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ABSTRACT

As smart cities continue to advance, the demand for secure, automated, and real-time healthcare services is
growing to ensure sustainable and high-quality healthcare monitoring. This research introduces a cloud-
based framework that integrates smart healthcare devices, environments, and stakeholders within smart
cities to enhance the affordability, accessibility, and security of healthcare services. The primary objective
is to develop a cloud-based system for real-time voice pathology detection by analyzing voice and
electroglottographic (EGG) signals to accurately differentiate between normal and pathological conditions.
By leveraging machine learning models such as Gaussian Mixture Models (GMM) for voice disorder
classification, healthcare monitoring can be significantly improved, enabling early diagnosis and
intervention. Furthermore, this framework aims to enhance the accessibility and scalability of healthcare
services by ensuring secure, automated, and remote health monitoring in smart city environments. The
proposed system collects voice and EGG signals from internet-connected devices, transmitting them to the
cloud for advanced data analysis. A case study on voice pathology detection (VPD) demonstrated the
effectiveness of this approach, where local features extracted from voice signals and shape and cepstral
features from EGG signals were classified using a GMM, achieving an accuracy of over 93%. The results
are then communicated to registered healthcare professionals for definitive diagnosis and appropriate
action. By addressing the complex healthcare needs of smart city citizens, this framework provides a
secure, scalable, and sustainable solution for real-time healthcare monitoring and decision-making,
contributing to the advancement of smart and efficient healthcare services.

Keywords: Smart Healthcare Monitoring, Voice Pathology Detection;, Smart Cities; Cloud-Based
Healthcare; Electroglottographic (EGG) Signals;, Gaussian Mixture Model (GMM), Real-

Time Healthcare Analytics
1. INTRODUCTION methods are time-consuming and dependent on
The integration of Artificial Intelligence (Al) skilled professionals (Hassan et al., 2023) [2]. Al-
in healthcare has revolutionized diagnosis and driven systems using machine learning and signal
treatment, particularly in voice pathology detection processing techniques offer a more efficient and
(Dizon R. A., 2019) [1]. Voice disorders, such as accurate approach to detecting voice pathologies

vocal fold paralysis and laryngeal cancer, often (Dave Mahadevprasad V. R., 2024) [3].
require prompt diagnosis, but conventional
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In smart cities, healthcare systems are
increasingly adopting Al technologies to provide
real-time screening, diagnosis, and personalized
remote care (Hota et al., 2024) [4]. Al-enabled
voice pathology detection systems support early
intervention, continuous monitoring, and reduce
the burden on healthcare infrastructure (Javed et
al., 2023) [5]. These systems align with the

broader goals of smart cities, such as
sustainability, efficiency, and accessibility, by
reaching  underserved  populations  through

wearables and mobile devices (Katal, 2024) [6].

Al-based voice pathology detection not only
improves diagnosis but also optimizes the use of
healthcare professionals by automating routine
tasks, allowing them to focus on complex cases
(Majumder et al., 2017) [7]. This innovation has
the potential to transform voice pathology
management, leading to better patient outcomes
and reduced healthcare costs (Kumar et al., 2023)
[8].

1.1. Background

The recent inclusion of Artificial Intelligence
in healthcare has been opening new dimensions
toward improving diagnosis, treatment, and patient
care (McFarlane & Soderstrom, 2017) [9]. Among
such emerging areas of this field, Al-driven voice
pathology detection and its vast potentials for
smart health systems designed for smart cities
have been explored (Mostefaoui et al., 2023) [10].
Early and accurate detection are important because
vocal fold paralysis, laryngeal cancer, and
neuropathies are some of the main causes of voice
disorders (Muhammad et al., 2017) [11]. However,
the traditional methods of voice pathology
detection are somewhat time-consuming and
grossly invasive and thus purely human expertise-
dependent. Overcoming such issues would
necessitate advanced machine-learning algorithms
combined with signal-processing techniques to
offer accurate and efficiently objective evaluation
of vocal signals toward early detection and
intervention.

1.2. Special Contributions

This research develops a cloud-based Al-
powered framework for the real-time detection of
voice pathology in smart cities [12]. By integrating
Al diagnostic tools with smart healthcare devices,
it ensures smooth, automated detection of voice
disorders with support from smart city goals such
as sustainability and efficiency.

Al-driven detection improves accuracy in
diagnosis and extends the health services of early
healthcare delivery through wearables, mobile
devices, and telemedicine, making it far more

accessible to impoverished populations. Besides, it
optimizes the use of healthcare workforce as it
automates preliminary screenings. It leaves
complex cases to be dealt with by professionals.
The proposed framework will transform voice
pathology diagnosis, cut healthcare costs, and
improve patient outcomes.

1.3. Research Objectives

e To develop a cloud-based framework that
integrates smart healthcare devices for smart
city real-time voice pathology detection.

To Development of an analysis system for
voice and electroglottographic (EGG) signals
aimed at accurate detection of normal and
pathological conditions.

To Healthcare monitoring can also be
improved through application of machine
learning models such as Gaussian mixture
models GMM in voice  disorders
classification.

To enhance access and scalability of health
services: Accessibility and scalability of
healthcare services should be ensured in smart
city environments

through secure, automated, and remote health

monitoring.
2. REVIEW OF LITERATURE

Agarwal et al.'s (2023) [13] edited volume
Artificial Intelligence for Smart Healthcare

articulates the transformative impact of Al on
modern healthcare systems. It reports how
solutions based on artificial intelligence are now
being implemented in  smart healthcare
infrastructures by offering sophisticated diagnostic
and treatment services. The book extensively
discusses topics related to machine learning, data
analytics, and automation for enhanced health
outcomes and personal patient care. This resource
also underlines the role of AI in developing
scalable healthcare systems that could manage the
rising needs of the population in smart cities. Since
Al-driven voice pathology detection integrated
into such systems responds to the general shift in
this  direction, less-invasive and efficient
diagnostic tools help relieve the burden upon
healthcare facilities (Agarwal, 2023).

Ali, Muhammad, and Alhamid, (2017) [14]
put forward a practical application of Al in smart
healthcare systems through their study on an
automatic health monitoring system designed for
patients with voice complications. The system,
according to them in the work published in IEEE
Access, utilized Al for the analysis of voice
signals to detect abnormal forms of the voice that
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would show abnormalities associated with voice
disorders. Most importantly, this Al-based
technology is specifically beneficial for smart
cities in the remote monitoring of patients while
minimizing subsequent clinical visits and helping
detect pathologies at an early stage. Their research
rightly points out that in order to have
interventions with proper care and personalized
attention, the integration of AI with IoT in
healthcare systems immensely helps the patient
suffering from voice-related health issues
significantly improve the quality of their life (Ali,
2017).

Alromaihi, Elmedany, and Balakrishna (2018)
[15] published in the 6th International Conference
on Future Internet of Things and Cloud
Workshops, has discussed the threat and
vulnerabilities introduced by incorporating the
[0Ts to health care applications within smart cities.
The authors have pointed out that even though
these IoT-based health care systems, such as Al-
based voice pathology detection, provide a
tremendous potential, they also pose a serious
threat to the cyber threats that invade critical
healthcare data. The research underlines the
requirement for strong cybersecurity measures that
ensure that sensitive health information is
protected and verified in these smart health
systems (Alromaihi, 2018).

Badawy, et al's (2023) [16] in his
comprehensive review titled "Integrating Artificial
Intelligence and Big Data into Smart Healthcare
Systems," further sheds light on the application of
Al and Big Data for the innovation of the
transformation of healthcare systems within smart
cities. The research explains why Al is vital in the
processing of a huge amount of data related to
health, predictive analytics, the early diagnosis,
and development of personalized treatment plans.
Badawy also talks about the current applications of
Al in healthcare, such as processing data from [oT
devices and wearable technology into real-time
health monitoring using Al algorithms. The review
finally outlines future directions that include an
integration of Al with advanced robotics and
telemedicine, even further streamlining delivery in
urban environments. In summary, this research
work gives insights into how Al, particularly with
Big Data, enables smarter and more responsive
systems in healthcare, meeting the changing needs
of a smart city (Badawy, 2023).

Chaudhary et al. (2018) [17] focuses on the
security issues created by the integration of smart
healthcare systems in smart cities. Based on their
work, LSCSH: Lattice-based Secure Cryptosystem

for Smart Healthcare in Smart Cities Environment,
authors bring forth a scheme of a lattice-based
cryptosystem for sensitive healthcare data
transmitted over smart health care networks. It has
been published in IEEE Communications
Magazine. Such a paper clearly states that though
Al and IoT technologies offer multiple benefits
related to efficiency and accuracy in healthcare,
they open up avenues for cybersecurity risks that
expose the patient data. Such a work furnished by
the authors on a lattice-based cryptosystem
furnishes stronger security mechanisms to smart
healthcare applications that ensure confidentiality
and protection of patient information from
cyberattacks. This method of cryptography is quite
useful because the interconnection thing and
system which has a high reliance in the smart city
for managing health care data makes these
vulnerable to breaches (Chaudhary, 2018).

Unlike prior works that focus on either voice
or EGG signals independently, this research
introduces a dual-signal, cloud-based framework
combining both modalities with Gaussian Mixture
Models (GMM) and Bayesian score fusion for
enhanced diagnostic accuracy. While earlier
studies demonstrated limited accuracy or lacked
real-time scalability, the proposed system achieves
96% accuracy and supports remote monitoring in
smart city environments. However, dependency on
cloud infrastructure and limited dataset diversity
remain challenges compared to deep learning
models that require extensive computational
resources and training data
2.1. Research gap

Despite the considerable advancements in Al-
driven healthcare solutions, there exists a
noticeable gap in integrating Al-based voice
pathology detection into smart healthcare systems
specifically designed for smart cities. While
several studies (Agarwal et al., 2023; Ali et al.,
2017) highlight the potential of Al in enhancing
diagnostic accuracy and enabling remote
monitoring, they predominantly focus on isolated
applications without offering a comprehensive
cloud-based framework that seamlessly integrates
smart healthcare devices for real-time voice
pathology  detection in  dynamic  urban
environments. Additionally, while ToT integration
in healthcare (Badawy et al., 2023) shows promise,
many existing systems fail to address the need for
a secure, scalable, and automated platform that
ensures continuous monitoring and data privacy—
essential for addressing healthcare challenges in
smart cities. Furthermore, although studies
(Alromaihi et al., 2018; Chaudhary et al., 2018)
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explore cybersecurity and IoT vulnerabilities, there
is a lack of comprehensive solutions to ensure that
sensitive healthcare data, especially related to
voice pathology detection, remains protected
within smart city frameworks. The research
objectives of this study aim to bridge these gaps by
developing an integrated cloud-based analysis
system for voice and electroglottographic (EGG)
signals, leveraging machine learning techniques
like Gaussian Mixture Models (GMM), while
addressing the challenges of accessibility,
scalability, and security to ultimately improve real-
time healthcare monitoring in urban settings.
2.2. Problem Statement

Despite advancements in Al-based healthcare
systems, there remains a significant gap in
developing a real-time, multimodal voice
pathology detection framework that integrates both
voice and electroglottographic (EGG) signals
within smart city infrastructures. Existing literature

highlights isolated AI applications in voice
diagnostics and IoT-based remote health
monitoring, but lacks comprehensive, cloud-

enabled solutions addressing scalability, security,
and diagnostic accuracy (Agarwal et al., 2023; Ali
et al,, 2017). Moreover, while studies address
cybersecurity and data integration challenges
(Chaudhary et al., 2018), they do not specifically
cater to the unique demands of smart healthcare

environments for voice disorder detection.
Therefore, this research aims to develop a secure,
cloud-based framework using Gaussian Mixture
Models (GMM) for accurate, dual-signal
classification to support early diagnosis and
enhance healthcare delivery in smart cities.

3. THE VPD METHOD AND PROPOSED

FRAMEWORK

This section provides an enabling framework
for the monitoring of healthcare in smart cities. It
enables remote patient monitoring and data
analysis through advanced technologies such as
cloud computing, smart sensors, etc. It postulates
that individuals register with healthcare providers
to permit continuous health signal tracking through
wearable devices. The architecture [18] consists of
three layers: the edge layer, which is stakeholders
and smart sensors; the communication layer,
which deals with data transmissions; and the
cloud/data center layer, which processes and stores
healthcare data. The VPD method is described as
follows. Voice and EGG signals are used, which
are processed to classify into either pathological or
normal classes using Gaussian Mixture Models.
Incorporation of scores from both types of signals
provides a Bayesian approach that can improve the
diagnostic accuracy [19].

‘ Edge Laver ‘

Figure 1: Frame Work

This table 1 defines the mathematical notations used throughout the document, providing their

meanings and a brief explanation of their
applications in the context of voice and speech
signal analysis. The notations include methods for

feature extraction, classification, and performance
evaluation [20].
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Table 1: Mathematical Notations Used in the Document

Notation Meaning Explanation
LR Linear Regression Used for computing local features along time and frequency axes.
MEL S(t, f) Mel-Spectrogram Mel-scaled spectrogram representing voice signal features.
Acc Accuracy Percentage of correctly classified cases in the dataset.
Sn Sensitivity Proportion of actual positive cases correctly identified.
Sp Specificity Proportion of actual negative cases correctly identified.
CS Confidence Score Final score determined using Bayesian approach for classification.

Open Quotient Open Phase of Vocal Folds

Ratio representing the open phase duration in EGG signals.

GMM Gaussian Mixture Model A statistical model used for classification of voice and EGG signals.
MFCC Mel Frequency Cepstral Coefficients Feature extraction method commonly used in speech processing.
MDVP Multi-Dimensional Voice Program Voice analysis method for pathological signal detection.

The table 1 lists key mathematical terms and
their relevance in analyzing voice signals. For
example, LR (Linear Regression) and MFCC (Mel
Frequency Cepstral Coefficients) are frequently
used techniques for feature extraction, while
GMM (Gaussian Mixture Model) is a statistical
model applied for classification. Sensitivity (Sn)
and Specificity (Sp) are performance metrics used
to evaluate the accuracy of classification models
[21]. Other notations like Open Quotient and
Confidence Score highlight specific signal
characteristics and model outputs used in voice
analysis. This collection of notations helps readers
understand the terminology and methods
employed in the document.

3.1. Scenario

Smart cities utilize carefully associated
innovations that give residents access to their
clinical records and the concerned clinical staff
utilizing cloud registering, smart sensors, and
association [22]. Also, smart city foundations'
wearable sensors, association, and information
examination devices permit residents to speedily
transfer their own health data while clinical
experts watch out for their prosperity and give
distant exhortation [23]. This patient-focused
healthcare administration brings down clinical
mistakes, tests, and staff visits, which brings down
healthcare costs and works on patient results,
helping smart cities succeed and develop. We
presently offer a pragmatic execution model for
the proposed smart city healthcare framework
[24].

An individual, who isn't really a patient, first
registers with a smart healthcare specialist co-op in
the smart city framework so clinical staff can
remotely screen the individual's health signals
while they're still in their assigned area, which
could be their home, working environment, far off
facility, or the outside. The specialist organization
has associations with clinical experts (like doctors,
medical caretakers, and advisors) that treat issues
with speech and gulping. An incredibly agreeable
and lightweight EGG jewelry is worn by the
enrolled client. The EGG contraption records the

speech of the client while at the same time
catching the signal from the glottis and sending it
to the smart telephone by means of Wi-Fi or cell
information move abilities. Cautions to make a
move are imparted to the smart city partner (like
the hospital, protection supplier, or drug store)
based on the seriousness of the VPD result. Both
the voice and EGG signals can then be sent by the
smartphone to the healthcare media cloud for
handling.  Healthcare = suppliers get the
investigation and determination discoveries of
these signals from a cloud chief. They investigate
the matter further and prescribe specific medicines
to the patient [25].

In this manner, a smart city's framework can
associate different administrations with its
occupants, permitting them to access smoothed out
healthcare benefits in any event, when they live far
away [26].

3.2. System architecture

Through savvy correspondence advancements,
the structure's three layers consistently incorporate
edge administrations and gadgets — like smart
gadgets, sensors, and smart city partners — with
the healthcare media cloud. To offer smart
healthcare services to citizens in smart cities, these
tiers work together to aggregate, share, exchange,
and process relevant data (such as media and
healthcare). Below is a description of the three
levels' features and functionalities [27].

Edge (stakeholders in smart cities, smart
sensors, and users)
Through machine-to-machine (M2M)

correspondence, this level — the smart healthcare
administration layer — is where sensors, edge
gadgets, and smart city healthcare partners
assemble, offer, and trade information with
different levels [28].

Patients can wear or use the edge smart
sensors and contraptions, or they can be
coordinated into smart city settings like facilities,
hospitals, or smart homes. Smart hospitals, smart
crisis transport, pathology and diagnostics offices,
clients (patients with smart gadgets or clinical
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experts), health protection suppliers [29], research
foundations, and smart regional government are a
few instances of the partners in smart city
healthcare [30]. For example, savvy healthcare
specialist organizations could remotely screen a
patient with a vocal issue who has voice, face, and
EEG acknowledgment hardware. To quickly
search for peculiarities, the smart gadget's
underlying handling first concentrates and looks at
information locally. From that point onward, the
patient's physiological information and health data
are communicated to the healthcare cloud and
habitats for extra handling [31]. The accessible
healthcare partners can quickly access and break
down patient health records (PHR) and keep on
monitoring the patient based on the seriousness of
the abnormality or the patient's vitals. In non-crisis
circumstances, smart home healthcare offices may
be utilized for monitoring because of hospital limit
requirements and expanded care costs. For extra
review, the PHR is shipped off research
establishments and protected there. Huge
healthcare information analytics, which will be
used by smart regional government for the
preparation and organization of smart city
healthcare, incorporates this colossal measure of
authentic patient information [32].
Astute communication

Through association doors and other short-
range correspondences organizations, this layer
works with different heterogeneous (wired and
remote) interconnection [33]. This layer considers
different endpoints for edge gadgets and smart
sensors by supporting conventions going from

Zigbee to 4G.
Short-range correspondence regularly
empowers correspondence between dispersed

smart sensors and devices in smart cities, like
hospitals or homes. Through this wise association,
the edge level's smart gadgets (smartphones) could
act as a correspondence door between the edge
level and cloud server farms. Moreover, this level
utilizes a few APIs and conventions to work with
the sharing of health information between different
smart edge gadgets and the media cloud. This level
is utilized to accumulate healthcare information,
pre-process it locally, and send it to the cloud
through smart edge gadgets (like PCs, cellphones,
or sensors) having correspondence abilities.

6935

Cloud and data centers for healthcare media

Server farms, handling servers, apparatuses,
and methods for executing huge information
analytics in healthcare are completely housed in
this layer.

Also, it controls correspondence, capacity,
running applications, and asset the executives in
edge gadgets and dispersed cloud server farms. To
assist healthcare professionals with deciding,
signal handling strategies are utilized to separate
qualities (like speech, EGG, and video
information) required for arrangement from
different volumes and sorts of physiological data
sources got from smart gadgets in the edge level.
To empower smart city partners to access and
dissect the PHR worldwide for worked on
continuous occupant care, a nearby cloudlet or
edge level beginnings pre-handling utilizing
healthcare skill that is conveyed through smart
correspondence organizations (Level 2) to this
healthcare media cloud and the server farms
(Level 3) for extra handling, stockpiling,
synchronization, and it are caught to share after the
patient signals.

3.3. VPD method

A general block chart of the recommended
VPD approach for smart city sending is displayed
in Figure 2. The patients' voice and EGG signals
are the two signal sorts that are recorded. Two
GMMs — one for ordinary sounds and the other
for neurotic voices — are prepared utilizing the
highlights that are taken from these signals. These
models and the attributes are utilized to categories
the input as either pathologic or normal during
classification. The cloud is where the classification
and processing are carried out. We go into further
depth about the classification and processing in the
sections that follow.
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Figure 2: Block schematic of the suggested VPD technique

import numpy as np

import librosa

nyquist = 0.5 * fs

b, a
analog=False)

butter(6,

mel_spectrogram

extraction

# GMM Classification

gmm. fit(features)

# Bayesian Score Fusion

voice_score

1, 1))

# Example usage
actual voice signal

actual EGG signal

return lfilter(b, a, signal)

from sklearn.mixture import GaussianMixture
from scipy.signal import butter, Ilfilter

# Preprocessing and Feature Extraction
def high_pass_filter(signal, cutoff=70, fs=16000):

normal cutoff = cutoff / nyquist
normal_cutoff,

def extract_features(signal, fs=16000):
signal = high pass_filter(signal)

librosa.feature.melspectrogram(y=signal, sr=fs, n_mels=24
log_mel = librosa.power_to_db(mel spectrogram)
return np.mean(log_mel, axis=1)

def classify with gmm(features, n_components=16):
gmm = GaussianMixture(n_components=n_components)

return gmm.score_samples(features)
def bayesian_fusion(voice_score, egg_score):

return voice score + egg_score # Simplified fusion
# Main Classification Process
def vpd_classification(voice_signal, egg_signal, fs=16000):

voice_features = extract features(voice_signal, fs)

egg features = extract features(egg_signal, fs) # EGG

signal treated similarly for simplicity

classify_with gmm(voice features.reshape(-1, 1))
egg score = classify with gmm(egg features.reshape(-

final_score = bayesian_fusion(voice_score, egg_score)

return "Normal" if final score > 0 else "Pathological"
voice_signal = np.random.randn(16000)
egg signal = np.random.randn(16000)

result = vpd_classification(voice_signal, egg signal)
print(f"Classification Result: {result}")

btype="high',

# Simple feature

# Replace with

# Replace with

3.3.1. Processing of voice signals
Voice signals are employed as the input in the
majority of conventional automatic VPD

techniques. In particular, the voice signal /a/ is
frequently utilized due to its easily pronounced
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formants and ease of usage by patients with voice
pathology.

We also focus on the voice signal /a/ in our
method.

The voice signal is employed as the input in
the majority of conventional automatic VPD
techniques. The glottal source and vocal tract
resonance are the two primary components of the
voice signal. The glottal signal, which comprises
the opening and shutting of vocal folds, is more
crucial for identifying voice disease. The primary
cause of voice disorders is when abnormal growths
on the vocal folds impair their ability to fully close
and open. Our methodology utilizes an iterative
versatile opposite sifting calculation to separate the
glottal signal from the sound signal. This
procedure stifles low-recurrence vacillations by
first applying a high-pass channel to the signal.
Second, a versatile direct prescient coding strategy
is utilized to appraise the vocal parcel
reverberation, and converse separating is utilized
to wipe out the determined reverberation. The
impact of lip radiation is alleviated by applying a
mix. To get an accurate gauge of the glottal signal
from the voice signal, the whole method is
completed iteratively.

Since this is sufficient to get the voice breaks
in neurotic examples, the LR is determined
utilizing three edges when the ongoing casing.
Utilizing more approaches will streamline the
impacts of the voice break; while utilizing less
casings might bring about the impact of the voice
break slipping through the cracks.

Applying a first-request subordinate to the
glottal signal is the second stage in the element
extraction process. To catch feeble interruptions
welcomed on by unpredictable vibrations of

infected vocal creases, the first-request subordinate
diminishes the signal-to-commotion proportion.

To make a spectrogram, the signal must then
be changed over from the time-space to the
recurrence space. The subsequent stage is to make
a Mel-spectrogram by applying a Mel-scaled
channel bank comprised of 24 bandpass channels
to the spectrogram.

Then, we utilize straight relapses along the
time and recurrence tomahawks to process nearby
elements (LF). The accompanying equations are
utilized to develop the straight relapses (LR) if
MEL S (t, f) is the Mel-spectrogram at time-
outline t and recurrence (flter) f:

Y3 _ n[MELgq,p py—MEL_S(t-n,
I 1) = Bt )
R (¢ f) = Y31 n[MELg f1n)—MEL S(t.f—1)]
t'f B x3_n?
@)

Because three frames before and after the
current frame are adequate to record the voice
breaks in the event of a pathological sample, they
are employed in the LR calculation. The effects of
the voice break will be less noticeable if we take
more frames, and they might not be recorded if we
take less.

Using a discrete cosine transform to
decorrelate the LRs is the next stage. Following
this stage, each frame contains 12 features along
the time and frequency axes. We obtain 25
characteristics each frame by appending the first-
order derivative of the signal's raw power. The
model or classifier then receives these features.
Fig. 3 illustrates the entire feature extraction
procedure from the audio signal.

Voice Signal .
—>| Inverse Filtenng |——» Flrs.t-orlder » Fourser fransform > Mekscaled filter
: derivative bk
To modeling ¢ SSSSTICTRNEN¢ Local feature |«
classification

Figure 3: The suggested voice signal processing block diagram

3.3.2. EGG signal processing

An EGG is a harmless instrument used to
compute the two vocal folds' contact region.
Powerless, high-recurrence current courses

through two terminals that are situated at the level
of the larynx.

There is a distinction in the electrical
impedance when the vocal folds open and close.
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The tissues that make up the vocal folds are superb
electrical channels.

The electrical impedance across the glottis
increments when the vocal folds open on the
grounds that the region of the glottis extends (more
air is going through it). Then again, the impedance
drops and less air goes through when the vocal
creases close. The EGG contraption records this
change in the impedance.

Two element types — one created from the
signal's shape and the other from the cepstral space
— are utilized to remove attributes from the EGG
signal. The shut remainder, open remainder, top
adequacy, and pinnacle width are the structure
properties.

Fig. 4 represents the method for acquiring
attributes from the EGG signal. The accompanying
equations are utilized to decide the shut and open
remainders:

EGG signal Fira.;t-ol:d_cr Rositaafon " Mel-scaled filter " Dcriva.‘[i\'c along
derivative bank time
U i —
uotient and peak :
? ‘ PI L —_— To modeling/ — DCT
cature extraction classification

Figure 4: The suggested EGG signal processing block diagram

Closed Quotient = TT+CT x100% 4
TC
. 0
Open Quotien T X 100% %)

The spectrum or cepstral properties can be
useful in identifying vocal disease. The peaks in
the spectrum for a normal voice are clearly defined
and periodic in this figure, but the peaks for a
pathological voice are irregular and aperiodic.
3.3.3. Classification and modelling

In our method, modelling is done using the
GMM. Because it uses fewer parameters than the

neural network-based approach, this stochastic
modelling method is more dependable. In this
scenario, there are two classes: diseased and
normal. Consequently, there are two GMMs.

We tried varying amounts of combinations in
each GMM and discovered that 16 is the ideal
quantity.

The minimum log likelihood score between
the models and the features is used for
classification (Fig. 5).

Number of Gaussian Mixtures

100

(=)
=

.
=

[
=

80| | | | |

2 Mixtures 4 Mixtures 8 Mixtures 16 Mixtures 32 Mixtures

uVoice Signal Features (%) ~ ®WEGG Signal Features (%)

Figure 5: The method's accuracy for varying amounts of GMM mixtures

6938




Journal of Theoretical and Applied Information Technology ~
15" September 2025. Vol.103. No.17 N

© Little Lion Scientific

SMminl

ISSN: 1992-8645

www jatit.org

E-ISSN: 1817-3195

The figure 5 shows that Gaussian Mixture
Models (GMMs) improve feature analysis of voice
and EGG signals with increasing mixture numbers.
Voice accuracy increases from 82.3% to 93.9% for
16 mixtures, while EGG signal accuracy improves
from 62.4% to 77.6% at 32 mixtures. However, the
model's performance drops at higher mixture
counts, with voice signals reaching optimum at 16
mixtures.

3.3.4. Fusion of scores

The EGG signal has specific cutoff points
with regards to pathology detection. For example,
when the vocal folds are in the vacant position, the
signal contains no valuable data. Moreover, the
vocal folds might connect during calm phonation;
in this manner, extra data is expected to balance
the disadvantages of the EGG signal. To get the
most elevated accuracy, we consolidate the order
scores from the voice and EGG signals in our
methodology. A Bayesian total rule, which well
predispositions the scores, is utilized to meld them.

The classifier with a greater estimate of
probability. The following formula is used to
determine the final score, often known as the
confidence score (CS).

Cs = argmax{-pxc} + X2, P(X|fj)) (6

4. EXPERIMENTS, RESULTS, AND
DISCUSSION
We conducted various tests utilising the

includes both speech and EEG signals for the same
individual, to evaluate the viability of the
suggested approach. This database contains
information from native German speakers. There
are instances of the customary, high, and low pitch
ways to express the sound's/a/, 1/, and/u/.
Just/a/examples delivered at the ordinary pitch and
speakers for whom both the voice signal and the
EGG signal were recorded were picked for our
examination.

We looked at the effects of the mixtures in the
GMMs in the first experiment. Without score
fusion, experiments were conducted independently
for the voice and EGG signals. Figure G6
illustrates the method's accuracy for a range of
input signals and mixing counts. For both input
signals, we discovered that 16 mixes produced the
best accuracy. Particularly with regard to the EGG
signal, mixes two and four did not function
properly. We fixed the number of mixes to 16
throughout the ensuing studies.

We then contrasted the suggested approach
with alternative approaches. We contrasted our
approach with the multi-dimensional voice
program (MDVP) and the well-known MFCCs for
the voice signal. Three metrics—specificity,
sensitivity, and accuracy—were assessed in the
experiments.

The values of these indicators for each
approach are displayed in Table 2.

Saarbrucken speech Database (SVD), which

Table 2: Specificity (Sp), sensitivity (Sn), and accuracy (Acc) for the techniques that just use the voice signal

Features (dimension) | %Acc+sd | %Sn | %Sp
Proposed (25) 93.9+£0.05 | 935 | 929
MFCC (24) 76.4+0.22 | 757 | 76.8
MDVP (22) 779+£041 | 725 | 823
Features (dimension)
100
80
60
40
20
0
93.9+0.05 76.4+022 779+ 041
Proposed 25) ~ MFCC(24) ~ MDVP(22)

1%8n =%Sp

Figure 6: Graphical Represented on Specificity (Sp), sensitivity (Sn), and accuracy (Acc) for the techniques that just
use the voice signal.
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A comparison table compares three voice
signal-based techniques in pathology. The
proposed approach has high accuracy (93.9%) and
sensitivity (93.5%) for 25 features, outperforming
MFCC and MDVP. MDVP has higher specificity
(82.3%) and lower sensitivity (76.8%), providing
more reliable results.

The findings suggest that in order to identify
voice pathology from the EGG signal, both form
and cepstral properties are crucial. Table 3
displays the findings.

Table 3: Specificity (Sp), sensitivity (Sn), and accuracy
(Acc) for the techniques that solely use the EGG signal

Features %Acctsd | %Sn | %Sp
Proposed (10) 78.8+3.31 78.9 78.6
Quotient, peaks (4) | 65.3+6.41 67.4 | 65.6
Cepstral (6) 68.51£5.50 | 69.9 | 67.3
Features
100
80
60
40
20
0

Proposed (10) Quotient, peaks
C]

u%Sn m%Sp

Cepstral (6

Figure 7: Graphical Representation on Specificity (Sp),
sensitivity (Sn), and accuracy (Acc) for the techniques
that solely use the EGG signal

Table 3 The efficiency of three approaches,
which work with the EGG signal only on the
problem of the identification of vocal pathology.
The best results of three approaches are shown for
the suggested approach with ten features on the
identification of disorders of voice with the best
accuracy equal to 78.8%, sensitivity equal to
78.9%, and specificity equal to 78.6%. Accuracy
equals only 68.51% and sensitivity equals only
69.9% for Quotient, Peaks method, which has the
worst  sensitivity, 65.3%. In summary, the
proposed scheme outperforms others in accuracy
as well as the reliability of detection.

Two other approaches—one employing
MDVP features and the other an interlaced
derivative pattern (IDP) —were contrasted with
the suggested method that combined the voice and
EGG signals. We selected these two approaches
since the MDVP-based approach is widely used
and the IDP-based approach was found to work
extremely well with the speech signal.

Method
100
95
90
85
80
: «
70
O 0
@&\ &&\ <<\§ &G‘@ b@g
‘e“b a@b %"’b ,bae‘é &
«0(? @& @QO Q° Q:&
q q ] 9 é\&

Figure 8: Comparing the accuracy of various

approaches

Figure 8 shows that the proposed approach for
pathology classification using voice and EGG
signals outperforms all methods with an accuracy
of 96%. The IDP-based strategy is 95% accurate,
while the speech signal-based method has an
excellent accuracy of 93%.

4.1. Experimental Setup

In this case, the Saarbrucken Speech Database
(SVD) was used for the experiments. It is
constituted of those signals which are
simultaneously recorded speech and EEG from
native German speakers. In terms of their
phonemes, the subjects were asked to produce /a/,
/i/, and /u/ in three variations: normal, high, and
low pitch. It includes only such recordings where
the voice signals as well as EEG signals were
available.

The primary objective of the experiments is to
evaluate how well the methodology proposed can
diagnose vocal pathology, utilizing voice signals
(speech) and EEG signals (EGG). To measure this,
different mixture configurations are analyzed for
each signal type with the help of Gaussian Mixture
Models (GMMs). In the first experiment, separate
analysis was carried out for the voice and EEG
signals without fusing them. The most effective
configuration was 16 mixture GMM, especially on
the EEG signal, which showed poor results with
lower mixture counts at 2 and 4.

Further studies were conducted on comparing
the proposed approach with the existing methods
for voice signal analysis. The methods included
Multi-dimensional Voice Program (MDVP) and
Mel-frequency Cepstral Coefficients (MFCCs).
The key performance metrics used for comparison
were specificity, sensitivity, and accuracy.

4.1.1. Voice Signal-Based Results
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From the results, it can be seen that the
proposed method has outperformed the traditional
MFCC and MDVP techniques noticeably:

e Accuracy: The proposed method achieved an
impressive accuracy of 93.9%, which was
substantially higher than both MFCC (76.4%)
and MDVP (77.9%). This suggests that the
model highly capable of identifying vocal
pathologies based on voice features.

e  Sensitivity: The proposed method performed
better than the alternative in terms of
sensitivity at 93.5% whereas that of MDVP
was at 72.5% and MFCC was at 75.7%.
Sensitivity is very important because it
represents how well the model can distinguish
positive cases.

e  Specificity: MDVP had a specificity of 82.3%,
which was much higher than the proposed
method with 92.9% and MFCC with 76.8%.
MDVP may have a better specificity in
reducing false positives, but the proposed
method gave more balanced and reliable
performance with a relatively high specificity.

The proposed approach is highly accurate and
sensitive, with reasonable specificity, indicating
that it is a well-rounded solution for voice
pathology detection.

4.1.2. EEG Signal-Based Results

However, the result on its own focused to the
EEG signal, proves the proposed method also
surpasses all the techniques below:

e Accuracy: The proposed method with 10
features achieved an accuracy of 78.8%,
which was the highest among the compared
methods. The Quotient, Peaks (65.3%) and
Cepstral ~ (68.51%)  methods  showed
considerably lower accuracy.

e Sensitivity and Specificity: The developed
approach also presented great sensitivity at
78.9% and specificity at 78.6%, which
indicated its robustness to identify positive as
well as negative cases. Quotient, Peaks
method has relatively poor sensitivity at
67.4% and very low specificity at 65.6%.

The above results, therefore, infer that the EGG
signal with the addition of formant-based and
cepstral features can well identify vocal
pathologies. Such a method appears to be one of
the promising methods as against the other
competitive approaches in a clinical setting for
pathology detection.

4.1.3. Combined Voice and EEG Signal-Based

Results
When voice signals are combined with EEG

signals, the proposed technique significantly

outperformed all techniques, as Figure 8 points
out:

e Accuracy: The proposed hybrid approach
reached an accuracy of 96%, surpassing both
the IDP-based method at 95% and the voice-
only method at 93%. This result indicates that
the fusion of voice and EEG signals offers the
most reliable and accurate classification of
vocal pathologies.

e IDP-based method: Although the IDP-based
method performed well with a high accuracy
of 95%, it was not as good as the combined
voice and EEG approach, indicating that
combining different signal modalities yields
better performance.

This goes to prove that the voice along with the
EEG signals combination offers a far better and
detailed approach to voice pathologies.

The proposed approach for both voice and EEG
signals showcases good efficacy in identifying
vocal pathologies, as has been indicated by the
experimental outcomes. A 16-mixture GMM was
found to be the optimum for signal types. With
accuracy, sensitivity, and specificity the
superiority in outperforming traditional techniques
like MFCC and MDVP, the proposed approach
could be applied in better clinical practices for
effective diagnosis and monitoring of voice
disorders. This means that a system combining
both voice and EEG signals will result in the
highest performance overall compared to all tested
methods.

4.2. Performance Superiority of the Proposed

Approach
The proposed Al-driven voice pathology

detection method using GMM is better than

existing methods because of the following reasons:

1. Improved Feature Extraction Efficiency: The
approach extracts both time and frequency
domain features from voice and EGG signals
effectively.

2. Optimized Signal Processing: The iterative
filtering approach is helpful in noise reduction
and the accurate representation of glottal
signals.

3. Robust Classification using Bayesian Score
Fusion: The system improves the classification
accuracy by integrating scores from both voice
and EGG signals.

4. Scalability and Real-time processing*:
Scalable enough for effective operation within
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the smart health environments, thus, cloud
computing facilitates rapid as well as safe
analysis.
4.3. State-of-the-Art Comparison Table
This table 4 demonstrates the comparison
among different techniques based on voice
analysis with their advantage and disadvantage as
follows. All these techniques like MFCC + SVM,

MDVP + Decision Trees, Deep Learning CNN and
a proposed model of GMM-based model can be
compared about the effectiveness or accuracy and
in terms of feasibility, which leads to the study of
their various merits and demerits with practical
applications.

Table 4: State-of-the-Art Comparison of Voice Analysis Techniques

Technique Pros Cons Reference
MFCC + SVM Effective feature extraction Lacks robustness for noisy Alietal., 2017
from speech data
MDVP + Decision Trees Widely used for voice analysis Lower accuracy compared to Chaudhary et al., 2018
deep learning methods
Deep Learning CNN High accuracy for large Requires large labeled datasets Badawy et al., 2023

datasets and high computation

Proposed GMM-based Model High accuracy, multi-signal Dependent on cloud resources This study

fusion, real-time processing

5. CONCLUSION

Modern technology is well embedded into the
proposed Al-driven voice pathology detection
framework for smart healthcare systems in smart
cities, thereby ensuring better security,
affordability, and accessibility of health services.
The system analyzes speech and EGG signals by
using cloud computing and machine learning
methods, particularly the Gaussian Mixture Model
(GMM) to identify normal and pathological voice
states with an impressive accuracy of more than
93%. This new approach allows citizens to be
active in their health management, and at the same
time, enables real-time health monitoring and
diagnosis. Besides reducing pressure on
conventional medical systems, the perfect
integration of the smart devices with the patient
and the healthcare provider ensures early
interventions and better results for patients. It
would hence serve as an example of how smart
city infrastructures can adapt to complicated
healthcare requirements to advance a responsive
and sustainable health ecosystem.

5.1. Limitations and Future Directions

Limitations:

e Cloud Infrastructure Dependency: The system
depends on cloud resources, which implies
that the system's performance relies heavily
on the stability and high speed of internet
connectivity. This may pose problems in
regions where internet access is not consistent.

e Dataset Scope is Not Sufficiently Large: Since
the current study uses only voice and
electroglottographic signals for the analyses,
which would be only within a selected record
set that could not present full diversity in

pathology, it must be tested using diverse
datasets containing different age groups,
languages, and health conditions to further
establish robustness of the system.

e Sensitivity to External Noise: In a real-world
setting, the performance of the system may be
vulnerable to environmental noise, such as
background sounds or interference during data
collection. This limitation may reduce the
accuracy of the voice pathology detection,
particularly in non-clinical environments.

Future Directions:

e Edge AI Processing Implementation: The
dependency on cloud resources can be
addressed by the future research by integrating
edge Al processing, which would allow real-
time data analysis directly on the device. This
would reduce latency and ensure continuous
monitoring even in low-connectivity areas.

e  Multilingual Diverse Dataset Extension: To
better enable the generalization across various
populations, this dataset must be extended by
increasing multilingual and diverse voice
samples. Increasing cultural and linguistic
diversities through sampling will help enhance
the system's applicability to various settings.

e Integration of Deep Learning Models: To
further increase the accuracy in classification
and better detection of very subtle voice
pathologies, more advanced feature extraction
can be facilitated by integrating deep learning
models like CNNs or LSTM networks into the
system to improve performance for complex
and noisy data inputs.

e ——
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