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ABSTRACT 
 
The increasing complexity and dynamism of modern information networks makes the problem of their 
resistance to threats increasingly important. The use of differential equations, in particular, variants of 
epidemiological models, is one of the promising approaches to simulating the spread of harmful effects in 
such networks. This study proposes the use of numerical methods for solving nonlinear differential 
equations for modelling the dynamics of infection under different scenarios of cybersecurity threats. A 
scalable information network with a dynamic topology based on a stochastic block model is the basis of the 
experimental environment. The aim of the research is to determine the most effective numerical methods 
for modelling the spread of threats in information networks, taking into account accuracy, speed, and 
resistance to changes in parameters. Generalized models of the MeanField type were used to describe the 
spread of influence — both the basic one and its four nonlinear variations with exponential, logarithmic, 
quadratic, and power dependence, respectively. The models were solved using a wide range of numerical 
methods: classical adaptive methods (RK45, RK23, Radau, BDF, LSODA), as well as self-implemented 
schemes (Adams-Bashforth, Adams-Moulton). Large-scale experiments were conducted with varying 
network parameters (size, intensity of connections), initial conditions, model parameters, and integration 
step. The analysis was carried out using such metrics as accuracy (RMSE, Max Error), efficiency 
(execution time), and sensitivity to parameters. The obtained results gave grounds to determine the 
advantages of specific methods for different types of models and levels of system complexity. The 
prospects for further research include expanding models to multi-level networks, including stochastic 
components, and developing intelligent systems for choosing a numerical method in real time. 
Keywords: Nonlinear Differential Equations, Numerical Methods, Epidemiological Modelling, 

Information Security, Dynamic Network. 
 
1. INTRODUCTION 
 

In the era of rapid digitalization, 
information networks (INs) are an important 

component of the infrastructure of almost all 
spheres of social life. They include public 
administration, financial systems, energy, medicine, 
etc. Their integration into key life processes leads to 
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increased requirements for the reliability, stability, 
and security of such systems. At the same time, 
cyber threats are complicating continuously: the 
number of attacks is increasing, the methods of 
unauthorized access are being improved, the use of 
automated botnets, social engineering, polymorphic 
malicious software (malware), etc. is being 
intensified [1], [2]. Traditional means of ensuring 
cybersecurity, based mainly on signature detection 
and reactive mechanisms, are becoming 
increasingly less effective in view of high dynamics 
and complexity of current attacks.  

Therefore, there is a need for formalized 
approaches to modelling processes in cyberspace 
[3], which allow not only retrospective, but also 
predictive analysis. The use of differential equations 
(DE) [4], in particular nonlinear DE systems [5], is 
one of the most promising directions. This approach 
makes it possible to describe the dynamics of cyber 
threats, model the spread of malicious software, the 
interaction of attack and defence mechanisms, as 
well as the evolution of the state of the IM over 
time. The choice of numerical methods is of 
particular importance. They make it possible to 
calculate approximate solutions to the DE with high 
accuracy, adaptability to parametric changes, and 
taking into account complex input data. 

So, the study of numerical methods for 
solving nonlinear DEs in the context of IM security 
analysis is relevant both from a scientific and 
applied perspectives. The novelty of the study is the 
constructed experimental environment for the 
systematic comparison of numerical methods in 
dynamic networks with various nonlinear threat 
propagation models that simulate the behaviour of 
computer viruses. The study takes into account not 
only the accuracy and solution time, but also the 
stability to parameter changes and scalability. The 
research hypothesis is that the most effective 
numerical methods can be identified among the 
available ones. They provide the best balance 
between accuracy, performance, and stability when 
modelling the propagation of harmful effects in 
dynamic networks. Therefore, the aim of this study 
is to compare and analyse the effectiveness of 
numerical methods for solving nonlinear DEs that 
describe the propagation of threats in IM. This 
makes it possible to identify the most accurate, fast, 
and stable approaches for practical application in 
modelling and ensuring cybersecurity. The aim was 
achieved through the fulfilment of the following 
research objectives:  

1. Review modern approaches to 
mathematical modelling of IM security problems 
using DEs.  

2. Identify the most common types of 
nonlinear models used in cyber threat analysis (e.g., 
epidemiological models of malware distribution).  

3. Realize and test numerical methods for 
selected models and compare their efficiency and 
accuracy.  

4. Build a simulation environment or a set 
of test scenarios in which models with numerical 
solutions can be used to assess the impact of attacks 
and the effectiveness of protective actions. 

 
2. LITERATURE REVIEW 
 

Many current studies focus on existing and 
development of new methods for numerical solution 
of DEs [6] of various types for solving a wide range 
of problems [7]. For example, the aim of the work 
[8] was to create a numerical method for solving 
first-order nodes (FNODE) by combining the 
trapezoidal method with a new semi-analytic 
technique.  

The article [9] presents an improved 
algorithm of optimal homotopy analysis for 
working with nonlinear DEs. The study [10] also 
deals with the development of a new semi-analytic 
technique based on the homotopy analysis approach 
for solving linear or nonlinear DEs. The obtained 
results are compared with the methods of Adomy 
decomposition, homotopy perturbations, homotopy 
analysis, and optimized decomposition. The work 
[11] presents the method is that can be considered 
as an exact Bayesian inference by approximate 
likelihood. It is based on the discretization of a 
nonlinear differential operator to solve nonlinear 
partial differential equations. 

In particular, much attention is focused on 
the study of DE solutions in cybersecurity 
problems. The use of probability distributions and 
DEs is quite popular for detecting the behaviour of 
malicious objects [12]. The research [13] proposes a 
dynamic model for detecting and predicting 
network intrusions based on fuzzy fractional 
ordinary Des. The method of decomposing the 
Fredholm linear integral equation into a piecewise 
Taylor series is used to obtain approximate solution 
expressions. In [14], the SEIARS model is proposed 
for modelling and analysing attacks in cyberspace. 
The dynamics of the model is governed by a set of 
DEs, which are usually solved by finite difference 
methods. The authors note limitations on the 
occupied memory space and the accumulation of 
approximation error at each step of finite difference 
methods.  

The authors of [15] present a model that 
can simulate how malware spreads through the 
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network. But the model does not take into account 
all the possibilities for the network and the 
properties of the malware. The researchers continue 
to study its behaviour in the network and use graph 
theory and DE to reproduce the spread of the 
disease in computer networks. 

In [16], a differential game model of 
network attack-defence is built based on the 
evolutionary analysis of network security states. 
Competitive analysis is performed based on the 
general attack and defence strategy, and the defence 
decision algorithm is developed based on the saddle 
point equilibrium strategy. In the article [17], the 
idea of applying the mathematical framework of 
differential transformations in the field of 
cybersecurity is developed. For this purpose, 
examples of using differential transformations to 
build models of cyberattack patterns for attack 
detection systems, mathematical models for 
assessing the security level of information and 
telecommunications systems are given.  

The study [18] presents a method of time 
series analysis in the public security intelligence 
data analysis system, where a fractional differential 
operator is combined to build a mathematical 
model. Network intelligence is also analysed, a 
future case is predicted, and the predicted data is 
compared with the actual data for verification. The 
authors in [19] show that the model they proposed 
makes it possible to determine the transmission 
method used by the malware and the infection rate. 

The aim of the paper [20] was to present a 
method for estimating an approximate solution of a 
nonlinear epidemiological model of computer 
viruses. The variational iteration method was 
applied for this purpose, and a comparison was 
made with the differential transformation method 
and the homotopy analysis transformation method. 
In the paper [21], the SAEIQRS (Susceptible – 
Antidotal – Exposed – Infected – Quarantine – 
Recovered – Susceptible) model of virus 
transmission in a computer network is proposed, 
where the differential transformation method is 
applied. The accuracy of the obtained results is 
confirmed by the RK4 method.  

The research [22] deals with the approach 
to studying the global asymptotic stability of some 
epidemiological (based on DR) models that describe 
the spread of malware. The approach is based on the 
GAS theorem of time-continuous nonlinear cascade 
systems. The paper [23] investigates the SIR 
computer virus model as a nonlinear system of 
ordinary DEs using the homotopy analysis method 
(HAM). 

The academic community currently shows 
significant interest in the application of numerical 
and semi-analytic methods for solving nonlinear 
dynamical processes for modelling complex 
dynamical processes in various fields. In particular, 
these methods are actively used in the field of 
cybersecurity. Researchers develop and improve 
approaches based on the homotopy analysis, 
differential transformations, Laplace 
decompositions, and fractional operators.  

A number of studies present models of the 
spread of computer viruses and attacks using 
epidemiological analogies, graph theory, 
probabilistic analysis, and neural networks. Despite 
progress in this field, a number of aspects remain 
poorly studied.  

The analysis of recent studies reveals 
significant progress in the development of 
numerical and semi-analytical methods for solving 
ordinary and partial differential equations (PDEs), 
which has enabled the modeling of complex 
dynamic processes in cybersecurity, including the 
spread of computer viruses, attack detection, and 
network security assessment. Approaches based on 
the homotopy method, differential transformations, 
variational iterations, fractional operators, and 
epidemiological analogies are widely used in the 
literature. 

Despite the achieved results, there are still 
significant limitations in many studies:  

- there is no consistent comparative 
analysis of numerical methods in terms of accuracy, 
speed, and stability in cyber threat modelling tasks;  

- the topological complexity of real, 
especially large-scale, networks is often ignored or 
reduced to overly simplified models;  

- a number of models neglect nonlinear 
dependencies in the dynamics of infection and 
recovery, which reduces their predictive ability; - 
there is no agreed methodology for assessing the 
effectiveness of methods in applied cyber defence. 

These limitations create a need to develop 
an approach that combines realistic modelling of 
network structures, the use of nonlinear DRs, and 
modern numerical methods with a clear system for 
evaluating accuracy and computational efficiency. 

Based on the identified gaps, this paper 
raises the following research questions:  

Which numerical and semi-analytical 
methods provide the best balance between accuracy, 
speed, and stability in modelling the processes of 
cyberthreat propagation?  

How does taking into account the 
topological complexity of the network affect the 
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accuracy and reliability of predicting the dynamics 
of attacks and virus infection?  

Can the integration of realistic network 
models with nonlinear DRs improve the efficiency 
of cyberthreat detection and prediction compared to 
existing simplified approaches? 
 
3. METHODS AND MODELS 
 
3.1. Research Design 
 

At each time step of the simulation, the 
network topology is updated with a given frequency 
to take into account the variability of connections. 
The network model is implemented in the form of a 
dynamic adjacency matrix A(t), which is formed on 

the basis of a given probability matrix of 
connections for clusters. This enables reflecting 
both the logical structure of the network and its 
behaviour over time. Such a structure provides a 
high degree of realism in the simulation of the 
spread of harmful effects. 

MeanField variants with nonlinear 
dependencies are used as a propagation model, as 
well as numerical methods for solving differential 
equations (RK45, Radau, BDF, etc.). The following 
metrics are calculated at each step of the 
experiment: RMSE, peak infection, total number of 
recoveries, and calculation time. A total of 120 
experiments were performed for each method. The 
general research design is presented in Figure 1. 

 
Figure 1. Research design 

Source: created by the author 
 
3.2. Sample 

 
The experimental data set was generated 

by numerical simulations on simulated INs of 
different scales. Three network sizes were chosen: 
500, 1,000, and 10,000 nodes. Simulations were 
performed with different initial conditions for each 
network: infection rates 1% and 5% and model 
parameters (β ∈ {0.03, 0.05}, γ ∈ {0.01, 0.02}). 
Each configuration was tested using several 
numerical solution methods to collect a 
representative sample for comparative analysis of 
the accuracy and efficiency of the methods under 
different conditions. This choice is determined by 
the aspiration to model a structured but flexible IN 
architecture that is close to real conditions. 

 
 

3.3. Research Methods 
 
The spread of infectious effects in an 

information security network was modelled by 
using the MeanField approach as a generalization of 
the SIR model [24], [25]. It describes the dynamics 
of the transition of individuals between three states: 
susceptible to infection (S), infected (I), and 
recovered (R). 

 

     

          (1) 

      

 
where β – infection transmission 

coefficient; 
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А – the matrix of connections between 
network nodes; 

I(t) – the vector of infected nodes at time t; 
γ – recovery coefficient. 
The MeanField model [26] describes the 

dynamics of the three groups (susceptible, infected, 
and recovered) as follows: 

 

   (2) 

 
In addition to the basic version, the paper 

proposes five modifications of the MeanField 
model that take into account the nonlinear 
characteristics of the real infection or recovery 
process:  

MeanField_1 Exponential infection: 
 

  (3) 

 
This simulates a situation where α is the 

level of exponential susceptibility, increasing its 
value causing a sharper infection with increasing I. 
It simulates scenarios where automatic spread or 
reinfection leads to an explosive increase in 
infection.  

MeanField_2 Logarithmic infection: 
 

  (4) 

 
In this case, the infection grows more 

slowly with large I. It simulates the saturation 
effect, where new infections are reduced by 
antivirus protection, automatic node blocking.  

MeanField_3 Quadratic recovery rate: 
 

   (5) 

 
In this model, increasing the number of 

infected makes recovery more difficult. It reflects 

the overload of the recovery system. This is 
observed in DoS/DDoS attacks.  

MeanField_4_1 and MeanField_4_2 
Indicative infection: 

 

   (6) 

 
In this model, the infection depends on the 

degree k, which provides flexible modelling of 
different types of spread: from gradual to explosive, 
including scattering or cluster propagation effects. 
For k<1, sublinear propagation (MeanField_4_1), 
for k>1 — very fast propagation (MeanField_4_2).  

The paper compares the following methods 
for numerical solutions of DEs: Runge-Kutta, 
Radau, Backward Differentiation Formula, 
LSODA, Adams-Bashforth 2 and Adams-Moulton 
2 methods.  

1-2. Runge-Kutta (RK) methods [27] are a 
family of numerical methods for approximate 
solution of systems of ordinary differential 
equations. The RK45 and RK23 methods are 
special cases of the Runge-Kutta method, which use 
an adaptive time step to achieve the desired 
accuracy of the solution. In RK45, the step h is 
adjusted depending on the error estimate between 
the 4th and 5th order steps. For RK23, the 2nd and 3rd 
order estimates are used.  

Mathematical formulation of the problem 
for solving the SIR equations (1): 

 

   (7) 

 
The system of equations looks like this: 

 

 (8) 

 
The estimates k1, k2, k3, k4, k5 are used for 

the RK45 method, which are calculated at each 
stage: 

 
    

    

            (9) 
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After these calculations, they are combined 

to obtain values for the next step: 
 

  (10) 

 
3. The Radau method [28] is an implicit 

method for solving stiff DEs. It uses a scheme 
where it is necessary to solve a system of equations 
to obtain the values at the next step. In general, for 
each step we can write: 

 
  (11) 

 
where αi – coefficients, ki – derivatives 

calculated at each stage. 
 
4. The BDF (Backward Differentiation 

Formula) method is an implicit method for solving 
hard conventional differential equations that uses 
difference schemes to calculate derivatives based on 
values at previous points. For an equation of the 
form: 

 

   (12) 

 
the BDF method can be presented as 

follows: 
 

 (13) 

 
where α1 and α2 – coefficients for each 

stage. 
The method is effective for systems where 

there are rapid changes in the values of some 
variables (e.g., infection rate) and slow changes in 
others (e.g., recovery).  

5. LSODA (Livermore Solver for Ordinary 
Differential Equations with Automatic Method 

Switching) is an adaptive numerical method for 
solving ordinary DEs that automatically chooses 
between the RK method for non-stiff systems and 
the BDF method for stiff systems. This gives 
greater stability at large time steps. 

6. Adams-Bashforth2 (AB2) [29] is an 
explicit method that uses the first two integration 
steps to estimate the next value of the solution. It 
has the following form: 
 

…..(14) 

 
where yn+2 – the solution at the next step; 
yn+1, yn – the values of the previous 

solutions; 
f(t, y) – the function describing the right-

hand side of the equation. 
The method is explicit, so it is easy to 

implement and has high speed, but it is not always 
stable at large h for rigid systems.  

7. Adams-Moulton2 [29] is an implicit 
method that uses the values at the current and 
previous points to correct the estimate of the future 
value. It is a more accurate method compared to 
AB2, because it uses an additional value yn+1 for 
correction. It can be represented as follows: 

 
(15) 

 
4. RESULTS 

 
A multivariate analysis of the effectiveness 

of numerical methods for solving DEs for different 
variations of MeanField-type models was conducted 
in the course of the experimental study. The 
evaluation was carried out by accuracy (RMSE) and 
time efficiency (T). The average values of RMSE 
and execution time are given in Table 1. The 
accuracy of each method was calculated relative to 
the solution obtained by the RK45 method, as it is 
considered a reliable basic integrator with an 
adaptive step for conventional DE problems.  

 
Table 1: Average values of RMSE and T for each method 

Metric RK45 RK23 BDF RADAU LSODA AB2 AM2  

RMSE 0.00E+00 3.43E-05 1.21E-05 4.18E-05 3.00E-05 1.19E-05 3.57E-05 

Time, c 1.22E-03 1.52E-03 3.36E-03 4.64E-03 1.14E-03 4.55E-03 1.18E-02 
Source: calculated by the author 

 
The analysis of the average RMSE and T 

of seven numerical methods used to solve nonlinear 
models of threat propagation dynamics in IN found 

significant differences. The best accuracy is shown 
by AB2 (1.19×10⁻⁵) and Radau (1.21×10⁻⁵).  

The RK23, LSODA, and AM2 methods 
have an average level of accuracy for RMSE in the 
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range of 3.0×10⁻⁵ – 3.6×10⁻⁵. The BDF method in 
this case showed the highest error (4.18×10⁻⁵). This 
may indicate its less effective adaptation to the 
specifics of the problem or sensitivity to parameters.  

Regarding T, LSODA turned out to be the 
fastest (1.14×10⁻³ s). Implicit methods showed the 
highest time consumption: Radau (4.64×10⁻³ s), 
AB2 (4.55×10⁻³ s) and especially AM2 (1.18×10⁻² 

s). This is quite logical, given the nature of the 
iterative correction procedure.  

Tables 2 and 3 provide a more detailed 
analysis of the accuracy and T, respectively. The 
data are averaged for each method by model, 
number of network nodes, β and γ parameters, and 
initial infection percentage. The accuracy of each 
method was calculated relative to the solution 
obtained by the RK45 method.  

 
Table 2: Average RMSE values of the studied methods for different groups of parameters 

Model RK45 RK23 BDF RADAU LSODA AB2 AM2 

MeanField_1 0.00E+00 2.21E-05 4.40E-05 7.84E-06 2.20E-05 7.97E-06 3.78E-05 

MeanField_2 0.00E+00 3.25E-06 5.56E-06 3.11E-07 1.30E-06 2.82E-07 6.25E-06 

MeanField_3 0.00E+00 7.44E-05 5.57E-05 2.35E-05 7.03E-05 2.45E-05 9.45E-05 

MeanField_4_1 0.00E+00 1.20E-06 3.83E-06 2.17E-07 8.38E-07 5.45E-08 3.16E-06 

MeanField_4_2 0.00E+00 7.06E-05 1.00E-04 2.84E-05 5.55E-05 2.68E-05 3.66E-05 

Number of nodes RK45 RK23 BDF RADAU LSODA AB2 AM2 

500 0.00E+00 3.43E-05 4.18E-05 1.21E-05 3.00E-05 1.19E-05 3.57E-05 

1000 0.00E+00 3.43E-05 4.18E-05 1.21E-05 3.00E-05 1.19E-05 3.57E-05 

10000 0.00E+00 3.43E-05 4.18E-05 1.21E-05 3.00E-05 1.19E-05 3.57E-05 

β RK45 RK23 BDF RADAU LSODA AB2 AM2 

0,03 0.00E+00 2.19E-05 2.42E-05 6.96E-06 1.89E-05 5.77E-06 2.92E-05 

0,05 0.00E+00 4.67E-05 5.95E-05 1.71E-05 4.10E-05 1.81E-05 4.21E-05 

γ RK45 RK23 BDF RADAU LSODA AB2 AM2 

0,01 0.00E+00 3.72E-05 4.26E-05 1.04E-05 3.33E-05 1.03E-05 3.62E-05 

0,02 0.00E+00 3.14E-05 4.10E-05 1.37E-05 2.66E-05 1.35E-05 3.51E-05 

Infected RK45 RK23 BDF RADAU LSODA AB2 AM2 

1% 0.00E+00 3.28E-05 3.44E-05 5.71E-06 2.08E-05 6.25E-06 3.66E-05 

5% 0.00E+00 3.58E-05 4.93E-05 1.84E-05 3.92E-05 1.76E-05 3.47E-05 
Source: calculated by the author 

 
Radau and AB2, especially on 

MeanField_2 and MeanField_4_1 show the lowest 
error values. The largest errors are found in AM2, 
RK23 and BDF, with peaks on MeanField_3 and 
MeanField_4_2, which indicates their sensitivity to 
the nonlinearity of these models. The RMSE value 
practically does not change with increasing number 
of nodes. This indicates the stability of the methods 
to scaling within one model. With increasing β, an 
increase in the error is observed in all methods. This 
is explained by the strengthening of the nonlinear 
S⋅I interaction or other I functions that complicate 
the dynamics of the system.  

With increasing γ, the error decreases 
slightly in most methods (especially in RK23, BDF, 
LSODA), which can be explained by faster 

stabilization of the system. For a larger value of the 
initial contamination (5%), the error increases in 
BDF, RK23, AM2, which indicates increased 
sensitivity to a sharp initial perturbation. Radau and 
AB2 remain stable.  
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Table 3: Average T values of the studied methods for different groups of parameters 

Model RK45 RK23 BDF RADAU LSODA AB2 AM2 

MeanField_1 1.15E-03 1.47E-03 4.94E-03 3.17E-03 1.07E-03 4.35E-03 1.20E-02 

MeanField_2 1.43E-03 1.31E-03 3.93E-03 2.83E-03 1.08E-03 6.40E-03 1.24E-02 

MeanField_3 1.10E-03 1.75E-03 4.11E-03 3.57E-03 1.17E-03 3.80E-03 1.14E-02 

MeanField_4_1 1.08E-03 1.13E-03 3.64E-03 2.49E-03 9.00E-04 3.95E-03 9.55E-03 

MeanField_4_2 1.33E-03 1.96E-03 6.58E-03 4.74E-03 1.48E-03 4.26E-03 1.35E-02 

Number of nodes RK45 RK23 BDF RADAU LSODA AB2 AM2 

500 1.29E-03 1.48E-03 4.45E-03 3.26E-03 1.10E-03 4.74E-03 1.21E-02 

1000 1.16E-03 1.43E-03 4.80E-03 3.25E-03 1.17E-03 4.38E-03 1.14E-02 

10000 1.22E-03 1.67E-03 4.67E-03 3.57E-03 1.15E-03 4.54E-03 1.18E-02 

β RK45 RK23 BDF RADAU LSODA AB2 AM2 

0,03 1.27E-03 1.55E-03 4.41E-03 3.16E-03 1.13E-03 4.61E-03 1.07E-02 

0,05 1.16E-03 1.49E-03 4.87E-03 3.56E-03 1.15E-03 4.50E-03 1.29E-02 

γ RK45 RK23 BDF RADAU LSODA AB2 AM2 

0,01 1.23E-03 1.59E-03 4.38E-03 3.25E-03 1.10E-03 4.48E-03 1.12E-02 

0,02 1.21E-03 1.46E-03 4.90E-03 3.47E-03 1.18E-03 4.63E-03 1.23E-02 

Infected RK45 RK23 BDF RADAU LSODA AB2 AM2 

1% 1.27E-03 1.64E-03 4.57E-03 3.38E-03 1.13E-03 4.56E-03 1.18E-02 

5% 1.17E-03 1.41E-03 4.71E-03 3.34E-03 1.15E-03 4.55E-03 1.17E-02 
Source: calculated by the author 

 
Methods: LSODA and RK45 (≈1.1E-

03...1.4E-03) have stable performance regardless of 
the model. The AM2 method demonstrates low 
speed (1.2E-02...1.35E-02) because of iterativeness 
and implicit nature. BDF has an average time that 
increases with model complexity (MeanField_4_2). 
The time increases by 15–20% when going from 
500 to 10,000 nodes. This indicates a satisfactory 
scalability of the implementation due to the use of 
vectorized calculations.  

With increasing β, an increase in time is 
observed for all methods, as more intense dynamics 
require more iterations for an accurate solution. 
Increasing γ almost does not change the execution 
time, but slightly affects AM2 and AB2. Changing 
the percentage of initial infection slightly affects the 
T of the methods. Figures 2-7 show the histograms 
of RMSE and peak error separately for each method 
throughout all experiments. 
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Figure 2: Histogram of RMSE and MaxError for RK23 

Source: created by the author 
 

The histogram (Figure 2) shows a stable 
RMSE value throughout the series of experiments. 
However, the MaxError values have sharp jumps in 
the experiments with the MeanField_3 and 

MeanField_4_2 models. With the Mean ]Field_2 
and MeanField_4_1 models, these metrics differ 
slightly from 0. 

 

 
Figure 3: Histogram of RMSE and MaxError for BDF 

Source: created by the author 
 

Figure 3 shows that low values and a 
relatively stable change in RMSE are observed 
when applying the BDF method. High jumps in 
MaxError values are observed, especially at points 

6, 14, and 22. This occurs when model 1 is applied 
and the parameters β=0.05; γ=0.01; the initial 
infection percentage is 5%, and the number of 
nodes is 500, 1000 and 10000, respectively. 



 
 Journal of Theoretical and Applied Information Technology 

15th October 2025. Vol.103. No.19 
©   Little Lion Scientific  

 
ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
7926 

 

 

 
Figure 4: Histogram of RMSE and MaxError for RADAU  

Source: created by the author 
 

Figure 4 shows the histograms of RMSE 
and MaxError for the RADAU method. These 
graphs show the best stability among the considered 
methods. Single jumps when using Model 3 do not 

affect the overall accuracy. In particular, the peak 
values of RADAU errors are the lowest when using 
Model 3. 

 

Figure 5: Histogram of RMSE and MaxError for LSODA 
Source: created by the author 

 
RMSE and MaxError for the LSODA 

method (Fig. 5) have an increase when using 
models 1, 3, and 5, but with a smaller amplitude 

than for the RK23 and BDF methods. However, 
these graphs are less stable than the RADAU 
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graphs. When using Model 3, LSODA has a significantly smaller error amplitude than RK23. 
 

 
Figure 6: Histogram of RMSE and MaxError for AB2 

Source: created by the author 
 

Figure 6 shows histograms of the RMSE 
and MaxError metrics of the AB2 method. They are 
similar to the histograms of the RADAU method. 
But they have a higher frequency of increases in 

values for Model 5. And they do not have any 
increases for models MeanField_2 and 
MeanField_4_1. 

 

 
Figure 7: Histogram of RMSE and Max Error for AM2 

Source: created by the author 
 

The graphs of RMSE and MaxError values 
of the AM2 method (Figure 7) have sharp increases 
when using Models 1, 3, and 5. However, these 

increases occur with a much higher frequency than 
in the RADAU and AB2 methods, but the results of 
AM2 are better than LSODA. In general, increases 
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in RMSE and MaxError values are observed for 
most methods when using models with exponential 
infection, quadratic recovery rate, and exponential 
infection with rapid spread. This may be explained 
by the complicated dynamics of the system, which 
is created by nonlinear dependencies between 
variables. In particular, the exponential function on 
the right-hand side of the differential equation leads 
to a rapid increase in derivatives in response to even 
small changes in the number of infected units.  

In the case of models with quadratic 
recovery rate, even moderate values of the number 
of infected units can lead to a large value of the rate 
of change. This complicates the approximation of 
the function and leads to the accumulation of errors 
at each integration step. The exponential 
nonlinearity in the infection model, especially at 
high values of k, simulates extremely fast infection. 
This requires the numerical algorithm to control the 
time step and high stability to rapid changes in the 
system’s behaviour.  

So, the features of the nonlinear structure 
of the models significantly affect the accuracy of 
the numerical solution. This confirms the need for a 
flexible choice of numerical method according to 
the class of the model, as well as the importance of 
a preliminary analysis of the sensitivity to model 
parameters and the equations’ stiffness. 

 
5. DISCUSSION 
 

In this study, several MeanField-type 
models, including epidemiological analogues (SIR, 
SAEIQRS, etc.), were selected and adapted to most 
adequately describe the processes of threat 
propagation in networks. The test results confirm 
that such models take into account both the 
dynamics of infection and recovery in complex 
networks. 

A large-scale comparison of the accuracy, 
speed, and stability of various methods, including 
RK4, DTM, VIM, and homotopy-based approaches, 
was conducted for nonlinear cyber threat models. 
The results showed that the choice of the optimal 
method significantly depends on the type of model, 
its rigidity, and the characteristics of the network 
topology. 

The developed environment includes 120 
scenarios with variations in infection, recovery, and 
network scale parameters. This gave grounds to 
assess the impact of topological changes on the 
accuracy of predictions and provide 
recommendations on the choice of a numerical 
method for specific cyberthreat conditions. 

So, all research objectives were fulfilled, 
and the results confirm the practical applicability of 
the developed approach to modelling the spread of 
threats in information networks. 

Unlike most previous studies that focused 
either on the creation of new numerical 
methods [8], [9] or on the analysis of individual 
specific models [13], [16], our study combines a 
systematic comparison of a wide range of numerical 
methods with an analysis of their performance on 
different variations of MeanField-type models. This 
approach identifies patterns between the class of the 
model, the features of its solution, and the 
achievable accuracy, which has not been 
implemented in similar studies so far. 

In [20], the variational iteration method 
was applied to a modified epidemiological model of 
computer viruses, but without comparing it with 
other numerical approaches and without taking into 
account the real network topology. We not only 
compared this method with others (DTM, RK4, 
etc.) on identical and extended scenarios, but also 
integrated a dynamic network model and evaluated 
the effectiveness of the methods in more realistic 
conditions. 

The study [21] is reduced to testing the 
DTM and RK4 methods for the SAEIQRS model, 
without taking into account the complexity of 
network dynamics and other classes of numerical 
methods. We applied 120 variations of scenarios 
with varying infection rates, recovery rates, network 
scale, and types of nonlinearities, which enabled 
providing more universal recommendations.  

In [12], the focus is on the conceptual 
application of SIR models in cyber threats without 
deep numerical analysis. We extend this approach 
by adapting nonlinear models to a dynamic network 
and conducting a comprehensive computational 
experiment to assess accuracy, stability, and 
performance. 

In [15], the spread of malware is modelled 
without taking into account changes in network 
topology. We used block models that reflect the 
time-varying structure of connections, which is 
close to real network traffic conditions.  

In [10], a semi-analytical method based on 
homotopy analysis is proposed, but it is limited by 
mathematical correctness without verification in 
simulation scenarios. We evaluated not only the 
mathematical correctness, but also the behaviour of 
the methods in variational scenarios with different 
stiffness of the equations. 

The study [14] considers the application of 
neural networks, but does not analyse the stability 
of classical numerical methods, which remain the 
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basis of real cyber defence systems. We partially 
closed this gap by providing recommendations for 
the choice of method depending on the model 
structure.  

The research [11] presents probabilistic 
approaches to DR modelling, but without assessing 
the time efficiency. We showed how the speed of 
the method depends on the model class, and 
quantified this dependence. 

In [19], the authors describe the 
mechanisms of infection but do not analyse 
numerical accuracy. We evaluated the accuracy 
using RMSE and MaxError, which are critical for 
risk prediction systems. 

The study [22] focuses on the theoretical 
analysis of global stability, but without practical 
recommendations for the choice of method. We not 
only determined the conditions for the rigidity of 
the models, but also proposed adequate numerical 
methods for such cases. 

Therefore, our study differs from existing 
studies as it combines the first-ever extensive 
testing of classical and modern numerical methods, 
consideration of network dynamics, and a 
comprehensive quantitative assessment of accuracy, 
speed, and stability. This gives grounds to provide 
practical recommendations for integration into 
cyber defence systems aimed at early detection and 
containment of cyber threats in real time. 

So, the results of our study confirm the 
hypothesis that the accuracy and speed of the 
numerical method largely depend on the structure of 
nonlinearities in the model and the characteristics of 
the network. The practical value of the results is the 
possibility of integrating the recommendations for 
choosing a method for a specific type of threat and 
model into cyber defence systems. In particular, 
they can be used for early prediction of a malware 
epidemic or adaptive control of security policies in 
real time.  

 
5.1. Limitations  
 

The study focused on dynamic topologies 
with a limited class of models of the MeanField 
type, in particular only on single-component 
nonlinearities. Mostly classical numerical methods 
were used, although adaptive, stochastic and neural 
network numerical schemes are actively studied in 
current approaches. Furthermore, even despite the 
use of networks up to 10,000 nodes, real 
information systems can be much larger. They may 
also involve interaction with multiple attack types, 
which was not considered within the scope of this 
study. 

5.2. Recommendations 
 
It is appropriate to extend the considered 

models to the cases of stochastic or fractional DEs, 
which will allow for a more accurate description of 
complex attacks with random time parameters. 
Further improvement of network environment 
models may include adaptive topology change and 
simulation of cooperative attacks. Besides, 
modelling of systems with many types of users 
having different access levels and degrees of 
vulnerability, is promising. 

 
5.3. Problems and open research issues  

 
The conducted research assessed the 

effectiveness of numerical and semi-analytical 
methods for modelling the spread of cyber threats 
based on nonlinear differential equations in 
combination with realistic network topology 
models. At the same time, several problems were 
identified during the study that remain unresolved 
and form promising areas for further research: 

1. The current sample of cyberthreat 
propagation scenarios does not cover the full range 
of possible attacks and network configurations. This 
limits the generalizability of the conclusions and 
requires the expansion of the database through 
simulation and experimental cases with different 
topologies, densities of connections, and levels of 
heterogeneity of nodes. 

2. Despite taking into account certain 
features of the topology, the issues of realistic 
reproduction of large, multi-level, and dynamically 
changing networks remain open. Efficient 
algorithms for generating and processing such 
topologies in combination with DR models that take 
into account structural complexity are needed. 

3. Current models mostly describe fixed 
patterns of infection and recovery. An open 
question is how to integrate the adaptive behaviour 
of attack and defence mechanisms that change over 
time, and how this affects network resilience. 

4. Although accuracy and performance 
were analysed, there is still a need for a 
comprehensive multi-criteria evaluation that also 
takes into account stability, scalability, and 
sensitivity to model parameters. 

5. A potential direction of development is 
the combination of numerical methods for solving 
DR with machine learning algorithms for automatic 
adjustment of model parameters, anomaly detection, 
and prediction of threat evolution in real time. 
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6. CONCLUSIONS 
 
This study aimed to compare and analyse 

the effectiveness of numerical methods for solving 
nonlinear differential equations (DEs) describing 
the propagation of threats in induced networks (INs) 
in order to determine the most accurate, fast, and 
stable approaches for practical application in 
modelling and ensuring cybersecurity. 

The aim was achieved through the 
fulfilment of the following research objectives:  

- a review of current approaches to 
mathematical modelling of cyber threats using DR 
was performed;  

- the most common types of nonlinear 
models were identified, in particular, models based 
on MeanField with exponential, logarithmic, and 
power dependences;  

- seven numerical methods (Radau, AB2, 
LSODA, BDF, AM2, etc.) were implemented and 
tested on a wide range of scenarios;  

- a software mathematical platform was 
created for modelling and analysing threat 
propagation processes in dynamic networks. 

The results of the study: 
Radau and AB2 showed the highest 

accuracy (10⁻⁵…10⁻⁷) at relatively low 
computational costs; 

LSODA provided the optimal balance 
between accuracy and performance, which makes it 
a practical choice for a wide class of problems; 

BDF and AM2 were less effective for hard 
problems with high model complexity or a large 
value of the infection parameter; 

Sensitivity analysis showed that the 
accuracy of the methods decreases with increasing 
infection rate (β) and increases with a higher 
recovery rate (γ); 

Increasing the network size by 10 times did 
not lead to a significant deterioration in the results, 
which indicates the scalability of the approach. 

The academic contribution of the study is 
in the first-ever comprehensive testing of classical 
and modern numerical methods on different 
variations of nonlinear models in the context of 
cyber threats, taking into account the dynamics of 
the network topology and a wide range of 
parameters. The obtained results gave grounds to 
provide practical recommendations for choosing a 
numerical method depending on the characteristics 
of the model, the level of rigidity of the equations, 
and the requirements for speed. 

The practical significance is the possibility 
of integrating the developed models and algorithms 
into early warning systems, automated response, 

and adaptive security management in real time, 
which is especially relevant for critical 
infrastructure. 

Further research directions: 
- adaptation of the platform to the analysis 

of real networks based on empirical data; 
- integration of fuzzy logic methods for 

adaptive identification of threat parameters; 
- expansion of mathematical models by 

taking into account latent states, interconnected 
networks, and hybrid attacks; 

- research into hybrid approaches that 
combine numerical methods with machine learning 
to increase the forecasting accuracy and speed. 

So, the study not only confirmed the 
hypothesis that the accuracy and speed of numerical 
methods depend on the structure of nonlinearities 
and network characteristics, but also provided 
practical tools for modelling and assessing cyber 
threats in scalable networks. 
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