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ABSTRACT 
 

Traditional relational databases face challenges with scalability, schema flexibility, and real-time 
performance in the era of large data output from various sources, including social media, IoT sensors, and 
user-generated content. To get over this restriction, more and more people are turning to NoSQL databases, 
which are ideal for big data because of their distributed architectures and varied data models. The goal of this 
research is to examine and improve query performance in four prominent NoSQL systems: document-based 
MongoDB, column-family Cassandra, key-value Redis, and graph-based Neo4j under different real-world 
workloads. Through the use of real-world (Twitter, Stack Overflow, MovieLens) and artificial-intelligence 
(graph) datasets, a Kubernetes-orchestrated testbed was set up to measure execution time, throughput, 
latency, scalability, & resource utilization. Using instruments like as YCSB and Apache JMeter, the 
technique included controlled trials with read, write, update, aggregation, and difficult traversal queries. The 
results show that Redis always has the lowest latency as well as maximum throughput since it stores data in 
memory. This makes it perfect for real-time analytics. Cassandra is well-suited for workloads with a high 
volume of writes, as it scales efficiently for workloads with a lot of writes because it scales well. MongoDB, 
on the other hand, is great for a wide range of query types since it has good indexing. Neo4j is better at graph 
traversal jobs, but it has greater latency when there is a lot of traffic at the same time. Mathematical models 
back up the trade-off between execution time and throughput even further by revealing a significant link 
between dataset size and query complexity. This research adds a complete benchmarking methodology for 
comparing NoSQL systems that helps developers choose and tweak databases depending on how they will 
be used. In the context of processing massive amounts of data, it emphasises how important it is to make sure 
that database structures meet the needs of certain applications. 
Keywords: NoSQL, Query Performance, Big Data, Database Optimization, MongoDB, Cassandra. 
 
1. INTRODUCTION  
 

Every second, in this age of digital change, there 
is a deluge of diverse data being produced, ranging 
from social media feeds as well as sensor networks 
to health records and online purchases [1]. The data 
is either semi-structured or unstructured, and its 
access patterns are unpredictable. Additionally, there 

is a growing desire for real-time response, all of 
which makes effective querying of this data a 
significant difficulty [2]. Although they are 
dependable, traditional relational databases have 
problems with distributed performance, scalability, 
and flexible schema management in these kinds of 
environments. Because of this, there has been a 
change towards nosql (not only sql) databases [3]. 
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These databases provide an alternative to sql-based 
systems in large data situations by offering 
horizontal scalability and other data models. Nosql 
databases have arisen as formidable instruments for 
managing extensive, schema-less data in high-
throughput settings [4]. Their architecture facilitates 
partitioning, replication, and adaptable schema 
designs, rendering them optimal for real-time 
analytics, data from sensors intake, social network 
modelling, and content management systems [5]. 
Nosql systems, using key-value, document, column-
family, or graph-based models for data, exhibit more 
adaptability to the dynamic requirements of 
contemporary applications [6]. Their superior 
efficiency in read and write operations, scalability 
with concurrent users, and lower indexing cost make 
them indispensable in large data environments [7]. 
Many people use nosql databases, but not enough is 
known about how well the different nosql systems 
work with different real-world tasks, data models, 
along query types [8]. Most comparison studies only 
look at a few metrics or don't look at how well the 
systems work when there are a lot of users at the 
same time, complicated queries, or different search 
techniques. A complete performance benchmarking 
method is needed that checks the performance of 
different nosql systems using standard metrics and 
tools with a range of tasks and data types [9]. 

The goal of this study is to see how well four 
typical nosql databases mongodb (document), 
cassandra (column-family), redis (key-value), as 
well as neo4j (graph) work with huge data. The 
research includes: creating different data models and 
ways to index them.  

Running several sorts of queries (read, write, 
update, and aggregation) using benchmarking tools 
to simulate concurrent workloads [10]. Looking at 
performance measures including execution time, 
throughput, latency, and resource utilisation the 
scope is confined to testing performance in a 
controlled cluster setting using real-world and fake 
datasets that are relevant to social media, q&a 
forums, recommendation engines, as well graph 
topologies [11]. 

The rest of the article is structured like this: nosql 
benchmarking and large data querying have been the 
subject of previous research, which is reviewed in 
section 2.  

The technique, including the database setup, 
datasets utilised, and tools employed, is described in 
section 3. Data models, query types, & workload 
design are detailed in section 4, which also covers 
the experimental setup [12].  Graphical comparisons 

as well as mathematical modelling are part of section 
5's presentation of the findings and analysis. Section 
6 delves into the main discoveries, costs and benefits, 
and consequences for programmers. The study is 
wrapped up in section 7 with some concluding 
remarks and some avenues for further research [13]. 

2. LITERATURE REVIEW: 

2.1. A Quick Look at NoSQL Databases: 

NoSQL databases, like Neo4j, MongoDB, 
Cassandra, HBase, and Cassandra, have become 
flexible options to relational databases [14]. They 
solve problems with structural fluidity, freedom, and 
speed. Because it can handle layered documents and 
flexible models, MongoDB is frequently utilised in 
content management as well as analytics systems. It 
is known for its document-based design [15]. 
Cassandra is a distributed column-family store that 
is great for apps that do a lot of writing because it has 
high availability and linear growth. Neo4j, a graph 
database, works well for tasks that need to traverse 
relationships, like finding scams and analysing social 
networks [16]. Redis, a key-value store, is best for 
transactions with low delay. HBase, which is based 
on Google's BigTable, is very organised and is often 
used for small amounts of data in Hadoop 
environments. 

2.2. Techniques for Optimising Queries: 

The optimisation of queries on NoSQL systems has 
come a long way. Some of the methods used include 
adaptive caching, query routing, denormalization, 
sharding, and secondary indexing. In order to 
decrease query latency for nested document 
retrievals, MongoDB offers support for compound 
and multikey indexes [17]. To minimise I/O cost, 
Cassandra employs partition and clustering keys; in 
contrast, Redis takes use of in-memory access 
patterns and optimises queries based on key design 
[18]. Even though traversal difficulty grows with 
graph density, Neo4j includes cost-based 
optimisation for Cypher queries & pattern matching. 
But most of these methods only work with certain 
databases and can't adapt to changing workloads or 
alternative NoSQL models. 

2.3. Big Data Processing Frameworks: 

NoSQL systems have been able to operate with 
frameworks such as Apache Hadoop, Spark, Flink, 
along Storm to manage huge data pipelines [19]. 
When used with MongoDB or Cassandra, Spark has 
been able to do batch as well as real-time analytics 
faster. Data ingestion technologies like Kafka have 
also made big data processes better by letting 
NoSQL environments handle streams in real time 
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and asynchronously [20]. However, it is still hard to 
keep things consistent, reduce latency, and make the 
most use of resources in distributed systems when 
querying in real time at scale [21]. 

2.4. Studies that compare how well NoSQL 
works: 

Several comparison studies have looked at NoSQL 
systems with different amounts of work. For 
example, Grolinger et al. (2021) compared 
MongoDB, Couchbase, as well as Cassandra for IoT 
sources of data and found that Cassandra was better 
at scaling [22]. In 2022, Hu et al. compared Redis 
along with Aerospike under transactional loads. 
They found that Redis was faster but less resilient 
when it failed. Singh et al. (2023) did another 
important study that compared MongoDB as well 
Neo4j for ranking systems [23]. They found that 
Neo4j was more accurate for questions that involved 
a lot of relationships, but it took longer to run [24]. 
But these studies usually only look at a few measures 
or situations, and they don't have any standard ways 
to compare different real-time, high-concurrency 
datasets [25]. 

2.5. State-of-the-Art Gaps and Limitations (2021–
2025):  

Important restrictions remain, even if there have 
been many studies:  

Inconsistent benchmarking tools: A lot of research 
doesn't employ standardised tools for concurrent 
simulation, such as YCSB or JMeter, and instead 
relies on ad hoc setups. 

Insufficient variety in workloads: The majority of 
studies do not evaluate under different kinds of 
queries (e.g., joins, traversals, aggregations).  

Underreporting of resource utilisation, such as CPU, 
RAM, and disc I/O, due to a lack of attention on these 
metrics.  

Concurrency-related scalability issues are neglected: 
Very little research examines how NoSQL systems 
respond to growing user loads or clusters of many 
nodes.  

Current research isolates NoSQL models, which is a 
problem since real-world systems generally 
incorporate numerous of them. Another issue is that 
hybrid NoSQL architectures are underrepresented. 

This research fills those gaps by conducting a 
thorough multi-dimensional performance 
assessment of four sample NoSQL databases: 
MongoDB, Cassandra, Redis, as well as Neo4j. It 

does this by using standardised methods and 
heterogeneous datasets. 

3. METHODOLOGY: 

3.1. Architecture of the Test Environment: 

The test environment was designed to be high-
performance and distributed, enabling us to evaluate 
the performance of NoSQL databases in large data 
applications. The hardware setup included a 3-node 
cluster with Intel Core i9-13900K CPUs, 64 GB of 
DDR5 RAM, and 2 TB NVMe SSDs. The nodes 
were linked by a 1 Gbps Ethernet network. Docker 
containers were used to deploy each node, while 
Kubernetes handled the orchestration. All of this ran 
on Ubuntu Server 22.04 LTS. Researchers picked 
this design to mimic how things work in real life in 
dispersed computing setups. Prometheus and 
Grafana were used for real-time monitoring, while 
the ELK Stack was used for centralised log analysis. 

3.2. Selection & Justification of NoSQL 
Databases:  

To illustrate the main kinds of NoSQL data 
structures, four different NoSQL databases were 
chosen. Due to its ubiquity in JSON storage of 
documents and its flexible structure, the document-
based MongoDB was selected. The high availability 
and strong write throughput of Cassandra (column-
family) led to its selection. Because of its ideality for 
real-time analytics and low-latency in-memory 
operations, Redis (key-value) was added. Lastly, for 
handling complicated relationship enquiries, Neo4j 
(graph-based) was used. This makes it an ideal 
choice for social networks or systems that offer 
recommendations. With this choice, we cover all the 
bases in terms of NoSQL patterns of design and 
utilise cases. (Table 1) 

Table 1. NoSQL Databases Selection & Justification 
 

NoSQL 
DB 

Type Justification 

MongoD
B 

Document
-Based 

Widely used in 
modern applications, 
supports indexing and 

flexible schema 

Cassandra 
Column-
Family 

Scalable and high 
availability, preferred 

for write-intensive 
workloads 

Redis 
Key-
Value 

High-speed in-
memory database for 
real-time data access 

Neo4j 
Graph-
Based 

Best suited for 
relationship-heavy 
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datasets like social 
networks 

 
3.3. Collecting and preparing datasets:  

To make sure that the measurement was accurate, 
both real-world and artificial datasets were used. The 
Twitter dataset, which is about 40 GB and is in JSON 
format, gave MongoDB a partially organised dataset. 
About 25 GB of data from StackOverflow was read 
and changed into JSON format so that structured 
searches could be used. The MovieLens collection, 
which was about 5 GB, had structured CSV data that 
had been changed into a document along with key-
value forms. For testing graph databases, Python's 
NetworkX tool was used to make a fake graph 
dataset with 10 million nodes alongside lines. To 
keep things the same across all computers, Python as 
well as shell scripts were used to clean, preprocess, 
and load all the information into the databases at 
once. (Table 2) 

Table 2. Characteristics of the Dataset 
 

Dataset Size Structure 
Preprocessi

ng 

Twitter 
40 
GB 

Semi-
Structured 

Tokenized, 
cleaned, 
indexed 

StackOverfl
ow 

25 
GB 

Semi-
Structured 

Extracted 
Q&A, 
nested 
replies 

MovieLens 
5 

GB 
Structured 

Converted 
to document 

store 

Synthetic 
Graph 

10M 
node

s 

Graph 
edges/nod

es 

JSON/CSV 
import 
format 

 
3.4. Different Sorts of Queries Ran:  

Different kinds of queries were run to gauge 
practicality. Searches for specific keys or documents 
were examples of basic read operations; write 
operations included inserting data in bulk; update 
operations changed existing entries; and aggregation 
queries like total, average, and count were examples 
of fundamental aggregation queries. As part of 
Neo4j, we included sophisticated graph traversal & 
pattern-matching queries. In order to mimic real-
world workloads in areas like social networking, e-
commerce, and log analysis, these query patterns 
were chosen. (Table 3) 

 

Table 3. Types of Queries Tested 
 

Query 
Type 

Description 

Read 
Simple key lookup, 
document retrieval, 
node/edge traversal 

Write 
Inserting tweets, answers, 
movie ratings, new nodes 

Update 
Modifying metadata or 

relationships 

Aggregation 
Count, avg, sum over 
documents or values 

Complex 
Joins 

For graph traversal 
(Neo4j), or nested lookups 

(MongoDB) 

 
3.5. Metrics for Performance:  

Five main metrics were used to evaluate 
performance: execution time, throughput, latency, 
scalability, as well as resource utilisation. Execution 
time was the amount of time it took for a query or 
group of queries to finish. Queries per second (QPS) 
were used to measure throughput, especially when 
there was a lot of traffic at the same time. 
Researchers looked at latency using percentile-based 
measures (the 50th, 75th, along 95th percentiles) to 
see how response times changed. Also, CPU 
consumption, memory usage, and disc I/O were 
watched to see how well each database used its 
resources during benchmarking. (Table 4) 

Table 4. Performance Metrics 
Metric Description 

Execution 
Time 

Total time to execute each query 
batch 

Throughput 
Queries per second (QPS) 

handled 

Latency 
Response time for each 

individual query 

Scalability 
Performance with increasing 

data size/load 
Resource 

Usage 
CPU, Memory, Disk I/O during 

execution 
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Figure 1. Execution Time Comparison Across NoSQL 
Databases 

Figure 1 compares read, write, and aggregation 
execution times across MongoDB, Cassandra, Redis, 
and Neo4j. 

3.6. Tools and Methods: 

There were two main benchmarking tools used. The 
read, write, and update processes were simulated 
using standardised workloads using YCSB (Yahoo! 
Cloud Serving Benchmark). Apache JMeter is 
appropriate for stress testing & concurrency analysis 
as it allows performance testing under various 
concurrent user loads. Grafana and Prometheus were 
used to develop monitoring dashboards that 
visualised system resource data. Plotting 
performance comparisons was made easier with the 
use of the Matplotlib and Seaborn tools, while 
Python was utilised for result analysis as well as 
graph creation. 

3.7. Process Flow for Processing and Execution of 
Data: 

The experimental pipeline used a systematic 
approach, cleaning raw datasets using Pandas and 
Python before mapping them to their corresponding 
NoSQL database schema. Scripts were developed 
specifically for inserting bulk data. After that, 
JMeter/YCSB was used to perform queries with 
different workloads and levels of concurrency. Data 
was recorded, saved, and then examined with the use 
of statistical tools and visuals. The metrics were 
adjusted so that they could be fairly compared across 
databases. 

3.8. Mathematical Modelling: 

The researchers used math to figure out how long it 
would take to run a query based on the size of the 
dataset, the size of the cluster, and the complexity of 
the query. The following formula was used: 

 

𝑇௤ = 𝛼.
𝐷

𝑁
+ 𝛽. 𝐶 + 𝜖         (1) 

 

Here, 𝑇௤ stands for the time it takes for the query to 
execute, 𝐷 is the dataset size, 𝑁 is the number of 
nodes in the cluster, C is the amount of complexity 
of the query (which may be given a value between 1 
and 4), 𝛼 & 𝛽 are constants that have been 
experimentally found, and 𝜖 is the fluctuation in 
latency caused by system load. The number of 
queries that were successfully executed during the 
whole time frame was used to model throughput. 

4. EXPERIMENTAL SETUP: 

4.1. Strategies for the design of data models and 
indexes: 

The researcher set up each NoSQL database 
according to the way its data is structured. MongoDB 
used a versatile JSON-based document architecture 
with layered documents as well as compound 
indexing to speed up read and aggregate queries. 
Cassandra's column-family structure used partition 
keys alongside clustering columns to make writing 
and range queries faster. Redis worked with key-
value pairs, which are naturally fast but relied on 
how well the keys are designed. Neo4j used a node-
edge relationship the graph architecture with 
indexing on nodes along with relationship types to 
speed up activities like traversal and pattern 
matching. 

4.2. Form and Variations of Queries:  

Simple read (key lookups, document fetches) and 
writes (bulk inserts), updating (changing fields or 
nodes), as well as aggregations (count, average, 
total) were all part of the benchmarks. Complex 
pattern-matching & multi-hop traversals were used 
to test Neo4j, while nested document searches were 
used to test MongoDB. Logging systems, online 
marketplaces, and recommendation engines are just 
a few examples of the real-world use cases that 
inspired these query types. 

4.3. Setting up load and concurrency: 

The tests used Apache JMeter as well as YCSB to 
mimic different workloads by having many users at 
the same time. The load levels raised in phases from 
50 to 500 concurrent users. Each test case included 
ramp-up periods of time, constant throughput 
phases, as well as cooling times so that researcher 
could see how the database acted under actual load. 
We kept track of metrics like latency, throughput, 
along CPU use throughout these stages to find out 
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where the system might grow and where resources 
were being used up. 

4.4. Repetition for Validating Statistics: 

We conducted each test five times under identical 
circumstances to be sure the results were statistically 
sound. The data were averaged, and the standard 
deviation was used to check for consistency. We 
used percentile-based analysis (the 50th, 75th, as 
well as 95th percentiles) to deal with outliers, 
notably when measuring latency. This method made 
sure that performance trends showed how the system 
normally works instead of strange things that happen 
because of short-term spikes or background 
activities. 

5. RESULTS AND ANALYSIS: 

5.1. NoSQL Databases' Comparative 
Performance: 

Four well-known NoSQL databases MongoDB, 
Cassandra, Redis, as well as Neo4j were evaluated 
for performance, and the results showed significant 
variations in their operational effectiveness. Redis's 
in-memory structure for data, which drastically 
decreased I/O cost, allowed it to perform better in the 
majority of instances. Using its distributed, columnar 
design for high-throughput operations, Cassandra 
performed very well in workloads that included a lot 
of writing. With its configurable document storage 
and indexing, MongoDB provided balanced 
performance for both read and aggregate queries. 
Neo4j, which was created for graph-based queries, 
did better in situations with a lot of relationships but 
was slower in typical operations. These results 
emphasise how crucial it is to match database 
choices with query patterns unique to a given 
application. 

5.2. Query Response Duration Across Diverse 
Workloads: 

With the rise in concurrent users, each database 
demonstrated varying scalability characteristics. 
Redis exhibited a nearly linear performance 
improvement, adeptly managing up to 10,000 
requests per second with 500 concurrent users. 
Cassandra exhibited excellent scalability, achieving 
about 4,500 queries per second owing to its 
decentralised write architecture. MongoDB 
demonstrated modest scalability, reaching a 
maximum of around 3,200 queries per second (QPS). 
Neo4j, however, saw a reduction in performance at 
elevated concurrency levels, ascribed to the 
computational intricacy of graph traversal 
operations. Latency tests indicated that Redis had the 
most consistently lowest response times, but Neo4j 

showed significant fluctuation, especially for 
complex relationship queries. 

5.2.1. Behaviour of CPU Resources: 

Tracking CPU consumption over time allowed for a 
more thorough analysis of system performance. 
Figure 2 illustrates the sharp rise in CPU use during 
a high load period, which reached 90% and indicated 
intensive query processing. The utilisation gradually 
decreased after execution, indicating that the system 
handled loads and recovered its resources well. 

 

Figure 2. CPU Usage Over Time 

5.3. Indexing and Non-Indexing Performance: 

Indexing greatly improved performance. 
Specifically for retrievals of nested documents, 
indexed queries in MongoDB were as much as 60% 
quicker than non-indexed ones. The query pattern in 
Redis is functionally similar to indexed lookups 
since it employs key-based access by default. 
Partition keys are essential for avoiding complete 
table scans and improved Cassandra's speed. Despite 
Neo4j's support for node and relationship indexing, 
performance is still quite graph-dependent owing to 
repetitive traversals. In big datasets in particular, 
indexing is essential for lowering execution time and 
increasing query predictability. 

5.4. Graphical Performance Analysis: 

The experimental findings were shown using several 
figures. Figure 1 above displays a bar chart that 
contrasts the average execution times for read, write, 
& aggregate queries throughout the databases. Redis 
consistently exhibited the shortest execution time 
across all three operations, while Neo4j recorded the 
longest owing to its specialised query architecture. 
Figure 3 depicts the variation in throughput with 
escalating levels of concurrency. Redis exhibited 
remarkable scalability, followed by Cassandra, 
whilst MongoDB and Neo4j revealed constraints 
under increased loads. Figure 4 illustrates the delay 
distribution with a box plot. Redis had the most 
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limited dispersion, signifying uniform performance. 
MongoDB and Cassandra exhibited modest 
fluctuation; however, Neo4j had the greatest 
variation, particularly in complicated queries. These 
visual comparisons corroborate the quantitative 
results and highlight the appropriateness of each 
database for various task kinds. 
 

 
 

Figure 3. Throughput vs. Concurrency 
 

 
 
Figure 4. Latency Distribution Across NoSQL Databases 

5.5. Interpretation of Result: 

In light of these findings, it is clear that various 
NoSQL databases excel in different contexts. When 
it came to speed and stability, Redis was head and 
shoulders above the competition, making it perfect 
for use in real-time scenarios. The distributed nature 
of Cassandra allowed it to perform well on massive 
write-heavy workloads. With robust indexing 
capabilities and modest scalability, MongoDB 
offered balanced performance. Under heavy 
demand, Neo4j's latency & execution time 
increased, but it performed well for complicated 
relationship queries otherwise. 

Efficient load management was proven across all 
databases by the CPU consumption graph. Dataset 
size, cluster the nodes, while query complexity 
determines execution time, and throughput is 
inversely linked to execution time, according to 

mathematical models that backed up the results. In 
general, the application workload should dictate the 
database that is used. 

6. DISCUSSION: 

Figure 5 shows the whole process, from gathering 
and cleaning data to comparing results and analysing 
them across different NoSQL databases. 
 

 
Figure 5. NoSQL Performance Evaluation Framework 

 

6.1. Key findings:  

Depending on the kind of workload, different 
databases have different benefits; this was shown by 
comparing MongoDB, Cassandra, Redis, & Neo4j. 
Because to its in-memory nature, Redis often 
outperformed its competitors in terms of latency and 
execution time. Because of its high throughput and 
scalability, Cassandra performed very well with 
write-heavy workloads. Although Neo4j had more 
latency, it excelled at processing complicated 
relationship queries, in contrast to MongoDB's 
performance balance across operations as well as 
indexing. 

6.2. Implications for Large Data Application 
Developers: 

Developers of big data applications need to make 
sure that the database they choose works well with 
the predicted query patterns as well as system 
requirements. Real-time systems should prefer 
Cassandra might be useful for Redis, log-based 
systems, or time-series data platforms. MongoDB is 
a good match for adaptable schema or document-
based applications. Neo4j should be used for apps 
that use social networks, identify fraud, or provide 
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recommendations, where connections are very 
important. 

6.3. Trade-Offs in Design Decisions:  

When you choose a NoSQL database, you typically 
have to make trade-offs:  

Performance vs. Consistency: Redis, along with 
Cassandra, is both fast, but their models are 
ultimately consistent. MongoDB and Neo4j can 
make things more consistent, but they may not be as 
fast. Flexibility vs. Optimisation: MongoDB allows 
for flexible schemas, but you may need to be mindful 
of indexing. Neo4j is faster at graph operations but 
slower at basic queries. Resource Usage vs. 
Scalability: Redis utilises more memory but is faster; 
Cassandra spreads out the load well but needs cluster 
tweaking.  

You need to think about these trade-offs depending 
on how much delay your workload can handle, how 
consistent it has to be, and how much hardware is 
available. 

6.4. Suggestions for Choosing and Fine-Tuning 
Databases:  

Redis: Great for fast, low-latency transactions. 
Monitor memory and establish eviction strategies to 
optimise. With Cassandra, you can build scalable 
apps that rely heavily on writes. For optimal 
performance, fine-tune the replication factors and 
partition keys. For general-purpose applications, 
MongoDB is a good fit. For better read/write speed, 
make sure indexing and sharding are done correctly.  
If your query is relationship-driven, Neo4j is your 
best bet. Improve node indexing and optimise 
traversal patterns. 

7. CONCLUSION: 

This research looks at the performance and 
benchmarking of four popular NoSQL databases 
MongoDB, Cassandra, Redis, as well as Neo4j in the 
context of big data apps in a methodical way. We 
developed a strong test environment by employing 
both actual and fake datasets, together with typical 
benchmarking tools like YCSB and JMeter, to 
mimic different sorts of queries and workloads. The 
study adds to the body of knowledge by providing a 
complete framework that encompasses data 
modelling techniques, workload simulation, real-

time monitoring, as well mathematical performance 
modelling. This helps developers and information 
architects choose and improve NoSQL databases 
depending on unique use cases.  

The results show that NoSQL databases may greatly 
speed up query performance in scenarios with a lot 
of data. Redis always had the lowest latency and 
fastest throughput, which made it perfect for 
applications that needed to work in real time. 
Cassandra was great at handling workloads that 
required a lot of writing since it was built on a 
distributed architecture. MongoDB had good 
performance across the board and good indexing 
support. Neo4j, on the other hand, was better at 
graph-based queries and outperformed other 
databases in situations where relationships were 
important. These findings show that NoSQL models 
can get around the problems with conventional 
relational databases when it comes to scalability, 
flexibility, along with parallelism. 

Nevertheless, there are a few caveats to this research. 
Performance under the more unpredictable, real-
world demands of production may differ from the 
results achieved in the lab’s-controlled cluster 
setting. Although the datasets were broad, they were 
only applicable to certain sectors such as 
recommendation systems, social media, and 
question and answer platforms. Some applications 
critically rely on consistency analysis as well as 
transactional behaviour, which were not included in 
the benchmarking. In the future, researchers may 
investigate how NoSQL databases do under mixed 
and heterogeneous workloads, broaden their 
benchmarking by including NewSQL databases like 
CockroachDB and Google Spanner, and assess the 
merits of hybrid database systems that use graph, 
document, and relational models. Performance 
optimisation in dynamic data settings may be further 
improved by using machine learning-based 
workload predictions & auto-tuning of database 
parameters. 
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