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ABSTRACT

The increasing complexity and dynamism of modern information networks makes the problem of their
resistance to threats increasingly important. The use of differential equations, in particular, variants of
epidemiological models, is one of the promising approaches to simulating the spread of harmful effects in
such networks. This study proposes the use of numerical methods for solving nonlinear differential
equations for modelling the dynamics of infection under different scenarios of cybersecurity threats. A
scalable information network with a dynamic topology based on a stochastic block model is the basis of the
experimental environment. The aim of the research is to determine the most effective numerical methods
for modelling the spread of threats in information networks, taking into account accuracy, speed, and
resistance to changes in parameters. Generalized models of the MeanField type were used to describe the
spread of influence — both the basic one and its four nonlinear variations with exponential, logarithmic,
quadratic, and power dependence, respectively. The models were solved using a wide range of numerical
methods: classical adaptive methods (RK45, RK23, Radau, BDF, LSODA), as well as self-implemented
schemes (Adams-Bashforth, Adams-Moulton). Large-scale experiments were conducted with varying
network parameters (size, intensity of connections), initial conditions, model parameters, and integration
step. The analysis was carried out using such metrics as accuracy (RMSE, Max Error), efficiency
(execution time), and sensitivity to parameters. The obtained results gave grounds to determine the
advantages of specific methods for different types of models and levels of system complexity. The
prospects for further research include expanding models to multi-level networks, including stochastic
components, and developing intelligent systems for choosing a numerical method in real time.

Keywords: Nonlinear Differential Equations, Numerical Methods, Epidemiological Modelling,

Information Security, Dynamic Network.

1. INTRODUCTION component of the infrastructure of almost all
spheres of social life. They include public

In the era of rapid digitalization, administration, financial systems, energy, medicine,
information networks (INs) are an important etc. Their integration into key life processes leads to

e
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increased requirements for the reliability, stability,
and security of such systems. At the same time,
cyber threats are complicating continuously: the
number of attacks is increasing, the methods of
unauthorized access are being improved, the use of
automated botnets, social engineering, polymorphic
malicious software (malware), etc. is being
intensified [1], [2]. Traditional means of ensuring
cybersecurity, based mainly on signature detection
and reactive mechanisms, are becoming
increasingly less effective in view of high dynamics
and complexity of current attacks.

Therefore, there is a need for formalized
approaches to modelling processes in cyberspace
[3], which allow not only retrospective, but also
predictive analysis. The use of differential equations
(DE) [4], in particular nonlinear DE systems [5], is
one of the most promising directions. This approach
makes it possible to describe the dynamics of cyber
threats, model the spread of malicious software, the
interaction of attack and defence mechanisms, as
well as the evolution of the state of the IM over
time. The choice of numerical methods is of
particular importance. They make it possible to
calculate approximate solutions to the DE with high
accuracy, adaptability to parametric changes, and
taking into account complex input data.

So, the study of numerical methods for
solving nonlinear DEs in the context of IM security
analysis is relevant both from a scientific and
applied perspectives. The novelty of the study is the
constructed experimental environment for the
systematic comparison of numerical methods in
dynamic networks with various nonlinear threat
propagation models that simulate the behaviour of
computer viruses. The study takes into account not
only the accuracy and solution time, but also the
stability to parameter changes and scalability. The
research hypothesis is that the most effective
numerical methods can be identified among the
available ones. They provide the best balance
between accuracy, performance, and stability when
modelling the propagation of harmful effects in
dynamic networks. Therefore, the aim of this study
is to compare and analyse the effectiveness of
numerical methods for solving nonlinear DEs that
describe the propagation of threats in IM. This
makes it possible to identify the most accurate, fast,
and stable approaches for practical application in
modelling and ensuring cybersecurity. The aim was
achieved through the fulfilment of the following
research objectives:

1. Review modern approaches to
mathematical modelling of IM security problems
using DEs.

2. Identify the most common types of
nonlinear models used in cyber threat analysis (e.g.,
epidemiological models of malware distribution).

3. Realize and test numerical methods for
selected models and compare their efficiency and
accuracy.

4. Build a simulation environment or a set
of test scenarios in which models with numerical
solutions can be used to assess the impact of attacks
and the effectiveness of protective actions.

2. LITERATURE REVIEW

Many current studies focus on existing and
development of new methods for numerical solution
of DEs [6] of various types for solving a wide range
of problems [7]. For example, the aim of the work
[8] was to create a numerical method for solving
first-order nodes (FNODE) by combining the
trapezoidal method with a new semi-analytic
technique.

The article [9] presents an improved
algorithm of optimal homotopy analysis for
working with nonlinear DEs. The study [10] also
deals with the development of a new semi-analytic
technique based on the homotopy analysis approach
for solving linear or nonlinear DEs. The obtained
results are compared with the methods of Adomy
decomposition, homotopy perturbations, homotopy
analysis, and optimized decomposition. The work
[11] presents the method is that can be considered
as an exact Bayesian inference by approximate
likelihood. It is based on the discretization of a
nonlinear differential operator to solve nonlinear
partial differential equations.

In particular, much attention is focused on
the study of DE solutions in cybersecurity
problems. The use of probability distributions and
DEs is quite popular for detecting the behaviour of
malicious objects [12]. The research [13] proposes a
dynamic model for detecting and predicting
network intrusions based on fuzzy fractional
ordinary Des. The method of decomposing the
Fredholm linear integral equation into a piecewise
Taylor series is used to obtain approximate solution
expressions. In [14], the SETARS model is proposed
for modelling and analysing attacks in cyberspace.
The dynamics of the model is governed by a set of
DEs, which are usually solved by finite difference
methods. The authors note limitations on the
occupied memory space and the accumulation of
approximation error at each step of finite difference
methods.

The authors of [15] present a model that
can simulate how malware spreads through the
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network. But the model does not take into account
all the possibilities for the network and the
properties of the malware. The researchers continue
to study its behaviour in the network and use graph
theory and DE to reproduce the spread of the
disease in computer networks.

In [16], a differential game model of
network attack-defence is built based on the
evolutionary analysis of network security states.
Competitive analysis is performed based on the
general attack and defence strategy, and the defence
decision algorithm is developed based on the saddle
point equilibrium strategy. In the article [17], the
idea of applying the mathematical framework of
differential transformations in the field of
cybersecurity is developed. For this purpose,
examples of using differential transformations to
build models of cyberattack patterns for attack
detection systems, mathematical models for
assessing the security level of information and
telecommunications systems are given.

The study [18] presents a method of time
series analysis in the public security intelligence
data analysis system, where a fractional differential
operator is combined to build a mathematical
model. Network intelligence is also analysed, a
future case is predicted, and the predicted data is
compared with the actual data for verification. The
authors in [19] show that the model they proposed
makes it possible to determine the transmission
method used by the malware and the infection rate.

The aim of the paper [20] was to present a
method for estimating an approximate solution of a
nonlinear epidemiological model of computer
viruses. The wvariational iteration method was
applied for this purpose, and a comparison was
made with the differential transformation method
and the homotopy analysis transformation method.
In the paper [21], the SAEIQRS (Susceptible —
Antidotal — Exposed — Infected — Quarantine —
Recovered - Susceptible) model of virus
transmission in a computer network is proposed,
where the differential transformation method is
applied. The accuracy of the obtained results is
confirmed by the RK4 method.

The research [22] deals with the approach
to studying the global asymptotic stability of some
epidemiological (based on DR) models that describe
the spread of malware. The approach is based on the
GAS theorem of time-continuous nonlinear cascade
systems. The paper [23] investigates the SIR
computer virus model as a nonlinear system of
ordinary DEs using the homotopy analysis method
(HAM).

The academic community currently shows
significant interest in the application of numerical
and semi-analytic methods for solving nonlinear
dynamical processes for modelling complex
dynamical processes in various fields. In particular,
these methods are actively used in the field of
cybersecurity. Researchers develop and improve
approaches based on the homotopy analysis,
differential transformations, Laplace
decompositions, and fractional operators.

A number of studies present models of the
spread of computer viruses and attacks using
epidemiological analogies, graph theory,
probabilistic analysis, and neural networks. Despite
progress in this field, a number of aspects remain
poorly studied.

The analysis of recent studies reveals
significant progress in the development of
numerical and semi-analytical methods for solving
ordinary and partial differential equations (PDEs),
which has enabled the modeling of complex
dynamic processes in cybersecurity, including the
spread of computer viruses, attack detection, and
network security assessment. Approaches based on
the homotopy method, differential transformations,
variational iterations, fractional operators, and
epidemiological analogies are widely used in the
literature.

Despite the achieved results, there are still
significant limitations in many studies:

- there is no consistent comparative
analysis of numerical methods in terms of accuracy,
speed, and stability in cyber threat modelling tasks;

- the topological complexity of real,
especially large-scale, networks is often ignored or
reduced to overly simplified models;

- a number of models neglect nonlinear
dependencies in the dynamics of infection and
recovery, which reduces their predictive ability; -
there is no agreed methodology for assessing the
effectiveness of methods in applied cyber defence.

These limitations create a need to develop
an approach that combines realistic modelling of
network structures, the use of nonlinear DRs, and
modern numerical methods with a clear system for
evaluating accuracy and computational efficiency.

Based on the identified gaps, this paper
raises the following research questions:

Which numerical and semi-analytical
methods provide the best balance between accuracy,
speed, and stability in modelling the processes of
cyberthreat propagation?

How does taking into account the
topological complexity of the network affect the
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accuracy and reliability of predicting the dynamics
of attacks and virus infection?

Can the integration of realistic network
models with nonlinear DRs improve the efficiency
of cyberthreat detection and prediction compared to
existing simplified approaches?

3. METHODS AND MODELS
3.1. Research Design

At each time step of the simulation, the
network topology is updated with a given frequency
to take into account the variability of connections.
The network model is implemented in the form of a
dynamic adjacency matrix A(#), which is formed on

the basis of a given probability matrix of
connections for clusters. This enables reflecting
both the logical structure of the network and its
behaviour over time. Such a structure provides a
high degree of realism in the simulation of the
spread of harmful effects.

MeanField variants with  nonlinear
dependencies are used as a propagation model, as
well as numerical methods for solving differential
equations (RK45, Radau, BDF, etc.). The following
metrics are calculated at each step of the
experiment: RMSE, peak infection, total number of
recoveries, and calculation time. A total of 120
experiments were performed for each method. The
general research design is presented in Figure 1.

Input parametrs:

- beta [0.03;0.05]

- gamma [0.01; 0.02]

- initial infection rate [1%4; 5%a]

- mumber of nodes [300; 1000; 10000]

LSODA; AB2; AM2]

- solution method [RK45; RE23; BDF;

| .| Dynamic graph generation A(t):
SBM + temporal dependency

Metrics Collection:
- EMSE

- Max Error

- Execution Time

- Peak Infection

- Total Recovered

Spreading model:
Mean-Field (v(t) =[S, LR])

—=i‘.:1 Numerical sohtion of ODE |

Figure 1. Research design
Source: created by the author

3.2. Sample

The experimental data set was generated
by numerical simulations on simulated INs of
different scales. Three network sizes were chosen:
500, 1,000, and 10,000 nodes. Simulations were
performed with different initial conditions for each
network: infection rates 1% and 5% and model
parameters (B € {0.03, 0.05}, y € {0.01, 0.02}).
Each configuration was tested using several
numerical solution methods to collect a
representative sample for comparative analysis of
the accuracy and efficiency of the methods under
different conditions. This choice is determined by
the aspiration to model a structured but flexible IN
architecture that is close to real conditions.

3.3. Research Methods

The spread of infectious effects in an
information security network was modelled by
using the MeanField approach as a generalization of
the SIR model [24], [25]. It describes the dynamics
of the transition of individuals between three states:
susceptible to infection (S), infected (I), and
recovered (R).

:E = —gs(8) -(4-1(0)

S = pst) - (4- 1)) - vI(2) (1)

B eenl

o = H(D)

where S — infection transmission
coefficient;
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A — the matrix of connections between
network nodes;

1(#) — the vector of infected nodes at time ¢

y — recovery coefficient.

The MeanField model [26] describes the
dynamics of the three groups (susceptible, infected,
and recovered) as follows:

a5

E = —p3sI

= BSI —yI 2)
A

==

In addition to the basic version, the paper
proposes five modifications of the MeanField
model that take into account the nonlinear
characteristics of the real infection or recovery
process:

MeanField 1 Exponential infection:

ds _ &l

Fri B5e

di 7

o~ Fse® —vl (3)
iR

et

This simulates a situation where o is the
level of exponential susceptibility, increasing its
value causing a sharper infection with increasing /.
It simulates scenarios where automatic spread or
reinfection leads to an explosive increase in
infection.

MeanField 2 Logarithmic infection:

L = _BSin(1 + al)

d

di

== BSIn(1 + al) — ¥l 4)
dr

=V

In this case, the infection grows more
slowly with large I. It simulates the saturation
effect, where new infections are reduced by
antivirus protection, automatic node blocking.

MeanField 3 Quadratic recovery rate:

a5

Pl —B51

d! n

= = BSI—vl (5)
dr -

a1

In this model, increasing the number of

infected makes recovery more difficult. It reflects

the overload of the recovery system. This is
observed in DoS/DDoS attacks.

MeanField 4 1 and  MeanField 4 2
Indicative infection:
ds _ k
E = —p§!
== psI¥ —yl (©)
dn
a7

In this model, the infection depends on the
degree k&, which provides flexible modelling of
different types of spread: from gradual to explosive,
including scattering or cluster propagation effects.
For k<lI, sublinear propagation (MeanField 4 1),
for k>1 — very fast propagation (MeanField 4 2).

The paper compares the following methods
for numerical solutions of DEs: Runge-Kutta,
Radau, Backward  Differentiation = Formula,
LSODA, Adams-Bashforth 2 and Adams-Moulton
2 methods.

1-2. Runge-Kutta (RK) methods [27] are a
family of numerical methods for approximate
solution of systems of ordinary differential
equations. The RK45 and RK23 methods are
special cases of the Runge-Kutta method, which use
an adaptive time step to achieve the desired
accuracy of the solution. In RK45, the step 4 is
adjusted depending on the error estimate between
the 4™ and 5™ order steps. For RK23, the 2™ and 3%
order estimates are used.

Mathematical formulation of the problem
for solving the SIR equations (1):

S(8)
y(t) = [I(£) (7)
R(t)

The system of equations looks like this:

ds
x| [es© - (4-10)
%z % = [-gs() (4 1)) —vI(e)| (8)

da yle)tt
dr

The estimates k;, k», k3, ky, ks are used for
the RK45 method, which are calculated at each
stage:

ky =h 'f{tn'.ﬁ'ﬂ]_:

k=hef(t+5om+3);
ks = he £t 453, +2); )
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k.t:.r!'f{tn +§-J'H+RT3):
ke =h-flt, + by, — ks +2k,)

After these calculations, they are combined
to obtain values for the next step:
1
Ya+1 =0 + 7 (ky + 4kg + k) (10)
3. The Radau method [28] is an implicit
method for solving stiff DEs. It uses a scheme
where it is necessary to solve a system of equations
to obtain the values at the next step. In general, for
each step we can write:
Vasr =¥ + 0 E:'F=L o;K;. (11
where «; — coefficients, k; — derivatives
calculated at each stage.

4. The BDF (Backward Differentiation
Formula) method is an implicit method for solving
hard conventional differential equations that uses
difference schemes to calculate derivatives based on
values at previous points. For an equation of the
form:

% fley) (12)
de

the BDF method can be presented as
follows:

}.I:_PI:_}.I: = nJ..F{ti'!+J.'.'J'r!+1.] + ﬂ:f{tn'fﬂ] (13)

where a; and a; — coefficients for each
stage.

The method is effective for systems where
there are rapid changes in the values of some
variables (e.g., infection rate) and slow changes in
others (e.g., recovery).

5. LSODA (Livermore Solver for Ordinary
Differential Equations with Automatic Method

Switching) is an adaptive numerical method for
solving ordinary DEs that automatically chooses
between the RK method for non-stiff systems and
the BDF method for stiff systems. This gives
greater stability at large time steps.

6. Adams-Bashforth2 (AB2) [29] is an
explicit method that uses the first two integration
steps to estimate the next value of the solution. It
has the following form:

Yarz = Yae1 F 303 ) (Tnr Yasrd) — J B nl)-..(14)

where y,+>— the solution at the next step;

Vut+1, Yn — the values of the previous
solutions;

f(t, y) — the function describing the right-
hand side of the equation.

The method is explicit, so it is easy to
implement and has high speed, but it is not always
stable at large / for rigid systems.

7. Adams-Moulton2 [29] is an implicit
method that uses the values at the current and
previous points to correct the estimate of the future
value. It is a more accurate method compared to
AB2, because it uses an additional value y,+; for
correction. It can be represented as follows:

¥nez = Fnert g':..l-':.rn+:'}'r!+::' +3 [(tnsr¥neN(15)
4. RESULTS

A multivariate analysis of the effectiveness
of numerical methods for solving DEs for different
variations of MeanField-type models was conducted
in the course of the experimental study. The
evaluation was carried out by accuracy (RMSE) and
time efficiency (T). The average values of RMSE
and execution time are given in Table 1. The
accuracy of each method was calculated relative to
the solution obtained by the RK45 method, as it is
considered a reliable basic integrator with an
adaptive step for conventional DE problems.

Table 1: Average values of RMSE and T for each method

Metric | RK45 RK23 BDF RADAU | LSODA | AB2 AM2
RMSE | 0.00E+00 | 3.43E-05 | 1.21E-05 | 4.18E-05 | 3.00E-05 | 1.19E-05 | 3.57E-05
Time, c | 1.22E-03 | 1.52E-03 | 3.36E-03 | 4.64E-03 | 1.14E-03 | 4.55E-03 | 1.18E-02

Source: calculated by the author

The analysis of the average RMSE and T
of seven numerical methods used to solve nonlinear
models of threat propagation dynamics in IN found

significant differences. The best accuracy is shown
by AB2 (1.19x107°) and Radau (1.21x107%).

The RK23, LSODA, and AM2 methods
have an average level of accuracy for RMSE in the
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range of 3.0x107° — 3.6x107°. The BDF method in
this case showed the highest error (4.18x107%). This
may indicate its less effective adaptation to the
specifics of the problem or sensitivity to parameters.

Regarding T, LSODA turned out to be the
fastest (1.14x107 s). Implicit methods showed the
highest time consumption: Radau (4.64x1073 s),
AB2 (4.55x107 s) and especially AM2 (1.18x1072

s). This is quite logical, given the nature of the
iterative correction procedure.

Tables 2 and 3 provide a more detailed
analysis of the accuracy and T, respectively. The
data are averaged for each method by model,
number of network nodes, f and y parameters, and
initial infection percentage. The accuracy of each
method was calculated relative to the solution
obtained by the RK45 method.

Table 2: Average RMSE values of the studied methods for different groups of parameters

Model RK45 RK23 BDF RADAU | LSODA AB2 AM?2
MeanField 1 0.00E+00 | 2.21E-05 | 4.40E-05 | 7.84E-06 | 2.20E-05 | 7.97E-06 | 3.78E-05
MeanField 2 0.00E+00 | 3.25E-06 | 5.56E-06 | 3.11E-07 | 1.30E-06 | 2.82E-07 | 6.25E-06
MeanField 3 0.00E+00 | 7.44E-05 | 5.57E-05 | 2.35E-05 | 7.03E-05 | 2.45E-05 | 9.45E-05

MeanField 4 1 | 0.00E+00 | 1.20E-06 | 3.83E-06 | 2.17E-07 | 8.38E-07 | 5.45E-08 | 3.16E-06
MeanField 4 2 | 0.00E+00 | 7.06E-05 | 1.00E-04 | 2.84E-05 | 5.55E-05 | 2.68E-05 | 3.66E-05
Number of nodes RK45 RK23 BDF RADAU | LSODA AB2 AM2
500 0.00E+00 | 3.43E-05 | 4.18E-05 | 1.21E-05 | 3.00E-05 | 1.19E-05 | 3.57E-05
1000 0.00E+00 | 3.43E-05 | 4.18E-05 | 1.21E-05 | 3.00E-05 | 1.19E-05 | 3.57E-05
10000 0.00E+00 | 3.43E-05 | 4.18E-05 | 1.21E-05 | 3.00E-05 | 1.19E-05 | 3.57E-05
B RK45 RK23 BDF RADAU | LSODA AB2 AM?2
0,03 0.00E+00 | 2.19E-05 | 2.42E-05 | 6.96E-06 | 1.89E-05 | 5.77E-06 | 2.92E-05
0,05 0.00E+00 | 4.67E-05 | 5.95E-05 | 1.71E-05 | 4.10E-05 | 1.81E-05 | 4.21E-05
Y RK45 RK23 BDF RADAU | LSODA AB2 AM?2
0,01 0.00E+00 | 3.72E-05 | 4.26E-05 | 1.04E-05 | 3.33E-05 | 1.03E-05 | 3.62E-05
0,02 0.00E+00 | 3.14E-05 | 4.10E-05 | 1.37E-05 | 2.66E-05 | 1.35E-05 | 3.51E-05
Infected RK45 RK23 BDF RADAU | LSODA AB2 AM?2
1% 0.00E+00 | 3.28E-05 | 3.44E-05 | 5.71E-06 | 2.08E-05 | 6.25E-06 | 3.66E-05
5% 0.00E+00 | 3.58E-05 | 4.93E-05 | 1.84E-05 | 3.92E-05 | 1.76E-05 | 3.47E-05
Source: calculated by the author
Radau and AB2, especially on stabilization of the system. For a larger value of the

MeanField 2 and MeanField 4 1 show the lowest
error values. The largest errors are found in AM2,
RK23 and BDF, with peaks on MeanField 3 and
MeanField 4 2, which indicates their sensitivity to
the nonlinearity of these models. The RMSE value
practically does not change with increasing number
of nodes. This indicates the stability of the methods
to scaling within one model. With increasing f, an
increase in the error is observed in all methods. This
is explained by the strengthening of the nonlinear
S interaction or other / functions that complicate
the dynamics of the system.

With increasing vy, the error decreases
slightly in most methods (especially in RK23, BDF,
LSODA), which can be explained by faster

initial contamination (5%), the error increases in
BDF, RK23, AM2, which indicates increased
sensitivity to a sharp initial perturbation. Radau and
AB?2 remain stable.
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Table 3: Average T values of the studied methods for different groups of parameters

Model RK45 RK23 BDF RADAU | LSODA AB2 AM2
MeanField 1 1.15E-03 | 1.47E-03 | 4.94E-03 | 3.17E-03 | 1.07E-03 | 4.35E-03 | 1.20E-02
MeanField 2 1.43E-03 | 1.31E-03 | 3.93E-03 | 2.83E-03 | 1.08E-03 | 6.40E-03 | 1.24E-02
MeanField 3 1.10E-03 | 1.75E-03 | 4.11E-03 | 3.57E-03 | 1.17E-03 | 3.80E-03 | 1.14E-02

MeanField 4 1 | 1.08E-03 | 1.13E-03 | 3.64E-03 | 2.49E-03 | 9.00E-04 | 3.95E-03 | 9.55E-03
MeanField 4 2 | 1.33E-03 | 1.96E-03 | 6.58E-03 | 4.74E-03 | 1.48E-03 | 4.26E-03 | 1.35E-02
Number of nodes | RK45 RK23 BDF RADAU | LSODA AB2 AM2
500 1.29E-03 | 1.48E-03 | 4.45E-03 | 3.26E-03 | 1.10E-03 | 4.74E-03 | 1.21E-02
1000 1.16E-03 | 1.43E-03 | 4.80E-03 | 3.25E-03 | 1.17E-03 | 4.38E-03 | 1.14E-02
10000 1.22E-03 | 1.67E-03 | 4.67E-03 | 3.57E-03 | 1.15E-03 | 4.54E-03 | 1.18E-02
B RK45 RK23 BDF RADAU | LSODA AB2 AM2
0,03 1.27E-03 | 1.55E-03 | 4.41E-03 | 3.16E-03 | 1.13E-03 | 4.61E-03 | 1.07E-02
0,05 1.16E-03 | 1.49E-03 | 4.87E-03 | 3.56E-03 | 1.15E-03 | 4.50E-03 | 1.29E-02
Y RK45 RK23 BDF RADAU | LSODA AB2 AM?2

0,01 1.23E-03 | 1.59E-03 | 4.38E-03 | 3.25E-03 | 1.10E-03 | 4.48E-03 | 1.12E-02

0,02 1.21E-03 | 1.46E-03 | 4.90E-03 | 3.47E-03 | 1.18E-03 | 4.63E-03 | 1.23E-02

Infected RK45 RK23 BDF RADAU | LSODA AB2 AM?2

1% 1.27E-03 | 1.64E-03 | 4.57E-03 | 3.38E-03 | 1.13E-03 | 4.56E-03 | 1.18E-02
5% 1.17E-03 | 1.41E-03 | 4.71E-03 | 3.34E-03 | 1.15E-03 | 4.55E-03 | 1.17E-02
Source: calculated by the author
Methods: LSODA and RK45 (=1.1E-

03...1.4E-03) have stable performance regardless of
the model. The AM2 method demonstrates low
speed (1.2E-02...1.35E-02) because of iterativeness
and implicit nature. BDF has an average time that
increases with model complexity (MeanField 4 2).
The time increases by 15-20% when going from
500 to 10,000 nodes. This indicates a satisfactory
scalability of the implementation due to the use of
vectorized calculations.

With increasing f, an increase in time is
observed for all methods, as more intense dynamics
require more iterations for an accurate solution.
Increasing y almost does not change the execution
time, but slightly affects AM2 and AB2. Changing
the percentage of initial infection slightly affects the
T of the methods. Figures 2-7 show the histograms
of RMSE and peak error separately for each method
throughout all experiments.
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Figure 2: Histogram of RMSE and MaxError for RK23
Source: created by the author

The histogram (Figure 2) shows a stable
RMSE value throughout the series of experiments.
However, the MaxError values have sharp jumps in

MeanField 4 2 models. With the Mean ]Field 2
and MeanField 4 1 models, these metrics differ
slightly from 0.

the experiments with the MeanField 3 and
Error BDF
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0,0002
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Figure 3: Histogram of RMSE and MaxError for BDF
Source: created by the author

Figure 3 shows that low values and a
relatively stable change in RMSE are observed
when applying the BDF method. High jumps in
MaxError values are observed, especially at points

6, 14, and 22. This occurs when model 1 is applied
and the parameters B=0.05; y=0.01; the initial
infection percentage is 5%, and the number of
nodes is 500, 1000 and 10000, respectively.
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Figure 4: Histogram of RMSE and MaxError for RADAU
Source: created by the author

Figure 4 shows the histograms of RMSE
and MaxError for the RADAU method. These
graphs show the best stability among the considered Model 3.
methods. Single jumps when using Model 3 do not

affect the overall accuracy. In particular, the peak
values of RADAU errors are the lowest when using

Error LSO’D’A
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Figure 5: Histogram of RMSE and MaxError for LSODA
Source: created by the author

RMSE and MaxError for the LSODA
method (Fig. 5) have an increase when using
models 1, 3, and 5, but with a smaller amplitude

than for the RK23 and BDF methods. However,
these graphs are less stable than the RADAU

e
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graphs. When using Model 3, LSODA has a significantly smaller error amplitude than RK23.
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Figure 6: Histogram of RMSE and MaxError for AB2
Source: created by the author

Figure 6 shows histograms of the RMSE values for Model 5. And they do not have any
and MaxError metrics of the AB2 method. They are increases  for models MeanField 2  and
similar to the histograms of the RADAU method. MeanField 4 1.

But they have a higher frequency of increases in

Error AMZ
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Figure 7: Histogram of RMSE and Max Error for AM2
Source: created by the author

The graphs of RMSE and MaxError values  increases occur with a much higher frequency than
of the AM2 method (Figure 7) have sharp increases in the RADAU and AB2 methods, but the results of
when using Models 1, 3, and 5. However, these =AM?2 are better than LSODA. In general, increases

e
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in RMSE and MaxError values are observed for
most methods when using models with exponential
infection, quadratic recovery rate, and exponential
infection with rapid spread. This may be explained
by the complicated dynamics of the system, which
is created by nonlinear dependencies between
variables. In particular, the exponential function on
the right-hand side of the differential equation leads
to a rapid increase in derivatives in response to even
small changes in the number of infected units.

In the case of models with quadratic
recovery rate, even moderate values of the number
of infected units can lead to a large value of the rate
of change. This complicates the approximation of
the function and leads to the accumulation of errors
at each integration step. The exponential
nonlinearity in the infection model, especially at
high values of k, simulates extremely fast infection.
This requires the numerical algorithm to control the
time step and high stability to rapid changes in the
system’s behaviour.

So, the features of the nonlinear structure
of the models significantly affect the accuracy of
the numerical solution. This confirms the need for a
flexible choice of numerical method according to
the class of the model, as well as the importance of
a preliminary analysis of the sensitivity to model
parameters and the equations’ stiffness.

5. DISCUSSION

In this study, several MeanField-type
models, including epidemiological analogues (SIR,
SAEIQRS, etc.), were selected and adapted to most
adequately describe the processes of threat
propagation in networks. The test results confirm
that such models take into account both the
dynamics of infection and recovery in complex
networks.

A large-scale comparison of the accuracy,
speed, and stability of various methods, including
RK4, DTM, VIM, and homotopy-based approaches,
was conducted for nonlinear cyber threat models.
The results showed that the choice of the optimal
method significantly depends on the type of model,
its rigidity, and the characteristics of the network
topology.

The developed environment includes 120
scenarios with variations in infection, recovery, and
network scale parameters. This gave grounds to
assess the impact of topological changes on the
accuracy of  predictions and provide
recommendations on the choice of a numerical
method for specific cyberthreat conditions.

So, all research objectives were fulfilled,
and the results confirm the practical applicability of
the developed approach to modelling the spread of
threats in information networks.

Unlike most previous studies that focused
either on the creation of new numerical
methods [8], [9] or on the analysis of individual
specific models [13], [16], our study combines a
systematic comparison of a wide range of numerical
methods with an analysis of their performance on
different variations of MeanField-type models. This
approach identifies patterns between the class of the
model, the features of its solution, and the
achievable accuracy, which has not been
implemented in similar studies so far.

In [20], the variational iteration method
was applied to a modified epidemiological model of
computer viruses, but without comparing it with
other numerical approaches and without taking into
account the real network topology. We not only
compared this method with others (DTM, RK4,
etc.) on identical and extended scenarios, but also
integrated a dynamic network model and evaluated
the effectiveness of the methods in more realistic
conditions.

The study [21] is reduced to testing the
DTM and RK4 methods for the SAEIQRS model,
without taking into account the complexity of
network dynamics and other classes of numerical
methods. We applied 120 variations of scenarios
with varying infection rates, recovery rates, network
scale, and types of nonlinearities, which enabled
providing more universal recommendations.

In [12], the focus is on the conceptual
application of SIR models in cyber threats without
deep numerical analysis. We extend this approach
by adapting nonlinear models to a dynamic network
and conducting a comprehensive computational
experiment to assess accuracy, stability, and
performance.

In [15], the spread of malware is modelled
without taking into account changes in network
topology. We used block models that reflect the
time-varying structure of connections, which is
close to real network traffic conditions.

In [10], a semi-analytical method based on
homotopy analysis is proposed, but it is limited by
mathematical correctness without verification in
simulation scenarios. We evaluated not only the
mathematical correctness, but also the behaviour of
the methods in variational scenarios with different
stiffness of the equations.

The study [14] considers the application of
neural networks, but does not analyse the stability
of classical numerical methods, which remain the
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basis of real cyber defence systems. We partially
closed this gap by providing recommendations for
the choice of method depending on the model
structure.

The research [11] presents probabilistic
approaches to DR modelling, but without assessing
the time efficiency. We showed how the speed of
the method depends on the model class, and
quantified this dependence.

In [19], the authors describe the
mechanisms of infection but do not analyse
numerical accuracy. We evaluated the accuracy
using RMSE and MaxError, which are critical for
risk prediction systems.

The study [22] focuses on the theoretical
analysis of global stability, but without practical
recommendations for the choice of method. We not
only determined the conditions for the rigidity of
the models, but also proposed adequate numerical
methods for such cases.

Therefore, our study differs from existing
studies as it combines the first-ever extensive
testing of classical and modern numerical methods,
consideration of network dynamics, and a
comprehensive quantitative assessment of accuracy,
speed, and stability. This gives grounds to provide
practical recommendations for integration into
cyber defence systems aimed at early detection and
containment of cyber threats in real time.

So, the results of our study confirm the
hypothesis that the accuracy and speed of the
numerical method largely depend on the structure of
nonlinearities in the model and the characteristics of
the network. The practical value of the results is the
possibility of integrating the recommendations for
choosing a method for a specific type of threat and
model into cyber defence systems. In particular,
they can be used for early prediction of a malware
epidemic or adaptive control of security policies in
real time.

5.1. Limitations

The study focused on dynamic topologies
with a limited class of models of the MeanField
type, in particular only on single-component
nonlinearities. Mostly classical numerical methods
were used, although adaptive, stochastic and neural
network numerical schemes are actively studied in
current approaches. Furthermore, even despite the
use of networks up to 10,000 nodes, real
information systems can be much larger. They may
also involve interaction with multiple attack types,
which was not considered within the scope of this
study.

5.2. Recommendations

It is appropriate to extend the considered
models to the cases of stochastic or fractional DEs,
which will allow for a more accurate description of
complex attacks with random time parameters.
Further improvement of network environment
models may include adaptive topology change and
simulation of cooperative attacks. Besides,
modelling of systems with many types of users
having different access levels and degrees of
vulnerability, is promising.

5.3. Problems and open research issues

The conducted research assessed the
effectiveness of numerical and semi-analytical
methods for modelling the spread of cyber threats
based on nonlinear differential equations in
combination with realistic network topology
models. At the same time, several problems were
identified during the study that remain unresolved
and form promising areas for further research:

1. The current sample of cyberthreat
propagation scenarios does not cover the full range
of possible attacks and network configurations. This
limits the generalizability of the conclusions and
requires the expansion of the database through
simulation and experimental cases with different
topologies, densities of connections, and levels of
heterogeneity of nodes.

2. Despite taking into account certain
features of the topology, the issues of realistic
reproduction of large, multi-level, and dynamically
changing networks remain open. Efficient
algorithms for generating and processing such
topologies in combination with DR models that take
into account structural complexity are needed.

3. Current models mostly describe fixed
patterns of infection and recovery. An open
question is how to integrate the adaptive behaviour
of attack and defence mechanisms that change over
time, and how this affects network resilience.

4. Although accuracy and performance
were analysed, there is still a need for a
comprehensive multi-criteria evaluation that also
takes into account stability, scalability, and
sensitivity to model parameters.

5. A potential direction of development is
the combination of numerical methods for solving
DR with machine learning algorithms for automatic
adjustment of model parameters, anomaly detection,
and prediction of threat evolution in real time.
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6. CONCLUSIONS

This study aimed to compare and analyse
the effectiveness of numerical methods for solving
nonlinear differential equations (DEs) describing
the propagation of threats in induced networks (INs)
in order to determine the most accurate, fast, and
stable approaches for practical application in
modelling and ensuring cybersecurity.

The aim was achieved through
fulfilment of the following research objectives:

- a review of current approaches to
mathematical modelling of cyber threats using DR
was performed;

- the most common types of nonlinear
models were identified, in particular, models based
on MeanField with exponential, logarithmic, and
power dependences;

- seven numerical methods (Radau, AB2,
LSODA, BDF, AM2, etc.) were implemented and
tested on a wide range of scenarios;

- a software mathematical platform was

the

created for modelling and analysing threat
propagation processes in dynamic networks.

The results of the study:

Radau and AB2 showed the highest
accuracy  (107°...1077) at  relatively low

computational costs;

LSODA provided the optimal balance
between accuracy and performance, which makes it
a practical choice for a wide class of problems;

BDF and AM2 were less effective for hard
problems with high model complexity or a large
value of the infection parameter;

Sensitivity analysis showed that the
accuracy of the methods decreases with increasing
infection rate (B) and increases with a higher
recovery rate (y);

Increasing the network size by 10 times did
not lead to a significant deterioration in the results,
which indicates the scalability of the approach.

The academic contribution of the study is
in the first-ever comprehensive testing of classical
and modern numerical methods on different
variations of nonlinear models in the context of
cyber threats, taking into account the dynamics of
the network topology and a wide range of
parameters. The obtained results gave grounds to
provide practical recommendations for choosing a
numerical method depending on the characteristics
of the model, the level of rigidity of the equations,
and the requirements for speed.

The practical significance is the possibility
of integrating the developed models and algorithms
into early warning systems, automated response,

and adaptive security management in real time,
which is especially relevant for critical
infrastructure.

Further research directions:

- adaptation of the platform to the analysis
of real networks based on empirical data;

- integration of fuzzy logic methods for
adaptive identification of threat parameters;

- expansion of mathematical models by
taking into account latent states, interconnected
networks, and hybrid attacks;

- research into hybrid approaches that
combine numerical methods with machine learning
to increase the forecasting accuracy and speed.

So, the study not only confirmed the
hypothesis that the accuracy and speed of numerical
methods depend on the structure of nonlinearities
and network characteristics, but also provided
practical tools for modelling and assessing cyber
threats in scalable networks.

REFERENCES

[1] M. A. Bouke and A. Abdullah, “Smrd: A
novel cyber warfare modeling framework for
social engineering, malware, ransomware, and
distributed denial-of-service based on a system
of nonlinear differential equations,” Journal of
Applied Artificial Intelligence, Vol. 5, No. 1,
2024, pp. 54-68, doi: 10.48185/jaai.v5i1.972.

[2] G. G. Mohammed and Z. Zaheer,
“NeuroCyberGuard: Developing a Robust
Cybersecurity Defense System through Deep
Neural Learning-Based Mathematical
Modeling,” Journal of Smart Internet of
Things, Vol. 2022, No. 1, 2022, pp. 133-145,
doi: 10.2478/jsiot-2022-0009.

[3] H. Durand, “A nonlinear systems framework
for cyberattack prevention for chemical
process control systems,” Mathematics, Vol. 6,
No. 9, 2018, pp. 169.

[4] M. Belova, V. Denysenko, S. Kartashova, V.
Kotlyar and S. Mikhailenko, “Analysis of the
Structure of Chaotic Solutions of Differential
Equations,” WSEAS Transactions on Circuits
and Systems, Vol. 22, 2023, pp. 75-85, doi:
10.37394/23201.2023.22.10.

[5] F.K. Batista, A. Martin del Rey, S. Quintero-
Bonilla and A. Queiruga-Dios, “A SEIR
Model for Computer Virus Spreading Based
on Cellular Automata,” Advances in Intelligent
Systems and Computing, Vol 649. 2018, doi:
10.1007/978-3-319-67180-2_62.

[6] G. Manohara and S. Kumbinarasaiah,
“Numerical  solution of a  modified

7930



Journal of Theoretical and Applied Information Technology
15" October 2025. Vol.103. No.19

N

R

© Little Lion Scientific

SMina

ISSN: 1992-8645

www.jatit.org

E-ISSN: 1817-3195

(7]

(9]

[11]

[13]

[14]

[15]

epidemiological model of computer viruses by
using Fibonacci wavelets,” The Journal of
Analysis, Vol. 32, 2024, pp. 529-554, doi:
10.1007/s41478-023-00663-7.

M. Belova, V. Denysenko, S. Kartashova, V.
Kotlyar, S. Mikhailenko, “Study of the Impact
of Loads on the Deformation of Building
Structures using Differential Equations,”
WSEAS Transactions on Systems, Vol. 23,

2024, pp. 398-408, doi:
10.37394/23202.2024.23.42.
S. Kaushik and R. Kumar, “Qualitative

Analysis of a Novel Numerical Method for
Solving Non-linear Ordinary Differential
Equations,” International Journal of Applied
and Computational Mathematics, Vol. 10,
2024, pp. 99, doi: 10.1007/s40819-024-01735-
3.

Z. Odibat, “An improved optimal homotopy
analysis algorithm for nonlinear differential
equations,” Journal of Mathematical Analysis
and Applications, Vol. 488, Iss. 2, 2020, pp.
124089, doi: 10.1016/j.jmaa.2020.124089.

S. Hussain, G. Arora and R. Kumar, “Semi-
analytical methods for solving non-linear
differential equations: A review,” Journal of
Mathematical Analysis and Applications, Vol.
531, Iss. 1, Part 2, 2024, pp. 127821, doi:
10.1016/j.jmaa.2023.127821.

J. Wang, J. Cockayne, O. Chkrebtii T. J.
Sullivan and C. J. Oates, “Bayesian numerical
methods for nonlinear partial differential
equations,” Statistics and Computing, Vol. 31,
2021, pp. 55, doi: 10.1007/s11222-021-10030-
w.

M. T. Gengoglu, “Mathematical Modeling in
Cyber Defense,” International Journal of
Engineering Science and Application, Vol. 4,
No. 4, 2020, pp. 165-169.

Z. Wang, L. Chen, S. Song, P. X. Cong and Q.

Ruan, “Automatic cyber security risk
assessment based on fuzzy fractional ordinary
differential equations,” Alexandria

Engineering Journal, Vol. 59, Iss. 4, 2020, pp.
2725-2731, doi: 10.1016/j.2ej.2020.05.014.

P. Sungu Ngoy, K. Musumbu and D. Kioi, “A
Mathematical  Modeling  Approach in
Cybersecurity using Deep neural Learning,”
International Journal of Advanced Research in
Science, Engineering and Technology, Vol. 8,
Iss. 6, 2021.

J. Johnson, “A Dynamical Systems Approach
for Modeling Malware Propagating Through a
Network and Potential Solutions Towards
Mitigating Spread,” 2024 Fall Cybersecurity

[16]

[17]

(18]

[19]

(21]

(23]

(24]

[25]

7931

Undergraduate Research Projects, 2024, doi:
10.25776/2dzk-hr66.

H. Zhang, Y. Mi, Y. Fu, X. Liu, Y. Zhang, J.
Wang and J. Tan, “Security defense decision
method based on potential differential game
for complex networks,” Computers &
Security, Vol. 129, 2023, pp. 103187, doi:
10.1016/j.cose.2023.103187.

R. Hryshchuk, “Example of Differential
Transformations Application in
Cybersecurity.” ISecIT, 2021, pp. 223-227.

S. Wu, “Nonlinear information data mining
based on time series for fractional differential
operators,” Chaos: An Interdisciplinary
Journal of Nonlinear Science, Vol. 29, No. 1,
2019, doi: 10.1063/1.5085430.

N. Levy, A. Rubin and E. Yom-Tov,
“Modeling infection methods of computer
malware in the presence of vaccinations using
epidemiological models: an analysis of real-
world data,” International Journal of Data
Science and Analytics, Vol. 10, No. 4, 2020,

pp. 349-358.
S. Noeiaghdam, “A novel technique to solve
the modified epidemiological model of

computer viruses,” SeMA Journal, Vol. 76,
No. 1, 2019, pp. 97-108.

P. Shahrear, A. K. Chakraborty, Md. A. Islam
and U. Habiba, “Analysis of computer virus
propagation based on compartmental model,”
Applied and Computational Mathematics, Vol.
7, No. 1-2, 2018, pp. 12-21.

M. T. Hoang, “Global asymptotic stability of
some epidemiological models for computer
viruses and malware using nonlinear cascade
systems,” Boletin de la Sociedad Matemdtica
Mexicana, Vol. 28, 2022, pp. 39, doi:
10.1007/s40590-022-00432-9.

S. Noeiaghdam, M. Suleman and H. Budak,
“Solving a modified nonlinear epidemiological
model of computer viruses by homotopy
analysis method,” Mathematical Sciences,
Vol. 12, 2018, pp. 211-222, doi:
10.1007/s40096-018-0261-5.

M. Izadi, M. Seifaddini and M. Afshar,
“Approximate  solutions of a  SIR
epidemiological model of computer viruses,”
Thilisi Mathematical Journal, Vol. 14, No. 4,
2021, pp. 203-219.

A. Martin Del Rey, R. C. Vara and S.
Rodriguez  Gonzalez, “A  computational
propagation model for malware based on the
SIR classic model,” Neurocomputing, Vol.
484,2022, pp. 161-171.




Journal of Theoretical and Applied Information Technology
15 October 2025. Vol.103. No.19

© Little Lion Scientific

N

R

SMina

ISSN: 1992-8645

www.jatit.org

E-ISSN: 1817-3195

[26]

[27]

[28]

[29]

S. Ottaviano and S. Bonaccorsi, “Some aspects
of the Markovian SIRS epidemic on networks
and its mean-field approximation,”
Mathematical Methods in the Applied
Sciences, Vol. 44, No. 6, 2021, pp. 4952-4971.
E. Tadmor, “On the stability of Runge—Kutta
methods for arbitrarily large systems of
ODEs,” Communications on Pure and Applied
Mathematics, Vol. 78, No. 4, 2025, pp. 821-
855, doi: 10.1002/cpa.22238.

S. Ekanathan, O. Smith and C. Rackauckas,
“A Fully Adaptive Radau Method for the
Efficient  Solution of  Stiff Ordinary
Differential Equations at Low Tolerances,”
arXiv preprint arXiv:2412.14362, 2024.

S. Rathan, D. Shah, T. H. Kumar and K. S.
Charan, “Adaptive IQ and IMQ-RBFs for
Solving Initial Value Problems: Adams—
Bashforth and Adams—Moulton Methods,”
International  Journal of Computational
Methods, Vol. 21, No. 03, 2024, pp. 2350032.

7932




