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ABSTRACT

The explosion in Internet of Things (IoT) installations has connected millions of low-power devices, which
poses serious problems for maintaining reliable, energy-efficient connectivity in diverse settings. Traditional
hybrid optimisation approaches like Particle Swarm Optimisation (PSO)-Low Energy Adaptive Clustering
Hierarchy (LEACH) integrated with Random Forest (RF) improve clustering and traffic forecasting. Still,
they struggle with the dynamic, heterogeneous traffic of smart cities, industrial IoT, and environmental
monitoring. Emerging Deep Reinforcement Learning (DRL) algorithms, particularly Proximal Policy
Optimisation (PPO), enable real-time routing and Medium Access Control (MAC) regulation but have not
been extensively compared with hybrid algorithms in unified, realistic scenarios. This paper presents a
thorough, application-oriented comparative analysis of a DRL protocol based on PPO and a PSO-LEACH +
RF hybrid system, both of which are designed for energy-aware IoT communication. Both methods were
evaluated using the same simulation scenario with consolidated traffic data reflecting the periodic, event-
driven, and bursty nature of environmental monitoring, smart home automation, and industrial IoT
applications. Key metrics include energy consumption, throughput, average packet delay, and packet delivery
ratio (PDR). Results show that the hybrid model used 0.2-1.5 J less energy, while the PPO-DRL model
achieved up to 23 kbps higher throughput, 8—10 ms lower latency, and up to 2% higher PDR.
Keywords: Internet of Things (IoT), Deep Reinforcement Learning (DRL), PSO LEACH, Energy Efficiency,
Quality of Service (QoS)
1. INTRODUCTION fact that those approaches concentrated on effective
clustering and routing [3], [4], [5].

The massive growth of the Internet of Things
(IoT) has led networks to manage a vast number of
resource-constrained devices communicating over a
wide area. It is essential to preserve node energy for
extended operation in such dense, continuous-
operation settings, which include smart cities,
industries, and environmental monitoring [1], [2].
The limitations of conventional methods have
become apparent as the real-world networks struggle
with increasingly unpredictable traffic, despite the

The current hybrid optimisation attempts, like
PSO-LEACH with machine learning (RF), have
shown improved energy savings and cluster
formation. However, these techniques are usually
designed for environments with low mobility and
may not respond quickly in mixed or changing traffic
conditions typical of most practical IoT systems.
Additionally, recent advances in DRL methods,
especially PPO, offer new potential for adaptive,
decentralised control, but they have not been widely
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adopted in IoT protocols or dynamic traffic scenarios
in published work [6], [7], [8]. This is due to reasons
such as limited availability of realistic datasets,
challenges in fine-tuning for multi-profile traffic,
and a lack of evaluation frameworks that integrate
both learning-based and optimisation-based models
under the same conditions.

The gap in the existing research is that none of the
previous works provide a fully application-mapped
comparison of the benefits of hybrid and
protocol-based optimisations and DRL methods in
protocols with a common, traffic-diverse but flexible
dataset [9]. The existing literature usually uses
simplified patterns and tends to test only models
without integrating them or considers limited
performance metrics, which makes it challenging to
measure the actual trade-offs in energy-efficiency,
latency, throughput and QoS [10], [11].

This study addresses that gap by conducting a
rigorous, application-mapped evaluation of a PPO-
based DRL protocol and a PSO LEACH + RF hybrid
model under identical datasets, metrics, and
deployment conditions, replicating the real-world
ToT domains like smart cities, industrial automation,
and environmental monitoring to enable fair
comparison. The main goal is to design and

implement a  thorough, application-mapped
comparative evaluation of these two models.

The novelty of this study lies in developing a
single, integrated, flexible dataset based on realistic
IoT traffic profiles, enabling direct and fair
comparisons under identical topology, metrics, and
deployment conditions, while implementing a PPO
DRL system for energy-efficient MAC and routing
management. This work presents actionable
evidence that can be used to shape the architecture of
the next generation of adaptive and energy-efficient
IoT protocols.

2. LITERATURE SURVEY

The following Table 1 gives an overview of
the latest developments, data collection, and
outstanding issues in the area of energy-efficient
communication on IoT systems, and points out the
tendency of incorporating AI/DL and DRL methods
with the established optimisation hybrid techniques.
It reflects the practical limitations and emerging
solutions that inform next-generation IoT protocol
design.

Table 1: Recent Literature on Energy-Efficient loT Communication Protocols

Ref Model Dataset Limitation Remark
Energy-efficient Simulated IoT | Not tested on real- ﬁfafotx: I;lgrlng
[12] routing protocols | routing world diverse traffic sa\f)in ) scalabﬁi};
for IoT scenarios datasets & Y
needs more study
LEACH protocol Simulated IoT | Focuses mainly on Significant energy
[13] enhanced by Al sensor clustering; lacks real- | savings and improved
Y deployments time traffic adaptation | node longevity
Hybrid QGA- Smart city air Computational irfriiri?;lid ra(illiltlclelfer
[14] ACO with DRL pollution complexity and energy savin inycom lex gy
for routing monitoring overhead ne P
environments
Survey on energy S:)l\r;:l}l; Does not include Identifies research gaps
[15] management multiol egIoT detailed DRL and trends in [oT
techniques pro togols performance analysis energy protocols
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Classification High accuracy in

Random Forest-

28 IoT devices'

accuracy may not

traffic classification

[19]

energy harvesting
system

energy data
with IoT

communication
protocol evaluation

[16] baseq IoT~trafﬁc traffic data directly translate to helps adaptive

classification collected .

energy efficiency protocols

Actor-Critic DRL i{na;dware Focused on edge Al Achieves 34.6%

[17] for energy- &y hardware, not general | energy efficiency
. consumption . .
efficient edge Al IoT routing improvement
traces

Adaptive duty

cycling and IoT sensor Evaluation limited to Enhanced data
[18] energy network specific sensor reliability and energy

management deployments types/environments savings

framework

Hybrid . Focus on energy

sustainable Solar and wind harvesting; limited Improved network

sustainability via
energy harvesting

Energy-efficient
routing protocol

NS-3 simulated

No large-scale real-

Demonstrated
significant gains in
energy saving (up to

[20] using Deep Q- IO.T netyvork world de.:ployn?ent 18%) and reduced
with mixed tested; simulation- .
Network (DQN) traffic patterns | only results latency in
for IoT P Y heterogeneous loT
traffic scenarios
Green IoT energy | Multiple IoT General survey; lacks | Highlights Al
[21] management network a deep DRL approach | integration potential
techniques configurations | analysis for IoT energy savings
3. METHODOLOGY which combines both periodic and urgent event

3.1 System Design

The proposed study compares two popular
approaches for optimising communication protocols
to reduce power consumption in loT networks:

The advanced model combines DRL with
PPO to enable intelligent, adaptive routing and MAC
layer control. It allows nodes to adapt to changing
traffic patterns and real-time network circumstances
by learning the best transmission parameters.

The hybrid model includes RF traffic
prediction, the LEACH clustering methodology, and
PSO. While RF predicts traffic fluctuations and
enables proactive network modifications to save
energy and enhance overall performance, PSO
maximises cluster head selection and formation. The
system architecture consists of three layers:

Application Layer: The first layer of the architecture
is in charge of creating traffic patterns that replicate
actual [oT situations. Three different applications are
mapped by it, such as the Industrial [oT Monitoring,

traffic with a hybrid mix of high and low data rates,
the Smart Home Automation, which is characterised
by event-driven bursts and bursty traffic and
Environmental Monitoring, which generates steady,
periodic sensing traffic.

Perception Layer: This layer is responsible for
gathering operational or environmental data in real-
time by integrating various loT sensors. It employs
transmission regulations, dynamic duty cycling, and
clustering algorithms to minimise energy
consumption and maintain high network reliability,
regardless of application requirements or traffic
load. Network Layer: This layer employs energy-
efficient routing technologies to  control
communication. Using PPO-trained agents, the
network layer responds intelligently to changing
network circumstances and traffic types by adjusting
MAC values and routing pathways in real time. On
the other hand, the hybrid model uses RF methods to
forecast network demand and PSO to construct ideal
clusters, allowing for more proactive allocation of
resources and energy savings. The system
architecture involving steps from IoT data
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acquisition to model implementation and evaluation
is depicted in Figure 1.

Data Collection
C-DAC loT Traffic
Generator Dataset

l

Data Processing
Cleaning, Normalization,
Feature Extraction

|

Model Implementation

SRR

Hybrid Model
PSO + LEACH + RF

PPO-DRL

Simulation in NS-3

Evaluation Metrics
Throughput, Latency, PDR,
Energy, Network Lifetime,
Security Overhead

Figure 1: System Architecture Proposed
Methodology for Enhancing Communication Protocol
Design in loT Networks.

3.2 Dataset Description

Dataset Source: The dataset used during the
research was created by using the IoT Traffic
Generator Dataset presented by the Centre for
Development of Advanced Computing (C-DAC)
India, which can be found on their IoT Research
Resources page (https://www.cdac.in). This dataset
consists of both simulated and real sensor network
traces to accommodate various traffic scenarios to
reflect the various behaviours of IoT applications.

The dataset consists of key attributes such
as Timestamp, Node ID, Payload Size (bytes), Inter-
Arrival Time (ms), Energy Consumption (mJ), Link
Quality Indicator (LQI), and Received Signal
Strength Indicator (RSSI). Approximately 100,000
records are included in each traffic scenario. The

Advanced Mod

advanced PPO-DRL model and the hybrid PSO-
LEACH + RF model are both given the same dataset
without any preprocessing bias or manipulation to
guarantee experimental fairness.

3.3 Data Collection

Table 2 provides a concise summary of the
three separate traffic profiles that were taken from
the C-DAC IoT Traffic Generator Dataset. These
profiles reflect typical behaviours seen in real-world
IoT applications.

Table 2 IoT Traffic Profiles Extracted for Data

Collection
Profi | Applicati | Traffic Typical Duty
le on Pattern Transmiss | Cycle
Domain ion Behavi
Distance our
Environm Periodic Stable
A ntal OMMmE - jata Mediumto | (regular
o transmiss | long intervals
Monitoring | .
ion )
Smart vent Dynami
Home ent- Short to ¢
B . driven . (activate
Automatio medium
bursts d by
n
events)
. Adaptiv
Industrial E/ih)l(ﬁfow Variable e
C IoT & (short/long | (depends
o traffic
Monitoring atterns ) on
P activity)

The sensors used are supposed to function
in a diverse [oT setting with different duty cycles and
transmission distances.

3.4 Data Processing

The dataset is subjected to a number of
crucial preparation processes to guarantee its quality
and consistency prior to model running. By
eliminating missing or corrupted data, the possibility
of biases or inaccurate outcomes during model
training is decreased. Normalising important
characteristics like energy usage, RSSI, and LQI to
a standard scale promotes fair comparisons between
qualities with various measurement units and
balanced learning.

To facilitate dependable learning, model
selection, and objective performance evaluation, the
dataset is divided into training (70%), validation
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(15%), and testing (15%) subsets after cleaning and
normalisation. Then, feature extraction improves the
dataset by combining inter-arrival time statistics,
computing average payload size, and calculating
rolling window energy consumption. More efficient
and precise decision-making in a variety of IoT
traffic situations is rendered by these combined and
statistically enhanced characteristics, which provide
significant inputs for both the advanced and hybrid
models. Following data preprocessing, traffic traces
were transformed into state and action
representations for model training. The subsequent
section describes the Advanced Model’s architecture
and control policies.

3.5 Advanced Model: PPO-DRL for Energy-
Aware Routing & MAC

3.5.1. System description

To facilitate energy-efficient
communication in Wireless Sensor Networks
(WSNs) and the IoT, the PPO-DRL model balances
energy conservation, latency, and dependability.
This system utilises an intelligent agent, which is
either a cluster head or an individual node, to
undertake critical communication decisions like duty
cycle percentage, transmit power and selection of
routing path. The detailed functional description of
the Advanced Model’s reinforcement learning
component is given below:

State Space: To evaluate energy status and
communication quality in real time, the agent's state
space records key network parameters such as
residual energy, buffer occupancy, LQI, and traffic

type.

Action Space: This allows the user to change the
transmission power, duty cycle, and next-hop node
to make the network work better.

Reward Function Design: The agent is guided
towards techniques that guarantee dependability and
prolong network lifespan by an incentive function
that strikes a balance between PDR, latency, and
energy saving.

Training Procedure: The system is equipped to adapt
to the changing IoT applications and network
circumstances after undergoing training across a
variety of traffic situations. The process of
improving efficiency and reliability adapted by the
advanced model is shown in Figure 2, starting with

IoT nodes and continuing via clustering, intelligent
routing, and traffic profiling.

loT Nodes

Dynamic Clustering
Mechanism

A 4

(i N
Reinforcement Learning-
based Cluster Head

Selection
. J
( ™
Optimized Energy-Aware
Routing
- S

Intelligent Traffic Profiling &
Scheduling

~

Application Adaptation Layer

.

¥

P )\

Performance Output: Higher

Throughput, Lower Latency,
Improved PDR

S

Figure 2: Advanced Model Architecture
3.5.2. Optimisation model and key computations

Energy Consumption per Transmission: This
models the per-packet energy cost. The PPO agent
uses it internally to evaluate the cost of sending data
to a specific neighbour for selecting the energy-
aware route.

Etx = (Eelec X k) + (Eamp X k X dn) (1)

Where, E... Is the energy to run the
transmitter/receiver circuitry (nJ/bit), k is the packet
size (bits), Egyyp Is the energy for the transmission
amplifier (pJ/bit/m"), d is the transmission distance
(m) and n Is the path loss exponent (24,
environment-dependent).

7909



Journal of Theoretical and Applied Information Technology ~

15" October 2025. Vol.103. No.19

N

© Little Lion Scientific

SATIT

ISSN: 1992-8645

www jatit.org

E-ISSN: 1817-3195

Application context: Amplifier cost is a major factor
in environmental monitoring, as the nodes often
communicate across greater distances and hence,
PPO prefers shorter hops to save energy. Short-range
communications lessen the influence of amplifiers in
home automation, enabling frequent updates without
significantly depleting batteries. Higher amplifier
power may be needed for interference in industrial
10T, requiring PPO to strike a compromise between
dependability and energy cost.

PPO Reward Function: It provides a feedback
signal to the PPO agent. A positive reward is linked
to achieving high delivery ratios with low power
use and minimal delay.

Rt=a"PDRt—,8'Et—)/'Dt (2)

Where, PDR; Is the Packet Delivery Ratio at the
time? t, E; Is the energy consumed in interval t, D;
Is the Delay (ms), and «, 8,y Are the Designer-set
weights balancing reliability, energy, and latency?

Application context: In environmental monitoring,
the B is increased to maximise energy conservation
to achieve long network lifetimes. Real-time
actuation needs a greater y to reduce delay in smart
home automation. Industrial IoT applies balanced
weights a, B, v to manage both critical alerts and
periodic data transmission needs.

PPO Clipped Objective: This ensures stable
training by controlling how far a new policy deviates
from the old one at each update. It prevents large,
risky policy changes.

LEYP (9) = E,[min(r,(6)4,, clip(r:(0),1 — €, 1
+e)4,)] 3)

Where, 1.(6) Is the ratio of new to old policy
probabilities, A, The advantage estimate (how much
better an action is than average) and € is the clip
parameter (e.g., 0.1-0.2).

Application context: Clipping makes learning stable,
such that the PPO agent dynamically adjusts to
changing IoT traffic aspects like periodic sensing,
bursts, or a mix of loads. In environmental
monitoring, it eliminates the unstable policies that
occur due to the seasonal traffic variations, and
regarding industrial [oT, it ensures that the resulting
performance remains stable throughout high-load
and low-load production phases.

Network Lifetime Estimation: Used to evaluate
long-term energy efficiency and employed as a
performance metric after policy convergence.

N
NOE
Tlife= %L—l i,Initial (4)

i=1 Ei,consumed

Where, E; 1nitiqrIs the initial energy of the node i,
E; consumea 1s the consumed energy of node i over
time, and N is the number of nodes.

Application context: In the case of environmental
monitoring, a longer lifetime minimises the cost and
risks of maintenance in inaccessible locations. In-
home automation enables the user to avoid frequent
battery replacements. In industrial IoT, it avoids
maintenance shutdowns in unsafe equipment
locations.

Duty Cycle Adjustment Rule: This rule allows the
agent to dynamically adjust node active time based
on real-time queue length feedback. If the queue
builds up, then it increases the duty cycle. If the
queue is under the target, then it reduces the duty
cycle to save energy.

DCpew = DCo1q +1
' (Qtarget - chrrent) (5)

Where, DC,;; is the current duty cycle (% active
time), Q¢arger 1S the desired queue length threshold,
Qcurrent 1s the actual queue length and n Is the
learning rate.

Application Context: Motion or activity spikes result
in speedy data relay in smart homes; otherwise, a low
duty cycle conserves energy when nothing is going
on. Sudden burst that occurs due to machine
anomalies also boost the duty cycle to eliminate
delays in industrial IoT. In environmental
monitoring, high queue buildup, for example, during
forest fires, imposes higher duty cycles to report
them and return to the normal situation.

3.5. Hybrid Model: PSO-LEACH + RF

The hybrid approach achieves effective
energy management in [oT networks by combining
Random Forest (RF) traffic prediction, Particle
Swarm Optimisation (PSO), and the LEACH
clustering algorithm.

PSO Component: By choosing energy-efficient
cluster heads according to node density, residual
energy, and distance to neighbours, the PSO
component improves LEACH. This method uses
efficient load balancing within clusters to save
energy usage and increase network longevity.
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RF Component: At every node, the RF component
predicts future changes in traffic. Energy-aware
sleep scheduling is guided by these forecasts, which
enable nodes to remain active during times of high
traffic demand while transitioning to low-power
states during anticipated low-load periods.

Traffic Adaptation: The hybrid technique is
evaluated in steady, bursty, and hybrid traffic
situations using the same IoT dataset as the advanced
model. This guarantees assessment consistency and
shows that it can save energy while preserving
network performance in a variety of real-world
scenarios. The hybrid IoT model workflow from
node clustering to optimised performance is depicted

in Figure 3.
loT Nodes

h 4

Cluster Formation using \
LEACH

l

Cluster Head Selection via
PSO

l

Energy-aware Routing

|

Traffic Profiling

l

Application Adaptation Layer
. J

Performance Output:
Network Lifetime, Energy

Balance
. J

Figure 3 Hybrid Model Architecture

3.6. Mapping Evaluation Metrics and Traffic
Patterns for Simulation

Table 3 classifies the profile of traffic and the
main performance indicators. This mapping
connects each type of traffic to those performance
measures that are the most applicable to it, so that

simulation in NS-3 is as representative of real-world
ToT application priorities as possible.

Table 3 Mapping of loT Traffic Patterns to Evaluation
Metrics

Traffic Profile | Key Metric Focus

Profile A Network lifetime, coverage
Profile B Latency, reliability
Profile C Throughput, energy balance

By connecting Profile A to network lifetime
and coverage, Profile B to latency and reliability, and
Profile C to throughput and energy balance, this
evaluation concentrates on the parameters most
relevant in each of these scenarios, so as to compare
the hybrid and the advanced models fairly and
application-specific.

4. RESULTS

This section aims to introduce the
performance results of the protocol based on the
advanced and the hybrid model on the basis of a
unified dataset with mapping elements of the
applications. The performance results are based on
the performance indicators that have a direct link to
the research objectives: consumed energy, network
lifetime, latency, packet delivery ratio (PDR), and
throughput with various IoT traffic patterns
(periodic, event-driven, bursty). The findings are
organised to offer quantifiable proof of performance
variations and to make insightful deductions
regarding each model's suitability for use in
particular IoT scenarios.

4.1. Experimental Setup Summary

The network configuration and simulation
parameters used to assess the PSO-LEACH + RF
hybrid model and the suggested PPO-based
advanced model are compiled in Table 4. The
parameters, which guarantee uniform settings for
equitable performance comparison, include node
density, deployment area, energy resources,
communication specifications, traffic patterns, and
simulation time.
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Table 4 Simulation Parameters for Comparative
Evaluation

Parameter Value

Number of Nodes | 200

Simulation Area 500m x 500m

Initial Energy per | 2 Joules

Node

Communication 100 m

Range

Traffic Patterns Periodic, Event-driven,
Bursty

Simulation Tool NS-3

Simulation 5000 rounds

Duration

Models PPO-based Advanced

Compared Model, PSO-LEACH +
Random  Forest Hybrid
Model

4.2. Network Performance Metrics Across

Applications

The 3D scatter plot in Figure 4 compares
hybrid models and advanced models at three IoT
application types of Environmental Monitoring,
Smart Home Automation, and Industrial IoT
Monitoring. In both scenarios, the performance is
measured in throughput (kbps), latency (ms) and
packet delivery ratio (PDR, %). In every aspect, the
advanced model performs better than the hybrid
model. The advanced model, for instance, obtains
269 kbps throughput, 110 ms latency, and 97.5%
PDR in Environmental Monitoring, whereas the
hybrid model achieves 246 kbps, 118 ms latency, and
96.2% PDR. In the same way, the hybrid model of
Smart Home Automation reports 353kbps, 97ms,
and 94.8% PDR, while the advanced model records
375kbps, 89ms, and 96.7% PDR. In contrast to
hybrid's 423kbps, 138ms, and 93.5% throughput,
Industrial IoT  Monitoring exhibits  higher
performance with 446kbps throughput, 130ms
latency, and 95.1% PDR.

© Hybrid

% 2
ingistyial loT an Vst
96.2% ‘ %
935% £ Mynitonng
Inq@grial loT & t
= ’ 9
T 92
T 90
450 =
- 80
400 )
” s 100
Moy, 3P = 110
e, 300 = 120 o)
ke, T w0 o
s, B0 N 140 B

200 160

Figure 4 Network Performance Metrics Across
Applications

The advanced model offers an increase in
throughput, a decrease in latency and an
improvement in reliability (PDR) measured in all the
tested applications. The reduction in delays and
packet delivery has the greatest benefit to Smart
Home Automation. Industrial IoT Monitoring has
the highest throughput rates, along with an increased
latency when compared to other applications. In
general, advanced model always provides higher
QoS, and therefore, it is likely to be chosen in the
situation where fast, reliable, and responsive
communication is needed.

4.3. Energy Consumption vs.
Scenario

Application

Bar chart in Figure 5 presents the usage of
energy by two models, hybrid and advanced, in three
areas: (Environmental Monitoring), (Smart Home
Automation), and (Industrial IoT Monitoring). The
Hybrid model uses 14.8 J in Environmental
Monitoring as compared to 16.1 J in the case of the
advanced model. In Smart Home Automation, the
hybrid model consumes 21.5 J of energy as opposed
to 229 J in the advanced model. Energy
consumption peaks in the Industrial IoT Monitoring
with 28.7 J in the hybrid and 30.2 J in the advanced
model. In all of the applications, advanced models
use slightly more energy (about 1.3-1.5 J more) than
Hybrid models.
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Figure 5 Comparison of Energy Consumption for Hybrid
and Advanced Models Across Application Types

The findings reveal that energy
consumption has shown an upward trend over time,
whereby environmental monitoring used less energy
in comparison to industrial IoT Monitoring. On the
whole, hybrid models have better energy efficiency
and thus are preferred in power-sensitive settings,
whereas advanced models can provide extra
performance at the cost of slightly increased energy
usage.

4.4. Security Overhead vs. Performance

The percentage of processing overhead
linked to security for hybrid and advanced models is
displayed in Figure 6, for the following three
application domains: industrial IoT monitoring,
smart home automation, and environmental
monitoring. The hybrid model has a 4.2% overhead
in environmental monitoring, whereas the advanced
model has an overhead of 3.7%. Hybrid and
advanced types of smart home automation register
5.1% and 4.5%, respectively. The greatest security
overhead is seen in industrial [oT monitoring, where
hybrid models account for 6.3% and advanced
models for 5.6%. In every area, hybrid models
consistently exhibit a little greater overhead than
advanced models (by around 0.5-0.7%).

&3
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6 Advanced 5.6

)
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3.7
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~
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Figure 6: Trend of Security Overhead for Hybrid and
Advanced Models Across Applications

The pattern shows that security overhead rises with
application complexity, reflecting the increased
processing requirements for protecting more
complex systems. This also implies that advanced
models might be more efficient when it comes to
processing security tasks, whereas hybrid models
offer a slight efficiency trade-off in exchange for
higher flexibility.

3.7. Network Lifetime Estimation

The line chart in Figure 7 shows how long
hybrid and advanced models may be used (in days)
in three different application areas. Hybrid models
last 812 days in Environmental Monitoring, whereas
advanced models last 774 days. The advanced model
lasts 608 days in Smart Home Automation, whereas
the hybrid model only lasts 645 days. With hybrid
models lasting 512 days and advanced models
lasting 481 days, industrial IoT monitoring has the
lowest lifespans. The predicted lifespan of hybrid
models is consistently longer than that of advanced
models across all applications, with differences
ranging from 31 to 38 days. Higher operating needs
in increasingly complicated systems are shown by
the trend of decreasing lifespan from environmental
monitoring to industrial IoT monitoring.
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Figure 7: Estimated Lifetime: Hybrid vs Advanced

The results show that hybrid models typically
offer longer life duration when compared to
advanced models, with the benefits more noticeable
where there is a great demand. Environmental
monitoring's shorter lifespan compared to industrial
IoT monitoring emphasises how more complicated
tasks require more maintenance and energy. Hybrid
versions are more appropriate for applications that
prioritise device life, even though advanced models
can provide further performance advantages.

3.8. Hybrid VvS. Advanced:
Performance Comparison
The horizontal bar chart in Figure 8 contrasts

four performance indicators between advanced and

Relative
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hybrid models. In terms of energy efficiency,
advanced obtains 135 J (+5.47%) while hybrid
achieves 128 J. Hybrid records 412 kbps in
throughput, while advanced records 435 kbps
(+5.58%). In terms of PDR, advanced performs
slightly better at 98.1% (+1.34%), while hybrid
achieves 96.8%. Lastly, the advanced network
lifetime lasts 1280 seconds (+4.49%), while the
hybrid network lifetime lasts 1225 seconds.

Network Lifetime (s) {55

Packet Delivery Ratio (%) 4

Throughput (kbps)

Energy Efficiency ()

I 128 s Hybrid
a Advanced

0 200 400 600 800 1000 1200
Metric Value

Figure 8 Percentage Difference Between Hybrid and
Advanced Models

Advanced models often beat hybrid models
by modest margins across all criteria. The
performance difference is small, and so hybrid
versions seem to be competitive and might provide
additional advantages like lower costs or energy
usage in some applications.

4. DISCUSSION

The hybrid PSO-LEACH + RF model and the
advanced PPO-based DRL model are two different
energy-aware communication protocols that are
evaluated in this research to solve the pressing
problem of energy conservation in large-scale IoT
networks. Both models were evaluated on the same
type of dataset, using an application-mapped
evaluation framework, in a common set of IoT traffic
patterns: periodic, event-driven, and bursty, which
reflect several real-world applications in IoT: smart
cities, IoT monitoring in industrial settings, and
environmental sensing. This elaborate configuration
enabled a fair comparison that was in line with the
research interest of finding effective energy-efficient
protocols that run in an environment of mixed traffic.
[22].

The results show that the PPO-DRL model
outperforms the hybrid model in terms of network
performance and flexibility, continually providing
reduced latency and greater throughput in all
application situations. This is possible due to the
PPO model's capacity to optimise advanced DRL-
based protocols by dynamically modifying duty

cycles, transmit power, and routing pathways in
response to changing network conditions. [23]. The
study's objective is to benchmark these paradigms on
energy, latency, and reliability metrics, and while the
hybrid PSO-LEACH + RF approach shows
competitive energy conservation due to effective
cluster head selection and proactive traffic
prediction, it is less responsive during bursty and
event-driven traffic, resulting in higher delays and
lower PDRs.

Furthermore, the traffic-aware adaptation
analysis proves the robustness of both models to
periodic traffic that can be observed in the
environment monitoring-related applications. But,
PPO-DRL thrives in dynamic cases that are
experienced in smart home automation and
industrial IoT, where speedy responses to changes in
traffic are highly significant. This result supports the
goal of the study, which was to map performance to
particular IoT domains and quantify traffic-aware
adaptability. [24], [25]. Empirical proof for the
progress of adaptive IoT communication is provided
by the results, which indicate that incorporating deep
reinforcement learning into IoT protocols improves
QoS (including throughput, latency, and packet
delivery ratio) without significant energy costs.
Further study on optimising and assuring realistic
energy-aware networking systems might benefit
from evaluating the models in real-world IoT
deployments and including more sophisticated
security features in the communication protocols.

S. CONCLUSION

The PPO-based advanced DRL model
outperforms the PSO-LEACH + RF hybrid method
in large-scale IoT deployments, according to this
comparative research. Regardless of the application
situation, the Advanced model always delivered a
greater throughput (up to 23 kbps), shorter latency
(by 8-10 ms), and an increased PDR (by up to 2%).
In the case of industrial IoT monitoring, for instance,
the advanced model achieved a throughput of 446
kbps, an average packet latency of 130 ms, and a
packet delivery rate (PDR) of 95.1%, while the
Hybrid model achieved 423 kbps, 138 ms delay, and
93.5% PDR. Compared to the hybrid's 353 kbps, 97
ms, and 94.8% PDR, advanced's smart home
automation attained 375 kbps throughput, 89 ms
latency, and 96.7% PDR. For the majority of real-
world use cases, the Advanced model’s speed and
reliability gains outweigh the Hybrid model’s
modest 0.2—1.5 J per-node energy advantage. These
results affirm that learning-based adaptive policies
such as PPO-DRL can enhance QoS while ensuring
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robust energy management. This makes them well-
suited for next-generation IoT networks where
speed, reliability, and responsiveness are critical.
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