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ABSTRACT

Traditional relational databases face challenges with scalability, schema flexibility, and real-time
performance in the era of large data output from various sources, including social media, IoT sensors, and
user-generated content. To get over this restriction, more and more people are turning to NoSQL databases,
which are ideal for big data because of their distributed architectures and varied data models. The goal of this
research is to examine and improve query performance in four prominent NoSQL systems: document-based
MongoDB, column-family Cassandra, key-value Redis, and graph-based Neo4j under different real-world
workloads. Through the use of real-world (Twitter, Stack Overflow, MovieLens) and artificial-intelligence
(graph) datasets, a Kubernetes-orchestrated testbed was set up to measure execution time, throughput,
latency, scalability, & resource utilization. Using instruments like as YCSB and Apache JMeter, the
technique included controlled trials with read, write, update, aggregation, and difficult traversal queries. The
results show that Redis always has the lowest latency as well as maximum throughput since it stores data in
memory. This makes it perfect for real-time analytics. Cassandra is well-suited for workloads with a high
volume of writes, as it scales efficiently for workloads with a lot of writes because it scales well. MongoDB,
on the other hand, is great for a wide range of query types since it has good indexing. Neo4j is better at graph
traversal jobs, but it has greater latency when there is a lot of traffic at the same time. Mathematical models
back up the trade-off between execution time and throughput even further by revealing a significant link
between dataset size and query complexity. This research adds a complete benchmarking methodology for
comparing NoSQL systems that helps developers choose and tweak databases depending on how they will
be used. In the context of processing massive amounts of data, it emphasises how important it is to make sure
that database structures meet the needs of certain applications.
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1. INTRODUCTION is a growing desire for real-time response, all of
which makes effective querying of this data a

Every second, in this age of digital change, there  significant difficulty [2]. Although they are

is a deluge of diverse data being produced, ranging
from social media feeds as well as sensor networks
to health records and online purchases [1]. The data
is either semi-structured or unstructured, and its
access patterns are unpredictable. Additionally, there

dependable, traditional relational databases have
problems with distributed performance, scalability,
and flexible schema management in these kinds of
environments. Because of this, there has been a
change towards nosql (not only sql) databases [3].
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These databases provide an alternative to sql-based
systems in large data situations by offering
horizontal scalability and other data models. Nosql
databases have arisen as formidable instruments for
managing extensive, schema-less data in high-
throughput settings [4]. Their architecture facilitates
partitioning, replication, and adaptable schema
designs, rendering them optimal for real-time
analytics, data from sensors intake, social network
modelling, and content management systems [5].
Nosql systems, using key-value, document, column-
family, or graph-based models for data, exhibit more
adaptability to the dynamic requirements of
contemporary applications [6]. Their superior
efficiency in read and write operations, scalability
with concurrent users, and lower indexing cost make
them indispensable in large data environments [7].
Many people use nosql databases, but not enough is
known about how well the different nosql systems
work with different real-world tasks, data models,
along query types [8]. Most comparison studies only
look at a few metrics or don't look at how well the
systems work when there are a lot of users at the
same time, complicated queries, or different search
techniques. A complete performance benchmarking
method is needed that checks the performance of
different nosql systems using standard metrics and
tools with a range of tasks and data types [9].

The goal of this study is to see how well four
typical nosql databases mongodb (document),
cassandra (column-family), redis (key-value), as
well as neod4j (graph) work with huge data. The
research includes: creating different data models and
ways to index them.

Running several sorts of queries (read, write,
update, and aggregation) using benchmarking tools
to simulate concurrent workloads [10]. Looking at
performance measures including execution time,
throughput, latency, and resource utilisation the
scope is confined to testing performance in a
controlled cluster setting using real-world and fake
datasets that are relevant to social media, q&a
forums, recommendation engines, as well graph
topologies [11].

The rest of the article is structured like this: nosql
benchmarking and large data querying have been the
subject of previous research, which is reviewed in
section 2.

The technique, including the database setup,
datasets utilised, and tools employed, is described in
section 3. Data models, query types, & workload
design are detailed in section 4, which also covers
the experimental setup [12]. Graphical comparisons

as well as mathematical modelling are part of section
5's presentation of the findings and analysis. Section
6 delves into the main discoveries, costs and benefits,
and consequences for programmers. The study is
wrapped up in section 7 with some concluding
remarks and some avenues for further research [13].

2. LITERATURE REVIEW:
2.1. A Quick Look at NoSQL Databases:

NoSQL databases, like Neo4j, MongoDB,
Cassandra, HBase, and Cassandra, have become
flexible options to relational databases [14]. They
solve problems with structural fluidity, freedom, and
speed. Because it can handle layered documents and
flexible models, MongoDB is frequently utilised in
content management as well as analytics systems. It
is known for its document-based design [15].
Cassandra is a distributed column-family store that
is great for apps that do a lot of writing because it has
high availability and linear growth. Neo4j, a graph
database, works well for tasks that need to traverse
relationships, like finding scams and analysing social
networks [16]. Redis, a key-value store, is best for
transactions with low delay. HBase, which is based
on Google's BigTable, is very organised and is often
used for small amounts of data in Hadoop
environments.

2.2. Techniques for Optimising Queries:

The optimisation of queries on NoSQL systems has
come a long way. Some of the methods used include
adaptive caching, query routing, denormalization,
sharding, and secondary indexing. In order to
decrease query latency for nested document
retrievals, MongoDB offers support for compound
and multikey indexes [17]. To minimise I/O cost,
Cassandra employs partition and clustering keys; in
contrast, Redis takes use of in-memory access
patterns and optimises queries based on key design
[18]. Even though traversal difficulty grows with
graph  density, Neo4j includes cost-based
optimisation for Cypher queries & pattern matching.
But most of these methods only work with certain
databases and can't adapt to changing workloads or
alternative NoSQL models.

2.3. Big Data Processing Frameworks:

NoSQL systems have been able to operate with
frameworks such as Apache Hadoop, Spark, Flink,
along Storm to manage huge data pipelines [19].
When used with MongoDB or Cassandra, Spark has
been able to do batch as well as real-time analytics
faster. Data ingestion technologies like Kafka have
also made big data processes better by letting
NoSQL environments handle streams in real time
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and asynchronously [20]. However, it is still hard to
keep things consistent, reduce latency, and make the
most use of resources in distributed systems when
querying in real time at scale [21].

2.4. Studies that compare how well NoSQL
works:

Several comparison studies have looked at NoSQL
systems with different amounts of work. For
example, Grolinger et al. (2021) compared
MongoDB, Couchbase, as well as Cassandra for [oT
sources of data and found that Cassandra was better
at scaling [22]. In 2022, Hu et al. compared Redis
along with Aerospike under transactional loads.
They found that Redis was faster but less resilient
when it failed. Singh et al. (2023) did another
important study that compared MongoDB as well
Neo4j for ranking systems [23]. They found that
Neo4j was more accurate for questions that involved
a lot of relationships, but it took longer to run [24].
But these studies usually only look at a few measures
or situations, and they don't have any standard ways
to compare different real-time, high-concurrency
datasets [25].

2.5. State-of-the-Art Gaps and Limitations (2021-
2025):

Important restrictions remain, even if there have
been many studies:

Inconsistent benchmarking tools: A lot of research
doesn't employ standardised tools for concurrent
simulation, such as YCSB or JMeter, and instead
relies on ad hoc setups.

Insufficient variety in workloads: The majority of
studies do not evaluate under different kinds of
queries (e.g., joins, traversals, aggregations).

Underreporting of resource utilisation, such as CPU,
RAM, and disc I/O, due to a lack of attention on these
metrics.

Concurrency-related scalability issues are neglected:
Very little research examines how NoSQL systems
respond to growing user loads or clusters of many
nodes.

Current research isolates NoSQL models, which is a
problem since real-world systems generally
incorporate numerous of them. Another issue is that
hybrid NoSQL architectures are underrepresented.

This research fills those gaps by conducting a
thorough multi-dimensional performance
assessment of four sample NoSQL databases:
MongoDB, Cassandra, Redis, as well as Neo4j. It

does this by using standardised methods and
heterogeneous datasets.

3. METHODOLOGY:
3.1. Architecture of the Test Environment:

The test environment was designed to be high-
performance and distributed, enabling us to evaluate
the performance of NoSQL databases in large data
applications. The hardware setup included a 3-node
cluster with Intel Core 19-13900K CPUs, 64 GB of
DDR5 RAM, and 2 TB NVMe SSDs. The nodes
were linked by a 1 Gbps Ethernet network. Docker
containers were used to deploy each node, while
Kubernetes handled the orchestration. All of this ran
on Ubuntu Server 22.04 LTS. Researchers picked
this design to mimic how things work in real life in
dispersed computing setups. Prometheus and
Grafana were used for real-time monitoring, while
the ELK Stack was used for centralised log analysis.

3.2. Selection & Justification of NoSQL
Databases:

To illustrate the main kinds of NoSQL data
structures, four different NoSQL databases were
chosen. Due to its ubiquity in JSON storage of
documents and its flexible structure, the document-
based MongoDB was selected. The high availability
and strong write throughput of Cassandra (column-
family) led to its selection. Because of its ideality for
real-time analytics and low-latency in-memory
operations, Redis (key-value) was added. Lastly, for
handling complicated relationship enquiries, Neo4j
(graph-based) was used. This makes it an ideal
choice for social networks or systems that offer
recommendations. With this choice, we cover all the
bases in terms of NoSQL patterns of design and
utilise cases. (Table 1)

Table 1. NoSQL Databases Selection & Justification

NOSI?L Type Justification
Widely used in
MongoD | Document | modern applications,
B -Based supports indexing and
flexible schema
Scalable and high
Cassandra Colurpn- availabi.lity., prefgrred
Family for write-intensive
workloads
Key- High-speed in-
Redis memory database for
Value .
real-time data access
. Graph- Best suited for
Neodj Based relationship-heavy

7875



Journal of Theoretical and Applied Information Technology ~

15% October 2025. Vol.103. No.19

N

© Little Lion Scientific

SATIT

ISSN: 1992-8645

www jatit.org

E-ISSN: 1817-3195

datasets like social
networks

3.3. Collecting and preparing datasets:

To make sure that the measurement was accurate,
both real-world and artificial datasets were used. The
Twitter dataset, which is about 40 GB and is in JSON
format, gave MongoDB a partially organised dataset.
About 25 GB of data from StackOverflow was read
and changed into JSON format so that structured
searches could be used. The MovieLens collection,
which was about 5 GB, had structured CSV data that
had been changed into a document along with key-
value forms. For testing graph databases, Python's
NetworkX tool was used to make a fake graph
dataset with 10 million nodes alongside lines. To
keep things the same across all computers, Python as
well as shell scripts were used to clean, preprocess,
and load all the information into the databases at
once. (Table 2)

Table 2. Characteristics of the Dataset

Table 3. Types of Queries Tested

Query o
Type Description
Simple key lookup,
Read document retrieval,
node/edge traversal
Write Inser'tmg tweets, answers,
movie ratings, new nodes
Update Modlfylng metgdata or
relationships
Acoreeation Count, avg, sum over
gereg documents or values
For graph traversal
C(}r;;ﬁlsex (Neo4j), or nested lookups
(MongoDB)

3.5. Metrics for Performance:

Five main metrics were used to evaluate
performance: execution time, throughput, latency,
scalability, as well as resource utilisation. Execution
time was the amount of time it took for a query or
group of queries to finish. Queries per second (QPS)

Dataset Size | Structure Prep:;gcesm were used to measure throughput, especially when
. Tokenized there was a lot of traffic at the same time.
Twitter 40 Semi- cleaned. Researchers looked at latency using percentile-based
GB | Structured indexe d’ measures (the 50th, 75th, along 95th percentiles) to
Extracted see how response times changed. Also, CPU
StackOverfl 25 Semi- Q&A consumption, memory usage, and disc /O were
ow GB | Structured nesteci watched to see how well each database used its
replies resources during benchmarking. (Table 4)
5 Converted Table 4. Performance Metrics
MovieLens GB Structured | to document Metric Description
store Execution | Total time to execute each query
Synthetic 101(;/[ dGra})h . JSQN/CSV Time Sue batch S
node | edges/no import ueries per secon
Graph s es format Throughput phandled
Latency Respopse; time for each
3.4. Different Sorts of Queries Ran: 1nd1V1dua.1 query
Different kinds of queries were run to gauge Scalability Perfom?;;esiv;/;t/lllol:ll(ci:reasmg
practicality. Searches for.speciﬁc keys or documer.lts Resource CPU, Memory, Disk 1/O during
were examples of basic read operations; write Usage execution

operations included inserting data in bulk; update
operations changed existing entries; and aggregation
queries like total, average, and count were examples
of fundamental aggregation queries. As part of
Neo4j, we included sophisticated graph traversal &
pattern-matching queries. In order to mimic real-
world workloads in areas like social networking, e-
commerce, and log analysis, these query patterns
were chosen. (Table 3)
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Figure 1. Execution Time Comparison Across NoSQL
Databases

Figure 1 compares read, write, and aggregation
execution times across MongoDB, Cassandra, Redis,
and Neo4j.

3.6. Tools and Methods:

There were two main benchmarking tools used. The
read, write, and update processes were simulated
using standardised workloads using YCSB (Yahoo!
Cloud Serving Benchmark). Apache JMeter is
appropriate for stress testing & concurrency analysis
as it allows performance testing under various
concurrent user loads. Grafana and Prometheus were
used to develop monitoring dashboards that
visualised  system resource data. Plotting
performance comparisons was made easier with the
use of the Matplotlib and Seaborn tools, while
Python was utilised for result analysis as well as
graph creation.

3.7. Process Flow for Processing and Execution of
Data:

The experimental pipeline used a systematic
approach, cleaning raw datasets using Pandas and
Python before mapping them to their corresponding
NoSQL database schema. Scripts were developed
specifically for inserting bulk data. After that,
JMeter/YCSB was used to perform queries with
different workloads and levels of concurrency. Data
was recorded, saved, and then examined with the use
of statistical tools and visuals. The metrics were
adjusted so that they could be fairly compared across
databases.

3.8. Mathematical Modelling:

The researchers used math to figure out how long it
would take to run a query based on the size of the
dataset, the size of the cluster, and the complexity of
the query. The following formula was used:

D
qua.ﬁ+ﬁ.C+e (D)

Here, T, stands for the time it takes for the query to
execute, D is the dataset size, N is the number of
nodes in the cluster, C is the amount of complexity
of the query (which may be given a value between 1
and 4), a & [ are constants that have been
experimentally found, and € is the fluctuation in
latency caused by system load. The number of
queries that were successfully executed during the
whole time frame was used to model throughput.

4. EXPERIMENTAL SETUP:

4.1. Strategies for the design of data models and
indexes:

The researcher set up each NoSQL database
according to the way its data is structured. MongoDB
used a versatile JSON-based document architecture
with layered documents as well as compound
indexing to speed up read and aggregate queries.
Cassandra's column-family structure used partition
keys alongside clustering columns to make writing
and range queries faster. Redis worked with key-
value pairs, which are naturally fast but relied on
how well the keys are designed. Neo4j used a node-
edge relationship the graph architecture with
indexing on nodes along with relationship types to
speed up activities like traversal and pattern
matching.

4.2. Form and Variations of Queries:

Simple read (key lookups, document fetches) and
writes (bulk inserts), updating (changing fields or
nodes), as well as aggregations (count, average,
total) were all part of the benchmarks. Complex
pattern-matching & multi-hop traversals were used
to test Neo4j, while nested document searches were
used to test MongoDB. Logging systems, online
marketplaces, and recommendation engines are just
a few examples of the real-world use cases that
inspired these query types.

4.3. Setting up load and concurrency:

The tests used Apache JMeter as well as YCSB to
mimic different workloads by having many users at
the same time. The load levels raised in phases from
50 to 500 concurrent users. Each test case included
ramp-up periods of time, constant throughput
phases, as well as cooling times so that researcher
could see how the database acted under actual load.
We kept track of metrics like latency, throughput,
along CPU use throughout these stages to find out
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where the system might grow and where resources
were being used up.

4.4. Repetition for Validating Statistics:

We conducted each test five times under identical
circumstances to be sure the results were statistically
sound. The data were averaged, and the standard
deviation was used to check for consistency. We
used percentile-based analysis (the 50th, 75th, as
well as 95th percentiles) to deal with outliers,
notably when measuring latency. This method made
sure that performance trends showed how the system
normally works instead of strange things that happen

because of short-term spikes or background
activities.

5. RESULTS AND ANALYSIS:

5.1. NoSQL Databases' Comparative
Performance:

Four well-known NoSQL databases MongoDB,
Cassandra, Redis, as well as Neo4j were evaluated
for performance, and the results showed significant
variations in their operational effectiveness. Redis's
in-memory structure for data, which drastically
decreased I/0 cost, allowed it to perform better in the
majority of instances. Using its distributed, columnar
design for high-throughput operations, Cassandra
performed very well in workloads that included a lot
of writing. With its configurable document storage
and indexing, MongoDB provided balanced
performance for both read and aggregate queries.
Neo4j, which was created for graph-based queries,
did better in situations with a lot of relationships but
was slower in typical operations. These results
emphasise how crucial it is to match database
choices with query patterns unique to a given
application.

5.2. Query Response Duration Across Diverse
Workloads:

With the rise in concurrent users, each database
demonstrated varying scalability characteristics.
Redis exhibited a nearly linear performance
improvement, adeptly managing up to 10,000
requests per second with 500 concurrent users.
Cassandra exhibited excellent scalability, achieving
about 4,500 queries per second owing to its
decentralised  write  architecture.  MongoDB
demonstrated modest scalability, reaching a
maximum of around 3,200 queries per second (QPS).
Neo4j, however, saw a reduction in performance at
elevated concurrency levels, ascribed to the
computational intricacy of graph traversal
operations. Latency tests indicated that Redis had the
most consistently lowest response times, but Neo4j

showed significant fluctuation,
complex relationship queries.

5.2.1. Behaviour of CPU Resources:

especially for

Tracking CPU consumption over time allowed for a
more thorough analysis of system performance.
Figure 2 illustrates the sharp rise in CPU use during
a high load period, which reached 90% and indicated
intensive query processing. The utilisation gradually
decreased after execution, indicating that the system
handled loads and recovered its resources well.

90

CPU Usage (%)
o
&

o 1 2 3 4 5 6 7
Time (seconds)

Figure 2. CPU Usage Over Time
5.3. Indexing and Non-Indexing Performance:

Indexing greatly improved  performance.
Specifically for retrievals of nested documents,
indexed queries in MongoDB were as much as 60%
quicker than non-indexed ones. The query pattern in
Redis is functionally similar to indexed lookups
since it employs key-based access by default.
Partition keys are essential for avoiding complete
table scans and improved Cassandra's speed. Despite
Neo4j's support for node and relationship indexing,
performance is still quite graph-dependent owing to
repetitive traversals. In big datasets in particular,
indexing is essential for lowering execution time and
increasing query predictability.

5.4. Graphical Performance Analysis:

The experimental findings were shown using several
figures. Figure 1 above displays a bar chart that
contrasts the average execution times for read, write,
& aggregate queries throughout the databases. Redis
consistently exhibited the shortest execution time
across all three operations, while Neo4;j recorded the
longest owing to its specialised query architecture.
Figure 3 depicts the variation in throughput with
escalating levels of concurrency. Redis exhibited
remarkable scalability, followed by Cassandra,
whilst MongoDB and Neo4j revealed constraints
under increased loads. Figure 4 illustrates the delay
distribution with a box plot. Redis had the most
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limited dispersion, signifying uniform performance.
MongoDB and Cassandra exhibited modest
fluctuation; however, Neo4j had the greatest
variation, particularly in complicated queries. These
visual comparisons corroborate the quantitative
results and highlight the appropriateness of each
database for various task kinds.

10000 | —=— MangoDB
—a— Cassandra

—=— Redis
- Neodj

@
2
8

2
2

=
8
g

Throughput (Queries per Second)

] 100 200 300 00 500
Number of Concurrent Users

Figure 3. Throughput vs. Concurrency

Latency (ms)

2
£

. —

50

Cassandra Redis Neodj
Database

Figure 4. Latency Distribution Across NoSQL Databases
5.5. Interpretation of Result:

In light of these findings, it is clear that various
NoSQL databases excel in different contexts. When
it came to speed and stability, Redis was head and
shoulders above the competition, making it perfect
for use in real-time scenarios. The distributed nature
of Cassandra allowed it to perform well on massive
write-heavy workloads. With robust indexing
capabilities and modest scalability, MongoDB
offered balanced performance. Under heavy
demand, Neo4j's latency & execution time
increased, but it performed well for complicated
relationship queries otherwise.

Efficient load management was proven across all
databases by the CPU consumption graph. Dataset
size, cluster the nodes, while query complexity
determines execution time, and throughput is
inversely linked to execution time, according to

mathematical models that backed up the results. In
general, the application workload should dictate the
database that is used.

6. DISCUSSION:

Figure 5 shows the whole process, from gathering
and cleaning data to comparing results and analysing
them across different NoSQL databases.

Raw Datasets
(Twitter, etc.)

Preprocessing

NoSQL Database Setup
—> | (Cleaning, Mapping) | — >

(MongoDB, Redis, etc.,)

b )

Benchmarking Tools
| (YCSB, JMeter for load testing)

¥

Performance Monitoring
(Grafana, Prometheus, Logs)

¥

Result Analysis
(Execution Time, Latency, etc.,)

Figure 5. NoSQL Performance Evaluation Framework

6.1. Key findings:

Depending on the kind of workload, different
databases have different benefits; this was shown by
comparing MongoDB, Cassandra, Redis, & Neo4;.
Because to its in-memory nature, Redis often
outperformed its competitors in terms of latency and
execution time. Because of its high throughput and
scalability, Cassandra performed very well with
write-heavy workloads. Although Neo4j had more
latency, it excelled at processing complicated
relationship queries, in contrast to MongoDB's
performance balance across operations as well as
indexing.

6.2. Implications for Large Data Application
Developers:

Developers of big data applications need to make
sure that the database they choose works well with
the predicted query patterns as well as system
requirements. Real-time systems should prefer
Cassandra might be useful for Redis, log-based
systems, or time-series data platforms. MongoDB is
a good match for adaptable schema or document-
based applications. Neo4j should be used for apps
that use social networks, identify fraud, or provide
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recommendations,
important.

where connections are very

6.3. Trade-Offs in Design Decisions:

When you choose a NoSQL database, you typically
have to make trade-offs:

Performance vs. Consistency: Redis, along with
Cassandra, is both fast, but their models are
ultimately consistent. MongoDB and Neo4j can
make things more consistent, but they may not be as
fast. Flexibility vs. Optimisation: MongoDB allows
for flexible schemas, but you may need to be mindful
of indexing. Neo4j is faster at graph operations but
slower at basic queries. Resource Usage vs.
Scalability: Redis utilises more memory but is faster;
Cassandra spreads out the load well but needs cluster
tweaking.

You need to think about these trade-offs depending
on how much delay your workload can handle, how
consistent it has to be, and how much hardware is
available.

6.4. Suggestions for Choosing and Fine-Tuning
Databases:

Redis: Great for fast, low-latency transactions.
Monitor memory and establish eviction strategies to
optimise. With Cassandra, you can build scalable
apps that rely heavily on writes. For optimal
performance, fine-tune the replication factors and
partition keys. For general-purpose applications,
MongoDB is a good fit. For better read/write speed,
make sure indexing and sharding are done correctly.
If your query is relationship-driven, Neo4j is your
best bet. Improve node indexing and optimise
traversal patterns.

7. CONCLUSION:

This research looks at the performance and
benchmarking of four popular NoSQL databases
MongoDB, Cassandra, Redis, as well as Neo4j in the
context of big data apps in a methodical way. We
developed a strong test environment by employing
both actual and fake datasets, together with typical
benchmarking tools like YCSB and JMeter, to
mimic different sorts of queries and workloads. The
study adds to the body of knowledge by providing a
complete framework that encompasses data
modelling techniques, workload simulation, real-

time monitoring, as well mathematical performance
modelling. This helps developers and information
architects choose and improve NoSQL databases
depending on unique use cases.

The results show that NoSQL databases may greatly
speed up query performance in scenarios with a lot
of data. Redis always had the lowest latency and
fastest throughput, which made it perfect for
applications that needed to work in real time.
Cassandra was great at handling workloads that
required a lot of writing since it was built on a
distributed architecture. MongoDB had good
performance across the board and good indexing
support. Neo4j, on the other hand, was better at
graph-based queries and outperformed other
databases in situations where relationships were
important. These findings show that NoSQL models
can get around the problems with conventional
relational databases when it comes to scalability,
flexibility, along with parallelism.

Nevertheless, there are a few caveats to this research.
Performance under the more unpredictable, real-
world demands of production may differ from the
results achieved in the lab’s-controlled -cluster
setting. Although the datasets were broad, they were
only applicable to certain sectors such as
recommendation systems, social media, and
question and answer platforms. Some applications
critically rely on consistency analysis as well as
transactional behaviour, which were not included in
the benchmarking. In the future, researchers may
investigate how NoSQL databases do under mixed
and heterogeneous workloads, broaden their
benchmarking by including NewSQL databases like
CockroachDB and Google Spanner, and assess the
merits of hybrid database systems that use graph,
document, and relational models. Performance
optimisation in dynamic data settings may be further
improved by using machine learning-based
workload predictions & auto-tuning of database
parameters.
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