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ABSTRACT 

 
The explosion in Internet of Things (IoT) installations has connected millions of low-power devices, which 
poses serious problems for maintaining reliable, energy-efficient connectivity in diverse settings. Traditional 
hybrid optimisation approaches like Particle Swarm Optimisation (PSO)-Low Energy Adaptive Clustering 
Hierarchy (LEACH) integrated with Random Forest (RF) improve clustering and traffic forecasting. Still, 
they struggle with the dynamic, heterogeneous traffic of smart cities, industrial IoT, and environmental 
monitoring. Emerging Deep Reinforcement Learning (DRL) algorithms, particularly Proximal Policy 
Optimisation (PPO), enable real-time routing and Medium Access Control (MAC) regulation but have not 
been extensively compared with hybrid algorithms in unified, realistic scenarios. This paper presents a 
thorough, application-oriented comparative analysis of a DRL protocol based on PPO and a PSO-LEACH + 
RF hybrid system, both of which are designed for energy-aware IoT communication. Both methods were 
evaluated using the same simulation scenario with consolidated traffic data reflecting the periodic, event-
driven, and bursty nature of environmental monitoring, smart home automation, and industrial IoT 
applications. Key metrics include energy consumption, throughput, average packet delay, and packet delivery 
ratio (PDR). Results show that the hybrid model used 0.2–1.5 J less energy, while the PPO-DRL model 
achieved up to 23 kbps higher throughput, 8–10 ms lower latency, and up to 2% higher PDR. 
Keywords: Internet of Things (IoT), Deep Reinforcement Learning (DRL), PSO LEACH, Energy Efficiency, 

Quality of Service (QoS)  
 
1. INTRODUCTION  
 

The massive growth of the Internet of Things 
(IoT) has led networks to manage a vast number of 
resource-constrained devices communicating over a 
wide area. It is essential to preserve node energy for 
extended operation in such dense, continuous-
operation settings, which include smart cities, 
industries, and environmental monitoring [1], [2]. 
The limitations of conventional methods have 
become apparent as the real-world networks struggle 
with increasingly unpredictable traffic, despite the 

fact that those approaches concentrated on effective 
clustering and routing [3], [4], [5]. 

The current hybrid optimisation attempts, like 
PSO-LEACH with machine learning (RF), have 
shown improved energy savings and cluster 
formation. However, these techniques are usually 
designed for environments with low mobility and 
may not respond quickly in mixed or changing traffic 
conditions typical of most practical IoT systems. 
Additionally, recent advances in DRL methods, 
especially PPO, offer new potential for adaptive, 
decentralised control, but they have not been widely 
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adopted in IoT protocols or dynamic traffic scenarios 
in published work [6], [7], [8]. This is due to reasons 
such as limited availability of realistic datasets, 
challenges in fine-tuning for multi-profile traffic, 
and a lack of evaluation frameworks that integrate 
both learning-based and optimisation-based models 
under the same conditions. 

The gap in the existing research is that none of the 
previous works provide a fully application‑mapped 
comparison of the benefits of hybrid and 
protocol‑based optimisations and DRL methods in 
protocols with a common, traffic-diverse but flexible 
dataset [9]. The existing literature usually uses 
simplified patterns and tends to test only models 
without integrating them or considers limited 
performance metrics, which makes it challenging to 
measure the actual trade-offs in energy-efficiency, 
latency, throughput and QoS [10], [11]. 

This study addresses that gap by conducting a 
rigorous, application-mapped evaluation of a PPO-
based DRL protocol and a PSO LEACH + RF hybrid 
model under identical datasets, metrics, and 
deployment conditions, replicating the real-world 
IoT domains like smart cities, industrial automation, 
and environmental monitoring to enable fair 
comparison. The main goal is to design and 

implement a thorough, application-mapped 
comparative evaluation of these two models.  

The novelty of this study lies in developing a 
single, integrated, flexible dataset based on realistic 
IoT traffic profiles, enabling direct and fair 
comparisons under identical topology, metrics, and 
deployment conditions, while implementing a PPO 
DRL system for energy-efficient MAC and routing 
management. This work presents actionable 
evidence that can be used to shape the architecture of 
the next generation of adaptive and energy-efficient 
IoT protocols. 

2. LITERATURE SURVEY  

The following Table 1 gives an overview of 
the latest developments, data collection, and 
outstanding issues in the area of energy-efficient 
communication on IoT systems, and points out the 
tendency of incorporating AI/DL and DRL methods 
with the established optimisation hybrid techniques. 
It reflects the practical limitations and emerging 
solutions that inform next-generation IoT protocol 
design. 

Table 1: Recent Literature on Energy-Efficient IoT Communication Protocols 
 

Ref Model Dataset Limitation Remark 

[12] 
Energy-efficient 
routing protocols 
for IoT 

Simulated IoT 
routing 
scenarios 

Not tested on real-
world diverse traffic 
datasets 

Adaptive routing 
improves energy 
saving; scalability 
needs more study 

[13] 
LEACH protocol 
enhanced by AI 

Simulated IoT 
sensor 
deployments 

Focuses mainly on 
clustering; lacks real-
time traffic adaptation 

Significant energy 
savings and improved 
node longevity 

[14] 
Hybrid QGA-
ACO with DRL 
for routing 

Smart city air 
pollution 
monitoring 

Computational 
complexity and energy 
overhead 

Improved routing 
efficiency and energy 
saving in complex 
environments 

[15] 
Survey on energy 
management 
techniques 

Survey 
covering 
multiple IoT 
protocols 

Does not include 
detailed DRL 
performance analysis 

Identifies research gaps 
and trends in IoT 
energy protocols 
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[16] 
Random Forest-
based IoT traffic 
classification 

28 IoT devices' 
traffic data 
collected 

Classification 
accuracy may not 
directly translate to 
energy efficiency 

High accuracy in 
traffic classification 
helps adaptive 
protocols 

[17] 
Actor-Critic DRL 
for energy-
efficient edge AI 

Hardware 
energy 
consumption 
traces 

Focused on edge AI 
hardware, not general 
IoT routing 

Achieves 34.6% 
energy efficiency 
improvement 

[18] 

Adaptive duty 
cycling and 
energy 
management 
framework 

IoT sensor 
network 
deployments 

Evaluation limited to 
specific sensor 
types/environments 

Enhanced data 
reliability and energy 
savings 

[19] 

Hybrid 
sustainable 
energy harvesting 
system 

Solar and wind 
energy data 
with IoT 

Focus on energy 
harvesting; limited 
communication 
protocol evaluation 

Improved network 
sustainability via 
energy harvesting 

[20] 

Energy-efficient 
routing protocol 
using Deep Q-
Network (DQN) 
for IoT 

NS-3 simulated 
IoT network 
with mixed 
traffic patterns 

No large-scale real-
world deployment 
tested; simulation-
only results 

Demonstrated 
significant gains in 
energy saving (up to 
18%) and reduced 
latency in 
heterogeneous IoT 
traffic scenarios 

[21] 
Green IoT energy 
management 
techniques 

Multiple IoT 
network 
configurations 

General survey; lacks 
a deep DRL approach 
analysis 

Highlights AI 
integration potential 
for IoT energy savings 

3. METHODOLOGY  
 
3.1 System Design 

 The proposed study compares two popular 
approaches for optimising communication protocols 
to reduce power consumption in IoT networks: 

The advanced model combines DRL with 
PPO to enable intelligent, adaptive routing and MAC 
layer control. It allows nodes to adapt to changing 
traffic patterns and real-time network circumstances 
by learning the best transmission parameters. 

The hybrid model includes RF traffic 
prediction, the LEACH clustering methodology, and 
PSO. While RF predicts traffic fluctuations and 
enables proactive network modifications to save 
energy and enhance overall performance, PSO 
maximises cluster head selection and formation. The 
system architecture consists of three layers: 

Application Layer: The first layer of the architecture 
is in charge of creating traffic patterns that replicate 
actual IoT situations. Three different applications are 
mapped by it, such as the Industrial IoT Monitoring, 

which combines both periodic and urgent event 
traffic with a hybrid mix of high and low data rates, 
the Smart Home Automation, which is characterised 
by event-driven bursts and bursty traffic and 
Environmental Monitoring, which generates steady, 
periodic sensing traffic. 

Perception Layer: This layer is responsible for 
gathering operational or environmental data in real-
time by integrating various IoT sensors. It employs 
transmission regulations, dynamic duty cycling, and 
clustering algorithms to minimise energy 
consumption and maintain high network reliability, 
regardless of application requirements or traffic 
load. Network Layer: This layer employs energy-
efficient routing technologies to control 
communication. Using PPO-trained agents, the 
network layer responds intelligently to changing 
network circumstances and traffic types by adjusting 
MAC values and routing pathways in real time. On 
the other hand, the hybrid model uses RF methods to 
forecast network demand and PSO to construct ideal 
clusters, allowing for more proactive allocation of 
resources and energy savings. The system 
architecture involving steps from IoT data 
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acquisition to model implementation and evaluation 
is depicted in Figure 1. 

  

 

Figure 1: System Architecture Proposed 
Methodology for Enhancing Communication Protocol 

Design in IoT Networks. 

 

3.2 Dataset Description 

Dataset Source: The dataset used during the 
research was created by using the IoT Traffic 
Generator Dataset presented by the Centre for 
Development of Advanced Computing (C-DAC) 
India, which can be found on their IoT Research 
Resources page (https://www.cdac.in). This dataset 
consists of both simulated and real sensor network 
traces to accommodate various traffic scenarios to 
reflect the various behaviours of IoT applications. 

The dataset consists of key attributes such 
as Timestamp, Node ID, Payload Size (bytes), Inter-
Arrival Time (ms), Energy Consumption (mJ), Link 
Quality Indicator (LQI), and Received Signal 
Strength Indicator (RSSI). Approximately 100,000 
records are included in each traffic scenario. The 

advanced PPO-DRL model and the hybrid PSO-
LEACH + RF model are both given the same dataset 
without any preprocessing bias or manipulation to 
guarantee experimental fairness. 

3.3 Data Collection 

Table 2 provides a concise summary of the 
three separate traffic profiles that were taken from 
the C-DAC IoT Traffic Generator Dataset. These 
profiles reflect typical behaviours seen in real-world 
IoT applications. 

Table 2 IoT Traffic Profiles Extracted for Data 
Collection 

Profi
le 

Applicati
on 
Domain 

Traffic 
Pattern 

Typical 
Transmiss
ion 
Distance 

Duty 
Cycle 
Behavi
our 

A 
Environme
ntal 
Monitoring 

Periodic 
data 
transmiss
ion 

Medium to 
long 

Stable 
(regular 
intervals
) 

B 

Smart 
Home 
Automatio
n 

Event-
driven 
bursts 

Short to 
medium 

Dynami
c 
(activate
d by 
events) 

C 
Industrial 
IoT 
Monitoring 

Mixed 
high-low 
traffic 
patterns 

Variable 
(short/long
) 

Adaptiv
e 
(depends 
on 
activity) 

The sensors used are supposed to function 
in a diverse IoT setting with different duty cycles and 
transmission distances. 

3.4 Data Processing 

The dataset is subjected to a number of 
crucial preparation processes to guarantee its quality 
and consistency prior to model running. By 
eliminating missing or corrupted data, the possibility 
of biases or inaccurate outcomes during model 
training is decreased. Normalising important 
characteristics like energy usage, RSSI, and LQI to 
a standard scale promotes fair comparisons between 
qualities with various measurement units and 
balanced learning. 

To facilitate dependable learning, model 
selection, and objective performance evaluation, the 
dataset is divided into training (70%), validation 
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(15%), and testing (15%) subsets after cleaning and 
normalisation. Then, feature extraction improves the 
dataset by combining inter-arrival time statistics, 
computing average payload size, and calculating 
rolling window energy consumption. More efficient 
and precise decision-making in a variety of IoT 
traffic situations is rendered by these combined and 
statistically enhanced characteristics, which provide 
significant inputs for both the advanced and hybrid 
models. Following data preprocessing, traffic traces 
were transformed into state and action 
representations for model training. The subsequent 
section describes the Advanced Model’s architecture 
and control policies. 

3.5 Advanced Model: PPO-DRL for Energy-
Aware Routing & MAC 

3.5.1. System description 

To facilitate energy-efficient 
communication in Wireless Sensor Networks 
(WSNs) and the IoT, the PPO-DRL model balances 
energy conservation, latency, and dependability. 
This system utilises an intelligent agent, which is 
either a cluster head or an individual node, to 
undertake critical communication decisions like duty 
cycle percentage, transmit power and selection of 
routing path. The detailed functional description of 
the Advanced Model’s reinforcement learning 
component is given below: 

State Space: To evaluate energy status and 
communication quality in real time, the agent's state 
space records key network parameters such as 
residual energy, buffer occupancy, LQI, and traffic 
type.  

Action Space: This allows the user to change the 
transmission power, duty cycle, and next-hop node 
to make the network work better.  

Reward Function Design: The agent is guided 
towards techniques that guarantee dependability and 
prolong network lifespan by an incentive function 
that strikes a balance between PDR, latency, and 
energy saving.  

Training Procedure: The system is equipped to adapt 
to the changing IoT applications and network 
circumstances after undergoing training across a 
variety of traffic situations. The process of 
improving efficiency and reliability adapted by the 
advanced model is shown in Figure 2, starting with 

IoT nodes and continuing via clustering, intelligent 
routing, and traffic profiling. 

  

Figure 2: Advanced Model Architecture 

3.5.2. Optimisation model and key computations 

Energy Consumption per Transmission: This 
models the per-packet energy cost. The PPO agent 
uses it internally to evaluate the cost of sending data 
to a specific neighbour for selecting the energy-
aware route. 

𝐸௧௫ = (𝐸௘௟௘௖ × 𝑘) + ൫𝐸௔௠௣ × 𝑘 × 𝑑௡൯                 (1) 

Where, 𝐸௘௟௘௖   Is the energy to run the 
transmitter/receiver circuitry (nJ/bit), 𝑘 is the packet 
size (bits), 𝐸௔௠௣ Is the energy for the transmission 
amplifier (pJ/bit/mn), 𝑑 is the transmission distance 
(m) and 𝑛  Is the path loss exponent (2–4, 
environment-dependent). 
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Application context: Amplifier cost is a major factor 
in environmental monitoring, as the nodes often 
communicate across greater distances and hence, 
PPO prefers shorter hops to save energy. Short-range 
communications lessen the influence of amplifiers in 
home automation, enabling frequent updates without 
significantly depleting batteries. Higher amplifier 
power may be needed for interference in industrial 
IoT, requiring PPO to strike a compromise between 
dependability and energy cost. 

PPO Reward Function: It provides a feedback 
signal to the PPO agent. A positive reward is linked 
to achieving high delivery ratios with low power 
use and minimal delay. 

𝑅௧ = 𝛼 ∙ 𝑃𝐷𝑅௧ − 𝛽 ∙ 𝐸௧ − 𝛾 ∙ 𝐷௧                      (2) 

Where, 𝑃𝐷𝑅௧  Is the Packet Delivery Ratio at the 
time? 𝑡,  𝐸௧ Is the energy consumed in interval t, 𝐷௧  
Is the Delay (ms), and  𝛼, 𝛽, 𝛾 Are the Designer-set 
weights balancing reliability, energy, and latency? 

Application context: In environmental monitoring, 
the β is increased to maximise energy conservation 
to achieve long network lifetimes. Real-time 
actuation needs a greater γ to reduce delay in smart 
home automation. Industrial IoT applies balanced 
weights α, β, γ to manage both critical alerts and 
periodic data transmission needs. 

PPO Clipped Objective: This ensures stable 
training by controlling how far a new policy deviates 
from the old one at each update. It prevents large, 
risky policy changes. 

𝐿஼௅ூ௉(𝜃) = 𝔼௧ൣmin൫𝑟௧(𝜃)𝐴መ௧ , 𝑐𝑙𝑖𝑝(𝑟௧(𝜃), 1 − 𝜖, 1

+ 𝜖)𝐴መ௧൯൧           (3) 

Where, 𝑟௧(𝜃)  Is the ratio of new to old policy 
probabilities, 𝐴መ௧ The advantage estimate (how much 
better an action is than average) and ϵ is the clip 
parameter (e.g., 0.1–0.2). 

Application context: Clipping makes learning stable, 
such that the PPO agent dynamically adjusts to 
changing IoT traffic aspects like periodic sensing, 
bursts, or a mix of loads. In environmental 
monitoring, it eliminates the unstable policies that 
occur due to the seasonal traffic variations, and 
regarding industrial IoT, it ensures that the resulting 
performance remains stable throughout high-load 
and low-load production phases.  

Network Lifetime Estimation: Used to evaluate 
long-term energy efficiency and employed as a 
performance metric after policy convergence. 

𝑇௟௜௙௘ =
∑ 𝐸௜,ூ௡௜௧௜௔௟

ே
௜ୀଵ

∑ 𝐸௜,௖௢௡௦௨௠௘ௗ
ே
௜ୀଵ

            (4) 

Where, 𝐸௜,ூ௡௜௧௜௔௟  Is the initial energy of the node 𝑖 , 
𝐸௜,௖௢௡௦௨௠௘ௗ  Is the consumed energy of node i over 
time, and N is the number of nodes. 

Application context: In the case of environmental 
monitoring, a longer lifetime minimises the cost and 
risks of maintenance in inaccessible locations. In-
home automation enables the user to avoid frequent 
battery replacements. In industrial IoT, it avoids 
maintenance shutdowns in unsafe equipment 
locations. 

Duty Cycle Adjustment Rule: This rule allows the 
agent to dynamically adjust node active time based 
on real-time queue length feedback. If the queue 
builds up, then it increases the duty cycle. If the 
queue is under the target, then it reduces the duty 
cycle to save energy. 

𝐷𝐶௡௘௪ = 𝐷𝐶௢௟ௗ + 𝜂

∙ ൫𝑄௧௔௥௚௘௧ − 𝑄௖௨௥௥௘௡௧൯               (5) 

Where, 𝐷𝐶௢௟ௗ  is the current duty cycle (% active 
time), 𝑄௧௔௥௚௘௧  is the desired queue length threshold, 
𝑄௖௨௥௥௘௡௧   Is the actual queue length and 𝜂  Is the 
learning rate. 

Application Context: Motion or activity spikes result 
in speedy data relay in smart homes; otherwise, a low 
duty cycle conserves energy when nothing is going 
on. Sudden burst that occurs due to machine 
anomalies also boost the duty cycle to eliminate 
delays in industrial IoT. In environmental 
monitoring, high queue buildup, for example, during 
forest fires, imposes higher duty cycles to report 
them and return to the normal situation. 

3.5. Hybrid Model: PSO-LEACH + RF 
 
The hybrid approach achieves effective 

energy management in IoT networks by combining 
Random Forest (RF) traffic prediction, Particle 
Swarm Optimisation (PSO), and the LEACH 
clustering algorithm.  
 
PSO Component: By choosing energy-efficient 
cluster heads according to node density, residual 
energy, and distance to neighbours, the PSO 
component improves LEACH. This method uses 
efficient load balancing within clusters to save 
energy usage and increase network longevity. 
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RF Component: At every node, the RF component 
predicts future changes in traffic. Energy-aware 
sleep scheduling is guided by these forecasts, which 
enable nodes to remain active during times of high 
traffic demand while transitioning to low-power 
states during anticipated low-load periods. 
 
Traffic Adaptation: The hybrid technique is 
evaluated in steady, bursty, and hybrid traffic 
situations using the same IoT dataset as the advanced 
model. This guarantees assessment consistency and 
shows that it can save energy while preserving 
network performance in a variety of real-world 
scenarios. The hybrid IoT model workflow from 
node clustering to optimised performance is depicted 
in Figure 3. 

 
Figure 3 Hybrid Model Architecture 

 
3.6. Mapping Evaluation Metrics and Traffic 

Patterns for Simulation 
 
Table 3 classifies the profile of traffic and the 

main performance indicators. This mapping 
connects each type of traffic to those performance 
measures that are the most applicable to it, so that 

simulation in NS-3 is as representative of real-world 
IoT application priorities as possible. 

Table 3 Mapping of IoT Traffic Patterns to Evaluation 
Metrics 

Traffic Profile Key Metric Focus 

Profile A Network lifeƟme, coverage 

Profile B Latency, reliability 

Profile C Throughput, energy balance 

 

By connecting Profile A to network lifetime 
and coverage, Profile B to latency and reliability, and 
Profile C to throughput and energy balance, this 
evaluation concentrates on the parameters most 
relevant in each of these scenarios, so as to compare 
the hybrid and the advanced models fairly and 
application-specific.  

4. RESULTS 

 
This section aims to introduce the 

performance results of the protocol based on the 
advanced and the hybrid model on the basis of a 
unified dataset with mapping elements of the 
applications. The performance results are based on 
the performance indicators that have a direct link to 
the research objectives: consumed energy, network 
lifetime, latency, packet delivery ratio (PDR), and 
throughput with various IoT traffic patterns 
(periodic, event-driven, bursty).  The findings are 
organised to offer quantifiable proof of performance 
variations and to make insightful deductions 
regarding each model's suitability for use in 
particular IoT scenarios. 

4.1. Experimental Setup Summary 

The network configuration and simulation 
parameters used to assess the PSO-LEACH + RF 
hybrid model and the suggested PPO-based 
advanced model are compiled in Table 4. The 
parameters, which guarantee uniform settings for 
equitable performance comparison, include node 
density, deployment area, energy resources, 
communication specifications, traffic patterns, and 
simulation time. 
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Table 4 Simulation Parameters for Comparative 
Evaluation 

Parameter Value 

Number of Nodes 200 

SimulaƟon Area 500m × 500m 

IniƟal Energy per 
Node 

2 Joules 

CommunicaƟon 
Range 

100 m 

Traffic PaƩerns Periodic, Event-driven, 
Bursty 

SimulaƟon Tool NS-3 
 

SimulaƟon 
DuraƟon 

5000 rounds 

Models 
Compared 

PPO-based Advanced 
Model, PSO-LEACH + 
Random Forest Hybrid 
Model 

 

4.2. Network Performance Metrics Across 
Applications 

The 3D scatter plot in Figure 4 compares 
hybrid models and advanced models at three IoT 
application types of Environmental Monitoring, 
Smart Home Automation, and Industrial IoT 
Monitoring. In both scenarios, the performance is 
measured in throughput (kbps), latency (ms) and 
packet delivery ratio (PDR, %). In every aspect, the 
advanced model performs better than the hybrid 
model. The advanced model, for instance, obtains 
269 kbps throughput, 110 ms latency, and 97.5% 
PDR in Environmental Monitoring, whereas the 
hybrid model achieves 246 kbps, 118 ms latency, and 
96.2% PDR. In the same way, the hybrid model of 
Smart Home Automation reports 353kbps, 97ms, 
and 94.8% PDR, while the advanced model records 
375kbps, 89ms, and 96.7% PDR. In contrast to 
hybrid's 423kbps, 138ms, and 93.5% throughput, 
Industrial IoT Monitoring exhibits higher 
performance with 446kbps throughput, 130ms 
latency, and 95.1% PDR. 

 

Figure 4 Network Performance Metrics Across 
Applications 

The advanced model offers an increase in 
throughput, a decrease in latency and an 
improvement in reliability (PDR) measured in all the 
tested applications. The reduction in delays and 
packet delivery has the greatest benefit to Smart 
Home Automation. Industrial IoT Monitoring has 
the highest throughput rates, along with an increased 
latency when compared to other applications. In 
general, advanced model always provides higher 
QoS, and therefore, it is likely to be chosen in the 
situation where fast, reliable, and responsive 
communication is needed. 

4.3. Energy Consumption vs. Application 
Scenario 

Bar chart in Figure 5 presents the usage of 
energy by two models, hybrid and advanced, in three 
areas: (Environmental Monitoring), (Smart Home 
Automation), and (Industrial IoT Monitoring). The 
Hybrid model uses 14.8 J in Environmental 
Monitoring as compared to 16.1 J in the case of the 
advanced model. In Smart Home Automation, the 
hybrid model consumes 21.5 J of energy as opposed 
to 22.9 J in the advanced model. Energy 
consumption peaks in the Industrial IoT Monitoring 
with 28.7 J in the hybrid and 30.2 J in the advanced 
model. In all of the applications, advanced models 
use slightly more energy (about 1.3-1.5 J more) than 
Hybrid models. 
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Figure 5 Comparison of Energy Consumption for Hybrid 
and Advanced Models Across Application Types 

The findings reveal that energy 
consumption has shown an upward trend over time, 
whereby environmental monitoring used less energy 
in comparison to industrial IoT Monitoring. On the 
whole, hybrid models have better energy efficiency 
and thus are preferred in power-sensitive settings, 
whereas advanced models can provide extra 
performance at the cost of slightly increased energy 
usage. 

4.4. Security Overhead vs. Performance 

The percentage of processing overhead 
linked to security for hybrid and advanced models is 
displayed in Figure 6, for the following three 
application domains: industrial IoT monitoring, 
smart home automation, and environmental 
monitoring. The hybrid model has a 4.2% overhead 
in environmental monitoring, whereas the advanced 
model has an overhead of 3.7%. Hybrid and 
advanced types of smart home automation register 
5.1% and 4.5%, respectively. The greatest security 
overhead is seen in industrial IoT monitoring, where 
hybrid models account for 6.3% and advanced 
models for 5.6%. In every area, hybrid models 
consistently exhibit a little greater overhead than 
advanced models (by around 0.5–0.7%).  

 

Figure 6: Trend of Security Overhead for Hybrid and 
Advanced Models Across Applications 

The pattern shows that security overhead rises with 
application complexity, reflecting the increased 
processing requirements for protecting more 
complex systems. This also implies that advanced 
models might be more efficient when it comes to 
processing security tasks, whereas hybrid models 
offer a slight efficiency trade-off in exchange for 
higher flexibility. 

3.7. Network Lifetime Estimation 
 
The line chart in Figure 7 shows how long 

hybrid and advanced models may be used (in days) 
in three different application areas. Hybrid models 
last 812 days in Environmental Monitoring, whereas 
advanced models last 774 days. The advanced model 
lasts 608 days in Smart Home Automation, whereas 
the hybrid model only lasts 645 days. With hybrid 
models lasting 512 days and advanced models 
lasting 481 days, industrial IoT monitoring has the 
lowest lifespans. The predicted lifespan of hybrid 
models is consistently longer than that of advanced 
models across all applications, with differences 
ranging from 31 to 38 days. Higher operating needs 
in increasingly complicated systems are shown by 
the trend of decreasing lifespan from environmental 
monitoring to industrial IoT monitoring. 
 

 

Figure 7: Estimated Lifetime: Hybrid vs Advanced 

The results show that hybrid models typically 
offer longer life duration when compared to 
advanced models, with the benefits more noticeable 
where there is a great demand. Environmental 
monitoring's shorter lifespan compared to industrial 
IoT monitoring emphasises how more complicated 
tasks require more maintenance and energy. Hybrid 
versions are more appropriate for applications that 
prioritise device life, even though advanced models 
can provide further performance advantages. 

3.8. Hybrid vs. Advanced: Relative 
Performance Comparison 
The horizontal bar chart in Figure 8 contrasts 

four performance indicators between advanced and 
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hybrid models. In terms of energy efficiency, 
advanced obtains 135 J (+5.47%) while hybrid 
achieves 128 J. Hybrid records 412 kbps in 
throughput, while advanced records 435 kbps 
(+5.58%). In terms of PDR, advanced performs 
slightly better at 98.1% (+1.34%), while hybrid 
achieves 96.8%. Lastly, the advanced network 
lifetime lasts 1280 seconds (+4.49%), while the 
hybrid network lifetime lasts 1225 seconds.  

 

Figure 8 Percentage Difference Between Hybrid and 
Advanced Models 

Advanced models often beat hybrid models 
by modest margins across all criteria. The 
performance difference is small, and so hybrid 
versions seem to be competitive and might provide 
additional advantages like lower costs or energy 
usage in some applications. 

4. DISCUSSION 
 
The hybrid PSO-LEACH + RF model and the 

advanced PPO-based DRL model are two different 
energy-aware communication protocols that are 
evaluated in this research to solve the pressing 
problem of energy conservation in large-scale IoT 
networks. Both models were evaluated on the same 
type of dataset, using an application-mapped 
evaluation framework, in a common set of IoT traffic 
patterns: periodic, event-driven, and bursty, which 
reflect several real-world applications in IoT: smart 
cities, IoT monitoring in industrial settings, and 
environmental sensing. This elaborate configuration 
enabled a fair comparison that was in line with the 
research interest of finding effective energy-efficient 
protocols that run in an environment of mixed traffic. 
[22]. 

The results show that the PPO-DRL model 
outperforms the hybrid model in terms of network 
performance and flexibility, continually providing 
reduced latency and greater throughput in all 
application situations. This is possible due to the 
PPO model's capacity to optimise advanced DRL-
based protocols by dynamically modifying duty 

cycles, transmit power, and routing pathways in 
response to changing network conditions. [23]. The 
study's objective is to benchmark these paradigms on 
energy, latency, and reliability metrics, and while the 
hybrid PSO-LEACH + RF approach shows 
competitive energy conservation due to effective 
cluster head selection and proactive traffic 
prediction, it is less responsive during bursty and 
event-driven traffic, resulting in higher delays and 
lower PDRs. 

Furthermore, the traffic-aware adaptation 
analysis proves the robustness of both models to 
periodic traffic that can be observed in the 
environment monitoring-related applications. But, 
PPO-DRL thrives in dynamic cases that are 
experienced in smart home automation and 
industrial IoT, where speedy responses to changes in 
traffic are highly significant. This result supports the 
goal of the study, which was to map performance to 
particular IoT domains and quantify traffic-aware 
adaptability. [24], [25]. Empirical proof for the 
progress of adaptive IoT communication is provided 
by the results, which indicate that incorporating deep 
reinforcement learning into IoT protocols improves 
QoS (including throughput, latency, and packet 
delivery ratio) without significant energy costs. 
Further study on optimising and assuring realistic 
energy-aware networking systems might benefit 
from evaluating the models in real-world IoT 
deployments and including more sophisticated 
security features in the communication protocols. 

5. CONCLUSION 
 

The PPO-based advanced DRL model 
outperforms the PSO-LEACH + RF hybrid method 
in large-scale IoT deployments, according to this 
comparative research. Regardless of the application 
situation, the Advanced model always delivered a 
greater throughput (up to 23 kbps), shorter latency 
(by 8-10 ms), and an increased PDR (by up to 2%). 
In the case of industrial IoT monitoring, for instance, 
the advanced model achieved a throughput of 446 
kbps, an average packet latency of 130 ms, and a 
packet delivery rate (PDR) of 95.1%, while the 
Hybrid model achieved 423 kbps, 138 ms delay, and 
93.5% PDR. Compared to the hybrid's 353 kbps, 97 
ms, and 94.8% PDR, advanced's smart home 
automation attained 375 kbps throughput, 89 ms 
latency, and 96.7% PDR. For the majority of real-
world use cases, the Advanced model’s speed and 
reliability gains outweigh the Hybrid model’s 
modest 0.2–1.5 J per-node energy advantage. These 
results affirm that learning-based adaptive policies 
such as PPO-DRL can enhance QoS while ensuring 
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robust energy management. This makes them well-
suited for next-generation IoT networks where 
speed, reliability, and responsiveness are critical. 

 
REFERENCES:  
 
[1] J. Sheth and B. Dezfouli, “Enhancing the 

energy-efficiency and timeliness of IoT 
communication in WiFi networks,” IEEE 
Internet Things J., vol. 6, no. 5, pp. 9085–9097, 
2019. 

[2] H. Pirayesh, P. K. Sangdeh, and H. Zeng, “EE-
IoT: An energy-efficient IoT communication 
scheme for WLANs,” in IEEE INFOCOM 
2019-IEEE Conference on Computer 
Communications, IEEE, 2019, pp. 361–369. 
Accessed: Aug. 11, 2025. [Online]. Available: 
https://ieeexplore.ieee.org/abstract/document/
8737625/ 

[3] A. Perles et al., “An energy-efficient internet 
of things (IoT) architecture for preventive 
conservation of cultural heritage,” Future 
Gener. Comput. Syst., vol. 81, pp. 566–581, 
2018. 

[4] R. Maheswar, M. Kathirvelu, and K. 
Mohanasundaram, “Energy Efficiency in 
Wireless Networks,” Energies, vol. 17, no. 2. 
MDPI, p. 417, 2024. Accessed: Aug. 11, 2025. 
[Online]. Available: 
https://www.mdpi.com/1996-1073/17/2/417 

[5] A. Javadpour, A. K. Sangaiah, H. Zaviyeh, and 
F. Ja’fari, “Enhancing Energy Efficiency in 
IoT Networks Through Fuzzy Clustering and 
Optimisation,” Mob. Netw. Appl., vol. 29, no. 
5, pp. 1594–1617, Oct. 2024, doi: 
10.1007/s11036-023-02273-w. 

[6] S. M. Hussein, J. A. López Ramos, and A. M. 
Ashir, “A secure and efficient method to 
protect communications and energy 
consumption in IoT wireless sensor networks,” 
Electronics, vol. 11, no. 17, p. 2721, 2022. 

[7] A. A.-H. Hassan, W. M. Shah, A.-H. H. Habeb, 
M. F. I. Othman, and M. N. Al-Mhiqani, “An 
improved energy-efficient clustering protocol 
to prolong the lifetime of the WSN-based IoT,” 
IEEE Access, vol. 8, pp. 200500–200517, 
2020. 

[8] B. A. Begum and S. V. Nandury, “A Survey of 
Data Aggregation Protocols for Energy 
Conservation in WSN and IoT,” Wireless. 
Commun. Mob. Comput., vol. 2022, pp. 1–28, 
Oct. 2022, doi: 10.1155/2022/8765335. 

[9] S. Mewada et al., “Smart Diagnostic Expert 
System for Defect in Forging Process by Using 
Machine Learning Process,” J. Nanomater., 

vol. 2022, no. 1, p. 2567194, Jan. 2022, doi: 
10.1155/2022/2567194. 

[10] R. Arshad, S. Zahoor, M. A. Shah, A. Wahid, 
and H. Yu, “Green IoT: An investigation on 
energy saving practices for 2020 and beyond,” 
IEEE Access, vol. 5, pp. 15667–15681, 2017. 

[11] Z. Abbas and W. Yoon, “A survey on energy 
conserving mechanisms for the internet of 
things: Wireless networking aspects,” Sensors, 
vol. 15, no. 10, pp. 24818–24847, 2015. 

[12] S. Y. Reddy, “Energy Efficiency Analysis and 
Design of Routing Protocols for IoT Devices”. 

[13] S. B. Khan, A. Kumar, A. Mashat, D. 
Pruthviraja, M. K. Imam Rahmani, and J. 
Mathew, “Artificial Intelligence in Next-
Generation Networking: Energy Efficiency 
Optimisation in IoT Networks Using Hybrid 
LEACH Protocol,” SN Comput. Sci., vol. 5, 
no. 5, p. 546, May 2024, doi: 10.1007/s42979-
024-02778-5. 

[14] J. Logeshwaran, S. K. Patel, O. P. Kumar, and 
F. A. Al-Zahrani, “Hybrid optimisation for 
efficient 6G IoT traffic management and multi-
routing strategy,” Sci. Rep., vol. 14, no. 1, p. 
30915, Dec. 2024, doi: 10.1038/s41598-024-
81709-z. 

[15] S. Benhamaid, A. Bouabdallah, and H. 
Lakhlef, “Recent advances in energy 
management for Green-IoT: An up-to-date and 
comprehensive survey,” J. Netw. Comput. 
Appl., vol. 198, p. 103257, Feb. 2022, doi: 
10.1016/j.jnca.2021.103257. 

[16] Sharma, Rupak, et al. "Iot monitoring lathe 
machine performance." Materials Today: 
Proceedings 80 (2023): 3570-3574 

[17] Z. Yu et al., “Deep Reinforcement Learning for 
Energy-Efficient Computing on 
Heterogeneous Computing Architecture,” Dec. 
01, 2024, arXiv: arXiv:2302.00168. doi: 
10.48550/arXiv.2302.00168. 

[18] A. Ali, A. Aftab, M. N. Akram, S. Awan, H. A. 
Muqeet, and Z. A. Arfeen, “Residential 
Prosumer Energy Management System with 
Renewable Integration Considering Multi-
Energy Storage and Demand Response,” 
Sustainability, vol. 16, no. 5, p. 2156, Mar. 
2024, doi: 10.3390/su16052156. 

[19] S. Rabah, A. Zaier, S. Sendra, J. Lloret, and H. 
Dahman, “Optimising IoT network lifetime 
through an enhanced hybrid energy harvesting 
system,” Sustain. Comput. Inform. Syst., vol. 
46, p. 101081, Jun. 2025, doi: 
10.1016/j.suscom.2025.101081. 

[20] “Developing a Novel Adaptive Double Deep 
Q-Learning-Based Routing Strategy for IoT-



 
 Journal of Theoretical and Applied Information Technology 

15th October 2025. Vol.103. No.19 
©   Little Lion Scientific  

 
ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
7916 

 

Based Wireless Sensor Network with 
Federated Learning.” Accessed: Aug. 11, 
2025. [Online]. Available: 
https://www.mdpi.com/1424-
8220/25/10/3084 

[21] S. Benhamaid, “Contributions to green Internet 
of Things,” Ph.D. thesis, Université de 
Technologie de Compiègne, 2023. Accessed: 
Aug. 11, 2025. [Online]. Available: 
https://theses.hal.science/tel-04684033 

[22] L. Sathish Kumar et al., “Modern Energy 
Optimisation Approach for Efficient Data 
Communication in IoT-Based Wireless Sensor 
Networks,” Wireless. Commun. Mob. 
Comput., vol. 2022, pp. 1–13, Apr. 2022, doi: 
10.1155/2022/7901587. 

[23] Bhau, Gaikar Vilas, et al. "IoT based solar 
energy monitoring system." Materials Today: 
Proceedings 80 (2023): 3697-3701. 

[24] J. Shen, A. Wang, C. Wang, P. C. Hung, and 
C.-F. Lai, “An efficient centroid-based routing 
protocol for energy management in WSN-
assisted IoT,” IEEE Access, vol. 5, pp. 18469–
18479, 2017. 

[25] A. Orsino, G. Araniti, L. Militano, J. Alonso-
Zarate, A. Molinaro, and A. Iera, “Energy 
efficient IoT data collection in smart cities 
exploiting D2D communications,” Sensors, 
vol. 16, no. 6, p. 836, 2016. 

 
 
 
 


