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ABSTRACT 

 
As smart cities continue to advance, the demand for secure, automated, and real-time healthcare services is 
growing to ensure sustainable and high-quality healthcare monitoring. This research introduces a cloud-
based framework that integrates smart healthcare devices, environments, and stakeholders within smart 
cities to enhance the affordability, accessibility, and security of healthcare services. The primary objective 
is to develop a cloud-based system for real-time voice pathology detection by analyzing voice and 
electroglottographic (EGG) signals to accurately differentiate between normal and pathological conditions. 
By leveraging machine learning models such as Gaussian Mixture Models (GMM) for voice disorder 
classification, healthcare monitoring can be significantly improved, enabling early diagnosis and 
intervention. Furthermore, this framework aims to enhance the accessibility and scalability of healthcare 
services by ensuring secure, automated, and remote health monitoring in smart city environments. The 
proposed system collects voice and EGG signals from internet-connected devices, transmitting them to the 
cloud for advanced data analysis. A case study on voice pathology detection (VPD) demonstrated the 
effectiveness of this approach, where local features extracted from voice signals and shape and cepstral 
features from EGG signals were classified using a GMM, achieving an accuracy of over 93%. The results 
are then communicated to registered healthcare professionals for definitive diagnosis and appropriate 
action. By addressing the complex healthcare needs of smart city citizens, this framework provides a 
secure, scalable, and sustainable solution for real-time healthcare monitoring and decision-making, 
contributing to the advancement of smart and efficient healthcare services. 

Keywords: Smart Healthcare Monitoring, Voice Pathology Detection; Smart Cities; Cloud-Based 
Healthcare; Electroglottographic (EGG) Signals; Gaussian Mixture Model (GMM); Real-
Time Healthcare Analytics

 
1. INTRODUCTION 

The integration of Artificial Intelligence (AI) 
in healthcare has revolutionized diagnosis and 
treatment, particularly in voice pathology detection 
(Dizon R. A., 2019) [1]. Voice disorders, such as 
vocal fold paralysis and laryngeal cancer, often 
require prompt diagnosis, but conventional 

methods are time-consuming and dependent on 
skilled professionals (Hassan et al., 2023) [2]. AI-
driven systems using machine learning and signal 
processing techniques offer a more efficient and 
accurate approach to detecting voice pathologies 
(Dave Mahadevprasad V. R., 2024) [3]. 
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In smart cities, healthcare systems are 
increasingly adopting AI technologies to provide 
real-time screening, diagnosis, and personalized 
remote care (Hota et al., 2024) [4]. AI-enabled 
voice pathology detection systems support early 
intervention, continuous monitoring, and reduce 
the burden on healthcare infrastructure (Javed et 
al., 2023) [5]. These systems align with the 
broader goals of smart cities, such as 
sustainability, efficiency, and accessibility, by 
reaching underserved populations through 
wearables and mobile devices (Katal, 2024) [6]. 

AI-based voice pathology detection not only 
improves diagnosis but also optimizes the use of 
healthcare professionals by automating routine 
tasks, allowing them to focus on complex cases 
(Majumder et al., 2017) [7]. This innovation has 
the potential to transform voice pathology 
management, leading to better patient outcomes 
and reduced healthcare costs (Kumar et al., 2023) 
[8]. 
1.1. Background 

The recent inclusion of Artificial Intelligence 
in healthcare has been opening new dimensions 
toward improving diagnosis, treatment, and patient 
care (McFarlane & Söderström, 2017) [9]. Among 
such emerging areas of this field, AI-driven voice 
pathology detection and its vast potentials for 
smart health systems designed for smart cities 
have been explored (Mostefaoui et al., 2023) [10]. 
Early and accurate detection are important because 
vocal fold paralysis, laryngeal cancer, and 
neuropathies are some of the main causes of voice 
disorders (Muhammad et al., 2017) [11]. However, 
the traditional methods of voice pathology 
detection are somewhat time-consuming and 
grossly invasive and thus purely human expertise-
dependent. Overcoming such issues would 
necessitate advanced machine-learning algorithms 
combined with signal-processing techniques to 
offer accurate and efficiently objective evaluation 
of vocal signals toward early detection and 
intervention. 
1.2. Special Contributions 

This research develops a cloud-based AI-
powered framework for the real-time detection of 
voice pathology in smart cities [12]. By integrating 
AI diagnostic tools with smart healthcare devices, 
it ensures smooth, automated detection of voice 
disorders with support from smart city goals such 
as sustainability and efficiency.  

AI-driven detection improves accuracy in 
diagnosis and extends the health services of early 
healthcare delivery through wearables, mobile 
devices, and telemedicine, making it far more 

accessible to impoverished populations. Besides, it 
optimizes the use of healthcare workforce as it 
automates preliminary screenings. It leaves 
complex cases to be dealt with by professionals. 
The proposed framework will transform voice 
pathology diagnosis, cut healthcare costs, and 
improve patient outcomes. 
1.3. Research Objectives  
 To develop a cloud-based framework that 

integrates smart healthcare devices for smart 
city real-time voice pathology detection. 

 To Development of an analysis system for 
voice and electroglottographic (EGG) signals 
aimed at accurate detection of normal and 
pathological conditions. 

 To Healthcare monitoring can also be 
improved through application of machine 
learning models such as Gaussian mixture 
models GMM in voice disorders 
classification. 

 To enhance access and scalability of health 
services: Accessibility and scalability of 
healthcare services should be ensured in smart 
city environments 

 through secure, automated, and remote health 
monitoring. 
 

2.  REVIEW OF LITERATURE  
Agarwal et al.'s (2023) [13] edited volume 

Artificial Intelligence for Smart Healthcare 
articulates the transformative impact of AI on 
modern healthcare systems. It reports how 
solutions based on artificial intelligence are now 
being implemented in smart healthcare 
infrastructures by offering sophisticated diagnostic 
and treatment services. The book extensively 
discusses topics related to machine learning, data 
analytics, and automation for enhanced health 
outcomes and personal patient care. This resource 
also underlines the role of AI in developing 
scalable healthcare systems that could manage the 
rising needs of the population in smart cities. Since 
AI-driven voice pathology detection integrated 
into such systems responds to the general shift in 
this direction, less-invasive and efficient 
diagnostic tools help relieve the burden upon 
healthcare facilities (Agarwal, 2023). 

Ali, Muhammad, and Alhamid, (2017)  [14] 
put forward a practical application of AI in smart 
healthcare systems through their study on an 
automatic health monitoring system designed for 
patients with voice complications. The system, 
according to them in the work published in IEEE 
Access, utilized AI for the analysis of voice 
signals to detect abnormal forms of the voice that 
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would show abnormalities associated with voice 
disorders. Most importantly, this AI-based 
technology is specifically beneficial for smart 
cities in the remote monitoring of patients while 
minimizing subsequent clinical visits and helping 
detect pathologies at an early stage. Their research 
rightly points out that in order to have 
interventions with proper care and personalized 
attention, the integration of AI with IoT in 
healthcare systems immensely helps the patient 
suffering from voice-related health issues 
significantly improve the quality of their life (Ali, 
2017). 

Alromaihi, Elmedany, and Balakrishna (2018) 
[15] published in the 6th International Conference 
on Future Internet of Things and Cloud 
Workshops, has discussed the threat and 
vulnerabilities introduced by incorporating the 
IoTs to health care applications within smart cities. 
The authors have pointed out that even though 
these IoT-based health care systems, such as AI-
based voice pathology detection, provide a 
tremendous potential, they also pose a serious 
threat to the cyber threats that invade critical 
healthcare data. The research underlines the 
requirement for strong cybersecurity measures that 
ensure that sensitive health information is 
protected and verified in these smart health 
systems (Alromaihi, 2018). 

Badawy, et al.'s (2023) [16] in his 
comprehensive review titled "Integrating Artificial 
Intelligence and Big Data into Smart Healthcare 
Systems," further sheds light on the application of 
AI and Big Data for the innovation of the 
transformation of healthcare systems within smart 
cities. The research explains why AI is vital in the 
processing of a huge amount of data related to 
health, predictive analytics, the early diagnosis, 
and development of personalized treatment plans. 
Badawy also talks about the current applications of 
AI in healthcare, such as processing data from IoT 
devices and wearable technology into real-time 
health monitoring using AI algorithms. The review 
finally outlines future directions that include an 
integration of AI with advanced robotics and 
telemedicine, even further streamlining delivery in 
urban environments. In summary, this research 
work gives insights into how AI, particularly with 
Big Data, enables smarter and more responsive 
systems in healthcare, meeting the changing needs 
of a smart city (Badawy, 2023). 

Chaudhary et al. (2018) [17] focuses on the 
security issues created by the integration of smart 
healthcare systems in smart cities. Based on their 
work, LSCSH: Lattice-based Secure Cryptosystem 

for Smart Healthcare in Smart Cities Environment, 
authors bring forth a scheme of a lattice-based 
cryptosystem for sensitive healthcare data 
transmitted over smart health care networks. It has 
been published in IEEE Communications 
Magazine. Such a paper clearly states that though 
AI and IoT technologies offer multiple benefits 
related to efficiency and accuracy in healthcare, 
they open up avenues for cybersecurity risks that 
expose the patient data. Such a work furnished by 
the authors on a lattice-based cryptosystem 
furnishes stronger security mechanisms to smart 
healthcare applications that ensure confidentiality 
and protection of patient information from 
cyberattacks. This method of cryptography is quite 
useful because the interconnection thing and 
system which has a high reliance in the smart city 
for managing health care data makes these 
vulnerable to breaches (Chaudhary, 2018). 

Unlike prior works that focus on either voice 
or EGG signals independently, this research 
introduces a dual-signal, cloud-based framework 
combining both modalities with Gaussian Mixture 
Models (GMM) and Bayesian score fusion for 
enhanced diagnostic accuracy. While earlier 
studies demonstrated limited accuracy or lacked 
real-time scalability, the proposed system achieves 
96% accuracy and supports remote monitoring in 
smart city environments. However, dependency on 
cloud infrastructure and limited dataset diversity 
remain challenges compared to deep learning 
models that require extensive computational 
resources and training data 
2.1. Research gap 

Despite the considerable advancements in AI-
driven healthcare solutions, there exists a 
noticeable gap in integrating AI-based voice 
pathology detection into smart healthcare systems 
specifically designed for smart cities. While 
several studies (Agarwal et al., 2023; Ali et al., 
2017) highlight the potential of AI in enhancing 
diagnostic accuracy and enabling remote 
monitoring, they predominantly focus on isolated 
applications without offering a comprehensive 
cloud-based framework that seamlessly integrates 
smart healthcare devices for real-time voice 
pathology detection in dynamic urban 
environments. Additionally, while IoT integration 
in healthcare (Badawy et al., 2023) shows promise, 
many existing systems fail to address the need for 
a secure, scalable, and automated platform that 
ensures continuous monitoring and data privacy—
essential for addressing healthcare challenges in 
smart cities. Furthermore, although studies 
(Alromaihi et al., 2018; Chaudhary et al., 2018) 
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explore cybersecurity and IoT vulnerabilities, there 
is a lack of comprehensive solutions to ensure that 
sensitive healthcare data, especially related to 
voice pathology detection, remains protected 
within smart city frameworks. The research 
objectives of this study aim to bridge these gaps by 
developing an integrated cloud-based analysis 
system for voice and electroglottographic (EGG) 
signals, leveraging machine learning techniques 
like Gaussian Mixture Models (GMM), while 
addressing the challenges of accessibility, 
scalability, and security to ultimately improve real-
time healthcare monitoring in urban settings. 
2.2. Problem Statement 

Despite advancements in AI-based healthcare 
systems, there remains a significant gap in 
developing a real-time, multimodal voice 
pathology detection framework that integrates both 
voice and electroglottographic (EGG) signals 
within smart city infrastructures. Existing literature 
highlights isolated AI applications in voice 
diagnostics and IoT-based remote health 
monitoring, but lacks comprehensive, cloud-
enabled solutions addressing scalability, security, 
and diagnostic accuracy (Agarwal et al., 2023; Ali 
et al., 2017). Moreover, while studies address 
cybersecurity and data integration challenges 
(Chaudhary et al., 2018), they do not specifically 
cater to the unique demands of smart healthcare 

environments for voice disorder detection. 
Therefore, this research aims to develop a secure, 
cloud-based framework using Gaussian Mixture 
Models (GMM) for accurate, dual-signal 
classification to support early diagnosis and 
enhance healthcare delivery in smart cities. 

 
3. THE VPD METHOD AND PROPOSED 

FRAMEWORK  
This section provides an enabling framework 

for the monitoring of healthcare in smart cities. It 
enables remote patient monitoring and data 
analysis through advanced technologies such as 
cloud computing, smart sensors, etc. It postulates 
that individuals register with healthcare providers 
to permit continuous health signal tracking through 
wearable devices. The architecture [18] consists of 
three layers: the edge layer, which is stakeholders 
and smart sensors; the communication layer, 
which deals with data transmissions; and the 
cloud/data center layer, which processes and stores 
healthcare data. The VPD method is described as 
follows. Voice and EGG signals are used, which 
are processed to classify into either pathological or 
normal classes using Gaussian Mixture Models. 
Incorporation of scores from both types of signals 
provides a Bayesian approach that can improve the 
diagnostic accuracy [19]. 

 

 
 

Figure 1: Frame Work  
 

This table 1 defines the mathematical notations used throughout the document, providing their 
meanings and a brief explanation of their 

applications in the context of voice and speech 
signal analysis. The notations include methods for 

feature extraction, classification, and performance 
evaluation [20]. 
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Table 1: Mathematical Notations Used in the Document 
Notation Meaning Explanation 

LR Linear Regression Used for computing local features along time and frequency axes. 
MEL_S(t, f) Mel-Spectrogram Mel-scaled spectrogram representing voice signal features. 

Acc Accuracy Percentage of correctly classified cases in the dataset. 
Sn Sensitivity Proportion of actual positive cases correctly identified. 
Sp Specificity Proportion of actual negative cases correctly identified. 
CS Confidence Score Final score determined using Bayesian approach for classification. 

Open Quotient Open Phase of Vocal Folds Ratio representing the open phase duration in EGG signals. 
GMM Gaussian Mixture Model A statistical model used for classification of voice and EGG signals. 
MFCC Mel Frequency Cepstral Coefficients Feature extraction method commonly used in speech processing. 
MDVP Multi-Dimensional Voice Program Voice analysis method for pathological signal detection. 

The table 1 lists key mathematical terms and 
their relevance in analyzing voice signals. For 
example, LR (Linear Regression) and MFCC (Mel 
Frequency Cepstral Coefficients) are frequently 
used techniques for feature extraction, while 
GMM (Gaussian Mixture Model) is a statistical 
model applied for classification. Sensitivity (Sn) 
and Specificity (Sp) are performance metrics used 
to evaluate the accuracy of classification models 
[21]. Other notations like Open Quotient and 
Confidence Score highlight specific signal 
characteristics and model outputs used in voice 
analysis. This collection of notations helps readers 
understand the terminology and methods 
employed in the document. 
3.1. Scenario 

Smart cities utilize carefully associated 
innovations that give residents access to their 
clinical records and the concerned clinical staff 
utilizing cloud registering, smart sensors, and 
association [22]. Also, smart city foundations' 
wearable sensors, association, and information 
examination devices permit residents to speedily 
transfer their own health data while clinical 
experts watch out for their prosperity and give 
distant exhortation [23]. This patient-focused 
healthcare administration brings down clinical 
mistakes, tests, and staff visits, which brings down 
healthcare costs and works on patient results, 
helping smart cities succeed and develop. We 
presently offer a pragmatic execution model for 
the proposed smart city healthcare framework 
[24]. 

An individual, who isn't really a patient, first 
registers with a smart healthcare specialist co-op in 
the smart city framework so clinical staff can 
remotely screen the individual's health signals 
while they're still in their assigned area, which 
could be their home, working environment, far off 
facility, or the outside. The specialist organization 
has associations with clinical experts (like doctors, 
medical caretakers, and advisors) that treat issues 
with speech and gulping. An incredibly agreeable 
and lightweight EGG jewelry is worn by the 
enrolled client. The EGG contraption records the 

speech of the client while at the same time 
catching the signal from the glottis and sending it 
to the smart telephone by means of Wi-Fi or cell 
information move abilities. Cautions to make a 
move are imparted to the smart city partner (like 
the hospital, protection supplier, or drug store) 
based on the seriousness of the VPD result. Both 
the voice and EGG signals can then be sent by the 
smartphone to the healthcare media cloud for 
handling. Healthcare suppliers get the 
investigation and determination discoveries of 
these signals from a cloud chief. They investigate 
the matter further and prescribe specific medicines 
to the patient [25]. 

In this manner, a smart city's framework can 
associate different administrations with its 
occupants, permitting them to access smoothed out 
healthcare benefits in any event, when they live far 
away [26]. 

 
3.2. System architecture 

Through savvy correspondence advancements, 
the structure's three layers consistently incorporate 
edge administrations and gadgets — like smart 
gadgets, sensors, and smart city partners — with 
the healthcare media cloud. To offer smart 
healthcare services to citizens in smart cities, these 
tiers work together to aggregate, share, exchange, 
and process relevant data (such as media and 
healthcare). Below is a description of the three 
levels' features and functionalities [27].  
Edge (stakeholders in smart cities, smart 
sensors, and users) 

Through machine-to-machine (M2M) 
correspondence, this level — the smart healthcare 
administration layer — is where sensors, edge 
gadgets, and smart city healthcare partners 
assemble, offer, and trade information with 
different levels [28]. 

Patients can wear or use the edge smart 
sensors and contraptions, or they can be 
coordinated into smart city settings like facilities, 
hospitals, or smart homes. Smart hospitals, smart 
crisis transport, pathology and diagnostics offices, 
clients (patients with smart gadgets or clinical 
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experts), health protection suppliers [29], research 
foundations, and smart regional government are a 
few instances of the partners in smart city 
healthcare [30]. For example, savvy healthcare 
specialist organizations could remotely screen a 
patient with a vocal issue who has voice, face, and 
EEG acknowledgment hardware. To quickly 
search for peculiarities, the smart gadget's 
underlying handling first concentrates and looks at 
information locally. From that point onward, the 
patient's physiological information and health data 
are communicated to the healthcare cloud and 
habitats for extra handling [31]. The accessible 
healthcare partners can quickly access and break 
down patient health records (PHR) and keep on 
monitoring the patient based on the seriousness of 
the abnormality or the patient's vitals. In non-crisis 
circumstances, smart home healthcare offices may 
be utilized for monitoring because of hospital limit 
requirements and expanded care costs. For extra 
review, the PHR is shipped off research 
establishments and protected there. Huge 
healthcare information analytics, which will be 
used by smart regional government for the 
preparation and organization of smart city 
healthcare, incorporates this colossal measure of 
authentic patient information [32].  
Astute communication  

Through association doors and other short-
range correspondences organizations, this layer 
works with different heterogeneous (wired and 
remote) interconnection [33]. This layer considers 
different endpoints for edge gadgets and smart 
sensors by supporting conventions going from 
Zigbee to 4G. 

Short-range correspondence regularly 
empowers correspondence between dispersed 
smart sensors and devices in smart cities, like 
hospitals or homes. Through this wise association, 
the edge level's smart gadgets (smartphones) could 
act as a correspondence door between the edge 
level and cloud server farms. Moreover, this level 
utilizes a few APIs and conventions to work with 
the sharing of health information between different 
smart edge gadgets and the media cloud. This level 
is utilized to accumulate healthcare information, 
pre-process it locally, and send it to the cloud 
through smart edge gadgets (like PCs, cellphones, 
or sensors) having correspondence abilities.  

Cloud and data centers for healthcare media  
Server farms, handling servers, apparatuses, 

and methods for executing huge information 
analytics in healthcare are completely housed in 
this layer. 

Also, it controls correspondence, capacity, 
running applications, and asset the executives in 
edge gadgets and dispersed cloud server farms. To 
assist healthcare professionals with deciding, 
signal handling strategies are utilized to separate 
qualities (like speech, EGG, and video 
information) required for arrangement from 
different volumes and sorts of physiological data 
sources got from smart gadgets in the edge level. 
To empower smart city partners to access and 
dissect the PHR worldwide for worked on 
continuous occupant care, a nearby cloudlet or 
edge level beginnings pre-handling utilizing 
healthcare skill that is conveyed through smart 
correspondence organizations (Level 2) to this 
healthcare media cloud and the server farms 
(Level 3) for extra handling, stockpiling, 
synchronization, and it are caught to share after the 
patient signals. 
3.3. VPD method 

A general block chart of the recommended 
VPD approach for smart city sending is displayed 
in Figure 2. The patients' voice and EGG signals 
are the two signal sorts that are recorded. Two 
GMMs — one for ordinary sounds and the other 
for neurotic voices — are prepared utilizing the 
highlights that are taken from these signals. These 
models and the attributes are utilized to categories 
the input as either pathologic or normal during 
classification. The cloud is where the classification 
and processing are carried out. We go into further 
depth about the classification and processing in the 
sections that follow.  
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Figure 2: Block schematic of the suggested VPD technique 
import numpy as np 
from sklearn.mixture import GaussianMixture 
from scipy.signal import butter, lfilter 
import librosa 
 
# Preprocessing and Feature Extraction 
def high_pass_filter(signal, cutoff=70, fs=16000): 
    nyquist = 0.5 * fs 
    normal_cutoff = cutoff / nyquist 
    b, a = butter(6, normal_cutoff, btype='high', 
analog=False) 
    return lfilter(b, a, signal) 
 
def extract_features(signal, fs=16000): 
    signal = high_pass_filter(signal) 
    mel_spectrogram = 
librosa.feature.melspectrogram(y=signal, sr=fs, n_mels=24) 
    log_mel = librosa.power_to_db(mel_spectrogram) 
    return np.mean(log_mel, axis=1)  # Simple feature 
extraction 
 
# GMM Classification 
def classify_with_gmm(features, n_components=16): 
    gmm = GaussianMixture(n_components=n_components) 
    gmm.fit(features) 
    return gmm.score_samples(features) 
 
# Bayesian Score Fusion 
def bayesian_fusion(voice_score, egg_score): 
    return voice_score + egg_score  # Simplified fusion 
 
# Main Classification Process 
def vpd_classification(voice_signal, egg_signal, fs=16000): 
    voice_features = extract_features(voice_signal, fs) 
    egg_features = extract_features(egg_signal, fs)  # EGG 
signal treated similarly for simplicity 
    voice_score = 
classify_with_gmm(voice_features.reshape(-1, 1)) 
    egg_score = classify_with_gmm(egg_features.reshape(-
1, 1)) 
    final_score = bayesian_fusion(voice_score, egg_score) 
    return "Normal" if final_score > 0 else "Pathological" 
 
# Example usage 
voice_signal = np.random.randn(16000)  # Replace with 
actual voice signal 
egg_signal = np.random.randn(16000)    # Replace with 
actual EGG signal 
result = vpd_classification(voice_signal, egg_signal) 
print(f"Classification Result: {result}") 

3.3.1. Processing of voice signals  
Voice signals are employed as the input in the 

majority of conventional automatic VPD 
techniques. In particular, the voice signal /a/ is 
frequently utilized due to its easily pronounced 
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formants and ease of usage by patients with voice 
pathology.  

We also focus on the voice signal /a/ in our 
method.  

The voice signal is employed as the input in 
the majority of conventional automatic VPD 
techniques. The glottal source and vocal tract 
resonance are the two primary components of the 
voice signal. The glottal signal, which comprises 
the opening and shutting of vocal folds, is more 
crucial for identifying voice disease. The primary 
cause of voice disorders is when abnormal growths 
on the vocal folds impair their ability to fully close 
and open. Our methodology utilizes an iterative 
versatile opposite sifting calculation to separate the 
glottal signal from the sound signal. This 
procedure stifles low-recurrence vacillations by 
first applying a high-pass channel to the signal. 
Second, a versatile direct prescient coding strategy 
is utilized to appraise the vocal parcel 
reverberation, and converse separating is utilized 
to wipe out the determined reverberation. The 
impact of lip radiation is alleviated by applying a 
mix. To get an accurate gauge of the glottal signal 
from the voice signal, the whole method is 
completed iteratively. 

Since this is sufficient to get the voice breaks 
in neurotic examples, the LR is determined 
utilizing three edges when the ongoing casing. 
Utilizing more approaches will streamline the 
impacts of the voice break; while utilizing less 
casings might bring about the impact of the voice 
break slipping through the cracks. 

Applying a first-request subordinate to the 
glottal signal is the second stage in the element 
extraction process. To catch feeble interruptions 
welcomed on by unpredictable vibrations of 

infected vocal creases, the first-request subordinate 
diminishes the signal-to-commotion proportion. 

To make a spectrogram, the signal must then 
be changed over from the time-space to the 
recurrence space. The subsequent stage is to make 
a Mel-spectrogram by applying a Mel-scaled 
channel bank comprised of 24 bandpass channels 
to the spectrogram. 

Then, we utilize straight relapses along the 
time and recurrence tomahawks to process nearby 
elements (LF). The accompanying equations are 
utilized to develop the straight relapses (LR) if 
MEL_S (t, f) is the Mel-spectrogram at time-
outline t and recurrence (flter) f: 

  (1)                            

                                                                 

(2) 
 

Because three frames before and after the 
current frame are adequate to record the voice 
breaks in the event of a pathological sample, they 
are employed in the LR calculation. The effects of 
the voice break will be less noticeable if we take 
more frames, and they might not be recorded if we 
take less. 

Using a discrete cosine transform to 
decorrelate the LRs is the next stage. Following 
this stage, each frame contains 12 features along 
the time and frequency axes. We obtain 25 
characteristics each frame by appending the first-
order derivative of the signal's raw power. The 
model or classifier then receives these features. 
Fig. 3 illustrates the entire feature extraction 
procedure from the audio signal. 

Figure 3: The suggested voice signal processing block diagram 

3.3.2. EGG signal processing 
An EGG is a harmless instrument used to 

compute the two vocal folds' contact region. 
Powerless, high-recurrence current courses 

through two terminals that are situated at the level 
of the larynx. 

There is a distinction in the electrical 
impedance when the vocal folds open and close. 
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The tissues that make up the vocal folds are superb 
electrical channels. 

The electrical impedance across the glottis 
increments when the vocal folds open on the 
grounds that the region of the glottis extends (more 
air is going through it). Then again, the impedance 
drops and less air goes through when the vocal 
creases close. The EGG contraption records this 
change in the impedance. 

Two element types — one created from the 
signal's shape and the other from the cepstral space 
— are utilized to remove attributes from the EGG 
signal. The shut remainder, open remainder, top 
adequacy, and pinnacle width are the structure 
properties. 

Fig. 4 represents the method for acquiring 
attributes from the EGG signal. The accompanying 
equations are utilized to decide the shut and open 
remainders: 

 

 
Figure 4: The suggested EGG signal processing block diagram 

   (4)              

Open Quotient=                 (5) 

The spectrum or cepstral properties can be 
useful in identifying vocal disease. The peaks in 
the spectrum for a normal voice are clearly defined 
and periodic in this figure, but the peaks for a 
pathological voice are irregular and aperiodic. 
3.3.3. Classification and modelling 

In our method, modelling is done using the 
GMM. Because it uses fewer parameters than the 

neural network-based approach, this stochastic 
modelling method is more dependable. In this 
scenario, there are two classes: diseased and 
normal. Consequently, there are two GMMs. 

We tried varying amounts of combinations in 
each GMM and discovered that 16 is the ideal 
quantity. 

The minimum log likelihood score between 
the models and the features is used for 
classification (Fig. 5). 

 
Figure 5: The method's accuracy for varying amounts of GMM mixtures 
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The figure 5 shows that Gaussian Mixture 
Models (GMMs) improve feature analysis of voice 
and EGG signals with increasing mixture numbers. 
Voice accuracy increases from 82.3% to 93.9% for 
16 mixtures, while EGG signal accuracy improves 
from 62.4% to 77.6% at 32 mixtures. However, the 
model's performance drops at higher mixture 
counts, with voice signals reaching optimum at 16 
mixtures. 
3.3.4. Fusion of scores 

The EGG signal has specific cutoff points 
with regards to pathology detection. For example, 
when the vocal folds are in the vacant position, the 
signal contains no valuable data. Moreover, the 
vocal folds might connect during calm phonation; 
in this manner, extra data is expected to balance 
the disadvantages of the EGG signal. To get the 
most elevated accuracy, we consolidate the order 
scores from the voice and EGG signals in our 
methodology. A Bayesian total rule, which well 
predispositions the scores, is utilized to meld them. 

The classifier with a greater estimate of 
probability. The following formula is used to 
determine the final score, often known as the 
confidence score (CS). 

 
       (6)            

4. EXPERIMENTS, RESULTS, AND 
DISCUSSION 
We conducted various tests utilising the 

Saarbrucken speech Database (SVD), which 

includes both speech and EEG signals for the same 
individual, to evaluate the viability of the 
suggested approach. This database contains 
information from native German speakers. There 
are instances of the customary, high, and low pitch 
ways to express the sound's/a/, I/, and/u/. 
Just/a/examples delivered at the ordinary pitch and 
speakers for whom both the voice signal and the 
EGG signal were recorded were picked for our 
examination. 

We looked at the effects of the mixtures in the 
GMMs in the first experiment. Without score 
fusion, experiments were conducted independently 
for the voice and EGG signals. Figure G6 
illustrates the method's accuracy for a range of 
input signals and mixing counts. For both input 
signals, we discovered that 16 mixes produced the 
best accuracy. Particularly with regard to the EGG 
signal, mixes two and four did not function 
properly. We fixed the number of mixes to 16 
throughout the ensuing studies. 

We then contrasted the suggested approach 
with alternative approaches. We contrasted our 
approach with the multi-dimensional voice 
program (MDVP) and the well-known MFCCs for 
the voice signal. Three metrics—specificity, 
sensitivity, and accuracy—were assessed in the 
experiments. 

The values of these indicators for each 
approach are displayed in Table 2. 

 
Table 2: Specificity (Sp), sensitivity (Sn), and accuracy (Acc) for the techniques that just use the voice signal 

Features (dimension) %Acc ± sd %Sn %Sp 
Proposed (25) 93.9 ± 0.05 93.5 92.9 
MFCC (24) 76.4 ± 0.22 75.7 76.8 
MDVP (22) 77.9 ± 0.41 72.5 82.3 

 
Figure 6: Graphical Represented on Specificity (Sp), sensitivity (Sn), and accuracy (Acc) for the techniques that just 

use the voice signal. 
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A comparison table compares three voice 
signal-based techniques in pathology. The 
proposed approach has high accuracy (93.9%) and 
sensitivity (93.5%) for 25 features, outperforming 
MFCC and MDVP. MDVP has higher specificity 
(82.3%) and lower sensitivity (76.8%), providing 
more reliable results. 

The findings suggest that in order to identify 
voice pathology from the EGG signal, both form 
and cepstral properties are crucial. Table 3 
displays the findings.  
Table 3: Specificity (Sp), sensitivity (Sn), and accuracy 
(Acc) for the techniques that solely use the EGG signal 

Features %Acc ± sd %Sn %Sp 
Proposed (10) 78.8 ± 3.31 78.9 78.6 

Quotient, peaks (4) 65.3 ± 6.41 67.4 65.6 
Cepstral (6) 68.51 ± 5.50 69.9 67.3 

 

 
Figure 7: Graphical Representation on Specificity (Sp), 
sensitivity (Sn), and accuracy (Acc) for the techniques 

that solely use the EGG signal 
Table 3 The efficiency of three approaches, 

which work with the EGG signal only on the 
problem of the identification of vocal pathology. 
The best results of three approaches are shown for 
the suggested approach with ten features on the 
identification of disorders of voice with the best 
accuracy equal to 78.8%, sensitivity equal to 
78.9%, and specificity equal to 78.6%. Accuracy 
equals only 68.51% and sensitivity equals only 
69.9% for Quotient, Peaks method, which has the 
worst sensitivity, 65.3%. In summary, the 
proposed scheme outperforms others in accuracy 
as well as the reliability of detection. 

Two other approaches—one employing 
MDVP features and the other an interlaced 
derivative pattern (IDP) —were contrasted with 
the suggested method that combined the voice and 
EGG signals. We selected these two approaches 
since the MDVP-based approach is widely used 
and the IDP-based approach was found to work 
extremely well with the speech signal.  

 
Figure 8: Comparing the accuracy of various 

approaches  
Figure 8 shows that the proposed approach for 

pathology classification using voice and EGG 
signals outperforms all methods with an accuracy 
of 96%. The IDP-based strategy is 95% accurate, 
while the speech signal-based method has an 
excellent accuracy of 93%. 
4.1. Experimental Setup 

In this case, the Saarbrucken Speech Database 
(SVD) was used for the experiments. It is 
constituted of those signals which are 
simultaneously recorded speech and EEG from 
native German speakers. In terms of their 
phonemes, the subjects were asked to produce /a/, 
/i/, and /u/ in three variations: normal, high, and 
low pitch. It includes only such recordings where 
the voice signals as well as EEG signals were 
available. 

The primary objective of the experiments is to 
evaluate how well the methodology proposed can 
diagnose vocal pathology, utilizing voice signals 
(speech) and EEG signals (EGG). To measure this, 
different mixture configurations are analyzed for 
each signal type with the help of Gaussian Mixture 
Models (GMMs). In the first experiment, separate 
analysis was carried out for the voice and EEG 
signals without fusing them. The most effective 
configuration was 16 mixture GMM, especially on 
the EEG signal, which showed poor results with 
lower mixture counts at 2 and 4. 

Further studies were conducted on comparing 
the proposed approach with the existing methods 
for voice signal analysis. The methods included 
Multi-dimensional Voice Program (MDVP) and 
Mel-frequency Cepstral Coefficients (MFCCs). 
The key performance metrics used for comparison 
were specificity, sensitivity, and accuracy. 
4.1.1. Voice Signal-Based Results 
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From the results, it can be seen that the 
proposed method has outperformed the traditional 
MFCC and MDVP techniques noticeably: 
 Accuracy: The proposed method achieved an 

impressive accuracy of 93.9%, which was 
substantially higher than both MFCC (76.4%) 
and MDVP (77.9%). This suggests that the 
model highly capable of identifying vocal 
pathologies based on voice features. 

 Sensitivity: The proposed method performed 
better than the alternative in terms of 
sensitivity at 93.5% whereas that of MDVP 
was at 72.5% and MFCC was at 75.7%. 
Sensitivity is very important because it 
represents how well the model can distinguish 
positive cases. 

 Specificity: MDVP had a specificity of 82.3%, 
which was much higher than the proposed 
method with 92.9% and MFCC with 76.8%. 
MDVP may have a better specificity in 
reducing false positives, but the proposed 
method gave more balanced and reliable 
performance with a relatively high specificity. 

The proposed approach is highly accurate and 
sensitive, with reasonable specificity, indicating 
that it is a well-rounded solution for voice 
pathology detection. 

4.1.2. EEG Signal-Based Results 

However, the result on its own focused to the 
EEG signal, proves the proposed method also 
surpasses all the techniques below: 
 Accuracy: The proposed method with 10 

features achieved an accuracy of 78.8%, 
which was the highest among the compared 
methods. The Quotient, Peaks (65.3%) and 
Cepstral (68.51%) methods showed 
considerably lower accuracy. 

 Sensitivity and Specificity: The developed 
approach also presented great sensitivity at 
78.9% and specificity at 78.6%, which 
indicated its robustness to identify positive as 
well as negative cases. Quotient, Peaks 
method has relatively poor sensitivity at 
67.4% and very low specificity at 65.6%. 

The above results, therefore, infer that the EGG 
signal with the addition of formant-based and 
cepstral features can well identify vocal 
pathologies. Such a method appears to be one of 
the promising methods as against the other 
competitive approaches in a clinical setting for 
pathology detection. 

 
 

4.1.3. Combined Voice and EEG Signal-Based 
Results 

When voice signals are combined with EEG 
signals, the proposed technique significantly 
outperformed all techniques, as Figure 8 points 
out: 
 Accuracy: The proposed hybrid approach 

reached an accuracy of 96%, surpassing both 
the IDP-based method at 95% and the voice-
only method at 93%. This result indicates that 
the fusion of voice and EEG signals offers the 
most reliable and accurate classification of 
vocal pathologies. 

 IDP-based method: Although the IDP-based 
method performed well with a high accuracy 
of 95%, it was not as good as the combined 
voice and EEG approach, indicating that 
combining different signal modalities yields 
better performance. 

This goes to prove that the voice along with the 
EEG signals combination offers a far better and 
detailed approach to voice pathologies. 

The proposed approach for both voice and EEG 
signals showcases good efficacy in identifying 
vocal pathologies, as has been indicated by the 
experimental outcomes. A 16-mixture GMM was 
found to be the optimum for signal types. With 
accuracy, sensitivity, and specificity the 
superiority in outperforming traditional techniques 
like MFCC and MDVP, the proposed approach 
could be applied in better clinical practices for 
effective diagnosis and monitoring of voice 
disorders. This means that a system combining 
both voice and EEG signals will result in the 
highest performance overall compared to all tested 
methods. 
4.2. Performance Superiority of the Proposed 
Approach 

The proposed AI-driven voice pathology 
detection method using GMM is better than 
existing methods because of the following reasons: 
1. Improved Feature Extraction Efficiency: The 

approach extracts both time and frequency 
domain features from voice and EGG signals 
effectively. 

2. Optimized Signal Processing: The iterative 
filtering approach is helpful in noise reduction 
and the accurate representation of glottal 
signals. 

3. Robust Classification using Bayesian Score 
Fusion: The system improves the classification 
accuracy by integrating scores from both voice 
and EGG signals. 

4. Scalability and Real-time processing*: 
Scalable enough for effective operation within 
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the smart health environments, thus, cloud 
computing facilitates rapid as well as safe 
analysis. 

4.3. State-of-the-Art Comparison Table 
This table 4 demonstrates the comparison 

among different techniques based on voice 
analysis with their advantage and disadvantage as 
follows. All these techniques like MFCC + SVM, 

MDVP + Decision Trees, Deep Learning CNN and 
a proposed model of GMM-based model can be 
compared about the effectiveness or accuracy and 
in terms of feasibility, which leads to the study of 
their various merits and demerits with practical 
applications. 

 
Table 4: State-of-the-Art Comparison of Voice Analysis Techniques 

Technique Pros Cons Reference 
MFCC + SVM Effective feature extraction 

from speech 
Lacks robustness for noisy 

data 
Ali et al., 2017 

MDVP + Decision Trees Widely used for voice analysis Lower accuracy compared to 
deep learning methods 

Chaudhary et al., 2018 

Deep Learning CNN High accuracy for large 
datasets 

Requires large labeled datasets 
and high computation 

Badawy et al., 2023 

Proposed GMM-based Model High accuracy, multi-signal 
fusion, real-time processing 

Dependent on cloud resources This study 

 
5. CONCLUSION 

Modern technology is well embedded into the 
proposed AI-driven voice pathology detection 
framework for smart healthcare systems in smart 
cities, thereby ensuring better security, 
affordability, and accessibility of health services. 
The system analyzes speech and EGG signals by 
using cloud computing and machine learning 
methods, particularly the Gaussian Mixture Model 
(GMM) to identify normal and pathological voice 
states with an impressive accuracy of more than 
93%. This new approach allows citizens to be 
active in their health management, and at the same 
time, enables real-time health monitoring and 
diagnosis. Besides reducing pressure on 
conventional medical systems, the perfect 
integration of the smart devices with the patient 
and the healthcare provider ensures early 
interventions and better results for patients. It 
would hence serve as an example of how smart 
city infrastructures can adapt to complicated 
healthcare requirements to advance a responsive 
and sustainable health ecosystem. 
5.1. Limitations and Future Directions 
Limitations: 
 Cloud Infrastructure Dependency: The system 

depends on cloud resources, which implies 
that the system's performance relies heavily 
on the stability and high speed of internet 
connectivity. This may pose problems in 
regions where internet access is not consistent. 

 Dataset Scope is Not Sufficiently Large: Since 
the current study uses only voice and 
electroglottographic signals for the analyses, 
which would be only within a selected record 
set that could not present full diversity in  

 
pathology, it must be tested using diverse 
datasets containing different age groups, 
languages, and health conditions to further 
establish robustness of the system. 

 Sensitivity to External Noise: In a real-world 
setting, the performance of the system may be 
vulnerable to environmental noise, such as 
background sounds or interference during data 
collection. This limitation may reduce the 
accuracy of the voice pathology detection, 
particularly in non-clinical environments. 

Future Directions: 
 Edge AI Processing Implementation: The 

dependency on cloud resources can be 
addressed by the future research by integrating 
edge AI processing, which would allow real-
time data analysis directly on the device. This 
would reduce latency and ensure continuous 
monitoring even in low-connectivity areas. 

 Multilingual Diverse Dataset Extension: To 
better enable the generalization across various 
populations, this dataset must be extended by 
increasing multilingual and diverse voice 
samples. Increasing cultural and linguistic 
diversities through sampling will help enhance 
the system's applicability to various settings. 

 Integration of Deep Learning Models: To 
further increase the accuracy in classification 
and better detection of very subtle voice 
pathologies, more advanced feature extraction 
can be facilitated by integrating deep learning 
models like CNNs or LSTM networks into the 
system to improve performance for complex 
and noisy data inputs. 
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