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ABSTRACT

Osteoarthritis of the knee is a common degenerative joint condition that lowers quality of life and causes
disability, especially in people over 60. It is brought on by the knee joint's degenerating cartilage, which
causes bone-on-bone contact, discomfort, stiffness, swelling, and restricted movement. Deep neural
networks, specifically “CNNs (Convolutional Neural Networks)”, have shown a lot of promise in medical
image processing for the identification and classification of diseases. In order to categorize knee osteoarthritis
utilizing X-ray pictures into five groups—Minimum, Healthy, Moderate, Doubtful, and Severe—this
research presents SCSNet, a deep learning model. Precision, recall, F1 score, and accuracy had been
employed to compare the model's performance to three pre-trained transfer learning models: “VGG-167,
“ResNet-507, and “Xception”. According to experimental results, SCSNet outperformed the transfer learning
models in every metric assessed, achieving higher performance with 98% accuracy.

Keywords: Knee Osteoarthritis, Deep Learning, Classification, Machine Learning, Scalable Convolutional Neural

Network, VGG16.

1. INTRODUCTION and imaging techniques such as X-rays, MRI, and
CT scans for evaluation.

The degenerative joint illness known as knee
osteoarthritis is typified by the gradual loss of
cartilage, which eventually results in the breakdown
of bone. Pain, stiffness, edema, and limited joint
movement are typical symptoms. Its development is
impacted by a number of risk variables, including
age, gender, race, inheritance, obesity, trauma,
vitamin D insufficiency, and lifestyle. There are two
types of disease, which evolves through several
levels of severity:

e Primary knee osteoarthritis predominantly T RN 4 y
affects older individuals due to aging or genetic ~ Figure 1. Sample X-rays Knee Images. (a) Normal Knee
predisposition. Image (b) Osteoarthritis Knee Image

e Secondary knee osteoarthritis can develop According to severity, knee osteoarthritis is
carlier in life due to factors such as injuries, categorized radiologically by employing the
diabetes, obesity, sports activities, or “Kellgren-Lawrence (KL)” grading system, which
rheumatoid arthritis. divides the condition into five different phases, from

A comparison of normal and osteoarthritic knee grade 0 to grade 4. Accurate grading of knee

images is illustrated in Figure 1, highlighting the osteoarthritis is essential for determining disease

structural differences. A key symptom of knee Progression and determining appropriate treatment

osteoarthritis is joint stiffness, particularly in the strategies. The five KL grades are classified as

morning or after prolonged inactivity, alongside pain ~ subsequent: “Healthy (0)”, “Doubtful (1)”, “Minimal

and limited mobility. Current diagnostic approaches (2)7, “Moderate (3)”, and “Severe (4)”. An

rely on clinical examinations, symptom assessments, gustratzion of the KL grading system is provided in
igure 2.

e
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Grade_1
Doubtful

Healthy

(a) (b)
Figure.2. Sample image of dataset (a) Healthy (b) Doubtful (c) Minimal (d) Moderate and (e) Severe

1.1. Challenges

Palliative care is the cornerstone of treatment for
osteoarthritis in the knee, for which there is presently
no recognized cure. Because they provide thorough
3D imaging of knee joints, MRI and CT scans are
useful diagnostic tools. The manual assessment of X-
ray pictures, however, is costly and subject to expert
subjectivity, which could result in inconsistent
diagnoses. To minimize human errors, automated
analysis of knee X-ray images using computer-
assisted techniques is essential. Automation
enhances diagnostic accuracy, reduces errors, and
expedites the assessment process. Because knee
osteoarthritis is classified using complicated criteria,
orthopedic professionals need a lot of time to
evaluate X-ray pictures. Early-stage osteoarthritis
and structural distortions may obscure X-ray clarity,
necessitating additional MRI scans. However, the
high cost of MRI makes it less accessible for many
patients. Traditional radiographic assessments often
require highly skilled practitioners, multiple tests,
and considerable time, leading to increased costs and
potential inaccuracies. Current clinical diagnostic
methods lack precision in effectively assessing
osteoarthritis severity and progression. This study
suggests a semi-automated method for diagnosing
osteoarthritis in the knee in order to overcome these
drawbacks.  Using X-ray images, recent
developments in Deep CNNs and ML have shown
exceptional ability in identifying minute structural
differences in knee joints. These techniques offer a
more reliable, efficient, and cost-effective alternative
to conventional diagnostic methods.

1.2. Motivation

Knee X-ray images typically lack prominent low-
level structural details, making it challenging for
deep CNNs to effectively learn classification
patterns, especially when distinguishing between
Kellgren-Lawrence (KL) grades, which often exhibit
subtle differences. Many recent methods have
directly applied existing image classification models
without optimizing network architectures for the

Grade_2

Grade_3 1 Grade_4
Minimal Moderate Severe
(c) (d) (e)

specific challenges of knee osteoarthritis diagnosis.
While some approaches leverage architectural search
techniques, most models were originally designed
for generic image classification rather than medical
imaging. Furthermore, state-of-the-art deep CNNs
for knee osteoarthritis severity classification are
often excessively large, exceeding 500 MB,
requiring substantial computational resources that
hinder real-time deployment. As a result, using well-
known categorization models directly might not be
the best option. Although recent approaches have
started developing models tailored for knee
osteoarthritis analysis, they still face limitations in
accuracy and computational efficiency.

2. RELATED WORK

Deep learning (DL) approaches for knee
osteoarthritis (KOA) classification have been widely
explored. Jain et al. [ 15] utilized the High-Resolution
Network (HRNet) to capture multi-scale features in
knee X-rays, incorporating Gradient-based Class
Activation Maps (Grad-CAMs) and an attention
mechanism to enhance performance. However, the
absence of complex features in some radiographs
affected classification accuracy. Olsson et al. [16]
employed a convolutional neural network (CNN)
with the ResNet architecture, while Zhang et al. [17]
implemented ResNet-18 and ResNet-34 for knee
localization and KL-grade prediction. Yeoh, P. S. et
al. [18] proposed a multitask deep learning model
based on ResNet-34 to assess osteoarthritis severity
and predict the likelihood of Total Knee
Replacement (TKR) within nine years. Shamir et al.
[19] introduced an approach that combined image
descriptors, Fisher scores, and a weighted nearest
neighbors’ algorithm for KL-grade classification.
Similarly, Guan et al. [20] integrated VGG16,
DenseNet, and a Support Vector Machine (SVM)
using non-image data for KOA prediction. For knee
joint space width (JSW) localization, Abdullah and
Rajasekaran [21] employed Faster Region-based
CNN (RCNN), using AlexNet for severity
classification and ResNet-50 for feature extraction.
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However, their patient selection criteria—focusing
on individuals over 50 with OA symptoms could
introduce bias and limit model generalizability.
Tiulpin et al. [22] developed a Siamese network to
learn similarity metrics between radiographs, while
Cueva et al. [23] proposed a semi-automatic CADx
model for KL-grade classification using Deep
Siamese CNNs and ResNet-34. The reduction of
image resolution to 8-bit in their study may have led
to information loss, impacting accuracy. This study
aims to develop a DL model for KOA classification
using digitized knee X-ray images. Transfer learning
techniques will be employed to adapt deep learning
models to the KOA dataset, ensuring accurate
detection and validation through comprehensive
testing.

2.2. Our Contributions

The following are our additions, which are based on
the shortcomings of best published works to date:
This work proposes an effective deep CNN model,
SCSNet, for knee osteoarthritis severity prediction
based on KL grades using X-ray images. Unlike
conventional approaches that blindly apply pre-
trained deep models, our method is specifically
designed to account for the spatial scale of X-ray
images, leading to more accurate and efficient
classification. Finally, a comprehensive set of “tests
and a Grad-CAM [20] visualization is presented to
support the significance of every module in proposed
framework. The remainder of the document is
structured as follows: Related work is included in
Section 2. The suggested approach is presented in
Section 3. The” included dataset, training specifics,
competing approaches, and evaluation measures are
briefly described in Section 4. Experimental results
and a brief explanation of the suggested scheme's
learning in terms of Grad-CAM visualization of the
obtained data are presented in Section 5, and Section
6 concludes the paper.

3. PROPOSED METHODS

The proposed work's flowchart is displayed in Figure
3. The pipeline initiates the X-ray equipment that
takes patient X-rays and stores them in a database.
The X-ray-generated images are utilized to train the
categorization labeling model.

3.1. Data Augmentation

A significant problem in machine learning is
“overfitting, which happens when a model learns a
function with an abnormally high variance. This
results in almost flawless performance on training
data but poor generalization to new data”. By using
altered versions of preexisting photos to artificially
enlarge the training dataset, data augmentation is a
useful strategy to reduce overfitting. Models trained
on bigger and more varied datasets tend to be more

accurate in deep learning, while augmentation
approaches improve the models' capacity to
generalize to new data. To add variations to the
dataset, image data augmentation entails a variety of
changes, including normalization, rotation, shifts,
flips, and brightness alterations. Real-time data
augmentation had been performed in this research by
employing the Keras Image Data Generator, which
ensures that the model receives fresh image changes
at every training epoch, enhancing generalization
and minimizing overfitting.

3.2. Image Scaling

Pixel values in the majority of image collections are
expressed as integers between 0 and 255. However,
when working with huge integer values, neural
networks—procedure inputs with relatively modest
weight values—may encounter learning that is
slowed down or interrupted. Image normalization is
therefore a common procedure to improve stability
and computational efficiency. The process of
normalization entails dividing all pixel values by a
maximum value of 255 in order to scale them to a
range between 0 and 1. This procedure is conducted
consistently over all channels, regardless of the
initial pixel value distribution of the image. The
process of normalizing images improves the stability
of the gradient descent algorithm, speeds up
convergence, and increases numerical stability. The
picture Data Generator technique was used in this
study to accomplish picture normalization, with
rescale=1./255 as its argument. This ensured that the
neural network performed at its best throughout
training.

3.3. Image Resizing

In computer vision, resizing images is a crucial first
step that improves computational efficiency and
ensures consistency. Machine learning algorithms
typically train faster on smaller images, as larger
images contain more pixels, thereby increasing the
computational complexity. Furthermore, while raw
photos frequently change in size, deep learning
models require consistent input dimensions. The
dataset used in this study included images of
different resolutions, which can have a detrimental
effect on the network's accuracy. To address this
disparity, each image was scaled to a consistent 224
by 224 pixel size using OpenCV. This approach not
only aligns with the input requirements of pre-
trained models but also optimizes training efficiency
by reducing computational demands while
preserving essential image features.

3.4. Model Training

The “dataset is separated into training and validation
sets after the images are preprocessed to ensure
model compatibility for training. A cosine similarity
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layer, max-pooling layer, flattened layer, and dense
layer are among the layers that make up the SCS-Net

Knee X-ray Images

architecture. The SCS-Net model's structure, which
integrates these layers, is shown in Figure 4. The

Hyperparameter
Data Processing > Data Splitting Tuning
~ Data S = 4| Train Evaluation
"1 Rigmentation »|  Train Data Mudelil'l-';mmg > Metrics
* Image Scaling -
Image Resizing
(224X224)
‘ SCS Net
Test Evaluation Metrics
v —*
Classification Precision N
Accuracy
Recall N
F1-Score *

Figure.3. Block diagram representation of the proposed work for the diagnosis of osteoporosis.

validation set is used for evaluation using
performance metrics that involve accuracy,
precision, recall, Fl-score, and Cohen's kappa
score”, whereas the training set is used to build the
model. Furthermore, a comparison of the model's
accuracy across several cutting-edge architectures is
made. An alternate method for feature extraction in
neural networks is provided by the SCS layer, which
creates the feature map in contrast to traditional
convolutional layers. SCS uses a stride technique to
extract features from an image, just like convolution
does. Nevertheless, it normalizes the kernel and the
image patch to a unit magnitude prior to executing
the operation, producing a cosine similarity measure,
often referred to as cosine normalization, rather than
directly computing the dot product [21].

XY

=TT M
X1

(K+Q)(M+)

SCD(X,Y) = (2)

(X+Q)(+9)

SCD(X,Y) = sign(X.Y)

3)
Conv 2+ReLU 2+Max
Pooling Layer 2

Conv 4+RelU 4+Max
Pooling Layer 4

Conv 1+ReLU 1+Max
Pooling Layer 1

Conv 3+ReLU 3+Max

Pooling Layer 3 Dense Layer

Figure.4. Architecture of “SCS-Net
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here, X=Input , Y=Kernel , Q=Scale invariance

, P =Sharpening Exponents. SCS and other

convolution-like” stride processes take features out
of pictures. Equations (2) and (3) provide
mathematical formulations for the Sharpened Cosine
Distance (SCD) and Sharpened Cosine Similarity
(SCS), respectively. Peak sharpening can be
improved by raising it to an exponent, but each unit's
sharpening exponents must be learned separately
[22]. This method eliminates the need for
normalization or activation functions after SCS
layers and outperforms traditional convolutional
neural networks while using 10x to 100x fewer
parameters. However, cosine similarity is broad, so
even dissimilar vectors might be similar. Sharpening
fixes this by retaining the sign but boosting the
result's power. Numerical instability may occur
when the signal or kernel magnitude becomes close
to zero. This is avoided by modestly raising the input
strength to avoid the kernel magnitude becoming too
narrow. Due to the ineffective parallelization of
exponentiation processes, SCS's computational
inefficiency on GPUs and TPUs is a major
drawback. Although parameter reduction greatly
improves GPU performance, the sharpening effect of
SCS is also compromised.

3.5. Absolute Max-Pooling, Flatten, and Dense

Layer
A dimensionality reduction method called pooling
down samples while keeping  important

characteristics. This procedure extracts the most
important information from feature maps, improving
computing efficiency and lowering overfitting.
During training, the pooling filter is iteratively
refined through backpropagation until an optimal
value is achieved for feature extraction in specific
images. Max pooling, a widely used pooling
technique, selects the highest magnitude value
within a defined window, regardless of whether the
element is positive or negative. The mathematical
formulation for “max pooling is provided in
Equation(4).

Abs Max Pooling = ‘[[N +2P - —g) + 1] 4)

where, N = Image Size, P = Size of Padding ,

F = Size of Filter , S = Stride .

In order to facilitate smooth input into the Dense
Layer for additional processing, the Flatten Layer
converts multidimensional input data into a one-
dimensional column vector”. The completely linked
neurons that make up the Dense Layer make it easier
to memorize intricate patterns. Whereas the
“Sigmoid activation function” is utilized for binary

classification to produce probabilities for two
different categories, the “SoftMax activation
function” is utilized for multiclass classification to
produce probability distributions over multiple
classes.

3.6. Model Parameter Tuning

A batch size of 64, 40 epochs, and a learning rate of
0.0001 have been employed to train the SCS-Net
model. A combination of momentum and RMSprop
optimizers are used to improve the model; the Adam
optimizer was chosen due to its low memory
consumption and computational efficiency. To
improve the robustness of the suggested model,
hyperparameters are adjusted using the Keras tuner
package. By choosing the step size for minimizing
the loss function, the learning rate affects how
quickly the model converges. Momentum preserves
parameter  update  directionality, speeding
convergence and improving accuracy. SoftMax
activation has been employed for multiclass
classification in the output layer, while sigmoid
activation is employed for binary classification.

3.7. K-Fold Cross Validation

One method for preventing overfitting in a prediction
model is cross-validation, which is particularly
helpful when there is a limited quantity of data
available. “A value for cross-validation is chosen,
and the dataset is divided into equal-sized partitions.
After splitting, partitions are employed for training
and one for testing. This approach is done times,
every time, using a different partition for testing. In
this” investigation, 5-fold cross-validation is used.
3.8. Evaluation Metrics

Evaluation metrics provide for a methodical and
impartial “assessment of a model's efficacy by giving
a numerical depiction of its performance. Accuracy,
precision, recall, and F1-score have been employed
to assess the model's performance. A” confusion
matrix is also included for a thorough examination of
classification results. To illustrate the effectiveness
of the suggested model, it is contrasted with these
metrics. Figure 5 shows the confusion matrix, which
graphically depicts the predictive performance of
model.

4. Experiments and Results

The dataset for knee osteoarthritis severity
classification was obtained from Kaggle, an open-
source platform. Figure 4 illustrates the training,
testing, as well as validation split “of the X-ray
dataset. The dataset comprises 8,381 images,
categorized based on the severity of knee
osteoarthritis”. The training set contains 5,097
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images, with the following label distribution: 2,286
Minimal, 1,046 Healthy, 1,516 Moderate, 757
Doubtful, and 173 Severe. To forecast the severity of
knee issues in fresh X-ray images, machine learning
models are mostly trained using this collection. The
testing set consists of 2,458 photos, of which 296 are

healthy, 447 are moderate, 223 are doubtful, 51 are
severe, and 639 are minimal. Models that have been
trained on the training set are evaluated using this
subset.

True Values
Positive Negative

e True Positive (TP): True positive value be predicted to

e False Positive (FP): True positive value be predicted to

e True Negative (TN): True negative value be predicted to

w ¢ positive value.

> 8 .

- negative value.

S s

T =

e S .

a o negative value.
=z

e False Negative (FN): True negative value be predicted to
positive value.

Figure.5. Confusion Matrix

model made.

* One crucialindicator is accuracy, which is the percentage of correct predictions the

Accuracy Score = (TP +TN)/ (TP + FN+ TN + FP)
* Precision is a proportion of positive results that are true positives
Precision Score=TP /(TP + FP)
* The Recallis a proportion of actual positives that were identified correctly
Recall Score =TP / (TP +FN)
* F1-Scoreis a harmonic mean of precision and recall score
F1 Score = 2* ((Precision Score * Recall Score) / (Precision Score + Recall Score))

Figure 6.Performance Metrics of the Proposed Model
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Figure.7. Dataset splitting (a) Training, (b) Testing, and (c) Validation

4.1. Analysis based on Confusion Matrix (CM)

A “confusion matrix evaluates a classification
model's efficacy by comparing expected and actual
values. It offers a more thorough and comprehensive
view of the model's performance as opposed to
depending solely on accuracy or other summary
metrics. The confusion matrix obtained from three
models is depicted in Figure 5. The CM for the
VGG-16 model is depicted” in “Figure 8(a), the
confusion matrix for the ResNet50 model is depicted
in Figure 8(b), the confusion matrix for the Xception
model is depicted in Figure 8(c), and the confusion

matrix for the suggested CNN model is shown in
Figure 8(d). This matrix shows true positive, true
negative, false positive, and false negative.
Accuracy, precision, recall, and F1-Score can be
computed” using confusion matrix values. We
suggest employing confusion matrices with other
assessment metrics to evaluate a categorization
model's efficacy more thoroughly and educationally.
Figure 8 indicates that, in comparison to other
transfer learning models, the “suggested CNN
model's confusion matrix produces the best results.
By contrasting expected and actual results, a
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confusion matrix offers a thorough assessment of a
categorization model. In contrast to other summary
measures like accuracy, it provides a thorough
evaluation of the model's performance. Figure 8
shows comparisons: Figure 8(a) for VGG-16, Figure
8(b) for ResNet50, Figure 8(c) for Xception, and
Figure 8(d) for the suggested CNN model. The
confusion matrices from three models are displayed

Confusion Matrix VGG-16

0.21

Healthy 0.03 0.02
Doubtful

s Minimal
E inimal

Moderate

Severe

Healthy Doubtful Minimal Moderate Severe
Predicted

(a)

Confusion Matrix Xception Model

Healthy 0.06 0.01 0.01

Doubtful

0.06

True

Minimal +

Moderate 1 0.01

Severe | 0

T T T T 0.0
Healthy Doubtful Minimal Moderate Severe
Predicted

(c)

in Figure 5. For accuracy, precision, recall, and F1-
score, the confusion matrix's” TP, TN, FP, and FN
values are employed. Confusion matrices should be
employed with other evaluation tools for a more
complete and informative analysis. It is clear from
Figure 8 that the suggested SCS-Net model performs
better than the transfer learning models and produces
the best classification outcomes.

Confusion Matrix ResNet-50

Doubtful

True

Minimal

Moderate 0 0.04

Severe 0 0

T T v T
Healthy Doubtful Minimal Moderate Severe
Predicted

(b)

Confusion Matrix Proposed Model

Healthy
Doubtful
o
g Minimal

Moderate

Severe

0.0

Healthy Doubtful Minimal Moderate Severe
Predicted

(d)

Figure.8. Confusion matrix (a) VGG-16 (b) ResNet-50 (c) Xception model (d) Proposed SCS-Net

4.2. Analysis based on accuracy plot

Accuracy and loss plots are crucial visualization
tools in machine learning that are employed to
determine a model's performance during training.
Plotting accuracy (y-axis) versus training epochs, the
accuracy plot shows how well the model can
categorize input samples. The accuracy plot usually
displays an upward trend as the model learns,
indicating  better classification performance.
Similarly, the loss plot depicts how successfully the
model minimizes differences between expected and
actual values by tracking its mistake. The model's
learning process, possible overfitting, and
convergence behavior are all revealed by these

visuals. The accuracy graphs for the four models are
shown in Figure 9. The VGG-16 model's accuracy
plot is depicted in Figure 9(a), followed by the
ResNet50 model in Figure 9(b), the Xception model
in Figure 9(c), and the suggested SCS-Net model in
Figure 9(d). The training accuracy is shown by the
blue line in each plot, while the validation accuracy
is shown by the orange line. Better learning stability
and generalization are indicated by the suggested
SCS-Net model's smoother curves and greater
accuracy values when compared to all other models.
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Training and Validation Accuracy for VGG-16 Model

Training and Validation Accuracy for ResNet-50 Model
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Figure.9. Accuracy plots (a) VGG-16 Model, (b) ResNet50 model, (c) Xception model and (c) Proposed CNN

4.3. Analysis based on performance parameters

In order to classify varying degrees of disease
severity within a medical dataset, Figure 10
compares four machine learning models: VGG-16,
ResNet50, Xception, and the suggested SCS-Net
model. The five severity classes—Minimum,
Healthy, Moderate, Doubtful, and Severe—are used
to evaluate performance depending on “precision”,
“recall”, “Fl-score”, and “accuracy”. The findings
show that the suggested model performs better than
the other three models in every evaluation criteria,
attaining the highest scores in every severity class.
Notably, the SCS-Net model exhibits excellent
classification performance by achieving perfect
scores for the Severe category and maintaining “high
precision, recall, and Fl-score for the remaining

classes. On the other hand, Xception displays poorer
precision and F1 scores for the Moderate class,
whereas ResNet50 displays lower recall and F1
scores for the Minimal, Healthy, and Moderate”
classes. The efficiency of the suggested SCS-Net
model is further supported by the fact that it exhibits
shorter processing times than the transfer learning
models. All things considered; these results point to
the suggested SCS-Net model as the best option for
precisely identifying illness severity levels. The
findings show that the pre-trained suggested SCS-
Net model outperformed the VGG-16, ResNet50,
and Xception models in terms of training and testing
accuracy. This demonstrates how well the suggested
approach works with X-ray pictures for the early
diagnosis of osteoarthritis in the knee. Prediction
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visualizations were produced for randomly chosen
photos from the dataset to further verify the model's
efficacy and demonstrate its capacity to correctly
classify the severity of the condition. Furthermore,
Grad-CAM visualization was used to make the X-
ray pictures more interpretable by emphasizing the
crucial areas that influenced the model's predictions.
The accuracy and dependability of the model in
identifying osteoarthritis in the knee are further
supported by these visualizations, which are shown
in Figure 11.

5. Conclusion

In this study, we developed the SCSNet model to use
X-ray images to categorize the severity of

osteoarthritis in the knee. It outperformed three pre-
trained transfer learning models—VGG-16, ResNet-
50, and Xception—with 98% accuracy, greatest
precision, recall, and F1 score. These findings
demonstrate how well SCSNet can detect and
classify knee osteoarthritis into five different
severity levels. Clinical applications of the suggested
paradigm are highly promising, helping medical
practitioners make accurate diagnoses and enhance
patient care. Future studies might look into other
improvements, such as incorporating multi-modal
data or improving the model for clinical application
in real-time.

Performance Parameters VGG-16 Model
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12

0.8

0.6

0.4

0.2

Moderate Doubtful

Minimal

Healthy Severe

BPrecision ERecall EF1-Score

Minimal Healthy Moderate Doubtful Severe Minimal Healthy Moderate Doubtful Severe
BPrecision @ERecall EF1-Score EPrecision ERecall BF1-Score
Perfor Ci ison Xception Model Performance Comparison Proposed Model

0.88

Moderate Doubtful Severe

Minimal

Healthy

@Precision ERecall @F1-Score

Figure.10. Performance Parameters Comparison
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Figure.11. Predictions obtained with the proposed model on randomly selected X-ray images from the dataset.
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