assumes that: 
 

 User session arrivals follow a Poisson 
process with arrival rate λ, 

 Service times (for instance, resource 
allocation) are exponentially distributed 
with rate μ. 

The key performance indicators derived from this 
model include: 
 
Expected delay: Reflects the average time a packet 
waits before being serviced. 

𝐷 =
1

𝜇 − 𝜆
 

Utilisation: Represents the proportion of time the 
server is busy. 

𝜌 =
𝜆

𝜇
 

Queue Length: Estimates the average number of 
packets within the queue. 

𝐿௤ =
𝜌ଶ

1 − 𝜌
 

 
The system continuously monitors these parameters 
and adaptive actions are triggered if the thresholds 
are exceeded, i.e, D > Dthreshold of L > Lq, max. Service 
level agreements or policies set by operators serve as 
the basis for these levels. This kind of system 
modelling lays the theoretical groundwork for 
comprehending traffic congestion, which in turn 
allows for preventative measures before users notice 
a decline in performance. 
 
4.4. Reward Function in RL 
The reinforcement learning architecture, which is 
designed to maximise network efficiency and 
cumulative satisfaction with users over time, is at the 
core of the system's decision-making process. Let at 
be the action performed (e.g., reassigning spectrum, 
starting load balancing), and let st be the system's 
state at time t. Following each action, the system 
obtains a reward signal Rt, denoted as follows: 
 

𝑅௧ = 𝑤ଵ ∗ Δ𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 + 𝑤ଶ ∗ Δ𝑃𝐷𝑅 −  𝑤ଷ

∗ Δ𝐿𝑎𝑡𝑒𝑛𝑐𝑦 
 
Where w1, w2, and w3 are scalar weights that 
represent the operator's optimisation preference. For 
example, a video streaming service might prioritise 
throughput and latency, while a sensor network may 
favour energy efficiency. The Δ Denotes the 
improvement in each metric compared to the 
reference baseline (for instance, prior time slot or 
historical average). The learning agent seeks to 
discover an optimal policy π* that maps system 
states to actions, maximising the expected 
cumulative discounted reward: 
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𝜋∗ = 𝑎𝑟𝑔 max
గ

𝔼 ൥෍ 𝛾௧𝑅௧

ஶ

௧ୀ଴

൩ 

 
Where γ ∈ [0, 1] represents the discount factor, 
controlling the trade-off between the immediate and 
long-term gains. This reward formulation enables 
flexible and adaptive optimisation, allowing the 
network to prioritise different metrics based on the 
real-time context, user demands & traffic load. 
 
4.5. Simulation Framework 
 
The hybrid simulation setting has been developed so 
that the suggested adaptive crowd feedback 
approach could be tested thoroughly in real-life 
situations. There are Python-based machine learning 
modules for learning, inference, as well as feedback 
adaptation built into this system. NS-3 is a discrete-
event network simulator for modelling wireless 
communication at the packet level. As a testbed for 
controlled experiments and reproducibility, the 
simulation system was made to resemble and act like 
a real network, with real users and feedback loops. 
 
4.5.1 Simulation Environment  
 
Depending on the LTE/EPC modules, the 
simulation's radio access & core network layers were 
constructed using NS-3 (version 3.36). Researchers 
used the TensorFlow and PyTorch libraries to 
develop the ML algorithms in Python. These 
algorithms include reinforcement learning agents, 
feedback fusion models, and Bayesian learning. To 
facilitate the real-time interchange of feedback 
information and reconfiguration decisions, NS-3 and 
Python were connected through a bespoke message 
passing interface (MPI). 
 
4.5.2 Scenario Configuration 
 
The simulation setting was set up to look like a dense 
urban deployment, complete with changing traffic 
loads, user densities, and movement patterns. Table 
1 summarises some of the most important setup 
parameters: 

Table 1: Setup Parameters 
 

Parameter Value / Seƫng 
Simulator NS-3 (v3.36) with LTE Module 
ML Engine Python (Bayesian Inference + RL 

Agent) 
Number of 
eNodeBs 

10 (deployed in a grid with 1 km 
spacing) 

User Devices 500 to 2000 (configurable) 
Mobility Model Random Waypoint + Gauss-Markov 

(hybrid) 
Traffic Model UDP + TCP (Video, VoIP, Web) 
Feedback 
Interval 

Every 5 seconds 

SimulaƟon 
DuraƟon 

300 seconds per run 

Topologies Urban (ManhaƩan grid) + 
Suburban overlay 

RepeƟƟon for 
StaƟsƟcal 
Validity 

20 independent runs per 
configuraƟon 

 
The mobility models were designed to emulate both 
pedestrian and vehicular movements. A proportion 
of users followed high-speed trajectories (e.g., 
vehicular speeds), while others exhibited low-speed, 
high-density clustering patterns (e.g., in stadiums, 
malls). 
 
4.5.3. Feedback Generation and Trust Filtering 
 
To test the feedback layer, two types of crowd 
feedback were generated: 
 

 Employing network KPIs like packet loss, 
latency and RSSI, synthetic feedback is 
programmed. In order to replicate reporting 
delays and sensor errors, noise was 
introduced. 

 Anonymised user feedback information 
obtained from a public dataset in a 
metropolitan smart-city pilot, spanning 
more than 18,000 sessions over 72 hours, is 
part of the Real-World Logs. 

The preprocessing layer received feedback vectors 
for confidence score calculation based on 

 Over time, feedback stays the same. 
 Connectivity between objects in the same 

space. 
 Z-score screening for finding anomalies.  

Finally, feedback that was weighted by trust was put 
together and sent to the learning engine so it could 
make a decision. 
 
 
4.5.4. Adaptive Learning and Action Mechanisms 
 
There were two modes of operation for the learning 
engine: 
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 Online RL: Employing an ε-greedy 
exploration strategy, the RL agent 
constantly received state data (network 
KPIs) and produced the most efficient 
reconfiguration actions. 

 Bayesian Model Update: The new trust-
weighted feedback information was used to 
update the belief about optimal 
configuration parameters every ten 
seconds. 
 

Some actions were: 
 

 Modifying how resource blocks are 
allocated. 

 Setting off load balancing among 
eNodeBs. 

 Starting to improve handoff for mobile 
users. 

 Changing the transmission power to 
get better signal-to-noise ratios 

 
As soon as the configuration was changed, there was 
a monitoring step where new KPIs were gathered 
and utilised to help the next learning cycle. 
 
4.5.5. Validation and Reproducibility 
 
All simulations were run using fixed random seeds, 
and Git version control was used for configuration 
files to guarantee reproducibility. The full simulation 
software, along with the scripts for the learning 
module and the synthetic feedback generator, is 
available through an open-access repository. This 
will be made public along with the final paper. 
Nearly 95% confidence intervals have been 
determined for all stated performance indicators 
after multiple runs were conducted under various 
conditions. 
 
5. EVALUATION OF RESULTS 
 
To comprehensively evaluate the effectiveness of 
the suggested Adaptive Crowd Feedback Strategy, 
simulation experiments were performed utilising a 
combination of real-time network traces as well as 
synthetically generated user feedback data. The 
simulation environment covered different scenarios 
of user density (500 to 2000 devices), mobility 
patterns, along with application types (for instance, 
VoIP, video streaming). Three comparative models 
were assessed: (1) Static Resource Allocation, which 
employs fixed parameters, (2) Offline ML, trained 

on historical data without including real-time 
feedback and (3) the suggested Adaptive Feedback 
Model, which dynamically adjusts network 
parameters utilising live user feedback and RL. 
 
5.1 Throughput Analysis 
 
A key metric for network efficiency and user 
satisfaction is throughput, which is expressed in 
megabits per second. The suggested adaptive system 
operates better than both basic models at all user 
densities, illustrated in Figure 2. The adaptive model 
has an average throughput of about 10.2 Mbps with 
500 people, while static allocation only gets 7.5 
Mbps, and offline ML gets 8.9 Mbps. Throughput 
drops to 6.1 Mbps and 7.4 Mbps in the static as well 
as offline ML configurations, respectively, when 
there are 2000 people. The adaptive system, on the 
other hand, stays above 9 Mbps. This improvement 
shows how the adaptive model may more efficiently 
distribute resources in real time, reacting quickly to 
shifting load circumstances and user feedback 
trends. 

 
Figure 2: Models’ Throughput Evaluation  

 
5.2 Latency Performance 
 
The adaptive feedback approach greatly enhances 
latency, a critical quality of service indicator for 
applications that are delay sensitive. As shown in 
Figure 3, the adaptive model maintains an average 
latency below 110 ms even when the user count 
climbs to 2000. On the other hand, latency increases 
steadily with the static allocation approach, reaching 
165 ms at peak demand. Even if it peaks at 135 ms, 
the offline ML model isn't sufficiently fast to 
compete with the suggested solution. Continuous 
user feedback loop as well as Bayesian learning 
updates predict and avert overload conditions, 
enabling real-time handoff optimisation and 
congestion-aware allocation of resources, which in 
turn reduces latency. 
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Figure 3 Latency Contrast Adaptive Feedback Approach 

with Traditional Models 
 
 
5.3 Packet Delivery Ratio (PDR) 
 
The network's dependability is demonstrated in the 
PDR, which is crucial to high-integrity data services. 
While offline ML varies between 0.84 and 0.91 and 
static allocation falls below 0.80 as congestion 
increases, the adaptive model, as shown in Figure 4, 
keeps the PDR above 0.90 for all evaluated loads. 
These results show that trust-filtered feedback in real 
time lets the system avoid problematic channel 
conditions and effectively reroute traffic, which 
makes packet delivery more reliable. For real-time 
services like online gaming and video conferencing, 
where packet loss results in quality degradation, this 
is very advantageous. 

 
Figure 4: PDR Comparison 

 
5.4 Energy Efficiency 
 
In order to assess whether the suggested model 
would work in situations with limited battery life, 
energy consumption was additionally investigated. 
According to Figure 5, the adaptive technique 
dramatically lowers energy consumption per device. 
At larger user densities, the adaptive approach 
maintains energy consumption at 4.3 Joules, 
whereas static allocation raises average energy usage 
to 5.5 Joules. This is a 21.8% advancement, mostly 
because of better handovers, fewer 

retransmissions and more effective scheduling based 
on user feedback. Offline ML outperforms static 
allocation by a reasonable margin, but it can't handle 
dynamic network conditions that change in real time 
and modify energy accordingly. 
 

 
 

Figure 5: Energy Efficiency of Different Models 
 
5.5 Learning Convergence Speed 
 
Rapid learning and stabilisation after deployment is 
a crucial indicator of system responsiveness. The 
three models' convergent policy learning iteration 
counts are compared in Figure 6. In comparison to 
offline ML (120 iterations) and static heuristic 
tuning (160 iterations), the adaptive model only 
needs 90 iterations on average. Because it effectively 
incorporates trust-weighted user feedback & adjusts 
control strategies accordingly, the Bayesian 
reinforcement learning technique enables this quick 
convergence. The suggested system is well-suited to 
high-mobility or transitory settings, such as festivals, 
sporting events, or vehicular networks, because fast 
learning guarantees that the network can quickly 
adjust to new patterns. 
 

 
Figure 6 Learning Convergence Speed 

 
 
5.6. Contrast of Adaptive Crowd Feedback 

Strategy with Traditional Methods  
 
The suggested Adaptive Crowd Feedback Strategy's 
better flexibility and data responsiveness are 
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demonstrated by the comparison with the 
conventional techniques of Static Allocation & 
Offline Machine Learning, especially when tested on 
both synthetic as well as real-world datasets, as 
shown in Figure 7. The datasets used include a real-
world mobile feedback dataset with over 18,000 
sessions that captures changes in user density, 
quality of signal and mobility patterns, as well as 
synthetic user feedback produced from emulated 
network KPIs. Conventional systems are insensitive 
to changes in real time because they either 
completely disregard such data (as in static 
allocation) or utilise it in a fixed, offline way (as in 
pre-trained ML models). Simulated results show that 
the suggested system outperforms static allocation 
by up to 35% in throughput and 30% in latency under 
varying user loads. This is achieved by dynamically 
merging trust-filtered crowd feedback, which 
captures signal strength, latency, as well as 
satisfaction scores into a learning engine that 
continuously updates the network's configuration in 
real time. 
 

 
Figure 7 Schematic View of Adaptive Crowd Feedback 

Strategy with Traditional Methods 
 

6. DISCUSSION 
 
The findings presented in this research demonstrate 
the improved performance of the suggested 
Adaptive Crowd Feedback Strategy over 
conventional static resource allocation and offline 
ML techniques. By combining trust-filtered, real-
time user feedback with the Bayesian RL 
framework, the system dynamically adapts to 
fluctuating network conditions, resulting in 
substantial enhancement in throughput, latency, 
energy efficacy, as well as packet delivery 
reliability. The practical possibility of implementing 
this paradigm for high-density or mission-critical 
wireless situations is demonstrated by these 
enhancements, which also validate the efficacy of 
the learning and feedback fusion technologies. 
One of the most important discoveries is that the 
system may continue to function well when user 

loads increase, a situation in which offline and static 
models usually suffer. The adaptive learning engine 
was able to prioritise service flows, handle handoffs, 
and reallocate bandwidth almost instantly due to user 
feedback & trust scores. Furthermore, the queuing-
theory-based network modelling allowed proactive 
modifications by anticipating congestion thresholds 
before they were breached. The incorporation of 
trust scores also played a pivotal role in ensuring 
data reliability, filtering the noisy or malicious 
inputs, as well as enhancing the learning engine’s 
decision-making accuracy. 
The paradigm presents some difficulties during 
deployment, most noticeably with regard to compute 
costs and data privacy. Crowd feedback processing 
in real time and policy changes happening all the 
time may put a strain on the edge devices, especially 
when resources are limited. Solid cryptography tools 
and maybe even decentralised systems like 
blockchain will be needed to make sure that user 
feedback is real and stays private. In spite of these 
concerns, the suggested system is highly scalable as 
well as aligns well with the ongoing shift toward 
user-centric, edge-enabled and AI-driven network 
infrastructure. The model's speedy convergence, 
adaptability & measurable performance gains 
position it as the promising candidate for 5G, 6G, 
vehicular networks and smart city applications. 
 
7. CONCLUSION 
 
For the purpose of improving the performance of 
wireless networks, this research presented an 
Adaptive Crowd Feedback Strategy that 
incorporates trust-weighted user feedback in real-
time within a Bayesian RL framework. By utilising 
probabilistic learning to guide network 
reconfiguration, the suggested system overcomes the 
drawbacks of conventional static and offline models 
by dynamically gathering and processing QoS and 
QoE metrics like signal strength, latency, as well as 
user satisfaction. It then filters these metrics using 
trust scores. Employing both fabricated and real-
world datasets in simulations shows that key 
performance metrics are much better than with 
traditional methods. These metrics include as much 
as 35 higher throughput, 30% lower latency, as well 
as an overall better energy economy. The system 
proved to be reliable even when faced with heavy 
user traffic and unpredictable mobility, proving its 
suitability for contemporary wireless settings. 
A scalable, intelligent framework appropriate for 
developing 5G, 6G, and smart city networks is 
produced by combining queuing theory, adaptive 
learning, along feedback fusion. The superiority of 
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the suggested model in terms of responsiveness, 
adaptability, and dependability is further shown by 
the comparison study. Beyond efficiency, the trust-
aware design of the model guarantees robustness 
against fraudulent or noisy feedback, allowing for 
more user-centric and secure optimisation. Adding 
vehicle networks to this framework, using 
blockchain for safe feedback verification and using 
edge-based learning agents in real-time local 
adaptation are all tasks that could be implemented in 
the future. In general, this research builds a strong 
base for next-generation communication systems 
that use data-driven and crowd-aware wireless 
network management. 
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