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ABSTRACT 
 

Cross-domain sentiment classification presents persistent challenges in opinion mining due to vocabulary 
drift, contextual ambiguity, and polarity inconsistency across product domains. Traditional classifiers trained 
on a single domain often fail to generalize, reducing performance when exposed to new, structurally distinct 
datasets. This research introduces a probabilistically grounded sentiment classification framework—
Bayesian Network–Logistic Regression (BN-LR)—designed to address these challenges within multi-
domain online review environments. BN-LR integrates a Bayesian Network to model conditional 
dependencies among sentiment-bearing features, capturing latent inter-feature relationships across syntactic 
structures. These probabilistic insights are dynamically incorporated into a logistic regression classifier, 
enabling adaptive feature weighting and uncertainty-aware sentiment inference. As an IT contribution, BN-
LR offers a scalable, interpretable, and statistically principled solution suitable for intelligent 
recommendation engines, feedback analytics, and sentiment-based decision systems across digital platforms. 
Evaluated on Amazon reviews across four domains, BN-LR consistently delivers high accuracy without 
requiring domain-specific retraining or external lexicons. The proposed framework enhances real-world 
information systems by enabling robust cross-domain sentiment generalization, fulfilling a critical need in 
adaptive text analytics for IT-driven e-commerce intelligence. 
Keywords: Cross-Domain Sentiment Analysis, Bayesian Network, Logistic Regression, Probabilistic 

Modelling, Online Product Reviews, Domain Adaptation 
 
1. INTRODUCTION  

Sentiment analysis in online shopping 
environments presents unique challenges driven by 
variability in product categories, customer 
expectations, and linguistic diversity. These 
challenges hold particular significance in the 
Information Technology domain, where intelligent 
systems must automatically interpret, classify, and 
respond to unstructured textual data at scale [1]. 
Consumer reviews, often processed by 
recommender systems, search engines, and customer 
service bots, require adaptive sentiment 
interpretation to maintain relevance and 
personalization. The complexity increases under 
domain shift, a common real-world IT scenario, 
where training and deployment environments differ 
substantially. Addressing this issue, cross-domain 
sentiment analysis has emerged as a critical subfield 
of applied natural language processing and IT-driven 
business intelligence. The proposed BN-LR 
framework aligns with this need, offering a 
probabilistic, explainable, and domain-adaptive 
architecture for use in IT systems handling dynamic 
user-generated content. The work strengthens the 

foundation for scalable, intelligent, and context-
sensitive feedback analysis in digital ecosystems, 
reflecting its core contribution to IT research [2]. 

 
Cross-domain sentiment analysis emerges 

as a necessary framework to mitigate performance 
degradation caused by these domain discrepancies. 
A model designed for one domain frequently fails to 
generalize effectively to another due to shifts in 
sentiment-bearing expressions, semantic emphasis, 
and syntactic structure [3]. Online book reviews 
emphasize narrative engagement and author style, 
whereas electronic reviews prioritize functionality 
and durability. This context-specific divergence 
introduces polarity ambiguity and lexical 
misalignment that challenge direct model transfer. 
Bridging these domain gaps requires analytical 
strategies that capture transferable sentiment cues 
while retaining domain-specific nuances, ensuring 
that classifiers adapt intelligently without retraining 
for each new context [4]. 

 
Granular review analysis demands 

representational techniques that adaptively 
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recalibrate feature relevance based on contextual 
positioning. For example, if influenced by negations, 
comparatives, or feature-targeted qualifiers, 
identical adjectives may carry divergent sentiment 
intensities across reviews [5]. Sentiment variability 
also arises from user-specific value, aesthetics, or 
functionality interpretation. Capturing these 
probabilistic dependencies and calibrating their 
influence improves classification consistency in 
cross-domain environments [6]. Sentiment analysis 
frameworks grounded in probabilistic reasoning and 
dependency modelling enable scalable, 
interpretable, and adaptive systems suited for the 
heterogeneous nature of online customer reviews. 
Such frameworks prioritize generalization, ensuring 
robust sentiment insight across shifting commercial 
and linguistic contexts [7]. 
 

Applying probabilistic theory in cross-domain 
sentiment classification supports adaptive polarity 
reasoning by estimating conditional relationships 
among features. These probabilistic estimations 
reflect how the sentiment of a given word or phrase 
depends on its surrounding context, ensuring 
interpretability and robustness across domains [8]. 
Review texts often contain uncertainty, mixed 
sentiments, and subtle emotional transitions. 
Probabilistic models quantify this uncertainty, 
calibrating predictions based on inferred likelihoods 
rather than deterministic mappings [9]. This 
enhances the system’s ability to accommodate 
context variation, lexical ambiguity, and sentiment 
intensity modulation. By combining dependency 
modelling with probabilistic estimation, sentiment 
classification systems achieve scalable, 
generalizable performance across dynamic online 
shopping contexts, delivering consistent polarity 
interpretations across domain boundaries [10]. 

1.1. Problem statement 
Cross-domain opinion mining encounters 

significant challenges when classifying sentiment 
across diverse product categories due to variability 
in linguistic structures, domain-specific expressions, 
and inconsistent sentiment representation. Models 
trained on one domain often experience accuracy 
degradation when applied to another, primarily 
because of lexical mismatches, semantic shifts, and 
contextual ambiguity. Expressions conveying 
positive sentiment in one domain may hold neutral 
or negative implications in another, complicating the 
interpretation process. In addition, syntactic 
constructs and opinion-carrying phrases vary widely 
depending on product type, usage context, and 
reviewer intention. Sentiment-bearing words lack 

uniformity across domains, resulting in 
misclassification and reduced model 
generalizability. Domain shifts cause statistical 
divergence, rendering static sentiment features 
insufficient for transferability. Existing approaches 
often rely on explicit lexical cues, which fail to 
capture dependency relationships and probabilistic 
sentiment transitions. These issues collectively limit 
the effectiveness of traditional sentiment 
classification techniques when applied to 
heterogeneous review datasets. 
 
1.2. Motivation 

The rapid expansion of online shopping 
platforms has led to diverse customer reviews, each 
containing sentiment expressions tied to specific 
product categories. Consumers rely on this feedback 
to make informed decisions, while businesses extract 
actionable insights to enhance product development, 
service quality, and customer experience. However, 
these reviews differ structurally and contextually 
across domains, causing classification 
inconsistencies when sentiment models are reused 
without adaptation. The inability to maintain 
accuracy across varying domains presents a 
theoretical and practical barrier to large-scale 
sentiment analysis deployment. Addressing this 
issue is crucial for building robust systems across 
heterogeneous data environments. Integrating 
probabilistic reasoning and feature dependency 
modelling has emerged as a promising approach to 
resolving ambiguity, improving interpretability, and 
achieving consistent performance across domains. 
Motivated to enhance cross-domain sentiment 
generalization, this research seeks to design a 
sentiment analysis framework grounded in statistical 
inference and probabilistic feature understanding. 
 
1.3. Objective 

This research aims to develop a domain-
adaptive sentiment classification framework for 
cross-domain opinion mining in online shopping 
environments. The primary objective is to accurately 
classify sentiment across diverse product review 
categories without requiring domain-specific 
retraining. The framework will capture probabilistic 
dependencies among sentiment-bearing features, 
enabling interpretive flexibility in variable linguistic 
contexts. It will incorporate uncertainty-aware 
decision mechanisms to manage ambiguity and 
minimize classification errors in the presence of 
domain shifts. The proposed system will extract 
context-relevant sentiment indicators, estimate 
conditional sentiment distributions, and calibrate 
polarity assignments based on probabilistic 
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evidence. This study ensures that sentiment 
prediction remains robust, interpretable, and scalable 
across unlabeled or underrepresented target 
domains. The methodology will prioritize 
generalization, transparency, and adaptability, 
contributing to the broader goal of building resilient 
sentiment analysis models that align with real-world 
online shopping review dynamics and support 
intelligent e-commerce decision-making. 

 

2. LITERATURE REVIEW 
 
Flask-CNN-RoBERTa Review Analyzer 

[11] integrates RoBERTa embeddings with CNN to 
classify movie reviews into positive, negative, or 
neutral categories. RoBERTa generates context-rich 
vector representations from textual inputs fed into 
CNN layers for feature extraction and sentiment 
prediction. The system uses Flask to support real-
time sentiment evaluation through a user-friendly 
interface. It enables instantaneous review 
classification, supports decision-making in 
entertainment analytics, and offers scalable 
architecture for integration into sentiment-driven 
applications. E-Commerce Hybrid Analyzer 
[12]maps sentiment keywords from e-commerce 
reviews into corresponding image representations. 
These images are processed using Convolutional 
Neural Networks to extract emotional features, 
which a Support Vector Machine classifies into 
sentiment categories. This hybrid model introduces 
visual dimension into text-based sentiment analysis, 
capturing subtle emotional indicators not visible in 
plain text. It enhances the interpretability of 
sentiment across diverse product domains and 
contributes to nuanced opinion mining for customer-
centric commerce environments. App Review 
Insight Framework [13] reviews the sentiment using 
Long Short-Term Memory Networks (LSTM) and 
Graph Neural Networks (GNN). LSTM captures 
temporal dependencies in sequential text, identifying 
usability-related sentiment trends, while GNN 
models interconnect between review elements such 
as functionality and user experience. This 
architecture enables aspect-based sentiment 
detection for usability metrics. The hybrid design 
ensures precision in identifying sentiment polarity 
related to app performance and helps developers 
prioritize improvements based on sentiment clusters. 
 

Financial Sentiment Prototype [14] uses a 
supervised cross-momentum contrast strategy. The 
model aligns internal textual representations with 
pre-defined sentiment prototypes, continuously 

refining sentiment embeddings. This alignment 
enhances the detection of subtle financial sentiment 
cues, increasing classifier accuracy and robustness. 
The supervised structure supports precise sentiment 
mapping in complex financial narratives, enabling 
effective tracking of market sentiment. The approach 
improves the semantic alignment of financial 
language with sentiment classes under domain-
specific conditions. Multimodal Sentiment Fusion 
Network [15] incorporates text, audio, and video 
modalities using attention-based and causality-
aware mechanisms. This model dynamically weighs 
the influence of each modality based on interaction 
context, capturing real-time sentiment cues and 
intermodal dependencies. Causal inference 
techniques identify how sentiment signals from one 
modality influence others. This approach improves 
prediction accuracy across emotionally rich datasets 
and ensures robust handling of complex sentiment 
dynamics in multimodal interaction settings. Cross-
Modal Sentiment Synthesizer [16]  is a shared-
private fusion model for cross-modal sentiment 
analysis using parallel pathways for standard and 
unique sentiment features. Shared layers synthesize 
universal sentiment cues across modalities such as 
text and audio, while private layers retain modality-
specific expressions. This structure enables better 
integration of multimodal signals while preserving 
distinct semantic contributions. The system 
enhances interpretability and robustness by aligning 
shared features while managing modality variance. 
It is suitable for sentiment analysis tasks requiring 
simultaneous processing of multiple input forms. 
 

UrduAspectNet Enhancer  [17] tailored for 
Urdu reviews using Biaffine Attention to capture 
syntactic dependencies between aspect terms and 
contextual sentiment expressions. This architecture 
improves polarity classification by modelling the 
precise relationship between opinion targets and 
modifiers in complex Urdu sentence structures. The 
approach handles syntactic ambiguity and 
morphological complexity typical of Urdu, enabling 
domain-specific applications in sentiment 
intelligence for regional language datasets. It 
advances aspect-level precision for low-resource 
language sentiment analysis. Multimodal Sentiment 
Integrator [18] enriches textual information through 
NLP-based semantic extraction and fuses it with 
visual and auditory modalities. The model uses 
advanced data integration techniques to capture 
intermodal relationships, generating a unified 
representation of user sentiment. It improves 
performance on complex sentiment tasks by 
incorporating complementary cues from non-textual 
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inputs. This integration supports holistic sentiment 
interpretation in environments where users 
simultaneously communicate emotions through 
multiple formats, improving analytic reliability. 
Sentiment Analysis Progress Review [19] reviews 
the sentiments by examining significant 
developments and ongoing challenges in sentiment 
analysis, emphasizing the transition from lexicon-
based approaches to deep learning models. The 
paper outlines the impact of transformer 
architectures like BERT on sentiment 
contextualization and identifies unresolved issues 
such as sarcasm detection, domain transfer, and 
sentiment bias. It synthesizes technical progress 
while mapping future research directions. The study 
is foundational for understanding sentiment 
classification evolution, highlighting both 
breakthroughs and methodological limitations. 
 

Multilingual Lexicon Developer [20] 
focused on multilingual sentiment analysis in 
software engineering. This approach combines 
manual linguistic annotation with machine learning 
techniques to generate accurate polarity dictionaries 
for multiple languages. The lexicons are designed to 
support cross-lingual sentiment interpretation in 
social media and software reviews. By emphasizing 
syntactic relevance and semantic alignment, the 
method ensures broad applicability and sentiment 
coherence across language barriers, supporting 
sentiment analysis in globalized digital 
communication ecosystems. Hotel Review 
Sentiment System [21] combines BERT for context-
aware embeddings, Temporal Convolutional 
Networks (TCN) for local temporal structure, 
BiLSTM for sequential modelling, and attention 
mechanisms for focus prioritization. This 
architecture processes hotel reviews to extract fine-
grained sentiment cues across review components 
such as service, cleanliness, and amenities. The 
system captures implicit and explicit sentiment 
expressions, supporting detailed opinion mining in 
hospitality analytics and contributing to improved 
customer satisfaction monitoring. Multimodal 
Sentiment Regulator [22] designed to coordinate 
information flow across text, image, and audio 
inputs using a hierarchical regulator module. The 
framework filters redundant content and applies 
dynamic attention mechanisms to weigh modality 
relevance contextually. It synchronizes sentiment 
signals from diverse inputs to improve polarity 
consistency and robustness. The model is 
particularly effective in real-world applications 
involving emotionally complex and multimodal user 
feedback, enhancing interpretability and 

classification precision across diverse media 
formats. 
 

Entropy-Based Classifier (EBC) [23] uses a 
modified maximum entropy framework with IDF-
weighted increment adjustment. EBC processes 
POS-tagged words to identify sentiment-bearing 
terms, emphasizing low-frequency, high-
discriminative features. It applies a semi-supervised 
bipartite graph clustering technique to transfer 
sentiment labels from domain-independent to 
domain-specific words. Classification is refined at 
the word level using entropy maximization and 
polarity propagation. The model improves domain 
adaptability by minimizing labelling requirements 
and bridging lexical gaps between source and target 
review domains, supporting sentiment 
generalization across structurally diverse product 
categories. Multimodal Aspect-Based Sentiment 
Analysis (MMASA) [24] performs sentiment 
classification by combining textual and visual 
modalities using Bi-LSTM for text encoding and 
CNN for image feature extraction. MMASA 
employs multimodal interaction layers to integrate 
text-image features and applies adversarial training 
for cross-modal alignment. The model identifies 
aspects and predicts sentiment polarity using joint 
embeddings. It supports fine-grained sentiment 
detection at the aspect level, effectively capturing 
cross-modal dependencies and contextual polarity 
shifts, enhancing sentiment classification accuracy 
in review datasets containing both textual and visual 
content. 
 

Bioinspired optimization mimics natural 
processes like evolution, swarming, and adaptation 
to solve complex problems efficiently, offering 
scalable, flexible, and intelligent strategies across 
machine learning, routing, and classification tasks 
[25]-[44]. These algorithms enhance convergence 
speed, solution diversity, and adaptability, making 
them ideal for dynamic, high-dimensional, and real-
time environments in various IT and data-driven 
applications [45]-[66]. 

 
3. BAYESIAN NETWORK ENHANCED 

LOGISTIC REGRESSION 
 
This section is structured first to introduce 

Bayesian Network structure learning and its role in 
sentiment classification. The discussion then 
transitions to the limitations of traditional LR in 
sentiment analysis and how BN addresses these 
constraints. Subsequent sections cover Bayesian 
regularization, probabilistic feature selection, and 
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Bayesian Model Evidence, demonstrating their 
impact on optimizing sentiment classification.  
 
3.1. Bayesian network structure learning 
 

The Bayesian Network (BN) structure 
learning process involves establishing directed 
acyclic graph (DAG) connections among sentiment-
related features to enhance dependency 
representation. The DAG captures 
interdependencies between linguistic attributes, 
metadata, and contextual sentiment cues, optimizing 
the feature set for logistic regression. Structure 
learning employs score-based, constraint-based, and 
hybrid approaches to discover probabilistic 
relationships among sentiment features, ensuring 
improved classification precision. 
 

Sentiment analysis in online shopping 
requires an optimized representation of 
dependencies between features such as polarity 
scores, term frequency-inverse document frequency 
(TF-IDF), syntactic structures, and customer 
engagement metadata. Bayesian Network assigns 
directed edges between features, where the 
probability of sentiment polarity 𝑆 given a set of 
extracted features 𝑋 is expressed as: 

𝑃(𝑆|𝑋) = ෑ 𝑃൫𝑋௜|𝑃௔(𝑋௜)൯

௡

௜ୀଵ

 (1) 

where 𝑃(𝑆|𝑋) represents the conditional probability 
of sentiment given the extracted features, 𝑋௜ refers to 
each feature, and 𝑃௔(𝑋௜) denotes the parent features 
influencing 𝑋௜ within the Bayesian structure. The 
network ensures an optimized representation of 
probabilistic relationships, refining feature selection 
for classification. The conditional dependency 
structure dynamically adjusts based on probabilistic 
scores, providing adaptability in sentiment 
classification. 
 

Score-based approaches optimize the DAG 
structure by assigning likelihood scores to network 
configurations. Bayesian Information Criterion 
(BIC) or Minimum Description Length (MDL) 
principles guide the selection of an optimized 
structure. The likelihood of a DAG 𝐺 given 
sentiment training data 𝐷 is formulated as: 

𝐿(𝐺|𝐷) = ෍ log 𝑃(𝑋௜|𝑃௔(𝑋௜), 𝐺)

௡

௜ୀଵ

 (2) 

where 𝐿(𝐺|𝐷) denotes the likelihood score for the 
given DAG structure 𝐺, and 𝑃(𝑋௜|𝑃௔(𝑋௜), 𝐺) 
represents the conditional probability of each feature 
given its parent nodes in the learned structure. This 

likelihood-driven approach ensures the DAG aligns 
with sentiment distribution patterns, refining logistic 
regression performance by minimizing redundancy. 
 

Constraint-based methods identify 
Bayesian dependencies by applying conditional 
independence tests to sentiment-related variables. 
Dependency constraints guide network formation, 
ensuring the DAG structure aligns with linguistic 
and behavioral sentiment dynamics. The probability 
of independence between two sentiment features 𝑋௜ 
and 𝑋௝, given a conditioning set 𝑍, is mathematically 
defined as: 

𝑃൫𝑋௜ , 𝑋௝|𝑍൯ = 𝑃൫𝑋௜|𝑍)𝑃(𝑋௝|𝑍൯ (3) 

where 𝑃൫𝑋௜ , 𝑋௝|𝑍൯ represents the joint probability of 
two features conditioned on 𝑍, ensuring feature 
independence. If the independence condition holds, 
no directed edge is formed between 𝑋௜ and 𝑋௝. This 
process optimizes sentiment classification by 
removing redundant dependencies and refining 
feature interactions based on probabilistic inference. 
 

Hybrid structure learning integrates score-
based methods and constraint-based techniques to 
optimize DAG formation. This approach balances 
likelihood-driven optimization and independence 
constraints, capturing both probabilistic 
dependencies and structural constraints among 
sentiment features. A hybrid optimization function 
guides the optimized DAG formation: 

𝐹(𝐺) = 𝛼 ෍ 𝑙𝑜𝑔𝑃(𝑋௜|𝑃௔(𝑋௜), 𝐺)

௡

௜ୀଵ

+ (1

− 𝛼) ෍ 𝐼(𝑋௝, 𝑍)

௠

௝ୀଵ

 

(4) 

where 𝐹(𝐺) represents the optimized DAG score, 𝛼 
controls the trade-off between likelihood 
maximization and independence constraints, and 
𝐼(𝑋௝ , 𝑍) denotes the independence measure of 
feature 𝑋௝ concerning conditioning set 𝑍. Hybrid 
optimization enhances structure learning by 
dynamically adjusting DAG formation, ensuring 
robust feature selection for logistic regression. 
 

Edge weights in Bayesian Networks 
influence sentiment classification by adjusting 
conditional probability distributions (CPDs) for 
feature interactions. Weighted edges optimize 
probabilistic influence among sentiment-related 
attributes, ensuring logistic regression receives 
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refined probabilistic inputs. The weighted 
probability of an edge 𝐸௜௝  between features 𝑋௜ and 𝑋௝ 
is expressed as: 

𝑤൫𝐸௜௝൯ =
𝑃(𝑋௝|𝑋௜)

𝑃(𝑋௜)
 (5) 

where 𝑤൫𝐸௜௝൯ represents the probabilistic weight of 
the edge between 𝑋௜ and 𝑋௝, ensuring sentiment-
dependent features contribute proportionally to 
classification. This probabilistic weighting 
optimizes feature representation, refining logistic 
regression classification thresholds dynamically. 
 
3.2. Estimating conditional probability 
distributions 
 

Conditional Probability Distributions 
(CPDs) define the probabilistic relationships among 
sentiment-related features within the Bayesian 
Network. This estimation process refines 
probabilistic dependencies, ensuring that sentiment 
attributes, such as polarity, word embeddings, and 
user metadata, contribute optimally to classification. 
The probability of a sentiment label is influenced by 
linguistic features and metadata-derived attributes, 
requiring a structured approach to CPD estimation. 
The Bayesian framework assigns conditional 
probabilities based on observed sentiment 
variations, optimizing logistic regression inputs. 

 
Each sentiment feature holds a probabilistic 

relationship with its parent nodes in the Bayesian 
structure. The joint probability distribution is 
factorized into conditional probabilities, ensuring 
dependencies are mathematically defined. The 
probability of a sentiment label 𝑆 given an optimized 
feature set 𝑋 has been mathematically represented 
as: 

𝑃(𝑆|𝑋) =
𝑃(𝑋|𝑆)𝑃(𝑆)

𝑃(𝑋)
 (6) 

where 𝑃(𝑆|𝑋) defines the probability of sentiment 
classification given observed features, 𝑃(𝑋|𝑆) 
denotes the likelihood of extracted sentiment 
attributes given a specific sentiment class, 𝑃(𝑆) 
represents the prior probability of sentiment polarity, 
and 𝑃(𝑋) normalizes the probability distribution 
across all sentiment features. This equation ensures 
that sentiment classification integrates probabilistic 
dependencies extracted from the Bayesian Network. 
 

Bayesian Networks require CPD estimation 
for each feature node, ensuring conditional 
dependencies align with observed sentiment 
behavior. Maximum Likelihood Estimation (MLE) 

optimizes probability assignment by computing the 
conditional likelihood of sentiment features given 
parent dependencies. The conditional probability for 
a sentiment feature 𝑋௜given its parent nodes 𝑃𝑎(𝑋௜) 
has been defined as: 

𝑃(𝑋௜|𝑃𝑎(𝑋௜)) =
𝑁(𝑋௜|𝑃𝑎(𝑋௜))

𝑁(𝑃𝑎(𝑋௜))
 (7) 

where 𝑃(𝑋௜|𝑃𝑎(𝑋௜)) represents the probability of 
feature 𝑋௜ given its parent features, 𝑁(𝑋௜|𝑃𝑎(𝑋௜)) 
counts the occurrences where 𝑋௜  and its parent nodes 
co-occur, and 𝑁(𝑃𝑎(𝑋௜)) represents the frequency 
of parent feature occurrences. This formulation 
ensures that sentiment-related features retain 
statistical relevance within Bayesian dependency 
learning. 
 

Maximum Likelihood Estimation often 
faces issues with sparse observations, where certain 
feature combinations may have insufficient samples. 
Dirichlet priors stabilize CPD estimation by 
introducing prior knowledge into probability 
assignments. The updated CPD formulation using a 
Dirichlet prior has been expressed as: 

𝑃(𝑋௜|𝑃𝑎(𝑋௜)) =
𝑁(𝑋௜ , 𝑃𝑎(𝑋௜)) + 𝛼

𝑁൫𝑃𝑎(𝑋௜)൯ + 𝑘𝛼
 (8) 

where 𝛼 represents the Dirichlet smoothing 
parameter controlling prior influence, and 𝑘 defines 
the number of possible feature states. Incorporating 
prior knowledge prevents probability overfitting, 
optimizing CPD estimations for sentiment 
classification. 
 

Latent sentiment dependencies often 
remain unobserved in online shopping reviews, 
requiring iterative probability refinements. 
Expectation-Maximization (EM) optimizes CPD 
assignment by iteratively adjusting latent sentiment 
probabilities. The probability update step during EM 
iterations follows: 

𝑃 ቀ𝑋௜
(௧ାଵ)

ቚ𝑃𝑎(𝑋௜)ቁ

= 𝑃 ቀ𝑋௜
(௧)

ቚ𝑃𝑎(𝑋௜)ቁ

+ 𝜂 ቈ
𝑁(𝑋௜ , 𝑃𝑎(𝑋௜))

𝑁(𝑃𝑎(𝑋௜))

− 𝑃ቀ𝑋௜
(௧)

|𝑃𝑎(𝑋௜)ቁ቉ 

(9) 

where 𝑃 ቀ𝑋௜
(௧ାଵ)

ቚ𝑃𝑎(𝑋௜)ቁ represents the updated 

probability in the next iteration, 𝑃 ቀ𝑋௜
(௧)

ቚ𝑃𝑎(𝑋௜)ቁ 

denotes the previous probability estimate, 𝜂 controls 
the learning rate for probability refinement, and 
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𝑁(𝑋௜ , 𝑃𝑎(𝑋௜)) maintains feature occurrence 
statistics. This iterative approach ensures sentiment 
probabilities converge toward an optimized 
distribution, improving Bayesian-based 
classification. 
 

The sum of conditional probabilities across 
sentiment feature states must be equal to one to 
ensure a valid probability distribution. The 
normalization constraint ensures probability 
coherence, preventing misclassification in logistic 
regression. The normalization equation has been 
represented as: 

෍ 𝑃൫𝑋௜|𝑃𝑎(𝑋௜)൯ = 1

௡

௜ୀଵ

 (10) 

where the summation accounts for all possible states 
of 𝑋௜ given its parent dependencies. This probability 
constraint guarantees that sentiment classification 
maintains a well-calibrated Bayesian structure, 
preventing overconfident probability assignments. 
 
 

Conditional dependencies between 
sentiment features influence logistic regression 
performance, requiring a scoring mechanism for 
probabilistic weight assignment. A probabilistic 
dependency score has been formulated as: 

𝐷൫𝑋௜ , 𝑃𝑎(𝑋௜)൯ = 𝑙𝑜𝑔
𝑃(𝑋௜ , 𝑃𝑎(𝑋௜))

𝑃(𝑋௜)
 (11) 

where 𝐷൫𝑋௜ , 𝑃𝑎(𝑋௜)൯ represents the dependency 
score, capturing how much additional predictive 
value 𝑃𝑎(𝑋௜) contributes to 𝑋௜ . The higher the score, 
the stronger the dependency, ensuring that logistic 
regression utilizes the most relevant sentiment 
attributes. 
 
3.3. Probabilistic feature representation 

 
Probabilistic feature representation 

transforms extracted sentiment-related features into 
a structured form that optimizes classification 
accuracy. The Bayesian framework assigns 
probability distributions to each feature, capturing 
linguistic patterns, contextual dependencies, and 
behavioral influences in online shopping sentiment. 
The structured representation of probabilistic 
features enhances logistic regression by ensuring 
that dependencies among sentiment cues are 
mathematically modeled. The transformation 
process refines classification inputs, eliminating 
noisy or redundant attributes and optimizing the 
contribution of probabilistic features to sentiment 
prediction. 

 
Sentiment features extracted from online 

shopping reviews require transformation into 
probabilistic representations that maintain 
contextual meaning and statistical significance. A 
probabilistic encoding function has been formulated 
as: 

𝐹(𝑋) =
𝑃(𝑋|𝑆)𝑃(𝑆)

∑ 𝑃(𝑋௝|𝑆)𝑃(𝑆)௠
௝ୀଵ

 (12) 

where 𝐹(𝑋) represents the probabilistically 
transformed feature value, 𝑃(𝑋|𝑆) denotes the 
probability of the feature given the sentiment class, 
𝑃(𝑆) represents the prior probability of sentiment 
polarity, and the denominator ensures normalization 
across all feature states. This transformation ensures 
that feature representation aligns with probabilistic 
dependencies derived from Bayesian structure 
learning, optimizing input data for sentiment 
classification. 
 

Sentiment words exhibit context-dependent 
variations in meaning, requiring an adjustment 
mechanism that accounts for probabilistic shifts. The 
probability of a sentiment-bearing word 𝑊௜ in a 
given context 𝐶 has been optimized using: 

𝑃(𝑊௜|𝐶) =
𝑃(𝑊௜ , 𝐶)

𝑃(𝐶)
 (13) 

where 𝑃(𝑊௜|𝐶) represents the probability of the 
word given its contextual environment, 𝑃(𝑊௜ , 𝐶) 
denotes the joint probability of the word occurring 
with the contextual feature set, and 𝑃(𝐶) normalizes 
the probability distribution. This representation 
ensures that sentiment classification captures 
nuanced word meanings, improving classification 
performance for reviews where customer sentiment 
varies based on product or service context. 
 

The polarity of a sentence in an online 
shopping review depends on the probabilistic 
distribution of sentiment-laden words and their 
interdependencies. A probabilistic formulation for 
sentence polarity has been structured as: 

𝑃(𝑆𝑒𝑛𝑡|𝑊) = ෍ 𝑃(𝑊௜|𝑆𝑒𝑛𝑡)𝑃(𝑆𝑒𝑛𝑡)

௡

௜ୀଵ

 (14) 

where 𝑃(𝑆𝑒𝑛𝑡|𝑊) represents the probability of a 
sentence expressing a particular sentiment class, 
𝑃(𝑊௜|𝑆𝑒𝑛𝑡) denotes the probability of each word 
given the sentiment label, and the summation 
ensures aggregation across all words in the sentence. 
This formulation ensures that sentiment 
classification incorporates lexical probabilities and 
Bayesian prior knowledge, refining sentence-level 
sentiment representation. 
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The influence of each probabilistic feature 

on sentiment classification requires weighting 
adjustments to ensure classification decisions 
prioritize high-confidence attributes. A probabilistic 
feature weighting function has been structured as: 

𝑤(𝑋௜) =
𝑙𝑜𝑔𝑃(𝑋௜|𝑆)

∑ 𝑙𝑜𝑔𝑃(𝑋௝|𝑆)௠
௝ୀଵ

 (15) 

where 𝑤(𝑋௜) represents the weight assigned to the 
feature, 𝑃(𝑋௜|𝑆) denotes the conditional probability 
of the feature given the sentiment class, and the 
denominator ensures that the weight is relative to all 
other features. This ensures that features with 
stronger probabilistic relevance contribute more to 
logistic regression, refining sentiment classification 
accuracy in online shopping. 
 

A single review contains multiple 
sentiment-bearing words, requiring aggregation 
mechanisms to determine the overall sentiment. A 
probabilistic aggregation function has been 
structured as: 

𝑃(𝑅𝑒𝑣) = ෑ 𝑃(𝑊௜|𝑆𝑒𝑛𝑡)

௡

௜ୀଵ

 (16) 

where 𝑃(𝑅𝑒𝑣) represents the probability of the 
review belonging to a sentiment class, and 
𝑃(𝑊௜|𝑆𝑒𝑛𝑡) denotes the probability of each word 
contributing to the sentiment decision. The 
multiplicative formulation ensures that individual 
probabilities contribute proportionally to the overall 
sentiment prediction, capturing customer sentiment 
trends effectively. 
 

Probabilistic features require normalization 
to ensure calibrated input representation for logistic 
regression. A normalization equation has been 
structured as: 

𝑃௡௢௥௠(𝑋௜) =
𝑃(𝑋௜)

∑ 𝑃(𝑋௝)௠
௝ୀଵ

 (17) 

where 𝑃௡௢௥௠(𝑋௜) represents the normalized 
probability of the feature, 𝑃(𝑋௜) denotes the raw 
feature probability, and the denominator ensures that 
probabilities sum to one across all features. This 
calibration refines logistic regression input, ensuring 
that probabilistic feature representation remains 
consistent across varying sentiment distributions. 
 
 
3.4. Dependency-aware feature selection for 

sentiment classification 
 
Feature selection is crucial in sentiment 

classification, and refining input variables improves 

classification precision. The Bayesian framework 
establishes probabilistic dependencies among 
sentiment-related features, allowing the selection of 
attributes with high predictive relevance while 
removing redundant or weakly correlated elements. 
Dependency-aware feature selection optimizes 
feature contributions by integrating probabilistic 
scoring mechanisms that align with sentiment 
distribution patterns. The process ensures that 
classification models utilize sentiment cues with the 
highest influence on prediction accuracy. 
 

Dependency-aware feature selection 
assigns probabilistic relevance scores to sentiment-
related features based on their influence on 
classification outcomes. The Bayesian probability of 
a feature 𝑋௜ contributing to a sentiment class 𝑆 has 
been structured as: 

𝑅(𝑋௜) =
𝑃(𝑋௜|𝑆)

𝑃(𝑋௜)
 (18) 

where 𝑅(𝑋௜) represents the relevance score for the 
feature, 𝑃(𝑋௜|𝑆) denotes the conditional probability 
of the feature given the sentiment label, and 𝑃(𝑋௜) 
represents the marginal probability of the feature 
across all sentiment classes. The equation ensures 
that features highly correlated with sentiment 
polarity receive higher relevance scores, optimizing 
classification performance. 
 

Sentiment features exhibit varying levels of 
dependency on one another, requiring a selection 
process that evaluates shared information between 
attributes. The mutual information between two 
features 𝑋௜ and 𝑋௝ in the context of sentiment 
classification has been formulated as: 

𝐼൫𝑋௜ , 𝑋௝൯

= ෍ ෍ 𝑃൫𝑥௜ , 𝑥௝൯𝑙𝑜𝑔
𝑃൫𝑥௜ , 𝑥௝൯

𝑃൫𝑥௜)𝑃(𝑥௝൯
௫ೕ௫೔

 (19) 

where 𝐼൫𝑋௜ , 𝑋௝൯ represents the mutual information 
score between two features, 𝑃൫𝑥௜ , 𝑥௝൯ denotes the 
joint probability of both features occurring together, 
and 𝑃(𝑥௜) 𝑃(𝑥௝) represent the marginal probabilities 
of each feature. Features with lower mutual 
information contribute less to classification and 
undergo elimination, ensuring an optimized set of 
features with minimal redundancy. 
 

A Bayesian Markov Blanket ensures that 
selected features contribute directly to sentiment 
classification by removing redundant or 
conditionally dependent attributes. The conditional 
independence probability for a feature 𝑋௜ given a 
Markov Blanket set 𝑀𝐵(𝑋௜) has been defined as: 
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𝑃൫𝑋௜ห𝑆, 𝑀𝐵(𝑋௜)൯ = 𝑃(𝑋௜|𝑀𝐵(𝑋௜)) (20) 

where 𝑃൫𝑋௜ห𝑆, 𝑀𝐵(𝑋௜)൯ represents the probability of 
the feature given the sentiment label and its Markov 
Blanket, and 𝑃(𝑋௜|𝑀𝐵(𝑋௜)) ensures that additional 
features contribute no further independent 
information once a Markov Blanket is established. 
The optimization process retains only features that 
provide new information to sentiment classification, 
ensuring an efficient feature subset. 
 

Sentiment classification performance 
improves when features are weighted based on 
probabilistic dependencies within the Bayesian 
framework. The importance weight assigned to a 
feature 𝑋௜  has been optimized using: 

𝑊(𝑋௜) =
∑ 𝑃(𝑋௜|𝑋௝ , 𝑆)௠

௝ୀଵ

𝑚
 (21) 

where 𝑊(𝑋௜) represents the feature weight, 
𝑃(𝑋௜|𝑋௝, 𝑆) denotes the conditional probability of 
feature 𝑋௜ given other selected features and 
sentiment class 𝑆, and 𝑚 refers to the total number 
of selected features. Higher weights are assigned to 
features with strong sentiment dependencies, 
refining classification precision. 

Entropy measures the uncertainty 
associated with sentiment features, guiding the 
selection of attributes that minimize classification 
ambiguity. The entropy reduction criterion for 
selecting a feature 𝑋௜ has been structured as: 

𝐻(𝑋௜|𝑆) = 𝐻(𝑆) − 𝐻(𝑆|𝑋௜) (22) 

where 𝐻(𝑋௜|𝑆) represents the entropy reduction 
achieved by including the feature, 𝐻(𝑆) denotes the 
overall entropy of sentiment classification, and 
𝐻(𝑆|𝑋௜) represents the entropy of sentiment labels 
after observing the feature. Features that result in 
higher entropy reductions improve classification 
confidence and are prioritized in feature selection. 
 

A feature that introduces redundancy into 
the classification process undergoes elimination 
based on a Bayesian feature relevance score. The 
redundancy-adjusted selection criterion has been 
defined as: 

𝑆(𝑋௜) =
𝑅(𝑋௜)

∑ 𝐼(𝑋௜ , 𝑋௝)௠
௝ୀଵ

 (23) 

where 𝑆(𝑋௜) represents the final selection score for 
the feature, 𝑅(𝑋௜) denotes the feature relevance 
score, and 𝐼(𝑋௜ , 𝑋௝) quantifies the mutual 
information shared with other selected features. 
Features with lower selection scores contribute 

redundancies and undergo removal, ensuring 
classification remains optimized. 
 
3.5. Bayesian regularization for logistic 
regression 

 
Bayesian regularization has optimized 

logistic regression by incorporating probabilistic 
priors that prevent overfitting while improving 
classification accuracy. Regularization strategies 
have ensured that model coefficients remain 
controlled, reducing the influence of noise in 
sentiment analysis. The Bayesian framework has 
assigned probability distributions to logistic 
regression parameters, refining feature contributions 
based on probabilistic dependencies. The process 
has integrated adaptive regularization techniques, 
ensuring that sentiment classification remains robust 
and optimized for online shopping reviews. 

 
Bayesian regularization has introduced 

probabilistic constraints on logistic regression 
coefficients, ensuring optimized model 
generalization. The probability of a coefficient 𝛽௜  
has been structured as: 

𝑃(𝛽௜|𝐷) =
𝑃(𝐷|𝛽௜)𝑃(𝛽௜)

𝑃(𝐷)
 (24) 

where 𝑃(𝛽௜|𝐷) represents the posterior probability 
of the coefficient given the dataset, 𝑃(𝐷|𝛽௜) denotes 
the likelihood of the data given the coefficient, 𝑃(𝛽௜) 
rrepresents the prior probability of the coefficient, 
and 𝑃(𝐷) normalizes the distribution. This equation 
has ensured that coefficients align with probabilistic 
dependencies in sentiment features, refining logistic 
regression classification. 
 

Bayesian inference has incorporated 
Gaussian priors to control logistic regression 
coefficients, ensuring that large coefficients undergo 
shrinkage to prevent overfitting. The prior 
distribution for a coefficient 𝛽௜ has been formulated 
as: 

𝑃(𝛽௜) =
1

√2𝜋𝜎ଶ
𝑒𝑥𝑝 ቆ−

𝛽௜
ଶ

2𝜎ଶ
ቇ (25) 

where 𝑃(𝛽௜) represents the prior probability of the 
coefficient, 𝜎ଶ denotes the variance of the prior 
distribution, and the exponential term ensures that 
large coefficients receive higher penalization. This 
regularization mechanism has optimized coefficient 
stability, improving sentiment classification 
robustness. 
 

Sparse feature selection has been achieved 
using a Laplace prior, ensuring that logistic 
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regression assigns zero coefficients to irrelevant 
sentiment attributes. The Laplace prior for a 
coefficient 𝛽௜ has been structured as: 

𝑃(𝛽௜) =
𝜆

2
𝑒𝑥𝑝(−𝜆|𝛽௜|) (26) 

where 𝑃(𝛽௜) represents the probability of the 
coefficient, 𝜆 denotes the regularization parameter 
controlling sparsity, and the absolute term ensures 
that coefficients closer to zero receive stronger 
penalization. This previously refined logistic 
regression eliminates redundant sentiment features 
and optimizes classification accuracy. 
 

The posterior probability of logistic 
regression coefficients has been derived by 
integrating prior distributions with likelihood 
estimates. The posterior estimation has been 
formulated as: 

𝑃(𝛽|𝐷) = ෑ 𝑃(𝑦௜|𝑋௜ , 𝛽)𝑃(𝛽)

௡

௜ୀଵ

 (27) 

where 𝑃(𝛽|𝐷) represents the posterior probability of 
all coefficients, 𝑃(𝑦௜|𝑋௜ , 𝛽) denotes the likelihood of 
each sentiment label given the features and 
coefficients, and 𝑃(𝛽) incorporates prior 
knowledge. This estimation process has ensured that 
logistic regression aligns with Bayesian 
regularization principles, refining probabilistic 
decision-making. 
 

The optimization function for logistic 
regression with Bayesian regularization has been 
structured as: 

𝐽(𝛽) = − ෍ൣ𝑦௜𝑙𝑜𝑔𝑃(𝑦௜|𝑋௜) + (1

௡

௜ୀଵ

− 𝑦௜)𝑙𝑜𝑔൫1

− 𝑃(𝑦௜|𝑋௜)൯൧

+
𝜆

2
෍ 𝛽௝

ଶ

௠

௝ୀଵ

 

(28) 

where 𝐽(𝛽) represents the regularized loss function, 
𝑦௜  denotes the sentiment label, 𝑃(𝑦௜|𝑋௜) represents 
the logistic regression probability output, 𝜆 controls 
the strength of the regularization, and 𝛽௝

ଶ penalizes 
large coefficients. This formulation has ensured that 
logistic regression remains stable under Bayesian 
constraints, optimizing classification precision. 
 

Variational inference has refined Bayesian 
regularization by approximating posterior 
distributions of logistic regression coefficients. The 

variational lower bound function has been defined 
as: 

𝐿(𝑞) = 𝐸௤[𝑙𝑜𝑔𝑃(𝐷|𝛽)]

− 𝐾𝐿(𝑞(𝛽)||𝑃(𝛽)) 
(29) 

where 𝐿(𝑞) represents the variational lower bound, 
𝐸௤[𝑙𝑜𝑔𝑃(𝐷|𝛽)] denotes the expectation of the log-
likelihood under the approximate posterior, and 
𝐾𝐿(𝑞(𝛽)||𝑃(𝛽)) represents the Kullback-Leibler 
divergence between the approximate and true 
posterior. This optimization process has ensured that 
logistic regression maintains probabilistic 
constraints, improving classification performance. 
 
3.6. Training logistic regression with Bayesian 
features 

 
Training logistic regression using 

Bayesian-enhanced features has ensured that 
sentiment classification remains optimized for 
precision-oriented analysis. Bayesian inference has 
refined feature contributions by assigning 
probabilistic dependencies, allowing logistic 
regression to learn from uncertainty-aware 
representations. This process has established a 
robust classification framework by integrating 
probabilistic priors, structured dependencies, and 
feature distributions derived from Bayesian 
Networks. The training phase has optimized 
parameter estimation while ensuring that sentiment-
related attributes contribute effectively to 
classification performance. 
 

Bayesian features have introduced 
probabilistic priors that have influenced logistic 
regression parameter learning. The probability of a 
sentiment label 𝑆 given an optimized feature set 𝑋 
has been structured as: 

𝑃(𝑆|𝑋) =
1

1 + 𝑒ି൫ఉబା∑ ఉ೔௑೔
೙
೔సభ ൯

 (30) 

where 𝑃(𝑆|𝑋) represents the probability of 
predicting sentiment 𝑆, 𝛽଴ denotes the bias term,𝛽௜ 
represents the coefficient for feature 𝑋௜, and the 
exponential term ensures non-linearity in 
classification. Bayesian probability integration has 
optimized classification boundaries, ensuring that 
sentiment predictions align with probabilistic 
dependencies. 
 

Feature weights in logistic regression have 
been optimized using Bayesian posterior estimation, 
ensuring that coefficients reflect probabilistic 
dependencies. The weight update function for a 
feature 𝑋௜ has been formulated as: 
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𝛽௜
(௧ାଵ)

= 𝛽௜
(௧)

+ 𝜂[𝑃(𝑆|𝑋) − 𝑦]𝑋௜  (31) 

where 𝛽௜
(௧ାଵ) represents the updated coefficient, 𝛽௜

(௧) 
denotes the previous iteration’s coefficient, 𝜂 is the 
learning rate, 𝑃(𝑆|𝑋) represents the probability 
output, and 𝑦 denotes the actual sentiment label. 
Bayesian posterior estimation has ensured that 
feature weights align with probabilistic sentiment 
distributions, refining classification precision. 

Gradient descent has been optimized using 
probabilistic constraints from Bayesian inference, 
ensuring that logistic regression updates parameters 
efficiently. The gradient of the loss function with 
respect to coefficient 𝛽௜has been defined as: 

𝜕𝐽

𝜕𝛽௜

= ෍ൣ𝑃൫𝑆௝|𝑋௝൯ − 𝑦௝൧𝑋௜௝

௠

௝ୀଵ

 (32) 

where 
డ௃

డఉ೔
 represents the gradient, 𝑃൫𝑆௝|𝑋௝൯ denotes 

the probability output for sentiment label 𝑆௝,𝑦௝ 
represents the actual sentiment label, and 𝑋௜௝ refers 
to the feature contribution. Probabilistic gradient 
descent has optimized parameter learning, ensuring 
that sentiment classification maintains robustness. 
 

Decision boundaries in logistic regression 
have been adjusted using Bayesian priors, ensuring 
that probabilistic dependencies influence 
classification thresholds. The updated decision 
boundary equation has been structured as: 

෍ 𝛽௜𝑋ூ + 𝐿𝑂𝐺
𝑃(𝑆)

1 − 𝑃(𝑆)
= 0

௡

௜ୀଵ

 (33) 

where ∑ 𝛽௜𝑋ூ
௡
௜ୀଵ  represents the weighted feature 

contributions, and the logarithmic term ensures that 
prior probability distributions influence 
classification decisions. Bayesian prior integration 
has refined decision boundaries, ensuring that 
sentiment classification remains adaptive to 
uncertainty-aware distributions. 
 

Variational inference has optimized feature 
contributions by approximating posterior 
distributions, refining logistic regression 
classification decisions. The variational lower bound 
equation has been formulated as: 

𝐿(𝑞) = ෍ 𝑃(𝑋௜|𝑆)𝑙𝑜𝑔
𝑃(𝑋௜|𝑆)

𝑞(𝑋௜)

௡

௜ୀଵ

 (34) 

where 𝐿(𝑞) represents the variational lower bound, 
𝑃(𝑋௜|𝑆) denotes the probability of the feature given 
the sentiment label, and 𝑞(𝑋௜) represents the 
approximate posterior distribution. This formulation 
has ensured that logistic regression benefits from 

probabilistic constraints, refining feature selection 
for sentiment classification. 

 
Confidence calibration in sentiment 

classification has been optimized using Bayesian 
inference, ensuring that probability outputs reflect 
predictive confidence. The confidence score for a 
sentiment prediction has been structured as: 

𝐶(𝑆|𝑋) =
𝑃(𝑆|𝑋)

∑ 𝑃൫𝑆௝|𝑋൯௠
௝ୀଵ

 (35) 

where 𝐶(𝑆|𝑋) represents the confidence score for 
predicting sentiment 𝑆, 𝑃(𝑆|𝑋) denotes the 
probability of the sentiment given feature set 𝑋, and 
the denominator ensures normalization across all 
sentiment classes. Bayesian confidence calibration 
has refined classification decisions, ensuring that 
sentiment predictions align with uncertainty-aware 
probability distributions. 
 

Thresholds for logistic regression 
classification have been optimized using Bayesian 
probability distributions, ensuring that sentiment 
predictions reflect probabilistic dependencies. The 
optimized threshold function has been structured as: 

𝑇 =
∑ 𝑃(𝑆௜|𝑋௜)௡

௜ୀଵ

𝑛
 (36) 

where 𝑇 represents the classification threshold, 
𝑃(𝑆௜|𝑋௜) denotes the probability of sentiment 
𝑆௜given feature set 𝑋௜, and 𝑛 ensures averaging 
across all sentiment predictions. Threshold 
optimization has ensured that logistic regression 
adapts to probabilistic sentiment distributions, 
improving classification robustness. 
 

The loss function in logistic regression has 
been optimized using Bayesian constraints, ensuring 
that probability distributions influence classification 
optimization. The regularized loss function has been 
defined as: 

 

𝐽(𝛽) = − ෍ൣ𝑦௜𝑙𝑜𝑔𝑃(𝑆௜|𝑋௜)

௡

௜ୀଵ

+ (1 − 𝑦௜)𝑙𝑜𝑔൫1

− 𝑃(𝑆௜|𝑋௜)൯൧

+ 𝜆 ෍ห𝛽௝ห

௠

௝ୀଵ

 

(37) 

where 𝐽(𝛽) represents the loss function, 𝑦௜denotes 
the actual sentiment label, 𝑃(𝑆௜|𝑋௜) rrepresents the 
probability output, 𝜆 controls regularization 
strength, and ห𝛽௝ห ensures sparsity in feature 
selection. Bayesian regularization has ensured that 
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logistic regression remains optimized for sentiment 
classification in online shopping. 

 
 

3.7. Bayesian-driven weight adjustment in 
logistic regression 

 
Bayesian-driven weight adjustment has 

ensured that logistic regression integrates 
probabilistic dependencies derived from sentiment-
related features. The process has dynamically 
adjusted model coefficients by incorporating 
Bayesian posterior estimations, ensuring that feature 
contributions align with sentiment classification. 
Weight updates have been optimized to reflect 
uncertainty-aware learning, preventing overfitting 
while enhancing classification precision. Integrating 
Bayesian principles has ensured that logistic 
regression maintains stable and interpretable 
coefficients, refining predictive performance in 
online shopping sentiment analysis. 
 

The probabilistic dependencies of 
sentiment-related features have influenced weight 
adjustments in logistic regression. The posterior 
probability of a weight 𝛽௜given sentiment training 
data has been structured as: 

𝑃(𝛽௜|𝐷) =
𝑃(𝐷|𝛽௜)𝑃(𝛽௜)

𝑃(𝐷)
 (38) 

where 𝑃(𝛽௜|𝐷) represents the probability of the 
weight given the dataset, 𝑃(𝐷|𝛽௜) denotes the 
likelihood of the data given the weight, 
𝑃(𝛽௜) represents the prior probability of the weight, 
and 𝑃(𝐷) normalizes the probability distribution. 
This Bayesian probability integration has ensured 
that weight adjustments align with sentiment-driven 
probabilistic dependencies, refining classification 
boundaries. 
 

Maximum A Posteriori (MAP) estimation 
has refined logistic regression weights by integrating 
prior knowledge with data likelihood. The MAP 
estimate of a weight 𝛽௜ has been formulated as: 

𝛽௜
ெ஺௉ = 𝑎𝑟𝑔max

ఉ೔

[𝑙𝑜𝑔𝑃(𝐷|𝛽௜)

+ 𝑙𝑜𝑔𝑃(𝛽௜)] 
(39) 

where 𝛽௜
ெ஺௉  represents the weight that maximizes 

the posterior probability, 𝑃(𝐷|𝛽௜) denotes the log-
likelihood of the dataset, 𝑙𝑜𝑔𝑃(𝛽௜) incorporates 
prior knowledge. This estimation has ensured that 
weight adjustments reflect both observed sentiment 
data and prior distributions, stabilizing logistic 
regression coefficients. 

 

Gradient descent optimization has been 
modified using Bayesian posterior probability 
distributions, ensuring that weight updates reflect 
probabilistic constraints. The weight update 
equation using Bayesian gradient descent has been 
structured as: 

𝛽௜
(௧ାଵ)

= 𝛽௜
(௧)

− 𝜂 ൤
𝜕𝐽

𝜕𝛽௜

+ 𝜆𝛽௜൨ (40) 

where 𝛽௜
(௧ାଵ)represents the updated weight, 

𝛽௜
(௧)denotes the previous iteration’s weight, 𝜂 is the 

learning rate, 
డ௃

డఉ೔
 represents the gradient of the loss 

function, and 𝜆𝛽௜ introduces Bayesian 
regularization. This probabilistic weight adjustment 
has ensured that logistic regression remains stable 
under uncertainty-aware learning conditions. 
 

The learning rate in weight optimization 
has been adjusted using Bayesian priors, ensuring 
that updates remain controlled for sentiment 
classification stability. The Bayesian-adaptive 
learning rate function has been defined as: 

𝜂(௧ାଵ) =
𝜂(௧)

1 + 𝛼𝑡
 (41) 

where 𝜂(௧ାଵ) represents the adjusted learning rate, 
𝜂(௧) denotes the previous iteration’s learning rate, 𝛼 
controls the adaptation rate, and 𝑡 represents the 
iteration number. This adaptation has ensured that 
weight adjustments remain gradual, preventing 
abrupt changes that could lead to instability in 
sentiment classification. 
 

Variational inference has optimized weight 
estimation by approximating posterior distributions 
and refining logistic regression weight assignments. 
The variational lower bound for weight 
approximation has been formulated as: 

𝐿(𝑞) = ෍ 𝑞(𝛽௜)𝑙𝑜𝑔
𝑃(𝐷|𝛽௜)𝑃(𝛽௜)

𝑞(𝛽௜)

௡

௜ୀଵ

 (42) 

where 𝐿(𝑞) represents the variational lower bound, 
𝑞(𝛽௜) denotes the approximate posterior 
distribution, 𝑃(𝐷|𝛽௜) represents the likelihood 
function, and 𝑃(𝛽௜) incorporates prior probability. 
This formulation ensured weight updates align with 
Bayesian constraints, refining sentiment 
classification accuracy. 
 

Confidence weighting has ensured that 
feature contributions to logistic regression remain 
optimized based on probabilistic dependencies. The 
confidence-weighted adjustment for a weight 𝛽௜ has 
been structured as: 
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𝛽௜
(௧ାଵ)

= 𝛽௜
(௧)

+ 𝛾 ෍ 𝐶(𝑋௝)ൣ𝑃൫𝑆ห𝑋௝൯

௠

௝ୀଵ

− 𝑦௝൧𝑋௜௝ 

(43) 

where 𝛽௜
(௧ାଵ)represents the updated weight, 

𝛽௜
(௧)denotes the previous iteration’s weight, 𝛾 is the 

confidence adjustment factor, 𝐶(𝑋௝)represents the 

confidence score for feature 𝑋௝, 𝑃൫𝑆ห𝑋௝൯ denotes the 
probability of the sentiment given the feature, and 𝑦௝ 
represents the actual sentiment label. This 
confidence-based adjustment has ensured that 
weight modifications align with certainty in 
sentiment classification. 

Entropy-based penalization has optimized 
weight adjustments by controlling the influence of 
high-uncertainty features. The entropy-regularized 
weight adjustment function has been defined as: 

𝛽௜
(௧ାଵ)

= 𝛽௜
(௧)

− 𝜂 ൤
𝜕𝐽

𝜕𝛽௜

+ 𝜏𝐻(𝑋௜)൨ (44) 

where 𝛽௜
(௧ାଵ) represents the updated weight, 𝛽௜

(௧) 
denotes the previous weight, 𝜂 is the learning rate, 
డ௃

డఉ೔
 represents the loss gradient, and 𝜏𝐻(𝑋௜) 

introduces entropy-based regularization. This 
penalization has refined weight updates, ensuring 
that highly uncertain features contribute 
proportionally to classification. 

Multimodal weight adjustment has ensured 
logistic regression accounts for different sentiment 
categories using Bayesian inference. The 
multimodal weight update function has been 
structured as: 

𝛽௜
(௧ାଵ)

= 𝛽௜
(௧)

+ ෍ 𝑤௞[𝑃(𝑆௞|𝑋) − 𝑦௞]𝑋௜

௄

௞ୀଵ

 (45) 

where 𝛽௜
(௧ାଵ) represents the updated weight, 𝛽௜

(௧) 
denotes the previous weight, 𝑤௞represents the 
probability weight assigned to the sentiment 
category 𝑆௞ , 𝑃(𝑆௞|𝑋) denotes the probability of the 
category given the feature and 𝑦௞  represents the 
actual sentiment label. This multimodal adjustment 
has ensured that weight modifications reflect 
category-specific sentiment probabilities. 
 
3.8. Dynamic sentiment classification using 

Bayesian posterior probabilities 
 
Dynamic sentiment classification has been 

optimized by integrating Bayesian posterior 
probabilities into the classification process. 
Bayesian inference has ensured that probabilistic 
dependencies among sentiment-related attributes 
dynamically adjust classification thresholds based 

on sentiment uncertainty. Posterior probabilities 
have refined decision-making by incorporating prior 
sentiment distributions and likelihood estimates, 
optimizing classification robustness. Integrating 
Bayesian-driven probability adjustments has 
ensured that sentiment predictions reflect contextual 
variations, enabling precise classification in online 
shopping sentiment analysis. 

 
Posterior probability estimation has 

ensured that sentiment classification reflects updated 
probabilistic dependencies. The Bayesian posterior 
probability of a sentiment label 𝑆 given feature set 𝑋 
has been structured as: 

𝑃(𝑆|𝑋) =
𝑃(𝑋|𝑆)𝑃(𝑆)

𝑃(𝑋)
 (46) 

where 𝑃(𝑆|𝑋) represents the probability of 
sentiment 𝑆 given features 𝑋, 𝑃(𝑋|𝑆) denotes the 
likelihood of features given sentiment, 𝑃(𝑆) 
represents the prior probability of sentiment, and 
𝑃(𝑋) normalizes the probability distribution. 
Bayesian posterior estimation has ensured that 
classification reflects sentiment variability, refining 
decision-making under uncertainty. 
 

Classification boundaries have been 
optimized using Bayesian posterior probabilities, 
ensuring that sentiment decisions adjust based on 
probabilistic sentiment variations dynamically. The 
adjusted sentiment decision boundary equation has 
been defined as: 

෍ 𝛽௜𝑋௜ + 𝑙𝑜𝑔
𝑃(𝑆)

1 − 𝑃(𝑆)
= 0

௡

௜ୀଵ

 (47) 

where ∑ 𝛽௜𝑋௜
௡
௜ୀଵ  represents the weighted feature 

contributions, and the logarithmic term ensures that 
prior sentiment probabilities influence classification 
decisions. Bayesian adjustment has refined 
classification boundaries, ensuring that sentiment 
classification remains adaptable under dynamic 
probability distributions. 

Confidence estimation has ensured that 
sentiment classification reflects probabilistic 
certainty, preventing misclassification due to 
uncertain features. The confidence score for a 
sentiment prediction has been structured as: 

𝐶(𝑆|𝑋) =
𝑃(𝑆|𝑋)

∑ 𝑃(𝑆௝|𝑋)௠
௝ୀଵ

 (48) 

where 𝐶(𝑆|𝑋) represents the confidence score for 
sentiment 𝑆, 𝑃(𝑆|𝑋) denotes the probability of 
sentiment given feature set 𝑋, and the denominator 
normalizes the probability across sentiment labels. 
Confidence estimation has ensured that 
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classification reflects certainty-aware probability 
distributions, refining predictive accuracy. 
 

Classification thresholds have been 
dynamically adjusted based on Bayesian probability 
distributions, ensuring that sentiment predictions 
reflect sentiment uncertainty. The optimized 
threshold function has been structured as: 

𝑇 =
∑ 𝑃(𝑆௜|𝑋௜)௡

௜ୀଵ

𝑛
 (49) 

where 𝑇 represents the classification threshold, 
𝑃(𝑆௜|𝑋௜) denotes the probability of sentiment 𝑆௜ 
given feature set 𝑋௜, and 𝑛 ensures averaging across 
sentiment predictions. Adaptive threshold 
optimization has ensured that classification adjusts 
based on sentiment-dependent probability 
variations. 
 

Using Bayesian posterior probabilities, 
weighting sentiment scores has ensured that 
classification remains optimized based on 
probabilistic dependencies. The weighted sentiment 
score function has been defined as: 

𝑆௪ = ෍ 𝑃(𝑆|𝑋௜)

௡

௜ୀଵ

𝑊௜ (50) 

where 𝑆௪ represents the weighted sentiment score, 
𝑃(𝑆|𝑋௜) denotes the probability of sentiment given 
feature 𝑋௜, and 𝑊௜ represents the weight assigned to 
feature 𝑋௜. Weighted sentiment scoring has refined 
classification, ensuring that sentiment probabilities 
influence classification strength. 
 

Expectation-Maximization (EM) has 
refined sentiment probabilities by iteratively 
updating classification confidence. The probability 
update function using EM has been structured as: 

𝑃൫𝑆(௧ାଵ)ห𝑋൯ = 𝑃൫𝑆(௧)ห𝑋൯

+ 𝜂 ൤
𝑃(𝑋|𝑆)

𝑃(𝑋)

− 𝑃(𝑆(௧)|𝑋)൨ 

(51) 

where 𝑃൫𝑆(௧ାଵ)ห𝑋൯ represents the updated 
probability in the next iteration, 𝑃(𝑆(௧)|𝑋) denotes 
the previous probability estimate, 𝜂 controls the 

learning rate, and 
௉(௑|ௌ)

௉(௑)
 refines the probability 

distribution. Expectation-Maximization has ensured 
that sentiment probabilities remain dynamically 
optimized. 
 

Uncertainty measures have ensured that 
sentiment classification reflects probabilistic 
dependency confidence, preventing 

misclassification. The Bayesian uncertainty function 
has been defined as: 

𝑈(𝑋) = − ෍ 𝑃(𝑆௜|𝑋)𝑙𝑜𝑔𝑃(𝑆௜|𝑋)

௡

௜ୀଵ

 (52) 

where 𝑈(𝑋) represents the uncertainty measure, 
𝑃(𝑆௜|𝑋) denotes the probability of sentiment-given 
features, and the summation ensures probabilistic 
entropy computation. Uncertainty measures have 
ensured that sentiment classification adapts to 
probability-driven classification refinements. 
 

Hierarchical classification has ensured that 
sentiment predictions reflect multi-level probability 
distributions, optimizing classification across 
sentiment granularity. The Bayesian hierarchical 
classification function has been structured as: 

𝑃(𝑆௞|𝑋) = ෍ 𝑃(𝑆௞|𝑆௝)𝑃(𝑆௝|𝑋)

௠

௝ୀଵ

 (53) 

where 𝑃(𝑆௞|𝑋) represents the probability of 
sentiment 𝑆௞ , 𝑃(𝑆௞|𝑆௝) denotes the probability of 
transitioning from sentiment 𝑆௝ to 𝑆௞, and 𝑃(𝑆௝|𝑋) 
represents the probability of the previous sentiment 
level given features. Hierarchical classification has 
ensured that sentiment analysis reflects sentiment 
variations across probability levels. 
 
3.9. Bayesian model evidence for sentiment 

prediction calibration 
 
Bayesian model evidence has ensured that 

sentiment prediction maintains probabilistic 
calibration, preventing overconfidence in 
classification decisions. Model evidence has 
integrated Bayesian principles to assess prediction 
reliability by incorporating prior probability 
distributions, likelihood estimations, and posterior 
probabilities. The calibration process has refined 
classification confidence by ensuring that sentiment 
predictions align with observed sentiment 
distributions, optimizing precision in sentiment 
analysis for online shopping. Integrating Bayesian 
model evidence has ensured that classification 
remains uncertainty-aware, reducing the likelihood 
of sentiment misclassification. 
 

Model evidence has been computed by 
integrating prior knowledge and likelihood 
estimates, ensuring that sentiment prediction reflects 
Bayesian probability constraints. The model 
evidence function has been structured as: 

𝑃(𝐷) = න 𝑃(𝐷|𝜃)𝑃(𝜃)𝑑𝜃 (54) 
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where 𝑃(𝐷)represents the Bayesian model evidence, 
𝑃(𝐷|𝜃) denotes the likelihood of the observed 
sentiment data given parameters 𝜃, and 𝑃(𝜃) 
represents the prior probability distribution of model 
parameters. Bayesian model evidence computation 
has ensured that classification maintains calibrated 
probability distributions, refining sentiment 
prediction confidence. 
 

Model complexity has been evaluated using 
the Bayesian Information Criterion (BIC), ensuring 
that sentiment classification remains optimized 
without overfitting. The BIC function has been 
formulated as: 

𝐵𝐼𝐶 = 2𝑙𝑜𝑔𝑃൫𝐷ห𝜃෠൯ + 𝑘𝑙𝑜𝑔𝑛 (55) 

where 𝐵𝐼𝐶 represents the Bayesian Information 
Criterion, 𝑃൫𝐷ห𝜃෠൯ denotes the maximum likelihood 
estimate of the sentiment data given parameters 𝜃෠, 𝑘 
represents the number of parameters, and 𝑛 denotes 
the dataset size. The BIC evaluation has ensured that 
model calibration integrates sentiment dependency 
constraints, preventing overfitting while refining 
classification accuracy. 
 

Posterior predictive distributions have 
calibrated sentiment prediction confidence, ensuring 
that classification remains aligned with probability-
adjusted outcomes. The posterior predictive function 
has been defined as: 

𝑃(𝑆|𝐷) = න 𝑃(𝑆|𝜃)𝑃(𝜃|𝐷)𝑑𝜃 (56) 

where 𝑃(𝑆|𝐷) represents the posterior predictive 
probability of sentiment 𝑆 given observed data 𝐷, 
𝑃(𝑆|𝜃) denotes the probability of sentiment given 
model parameters 𝜃, and 𝑃(𝜃|𝐷) represents the 
posterior probability of parameters given data. 
Posterior predictive calibration has refined sentiment 
prediction, ensuring that classification remains 
aligned with probabilistic dependencies. 
 

Model averaging has ensured that 
sentiment prediction confidence remains optimized 
by integrating probability-adjusted classification 
refinements. The Bayesian model averaging 
function has been structured as: 

𝑃(𝑆|𝑋) = ෍ 𝑃(𝑆|𝑋, 𝑀௠)𝑃(𝑀௠|𝐷)

ெ

௠ୀଵ

 (57) 

where 𝑃(𝑆|𝑋) represents the probability of 
sentiment 𝑆 given feature set 𝑋, 𝑃(𝑆|𝑋, 𝑀௠)denotes 
the probability of sentiment under model 𝑀௠, and 
𝑃(𝑀௠|𝐷) represents the posterior probability of 
model 𝑀௠ given data 𝐷. Model averaging has 

refined sentiment classification, ensuring that 
predictive confidence reflects Bayesian probability 
distributions. 
 
3.10. Probabilistic model fusion for robust 
sentiment analysis 
 

Probabilistic model fusion has ensured that 
sentiment classification integrates multiple 
Bayesian-driven models to refine predictive 
performance. The fusion process has combined 
outputs from Bayesian inference, logistic regression, 
and probabilistic dependencies to enhance 
classification accuracy. By leveraging multiple 
models, the process has optimized feature 
interactions and classification thresholds, ensuring 
that sentiment analysis remains uncertainty-aware. 
Probabilistic model fusion has ensured that 
classification robustness improves by dynamically 
adjusting probability distributions based on 
sentiment variability in online shopping reviews. 
 

Model fusion has been implemented by 
integrating probability-weighted outputs from 
Bayesian sentiment classification. The probability-
weighted fusion function has been structured as: 

𝑃(𝑆|𝑋) = ෍ 𝑤௠𝑃௠(𝑆|𝑋)

ெ

௠ୀଵ

 (58) 

where 𝑃(𝑆|𝑋) represents the fused probability of 
sentiment 𝑆 given feature set 𝑋, 𝑤௠ denotes the 
weight assigned to model 𝑚, and 𝑃௠(𝑆|𝑋) represents 
the sentiment probability from model 𝑚. 
Probability-weighted fusion has ensured that 
classification integrates sentiment dependencies 
from multiple probabilistic models, refining 
sentiment predictions dynamically. 
 

Consensus learning has optimized 
sentiment classification by aggregating outputs from 
multiple Bayesian models. The consensus 
probability function has been formulated as follows: 

𝑃(𝑆|𝑋) =
1

𝑀
෍ 𝑃௠(𝑆|𝑋)

ெ

௠ୀଵ

 (59) 

where 𝑃(𝑆|𝑋) represents the consensus probability 
of sentiment 𝑆,𝑃௠(𝑆|𝑋) denotes the probability 
output from model 𝑚, and 𝑀 represents the number 
of Bayesian models used in fusion. Consensus 
learning has ensured that sentiment predictions 
remain stable by averaging probability estimates 
across multiple classification models. 
 

Confidence-weighted fusion has ensured 
that sentiment classification adjusts based on model-
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specific confidence scores. The confidence-
weighted probability function has been structured as: 

𝑃(𝑆|𝑋) = ෍ 𝐶௠𝑃௠(𝑆|𝑋)

ெ

௠ୀଵ

 (60) 

where 𝑃(𝑆|𝑋) represents the final sentiment 
probability, 𝐶௠ denotes the confidence score of 
model𝑚, and 𝑃௠(𝑆|𝑋) represents the sentiment 
probability from model 𝑚. Confidence-weighted 
fusion has ensured that sentiment predictions align 
with the most reliable probabilistic models, refining 
classification accuracy. 
 

Model stacking has enhanced sentiment 
classification by combining Bayesian-driven 
classification layers. The stacked probability 
function has been defined as: 

𝑃(𝑆|𝑋) = 𝑃ଵ(𝑆|𝑋) + 𝜆 ෍ 𝑃௠(𝑆|𝑋)

ெ

௠ୀଶ

 (61) 

where 𝑃(𝑆|𝑋) represents the stacked probability of 
sentiment 𝑆, 𝑃ଵ(𝑆|𝑋) denotes the probability from 
the base model, 𝜆 controls model fusion weighting, 
and 𝑃௠(𝑆|𝑋) represents probability contributions 
from additional models. Model stacking has ensured 
that sentiment classification integrates probabilistic 
dependencies across multiple classification layers, 
improving robustness. 
 
3.11. Overall framework of BN-LR 
 

The overall algorithm of BN-LR integrates 
Bayesian Networks with Logistic Regression to 
enhance sentiment classification in online shopping 
reviews. Training on sentiment-labelled datasets, 
Bayesian structure learning constructs a directed 
acyclic graph (DAG) to capture feature 
dependencies, refining input representation for LR. 
Conditional Probability Distributions (CPDs) 
dynamically adjust probabilistic weights, ensuring 
accurate feature influence. Dependency-aware 
feature selection eliminates redundant attributes, 
optimizing classification efficiency. Using Gaussian 
and Laplace priors, Bayesian regularization prevents 
overfitting while stabilizing model coefficients. 
Bayesian inference dynamically adjusts LR weights, 
refining probability-based decision boundaries. 
Bayesian Model Evidence calibrates sentiment 
predictions, improving classification confidence, 
reducing false positives, and ensuring adaptability to 
evolving sentiment trends. 

 
 
 

 

The BN-LR algorithm has ensured that 
sentiment classification integrates Bayesian 
probability distributions, optimizing sentiment 
analysis precision in online shopping. 
 
4. DATASET 

 
The dataset used in this research comprises 

product review data collected from the Amazon 
platform, covering four distinct domains: Books, 
DVDs, Electronics, and Kitchen Appliances. Each 
domain includes customer-written reviews in 
English, labelled with binary sentiment categories: 
positive and negative. The dataset structure is 
designed to reflect domain diversity, offering a 
comprehensive environment for evaluating cross-
domain sentiment classification systems. Review 
lengths contain subjective expressions, domain-
specific vocabulary, and varying degrees of 
emotional intensity. The Book domain features 
narrative-focused reviews with literary expressions, 

Algorithm 5.11: BN-LR 

Input: 
 Sentiment feature set 𝑋 extracted from 

online shopping reviews. 
 Bayesian Network 𝐺 representing 

feature dependencies. 
 Training dataset 𝐷 with sentiment labels. 

Output: 
 Optimized logistic regression model 

with Bayesian-enhanced features. 
Procedure: 

1. Construct a Bayesian Network structure 
to capture probabilistic dependencies. 

2. Estimate Conditional Probability 
Distributions (CPDs) for sentiment 
features. 

3. Transform sentiment-related features 
into probabilistic representations. 

4. Perform dependency-aware feature 
selection using Bayesian principles. 

5. Apply Bayesian regularization to 
optimize logistic regression coefficients. 

6. Train logistic regression using Bayesian-
enhanced features. 

7. Adjust logistic regression weights 
dynamically using Bayesian inference. 

8. Perform sentiment classification using 
Bayesian posterior probabilities. 

9. Calibrate sentiment predictions using 
Bayesian model evidence. 

10. Fuse probabilistic models for robust 
sentiment classification. 
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while Electronics and Kitchen Appliances contain 
functionality-oriented and usage-specific 
sentiments. DVD reviews often reflect experiential 
and entertainment-based opinions. The presence of 
distinct linguistic patterns and sentiment framing 
across domains makes this dataset suitable for 
testing generalizability and robustness in domain-
adaptive sentiment models. The balanced nature of 
positive and negative samples supports fair training 
and evaluation. This dataset enables analysis of 
vocabulary drift, feature transferability, and polarity 
consistency across heterogeneous product 
categories. Domain-specific shifts in sentiment cues 
and review structures create a challenging 
benchmark for adaptive sentiment analysis 
frameworks. The dataset has been preprocessed for 
noise reduction through stop-word removal, POS 
tagging, and tokenization, ensuring that only 
sentiment-relevant terms contribute to classification. 
Its multi-domain nature aligns with the research goal 
of building scalable, cross-domain sentiment 
classifiers. 
 
5. RESULTS AND DISCUSSIONS 
 
5.1. Precision Analysis 

 
Figure 1 displays the average precision 

values on the y-axis across four Amazon product 
review datasets—Books, DVDs, Electronics, and 
Kitchen Appliances—shown on the x-axis. Table 1 
presents the corresponding numerical precision 
values for BN-LR in comparison with EBC and 
MMASA. Precision represents the proportion of 
correctly predicted positive sentiments out of all 
instances classified as positive, making it a critical 
metric in evaluating the trustworthiness of sentiment 
classification.  
 

 
 

Figure 1: Average Precision Comparison of BN-LR Across 
Classification Instances 

 

EBC produces the lowest precision across 
all datasets, averaging 56.82%, reflecting its 
inability to eliminate false positives due to its lack of 
contextual filtering and probabilistic weighting. 
MMASA shows moderate precision improvements 
(average 64.54%) through multimodal inputs but 
fails to maintain sentiment focus where visual 
signals are irrelevant. BN-LR achieves the highest 
average precision of 86.77%, demonstrating 
consistent superiority across all four domains. Its 
strength lies in its Bayesian inference layer, which 
dynamically adjusts feature relevance based on 
observed dependencies, supported by the stability of 
logistic regression in separating sentiment classes. 
Particularly in electronics and kitchen appliances, 
BN-LR effectively isolates sentiment-bearing 
expressions even in feature-rich or descriptive 
reviews. These results confirm BN-LR’s high 
selectivity and reliability in predicting positive 
sentiment, as illustrated in Figure 1 and detailed in 
Table 1. 

 
Table 1: Numerical Evaluation of Precision Values for 

BN-LR Model 
Amazon 
Product 
Review 

Datasets 

EBC 
MMAS

A 
BN-LR 

Book 59.9435 65.0084 83.4168 

DVD 55.2904 63.5245 86.6233 

Electronics 51.8957 63.0722 88.3889 

Kitchen 
Appliances 

60.1875 66.5830 88.6902 

Average 56.8293 64.5470 86.7798 

 
5.2. BN-LR – Recall Analysis 

 
Figure 2 illustrates the average recall values 

along the y-axis across four Amazon product review 
datasets displayed on the x-axis. Table 2 provides the 
exact recall values for BN-LR in comparison with 
EBC and MMASA. Recall quantifies the proportion 
of actual positive sentiment instances correctly 
identified by the model, highlighting its ability to 
recover relevant sentiment expressions. EBC records 
the lowest average recall (56.03%), as it fails to 
capture subtle or distributed opinion cues due to its 
non-adaptive, entropy-based structure. MMASA 
performs moderately better (64.91%), aided by 
image-text integration, though it lacks contextual 
calibration when visual sentiment is sparse or 
ambiguous.  
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BN-LR attains the highest recall average of 

86.74%, showcasing strong sentiment detection 
capabilities across all domains. This result stems 
from its Bayesian graph structure that reweights 
features based on inter-token dependencies, 
improving the identification of low-frequency or 
embedded sentiment terms. In domains such as 
DVDs and Electronics, where user sentiment is often 
distributed across multi-clause reviews, BN-LR 
maintains high recovery performance. Its ability to 
preserve context through probabilistic inference 
leads to a more complete sentiment extraction 
process. This consistent performance is evident 
across all four domains in Figure 2 and Table 2. 

 

 
 

Figure 2: Average Recall Comparison of BN-LR Across 
Classification Instances 

 
 

Table 2: Numerical Evaluation of Recall Values for BN-
LR Model 

Amazon 
Product 
Review 

Datasets 

EBC 
MMAS

A 
BN-LR 

Book 59.8038 65.9621 85.7494 

DVD 55.4202 63.0287 88.6371 

Electronics 52.2412 63.2154 87.6163 

Kitchen 
Appliances 

56.6751 67.4553 84.9865 

Average 56.0351 64.9154 86.7473 

 
5.3. BN-LR – F-Measure Analysis 

Figure 3 showcases the F-Measure values 
of sentiment classification models across four 
product review domains, with the y-axis indicating 
score magnitude and the x-axis denoting the dataset 
categories. Table 3 provides precise values for EBC, 
MMASA, and BN-LR. The F-Measure highlights a 

model’s ability to balance precision and recall. EBC 
remains the weakest performer, demonstrating 
inconsistent sentiment boundary recognition across 
all review categories. Its rigid structure struggles to 
detect embedded opinions and fails to manage false 
detection events, leading to lower F-Measure output. 
MMASA achieves better results but continues to fall 
short in cases where sentiment-bearing text lacks 
corresponding visual reinforcement. Its inability to 
re-priorities signals dynamically limits its 
effectiveness. BN-LR, in contrast, maintains a clear 
edge across all four domains, exhibiting a near-
stable F-Measure average of 86.74%. This 
performance is not driven by either recall or 
precision alone but by its ability to sustain harmony 
between the two, even in noisy and feature-rich 
feedback environments. BN-LR excels particularly 
in electronics and kitchen appliances, where polarity 
often intermingles with descriptive language. The 
model’s context-aware architecture ensures both 
detection fidelity and classification accuracy, which 
is visually affirmed in Figure 3 and supported 
numerically in Table 3. 
 

 
 

Figure 3: Average F-Measure Comparison of BN-LR 
Across Classification Instances 

 
Table 3: Numerical Evaluation of F-Measure Values for 

BN-LR Model 
Amazon 
Product 
Review 

Datasets 

EBC 
MMAS

A 
BN-LR 

Book 59.8736 65.4818 84.5670 

DVD 55.3552 63.2756 87.6186 

Electronics 52.0679 63.1437 88.0009 

Kitchen 
Appliances 

58.3785 67.0163 86.7989 

Average 56.4188 64.7294 86.7464 

0

20

40

60

80

100

EBC MMASA BN-LR

R
es

u
lt

s 
(%

)

Sentiment Classification …

0

20

40

60

80

100

EBC MMASA BN-LR

R
es

u
lt

s 
(%

)

Sentiment Classification Algorithms



 
 Journal of Theoretical and Applied Information Technology 

15th September 2025. Vol.103. No.17 
©   Little Lion Scientific  

 
ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
6898 

 

 
 
5.4. BN-LR – classification accuracy analysis 
 

Figure 4 illustrates the classification 
accuracy of BN-LR across four Amazon product 
review domains, with the y-axis reflecting accuracy 
scores and the x-axis representing datasets. Table 4 
provides the numerical evaluation alongside EBC 
and MMASA. Accuracy measures the overall 
proportion of correctly predicted sentiment 
classes—both positive and negative.  

 

 
 

Figure 4: Average Classification Accuracy Comparison 
of BN-LR Across Classification Instances 

 
EBC shows a consistent underperformance 

with an average of 56.01%, mainly due to its 
inability to contextualise sentiment within feature-
rich reviews. It fails to discriminate factual phrasing 
from emotional expressions, especially in 
electronics, where technical descriptions dominate. 
MMASA raises the average to 64.39%, yet it 
struggles when visual content carries limited 
sentiment, reducing consistency in domains like 
books. BN-LR, however, excels with an average 
accuracy of 86.51%, outperforming both models 
across all datasets. Its Bayesian graph models 
interdependencies among sentiment tokens, while 
logistic regression handles classification margins 
with precision. This architecture supports accurate 
prediction even in reviews that present blended 
polarity or aspect-heavy feedback. The model adapts 
effectively to variable sentence structures and 
sentiment intensities. Whether dealing with 
expressive narratives in books or mixed-form input 
in kitchen appliances, BN-LR preserves class 
integrity and delivers stable classification outcomes. 
This superior performance is visibly confirmed by 
Figure 4 and the statistical summary in Table 4. 

 

 
 
 
 

Table 4: Numerical Evaluation of Classification 
Accuracy for BN-LR Model 

Amazon 
Product 
Review 

Datasets 

EBC 
MMA

SA 
BN-LR 

Book 59.5664 65.2980 84.2550 
DVD 54.6950 62.8708 87.4437 

Electronics 51.6437 62.7322 87.9345 
Kitchen 

Appliances 
58.1557 66.6731 86.4358 

Average 56.0152 64.3935 86.5173 
 
5.5. BN-LR – Matthews correlation coefficient 
analysis 

 
Figure 5 displays Matthews Correlation 

Coefficient (MCC) scores on the y-axis across 
Amazon product review datasets shown on the x-
axis.  

 

 
 

Figure 5: Average Matthews Correlation Coefficient 
Comparison of BN-LR Across Classification Instances 

 
Table 5 provides MCC values for EBC, 

MMASA, and BN-LR. MCC accounts for all 
elements of the confusion matrix—true and false 
positives and negatives—making it ideal for 
evaluating binary classifiers under potential class 
imbalance. EBC shows a weak average MCC of 
12.04%, indicating highly inconsistent prediction 
alignment. Its lack of polarity sensitivity, especially 
in sentiment-sparse reviews, results in frequent 
misclassification of neutral or ambiguous content. 
MMASA improves to 28.78%, leveraging 
multimodal input, but fails to ensure consistent class 
boundaries across all datasets. Polarity interference 
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between visual and textual channels contributes to 
prediction drift.  

 
BN-LR, by contrast, achieves a strong 

average MCC of 73.06%. The model balances true 
positives and negatives effectively, with its 
probabilistic dependency structure identifying subtle 
sentiment shifts even in feature-dense or layered 
reviews. In electronics and DVDs, where sentiment 
may alternate within short intervals, BN-LR 
maintains high directional accuracy. Its logistic core 
reinforces class stability while the Bayesian layer 
adapts to context-specific transitions. The 
consistently superior correlation seen across 
domains is evident in Figure 5 and clearly 
summarized in Table 5. 

 
Table 5: Numerical Evaluation of Matthews Correlation 

Coefficient Scores for BN-LR Model 
Amazon 
Product 
Review 

Datasets 

EBC 
MMAS

A 
BN-LR 

Book 19.1281 30.6010 68.5305 

DVD 9.3704 25.7346 74.9062 

Electronics 3.2809 25.4553 75.8716 

Kitchen 
Appliances 

16.4152 33.3447 72.9343 

Average 12.0487 28.7839 73.0607 

 
5.6. BN-LR – FOWLKES–MALLOWS INDEX 
ANALYSIS 

Figure 6 presents Fowlkes–Mallows Index 
(FMI) values on the y-axis across four Amazon 
product review datasets shown on the x-axis. Table 
6 outlines the corresponding FMI scores for EBC, 
MMASA, and BN-LR. FMI evaluates the geometric 
mean of precision and recall, effectively capturing 
how well predicted sentiment clusters match true 
sentiment groupings. EBC records the lowest 
average FMI at 56.42%, reflecting weak consistency 
in maintaining accurate pairwise sentiment 
associations.  

 
The model frequently binds unrelated or 

weakly polar expressions into incorrect clusters, 
particularly in domains like electronics where 
opinion and information are densely mixed. 
MMASA improves moderately to an average of 
64.73%, but it lacks a mechanism to regulate inter-
modal noise. The model’s performance fluctuates 
when visual inputs offer low sentiment relevance or 

contradict textual cues. BN-LR achieves a high FMI 
average of 86.75%, demonstrating its ability to 
preserve cluster integrity across all domains. Its 
Bayesian structure detects contextual dependencies, 
enabling better token grouping based on sentiment 
influence.  

 

 
Figure 6: Average Fowlkes–Mallows Index Comparison of BN-

LR Across Classification Instances 
 

Table 6: Numerical Evaluation of Fowlkes–Mallows 
Index Scores for BN-LR Model 

Amazon 
Product 
Review 

Datasets 

EBC MMASA BN-LR 

Book 59.8736 65.4835 84.5751 

DVD 55.3553 63.2761 87.6244 

Electronics 52.0682 63.1438 88.0018 

Kitchen 
Appliances 

58.4049 67.0177 86.8186 

Average 56.4255 64.7303 86.7550 

 
The logistic component reinforces 

boundary precision, keeping related sentiment 
expressions tightly aligned. In multi-aspect reviews, 
such as kitchen appliances and books, BN-LR 
maintains clear sentiment grouping, as seen in the 
results of Figure 6 and Table 6. 
 
5.7. Critical Reflection and Comparative 
Discussion 

The BN-LR framework demonstrates 
consistent superiority in precision, recall, F-
measure, accuracy, MCC, and FMI across all four 
Amazon product review domains. Compared to EBC 
and MMASA, the model achieves substantial 
performance gains, driven by its dynamic integration 
of Bayesian dependencies with logistic regression’s 
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linear classification boundary. While MMASA 
leverages multimodal inputs and EBC applies 
entropy-based heuristics, both fail to dynamically 
adjust feature weights or model latent sentiment 
dependencies, limiting their adaptability across 
shifting review domains. BN-LR, in contrast, 
captures contextual shifts through dependency-
aware probability modeling, achieving better 
alignment with sentiment-bearing patterns. 
 

Despite these advantages, certain 
limitations remain. The current model is trained and 
evaluated solely on binary sentiment labels, 
excluding neutral or mixed-sentiment cases, which 
often appear in real-world scenarios. Further, BN-
LR operates on structurally clean, domain-balanced 
data, and its robustness under noisy or low-resource 
language contexts remains untested. Sentiment 
ambiguity caused by sarcasm, slang, or implicit 
expression also presents challenges not fully 
addressed in the current framework. 
 

Future enhancements should explore the 
inclusion of neutral sentiment, cross-lingual 
generalization, and integration with semantic role 
labeling or contextual emotion detection. Expanding 
BN-LR toward few-shot learning and dynamic 
Bayesian adaptation may improve generalization 
under constrained or evolving sentiment conditions. 
These areas represent critical opportunities for 
extending the model’s utility across broader 
sentiment analysis applications. 
 
5.8. Threats to Validity and Justification of 
Evaluation Criteria 

The evaluation of BN-LR is grounded in 
widely accepted classification metrics including 
precision, recall, F-measure, classification accuracy, 
Matthews Correlation Coefficient (MCC), and 
Fowlkes–Mallows Index (FMI). These criteria have 
been selected for their comprehensive coverage of 
performance aspects critical to sentiment 
classification, particularly under class-imbalance 
and domain-shift scenarios. Precision and recall 
directly measure relevance and completeness of 
sentiment detection. F-measure provides a balanced 
trade-off, accuracy reflects overall correctness, 
MCC captures true-versus-false classification 
correlation under class proportion variance, and FMI 
quantifies clustering consistency. This combination 
ensures robustness in both binary decision-making 
and distributional alignment, justifying their 
appropriateness for comparative critique. 
 

Despite the consistent results observed, 
certain threats to validity may influence 
interpretation. Internal validity may be impacted by 
domain-specific biases within the Amazon review 
datasets, where sentiment expressions differ not only 
by product category but also by review style and user 
demographics. External validity is limited as the 
model is tested only on English language reviews 
within e-commerce, leaving its generalizability to 
multilingual or social media contexts unverified. 
Construct validity may be influenced by the 
exclusion of neutral sentiment and reliance on binary 
labels, which simplify sentiment expression. 
Conclusion validity could be affected by possible 
dataset overlap or reviewer subjectivity embedded in 
the original labels. 
 

Steps were taken to minimize these threats. 
All datasets were preprocessed uniformly to reduce 
noise. The use of multiple domains aimed to 
simulate realistic domain shifts. Comparative 
baselines such as EBC and MMASA were included 
for contrast under identical settings. Yet, future work 
must involve cross-lingual datasets, inclusion of 
neutral sentiment, and experimental control for 
cultural variance to fully establish the model’s cross-
context stability. 
 
6. CONCLUSION 

This study has proposed BN-LR as a 
statistically grounded and domain-adaptive sentiment 
classification model, which effectively combines 
Bayesian network–based dependency modeling with 
logistic regression for robust cross-domain 
performance. The model achieved an average 
classification accuracy of 86.5173%, significantly 
outperforming baseline methods such as EBC and 
MMASA across multiple product categories. Beyond 
performance metrics, the approach introduces a 
structured, interpretable method for managing 
polarity shifts and vocabulary variations inherent in 
cross-domain sentiment analysis. From the author’s 
perspective, BN-LR not only meets the technical 
objective of generalizability but also reflects a 
practical solution that balances transparency and 
predictive reliability. The model demonstrates how 
integrating probabilistic dependencies into a classical 
classifier can address nuanced sentiment 
inconsistencies across domains without sacrificing 
interpretability. While confident in the contributions 
made, the author acknowledges certain limitations—
specifically, the binary sentiment assumption and the 
model's current evaluation on linguistically consistent 
datasets. There remains a strong interest in advancing 
this framework by incorporating neutral sentiment, 
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sarcasm detection, and cross-lingual adaptability to 
better reflect the real-world complexity of sentiment-
rich data streams. 
 
6.1. Future Enhancements 

BN-LR, while effective for binary sentiment 
classification across structured English reviews, 
requires further development to support neutral and 
mixed sentiments, cross-lingual adaptability, and 
shorter or informal text formats. The model's current 
design does not explicitly handle sarcasm, implicit 
expressions, or sentiment ambiguity. Future work 
should extend BN-LR with multi-class sentiment 
capability, multilingual feature alignment, and 
context-sensitive enhancements such as semantic role 
labeling. Real-time deployment through incremental 
learning and streaming analysis also remains an open 
direction. Addressing these aspects will improve the 
model’s generalizability, scalability, and real-world 
applicability in broader IT ecosystems. 
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