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ABSTRACT

Cross-domain sentiment classification presents persistent challenges in opinion mining due to vocabulary
drift, contextual ambiguity, and polarity inconsistency across product domains. Traditional classifiers trained
on a single domain often fail to generalize, reducing performance when exposed to new, structurally distinct
datasets. This research introduces a probabilistically grounded sentiment classification framework—
Bayesian Network—Logistic Regression (BN-LR)—designed to address these challenges within multi-
domain online review environments. BN-LR integrates a Bayesian Network to model conditional
dependencies among sentiment-bearing features, capturing latent inter-feature relationships across syntactic
structures. These probabilistic insights are dynamically incorporated into a logistic regression classifier,
enabling adaptive feature weighting and uncertainty-aware sentiment inference. As an IT contribution, BN-
LR offers a scalable, interpretable, and statistically principled solution suitable for intelligent
recommendation engines, feedback analytics, and sentiment-based decision systems across digital platforms.
Evaluated on Amazon reviews across four domains, BN-LR consistently delivers high accuracy without
requiring domain-specific retraining or external lexicons. The proposed framework enhances real-world
information systems by enabling robust cross-domain sentiment generalization, fulfilling a critical need in
adaptive text analytics for IT-driven e-commerce intelligence.

Keywords: Cross-Domain Sentiment Analysis, Bayesian Network, Logistic Regression, Probabilistic

Modelling, Online Product Reviews, Domain Adaptation

1. INTRODUCTION foundation for scalable, intelligent, and context-

Sentiment analysis in online shopping
environments presents unique challenges driven by
variability in product categories, customer
expectations, and linguistic diversity. These
challenges hold particular significance in the
Information Technology domain, where intelligent
systems must automatically interpret, classify, and
respond to unstructured textual data at scale [1].
Consumer  reviews, often  processed by
recommender systems, search engines, and customer
service  bots, require adaptive sentiment
interpretation  to  maintain  relevance  and
personalization. The complexity increases under
domain shift, a common real-world IT scenario,
where training and deployment environments differ
substantially. Addressing this issue, cross-domain
sentiment analysis has emerged as a critical subfield
of applied natural language processing and IT-driven
business intelligence. The proposed BN-LR
framework aligns with this need, offering a
probabilistic, explainable, and domain-adaptive
architecture for use in IT systems handling dynamic
user-generated content. The work strengthens the

sensitive feedback analysis in digital ecosystems,
reflecting its core contribution to IT research [2].

Cross-domain sentiment analysis emerges
as a necessary framework to mitigate performance
degradation caused by these domain discrepancies.
A model designed for one domain frequently fails to
generalize effectively to another due to shifts in
sentiment-bearing expressions, semantic emphasis,
and syntactic structure [3]. Online book reviews
emphasize narrative engagement and author style,
whereas electronic reviews prioritize functionality
and durability. This context-specific divergence
introduces  polarity ambiguity and lexical
misalignment that challenge direct model transfer.
Bridging these domain gaps requires analytical
strategies that capture transferable sentiment cues
while retaining domain-specific nuances, ensuring
that classifiers adapt intelligently without retraining
for each new context [4].
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recalibrate feature relevance based on contextual
positioning. For example, if influenced by negations,
comparatives, or feature-targeted qualifiers,
identical adjectives may carry divergent sentiment
intensities across reviews [5]. Sentiment variability
also arises from user-specific value, aesthetics, or
functionality  interpretation.  Capturing these
probabilistic dependencies and calibrating their
influence improves classification consistency in
cross-domain environments [6]. Sentiment analysis
frameworks grounded in probabilistic reasoning and
dependency modelling enable scalable,
interpretable, and adaptive systems suited for the
heterogeneous nature of online customer reviews.
Such frameworks prioritize generalization, ensuring
robust sentiment insight across shifting commercial
and linguistic contexts [7].

Applying probabilistic theory in cross-domain
sentiment classification supports adaptive polarity
reasoning by estimating conditional relationships
among features. These probabilistic estimations
reflect how the sentiment of a given word or phrase
depends on its surrounding context, ensuring
interpretability and robustness across domains [8].
Review texts often contain uncertainty, mixed
sentiments, and subtle emotional transitions.
Probabilistic models quantify this uncertainty,
calibrating predictions based on inferred likelihoods
rather than deterministic mappings [9]. This
enhances the system’s ability to accommodate
context variation, lexical ambiguity, and sentiment
intensity modulation. By combining dependency
modelling with probabilistic estimation, sentiment
classification systems achieve scalable,
generalizable performance across dynamic online
shopping contexts, delivering consistent polarity
interpretations across domain boundaries [10].

1.1. Problem statement

Cross-domain opinion mining encounters
significant challenges when classifying sentiment
across diverse product categories due to variability
in linguistic structures, domain-specific expressions,
and inconsistent sentiment representation. Models
trained on one domain often experience accuracy
degradation when applied to another, primarily
because of lexical mismatches, semantic shifts, and
contextual ambiguity. Expressions conveying
positive sentiment in one domain may hold neutral
or negative implications in another, complicating the
interpretation process. In addition, syntactic
constructs and opinion-carrying phrases vary widely
depending on product type, usage context, and
reviewer intention. Sentiment-bearing words lack

uniformity  across  domains, resulting in
misclassification and reduced model
generalizability. Domain shifts cause statistical
divergence, rendering static sentiment features
insufficient for transferability. Existing approaches
often rely on explicit lexical cues, which fail to
capture dependency relationships and probabilistic
sentiment transitions. These issues collectively limit
the effectiveness of traditional sentiment
classification  techniques when applied to
heterogeneous review datasets.

1.2. Motivation

The rapid expansion of online shopping
platforms has led to diverse customer reviews, each
containing sentiment expressions tied to specific
product categories. Consumers rely on this feedback
to make informed decisions, while businesses extract
actionable insights to enhance product development,
service quality, and customer experience. However,
these reviews differ structurally and contextually
across domains, causing classification
inconsistencies when sentiment models are reused
without adaptation. The inability to maintain
accuracy across varying domains presents a
theoretical and practical barrier to large-scale
sentiment analysis deployment. Addressing this
issue is crucial for building robust systems across
heterogeneous data environments. Integrating
probabilistic reasoning and feature dependency
modelling has emerged as a promising approach to
resolving ambiguity, improving interpretability, and
achieving consistent performance across domains.
Motivated to enhance cross-domain sentiment
generalization, this research seeks to design a
sentiment analysis framework grounded in statistical
inference and probabilistic feature understanding.

1.3. Objective

This research aims to develop a domain-
adaptive sentiment classification framework for
cross-domain opinion mining in online shopping
environments. The primary objective is to accurately
classify sentiment across diverse product review
categories without requiring domain-specific
retraining. The framework will capture probabilistic
dependencies among sentiment-bearing features,
enabling interpretive flexibility in variable linguistic
contexts. It will incorporate uncertainty-aware
decision mechanisms to manage ambiguity and
minimize classification errors in the presence of
domain shifts. The proposed system will extract
context-relevant sentiment indicators, estimate
conditional sentiment distributions, and calibrate
polarity assignments based on probabilistic
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evidence. This study ensures that sentiment
prediction remains robust, interpretable, and scalable
across unlabeled or underrepresented target
domains. The methodology will prioritize
generalization, transparency, and adaptability,
contributing to the broader goal of building resilient
sentiment analysis models that align with real-world
online shopping review dynamics and support
intelligent e-commerce decision-making.

2. LITERATURE REVIEW

Flask-CNN-RoBERTa Review Analyzer
[11] integrates ROBERTa embeddings with CNN to
classify movie reviews into positive, negative, or
neutral categories. ROBERTa generates context-rich
vector representations from textual inputs fed into
CNN layers for feature extraction and sentiment
prediction. The system uses Flask to support real-
time sentiment evaluation through a user-friendly

interface. It enables instantaneous review
classification,  supports  decision-making in
entertainment analytics, and offers scalable

architecture for integration into sentiment-driven
applications. E-Commerce Hybrid Analyzer
[12]maps sentiment keywords from e-commerce
reviews into corresponding image representations.
These images are processed using Convolutional
Neural Networks to extract emotional features,
which a Support Vector Machine classifies into
sentiment categories. This hybrid model introduces
visual dimension into text-based sentiment analysis,
capturing subtle emotional indicators not visible in
plain text. It enhances the interpretability of
sentiment across diverse product domains and
contributes to nuanced opinion mining for customer-
centric commerce environments. App Review
Insight Framework [13] reviews the sentiment using
Long Short-Term Memory Networks (LSTM) and
Graph Neural Networks (GNN). LSTM captures
temporal dependencies in sequential text, identifying
usability-related sentiment trends, while GNN
models interconnect between review elements such
as functionality and wuser experience. This
architecture  enables aspect-based  sentiment
detection for usability metrics. The hybrid design
ensures precision in identifying sentiment polarity
related to app performance and helps developers
prioritize improvements based on sentiment clusters.

Financial Sentiment Prototype [14] uses a
supervised cross-momentum contrast strategy. The
model aligns internal textual representations with
pre-defined sentiment prototypes, continuously

refining sentiment embeddings. This alignment
enhances the detection of subtle financial sentiment
cues, increasing classifier accuracy and robustness.
The supervised structure supports precise sentiment
mapping in complex financial narratives, enabling
effective tracking of market sentiment. The approach
improves the semantic alignment of financial
language with sentiment classes under domain-
specific conditions. Multimodal Sentiment Fusion
Network [15] incorporates text, audio, and video
modalities using attention-based and causality-
aware mechanisms. This model dynamically weighs
the influence of each modality based on interaction
context, capturing real-time sentiment cues and
intermodal  dependencies. Causal inference
techniques identify how sentiment signals from one
modality influence others. This approach improves
prediction accuracy across emotionally rich datasets
and ensures robust handling of complex sentiment
dynamics in multimodal interaction settings. Cross-
Modal Sentiment Synthesizer [16] is a shared-
private fusion model for cross-modal sentiment
analysis using parallel pathways for standard and
unique sentiment features. Shared layers synthesize
universal sentiment cues across modalities such as
text and audio, while private layers retain modality-
specific expressions. This structure enables better
integration of multimodal signals while preserving
distinct semantic contributions. The system
enhances interpretability and robustness by aligning
shared features while managing modality variance.
It is suitable for sentiment analysis tasks requiring
simultaneous processing of multiple input forms.

UrduAspectNet Enhancer [17] tailored for
Urdu reviews using Biaffine Attention to capture
syntactic dependencies between aspect terms and
contextual sentiment expressions. This architecture
improves polarity classification by modelling the
precise relationship between opinion targets and
modifiers in complex Urdu sentence structures. The
approach handles syntactic ambiguity and
morphological complexity typical of Urdu, enabling
domain-specific ~ applications  in  sentiment
intelligence for regional language datasets. It
advances aspect-level precision for low-resource
language sentiment analysis. Multimodal Sentiment
Integrator [18] enriches textual information through
NLP-based semantic extraction and fuses it with
visual and auditory modalities. The model uses
advanced data integration techniques to capture
intermodal relationships, generating a unified
representation of user sentiment. It improves
performance on complex sentiment tasks by
incorporating complementary cues from non-textual
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inputs. This integration supports holistic sentiment  classification precision across diverse media

interpretation in environments where users
simultaneously communicate emotions through
multiple formats, improving analytic reliability.
Sentiment Analysis Progress Review [19] reviews
the sentiments by examining significant
developments and ongoing challenges in sentiment
analysis, emphasizing the transition from lexicon-
based approaches to deep learning models. The
paper outlines the impact of transformer
architectures  like BERT on  sentiment
contextualization and identifies unresolved issues
such as sarcasm detection, domain transfer, and
sentiment bias. It synthesizes technical progress
while mapping future research directions. The study
is foundational for wunderstanding sentiment
classification ~ evolution,  highlighting  both
breakthroughs and methodological limitations.

Multilingual Lexicon Developer [20]
focused on multilingual sentiment analysis in
software engineering. This approach combines
manual linguistic annotation with machine learning
techniques to generate accurate polarity dictionaries
for multiple languages. The lexicons are designed to
support cross-lingual sentiment interpretation in
social media and software reviews. By emphasizing
syntactic relevance and semantic alignment, the
method ensures broad applicability and sentiment
coherence across language barriers, supporting
sentiment  analysis in  globalized  digital
communication  ecosystems. Hotel Review
Sentiment System [21] combines BERT for context-
aware embeddings, Temporal Convolutional
Networks (TCN) for local temporal structure,
BILSTM for sequential modelling, and attention
mechanisms for focus prioritization.  This
architecture processes hotel reviews to extract fine-
grained sentiment cues across review components
such as service, cleanliness, and amenities. The
system captures implicit and explicit sentiment
expressions, supporting detailed opinion mining in
hospitality analytics and contributing to improved
customer satisfaction monitoring. Multimodal
Sentiment Regulator [22] designed to coordinate
information flow across text, image, and audio
inputs using a hierarchical regulator module. The
framework filters redundant content and applies
dynamic attention mechanisms to weigh modality
relevance contextually. It synchronizes sentiment
signals from diverse inputs to improve polarity
consistency and robustness. The model is
particularly effective in real-world applications
involving emotionally complex and multimodal user
feedback, enhancing interpretability and

formats.

Entropy-Based Classifier (EBC) [23] uses a
modified maximum entropy framework with IDF-
weighted increment adjustment. EBC processes
POS-tagged words to identify sentiment-bearing
terms, emphasizing  low-frequency,  high-
discriminative features. It applies a semi-supervised
bipartite graph clustering technique to transfer
sentiment labels from domain-independent to
domain-specific words. Classification is refined at
the word level using entropy maximization and
polarity propagation. The model improves domain
adaptability by minimizing labelling requirements
and bridging lexical gaps between source and target
review domains, supporting sentiment
generalization across structurally diverse product
categories. Multimodal Aspect-Based Sentiment
Analysis (MMASA) [24] performs sentiment
classification by combining textual and visual
modalities using Bi-LSTM for text encoding and
CNN for image feature extraction. MMASA
employs multimodal interaction layers to integrate
text-image features and applies adversarial training
for cross-modal alignment. The model identifies
aspects and predicts sentiment polarity using joint
embeddings. It supports fine-grained sentiment
detection at the aspect level, effectively capturing
cross-modal dependencies and contextual polarity
shifts, enhancing sentiment classification accuracy
in review datasets containing both textual and visual
content.

Bioinspired optimization mimics natural
processes like evolution, swarming, and adaptation
to solve complex problems efficiently, offering
scalable, flexible, and intelligent strategies across
machine learning, routing, and classification tasks
[25]-[44]. These algorithms enhance convergence
speed, solution diversity, and adaptability, making
them ideal for dynamic, high-dimensional, and real-
time environments in various IT and data-driven
applications [45]-[66].

3. BAYESIAN NETWORK ENHANCED
LOGISTIC REGRESSION

This section is structured first to introduce
Bayesian Network structure learning and its role in
sentiment classification. The discussion then
transitions to the limitations of traditional LR in
sentiment analysis and how BN addresses these
constraints. Subsequent sections cover Bayesian
regularization, probabilistic feature selection, and
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Bayesian Model Evidence, demonstrating their
impact on optimizing sentiment classification.

3.1. Bayesian network structure learning

The Bayesian Network (BN) structure
learning process involves establishing directed
acyclic graph (DAG) connections among sentiment-
related  features to enhance  dependency
representation. The DAG captures
interdependencies between linguistic attributes,
metadata, and contextual sentiment cues, optimizing
the feature set for logistic regression. Structure
learning employs score-based, constraint-based, and
hybrid approaches to discover probabilistic
relationships among sentiment features, ensuring
improved classification precision.

Sentiment analysis in online shopping
requires an  optimized  representation  of
dependencies between features such as polarity
scores, term frequency-inverse document frequency
(TF-IDF), syntactic structures, and customer
engagement metadata. Bayesian Network assigns
directed edges between features, where the
probability of sentiment polarity S given a set of
extracted features X is expressed as:

PesIx) = | [ P(XilPuCt0) (1

i=1

where P(S|X) represents the conditional probability
of sentiment given the extracted features, X; refers to
each feature, and P,(X;) denotes the parent features
influencing X; within the Bayesian structure. The
network ensures an optimized representation of
probabilistic relationships, refining feature selection
for classification. The conditional dependency
structure dynamically adjusts based on probabilistic
scores, providing adaptability in sentiment
classification.

Score-based approaches optimize the DAG
structure by assigning likelihood scores to network
configurations. Bayesian Information Criterion
(BIC) or Minimum Description Length (MDL)
principles guide the selection of an optimized
structure. The likelihood of a DAG G given
sentiment training data D is formulated as:

L@GID) = ) logPCGIR(XD,6)  (2)

i=1
where L(G|D) denotes the likelihood score for the
given DAG structure G, and P(X;|P,(X;),G)
represents the conditional probability of each feature
given its parent nodes in the learned structure. This

likelihood-driven approach ensures the DAG aligns
with sentiment distribution patterns, refining logistic
regression performance by minimizing redundancy.

Constraint-based methods identify
Bayesian dependencies by applying conditional
independence tests to sentiment-related variables.
Dependency constraints guide network formation,
ensuring the DAG structure aligns with linguistic
and behavioral sentiment dynamics. The probability
of independence between two sentiment features X;
and X;, given a conditioning set Z, is mathematically
defined as:

P(X.,X;1Z) = P(X:|12)P(X;|Z) (3)

where P(X nXilZ ) represents the joint probability of
two features conditioned on Z, ensuring feature
independence. If the independence condition holds,
no directed edge is formed between X; and X;. This
process optimizes sentiment classification by
removing redundant dependencies and refining
feature interactions based on probabilistic inference.

Hybrid structure learning integrates score-
based methods and constraint-based techniques to
optimize DAG formation. This approach balances
likelihood-driven optimization and independence
constraints, capturing both probabilistic
dependencies and structural constraints among
sentiment features. A hybrid optimization function
guides the optimized DAG formation:

F(G) = @ ) logP(XilPu(X), 6)

+(1 (4)

Jj=1

where F(G) represents the optimized DAG score,
controls the trade-off between likelihood
maximization and independence constraints, and
I(X;,Z) denotes the independence measure of
feature X; concerning conditioning set Z. Hybrid
optimization enhances structure learning by
dynamically adjusting DAG formation, ensuring
robust feature selection for logistic regression.

Edge weights in Bayesian Networks
influence sentiment classification by adjusting
conditional probability distributions (CPDs) for
feature interactions. Weighted edges optimize
probabilistic influence among sentiment-related
attributes, ensuring logistic regression receives
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refined probabilistic inputs. The weighted
probability of an edge E;; between features X; and X;

is expressed as:
w(E;) = w
(X1
where W(Ei j) represents the probabilistic weight of
the edge between X; and X;, ensuring sentiment-
dependent features contribute proportionally to
classification. =~ This  probabilistic =~ weighting

optimizes feature representation, refining logistic
regression classification thresholds dynamically.

(5)

3.2. Estimating  conditional  probability
distributions
Conditional ~ Probability  Distributions

(CPDs) define the probabilistic relationships among
sentiment-related features within the Bayesian
Network.  This estimation process refines
probabilistic dependencies, ensuring that sentiment
attributes, such as polarity, word embeddings, and
user metadata, contribute optimally to classification.
The probability of a sentiment label is influenced by
linguistic features and metadata-derived attributes,
requiring a structured approach to CPD estimation.
The Bayesian framework assigns conditional
probabilities based on observed sentiment
variations, optimizing logistic regression inputs.

Each sentiment feature holds a probabilistic
relationship with its parent nodes in the Bayesian
structure. The joint probability distribution is
factorized into conditional probabilities, ensuring
dependencies are mathematically defined. The
probability of a sentiment label S given an optimized
feature set X has been mathematically represented
as:

P(X|S)P(S)

P(S|X) = P00 (6)
where P(S|X) defines the probability of sentiment
classification given observed features, P(X|S)
denotes the likelihood of extracted sentiment
attributes given a specific sentiment class, P(S)
represents the prior probability of sentiment polarity,
and P(X) normalizes the probability distribution
across all sentiment features. This equation ensures
that sentiment classification integrates probabilistic
dependencies extracted from the Bayesian Network.

Bayesian Networks require CPD estimation
for each feature node, ensuring conditional
dependencies align with observed sentiment
behavior. Maximum Likelihood Estimation (MLE)

optimizes probability assignment by computing the
conditional likelihood of sentiment features given
parent dependencies. The conditional probability for
a sentiment feature X;given its parent nodes Pa(X;)
has been defined as:
N(X;|Pa(X;))
P(XPa(X)) = =g s 7

where P(X;|Pa(X;)) represents the probability of
feature X; given its parent features, N(X;|Pa(X;))
counts the occurrences where X; and its parent nodes
co-occur, and N(Pa(X;)) represents the frequency
of parent feature occurrences. This formulation
ensures that sentiment-related features retain
statistical relevance within Bayesian dependency
learning.

Maximum Likelihood Estimation often
faces issues with sparse observations, where certain
feature combinations may have insufficient samples.
Dirichlet priors stabilize CPD estimation by
introducing prior knowledge into probability
assignments. The updated CPD formulation using a
Dirichlet prior has been expressed as:
N(Xi,Pa(Xi)) +a

N(Pa(X))) + ka (®)
where a represents the Dirichlet smoothing
parameter controlling prior influence, and k defines
the number of possible feature states. Incorporating
prior knowledge prevents probability overfitting,
optimizing CPD estimations for sentiment
classification.

P(X;|Pa(X;)) =

Latent sentiment dependencies often
remain unobserved in online shopping reviews,
requiring  iterative  probability  refinements.
Expectation-Maximization (EM) optimizes CPD
assignment by iteratively adjusting latent sentiment
probabilities. The probability update step during EM
iterations follows:

P (x0|Paxy)
=P (Xi(t)|Pa(Xi))
[N(Xi: Pa(X;)) (9)
N(Pa(X:))
- P(Xf”|Pa(Xl-))]

where P(Xi(t+1)|Pa(Xi)) represents the updated

probability in the next iteration, P (Xi(t)|Pa(Xi))

denotes the previous probability estimate, 1 controls
the learning rate for probability refinement, and
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N(X;,Pa(X;)) maintains feature occurrence
statistics. This iterative approach ensures sentiment

probabilities converge toward an optimized
distribution, improving Bayesian-based
classification.

The sum of conditional probabilities across
sentiment feature states must be equal to one to
ensure a valid probability distribution. The
normalization  constraint ensures probability
coherence, preventing misclassification in logistic
regression. The normalization equation has been
represented as:

n

Z P(X;|Pa(X)) =1
i=1
where the summation accounts for all possible states
of X; given its parent dependencies. This probability
constraint guarantees that sentiment classification
maintains a well-calibrated Bayesian structure,
preventing overconfident probability assignments.

(10)

Conditional dependencies between
sentiment features influence logistic regression
performance, requiring a scoring mechanism for
probabilistic weight assignment. A probabilistic
dependency score has been formulated as:
P(X;, Pa(Xy))

P(X;)
where D(Xi,Pa(Xi)) represents the dependency
score, capturing how much additional predictive
value Pa(X;) contributes to X;. The higher the score,
the stronger the dependency, ensuring that logistic
regression utilizes the most relevant sentiment
attributes.

D(X;, Pa(X,))) = log (11)

3.3. Probabilistic feature representation

Probabilistic feature representation
transforms extracted sentiment-related features into
a structured form that optimizes -classification
accuracy. The Bayesian framework assigns
probability distributions to each feature, capturing
linguistic patterns, contextual dependencies, and
behavioral influences in online shopping sentiment.
The structured representation of probabilistic
features enhances logistic regression by ensuring
that dependencies among sentiment cues are
mathematically modeled. The transformation
process refines classification inputs, eliminating
noisy or redundant attributes and optimizing the
contribution of probabilistic features to sentiment
prediction.

Sentiment features extracted from online
shopping reviews require transformation into
probabilistic ~ representations ~ that  maintain
contextual meaning and statistical significance. A
probabilistic encoding function has been formulated
as:

F(X) = PHIHFES) (12)
2j=1 P(X;I9)P($)
where F(X) represents the probabilistically

transformed feature value, P(X|S) denotes the
probability of the feature given the sentiment class,
P(S) represents the prior probability of sentiment
polarity, and the denominator ensures normalization
across all feature states. This transformation ensures
that feature representation aligns with probabilistic
dependencies derived from Bayesian structure
learning, optimizing input data for sentiment
classification.

Sentiment words exhibit context-dependent
variations in meaning, requiring an adjustment
mechanism that accounts for probabilistic shifts. The
probability of a sentiment-bearing word W; in a
given context C has been optimized using:
P(W;, C)

P(C)

where P(W;|C) represents the probability of the
word given its contextual environment, P(W;,C)
denotes the joint probability of the word occurring
with the contextual feature set, and P(C) normalizes
the probability distribution. This representation
ensures that sentiment classification captures
nuanced word meanings, improving classification
performance for reviews where customer sentiment
varies based on product or service context.

PW;|C) = (13)

The polarity of a sentence in an online
shopping review depends on the probabilistic
distribution of sentiment-laden words and their
interdependencies. A probabilistic formulation for
sentence polarity has been structured as:

n

P(Sent|W) = Z P(W,|Sent)P(Sent)  (14)
i=1

where P(Sent|W) represents the probability of a
sentence expressing a particular sentiment class,
P(W;|Sent) denotes the probability of each word
given the sentiment label, and the summation
ensures aggregation across all words in the sentence.
This  formulation ensures that sentiment
classification incorporates lexical probabilities and
Bayesian prior knowledge, refining sentence-level
sentiment representation.
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The influence of each probabilistic feature
on sentiment classification requires weighting
adjustments to ensure classification decisions
prioritize high-confidence attributes. A probabilistic
feature weighting function has been structured as:

logP (X;|S)

ST, logP(X,1S)
where w(X;) represents the weight assigned to the
feature, P(X;|S) denotes the conditional probability
of the feature given the sentiment class, and the
denominator ensures that the weight is relative to all
other features. This ensures that features with
stronger probabilistic relevance contribute more to
logistic regression, refining sentiment classification
accuracy in online shopping.

w(X;) = (15)

A single review contains multiple
sentiment-bearing words, requiring aggregation
mechanisms to determine the overall sentiment. A

probabilistic aggregation function has been
structured as:
n
P(Rev) = HP(W”Sent) (16)

i=1

where P(Rev) represents the probability of the
review belonging to a sentiment class, and
P(W;|Sent) denotes the probability of each word
contributing to the sentiment decision. The
multiplicative formulation ensures that individual
probabilities contribute proportionally to the overall
sentiment prediction, capturing customer sentiment
trends effectively.

Probabilistic features require normalization
to ensure calibrated input representation for logistic
regression. A normalization equation has been
structured as:

Prorm () = (17)
norm i Z P(X )
where  B,,rm(X;) represents the normalized

probability of the feature, P(X;) denotes the raw
feature probability, and the denominator ensures that
probabilities sum to one across all features. This
calibration refines logistic regression input, ensuring
that probabilistic feature representation remains
consistent across varying sentiment distributions.

3.4. Dependency-aware feature selection for
sentiment classification

Feature selection is crucial in sentiment
classification, and refining input variables improves

classification precision. The Bayesian framework
establishes probabilistic dependencies among
sentiment-related features, allowing the selection of
attributes with high predictive relevance while
removing redundant or weakly correlated elements.
Dependency-aware feature selection optimizes
feature contributions by integrating probabilistic
scoring mechanisms that align with sentiment
distribution patterns. The process ensures that
classification models utilize sentiment cues with the
highest influence on prediction accuracy.

Dependency-aware  feature  selection
assigns probabilistic relevance scores to sentiment-
related features based on their influence on
classification outcomes. The Bayesian probability of
a feature X; contributing to a sentiment class S has
been structured as:

P(X;|S)
P(X)
where R(X;) represents the relevance score for the
feature, P(X;|S) denotes the conditional probability
of the feature given the sentiment label, and P (X;)
represents the marginal probability of the feature
across all sentiment classes. The equation ensures
that features highly correlated with sentiment
polarity receive higher relevance scores, optimizing

classification performance.

R(X;) = (18)

Sentiment features exhibit varying levels of
dependency on one another, requiring a selection
process that evaluates shared information between
attributes. The mutual information between two
features X; and X;in the context of sentiment
classification has been formulated as:

1(X., X)) (
P(x;,
Z Z P(x;, x;)log (xx)PJE]x)j) (19)

where [ (Xi,Xj) represents the mutual information
score between two features, P(xi,xj) denotes the
joint probability of both features occurring together,
and P(x;) P(x;) represent the marginal probabilities
of each feature. Features with lower mutual
information contribute less to classification and
undergo elimination, ensuring an optimized set of
features with minimal redundancy.

A Bayesian Markov Blanket ensures that
selected features contribute directly to sentiment
classification by removing redundant or
conditionally dependent attributes. The conditional
independence probability for a feature X; given a
Markov Blanket set MB(X;) has been defined as:
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redundancies and undergo removal, ensuring
P(Xi |S' MB (Xi)) = P(X;IMB(X)) (20) classification remains optimized.
where P(X; |S’ MB(X)) represents thep rqbablllty of 35, Bayesian regularization for logistic
the feature given the sentiment label and its Markov regression
Blanket, and P(X;|MB(X;)) ensures that additional
features contribute no further independent Bayesian regularization has optimized

information once a Markov Blanket is established.
The optimization process retains only features that
provide new information to sentiment classification,
ensuring an efficient feature subset.

Sentiment  classification  performance
improves when features are weighted based on
probabilistic dependencies within the Bayesian
framework. The importance weight assigned to a
feature X; has been optimized using:

m
Wy - S PO S)
m

where W(X;) represents the feature weight,
P(X;|X;,S) denotes the conditional probability of
feature X; given other selected features and
sentiment class S, and m refers to the total number
of selected features. Higher weights are assigned to
features with strong sentiment dependencies,
refining classification precision.

Entropy  measures the uncertainty
associated with sentiment features, guiding the
selection of attributes that minimize classification
ambiguity. The entropy reduction criterion for
selecting a feature X; has been structured as:

(21)

H(X;|S) = H(S) — H(S|X)) (22)

where H(X;|S) represents the entropy reduction
achieved by including the feature, H(S) denotes the
overall entropy of sentiment classification, and
H(S|X;) represents the entropy of sentiment labels
after observing the feature. Features that result in
higher entropy reductions improve classification
confidence and are prioritized in feature selection.

A feature that introduces redundancy into
the classification process undergoes elimination
based on a Bayesian feature relevance score. The
redundancy-adjusted selection criterion has been
defined as:

R(X)
2t 1(Xi, X))
where S(X;) represents the final selection score for
the feature, R(X;) denotes the feature relevance
score, and [(X;X;) quantifies the mutual
information shared with other selected features.
Features with lower selection scores contribute

S(X:) = (23)

logistic regression by incorporating probabilistic
priors that prevent overfitting while improving
classification accuracy. Regularization strategies
have ensured that model coefficients remain
controlled, reducing the influence of noise in
sentiment analysis. The Bayesian framework has
assigned probability distributions to logistic
regression parameters, refining feature contributions
based on probabilistic dependencies. The process
has integrated adaptive regularization techniques,
ensuring that sentiment classification remains robust
and optimized for online shopping reviews.

Bayesian regularization has introduced
probabilistic constraints on logistic regression
coefficients, ensuring optimized model
generalization. The probability of a coefficient f;
has been structured as:

p . .
b1y = PO
(D)

where P(3;|D) represents the posterior probability
of the coefficient given the dataset, P(D|f;) denotes
the likelihood of the data given the coefficient, P(f5;)
rrepresents the prior probability of the coefficient,
and P(D) normalizes the distribution. This equation
has ensured that coefficients align with probabilistic
dependencies in sentiment features, refining logistic
regression classification.

(24)

Bayesian inference has incorporated
Gaussian priors to control logistic regression
coefficients, ensuring that large coefficients undergo
shrinkage to prevent overfitting. The prior
distribution for a coefficient §; has been formulated

as:
1 B
P(B) = s P (‘ 202) (25)

where P([3;) represents the prior probability of the
coefficient, 02 denotes the variance of the prior
distribution, and the exponential term ensures that
large coefficients receive higher penalization. This
regularization mechanism has optimized coefficient
stability, improving sentiment classification
robustness.

Sparse feature selection has been achieved
using a Laplace prior, ensuring that logistic
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regression assigns zero coefficients to irrelevant
sentiment attributes. The Laplace prior for a
coefficient [5; has been structured as:

A
P(B) = exp(=AIBi])

where P(f;) represents the probability of the
coefficient, 1 denotes the regularization parameter
controlling sparsity, and the absolute term ensures
that coefficients closer to zero receive stronger
penalization. This previously refined logistic
regression eliminates redundant sentiment features
and optimizes classification accuracy.

(26)

The posterior probability of logistic
regression coefficients has been derived by
integrating prior distributions with likelihood
estimates. The posterior estimation has been
formulated as:

P(BID) = l—[P(yllxl,/DP(ﬁ)

where P(8|D) represents the posterior probability of
all coefficients, P(y;|X;, B) denotes the likelihood of
each sentiment label given the features and
coefficients, and P(f) incorporates prior
knowledge. This estimation process has ensured that
logistic  regression aligns with  Bayesian
regularization principles, refining probabilistic
decision-making.

(27)

The optimization function for logistic
regression with Bayesian regularization has been
structured as:

1) = = [ridogPGilxd + (1

—y)log(1
— P(y;|X))]

A
+5 0. H
=1

where J(B) represents the regularized loss function,
y; denotes the sentiment label, P(y;|X;) represents
the logistic regression probability output, A controls
the strength of the regularization, and f§ jz penalizes
large coefficients. This formulation has ensured that
logistic regression remains stable under Bayesian
constraints, optimizing classification precision.

(28)

Variational inference has refined Bayesian
regularization by  approximating  posterior
distributions of logistic regression coefficients. The

variational lower bound function has been defined
as:

L(q) = Eq4[logP(D|B)]

— KL(@qB®IIP(B))
where L(q) represents the variational lower bound,
E,[logP(D|B)] denotes the expectation of the log-
likelihood under the approximate posterior, and
KL(q(B)||P(B)) represents the Kullback-Leibler
divergence between the approximate and true
posterior. This optimization process has ensured that
logistic ~ regression  maintains  probabilistic
constraints, improving classification performance.

(29)

3.6. Training logistic regression with Bayesian
features

Training  logistic  regression  using
Bayesian-enhanced features has ensured that
sentiment classification remains optimized for
precision-oriented analysis. Bayesian inference has
refined feature contributions by assigning
probabilistic ~ dependencies, allowing logistic
regression to learn from uncertainty-aware
representations. This process has established a
robust classification framework by integrating
probabilistic priors, structured dependencies, and
feature distributions derived from Bayesian
Networks. The training phase has optimized
parameter estimation while ensuring that sentiment-
related attributes  contribute  effectively to
classification performance.

Bayesian  features have introduced
probabilistic priors that have influenced logistic
regression parameter learning. The probability of a
sentiment label S given an optimized feature set X
has been structured as:

1
+ e~ (Bo+ZiLy Bix:)

P(SIX) = (30)
where P(S|X) represents the probability of
predicting sentiment S, 5, denotes the bias term,f;
represents the coefficient for feature X;, and the
exponential term ensures non-linearity in
classification. Bayesian probability integration has
optimized classification boundaries, ensuring that
sentiment predictions align with probabilistic
dependencies.

Feature weights in logistic regression have
been optimized using Bayesian posterior estimation,
ensuring that coefficients reflect probabilistic
dependencies. The weight update function for a
feature X; has been formulated as:
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BV =B 4 mPGSIO) —yIX  (3D)
where Bi(Hl) represents the updated coefficient, ﬁi(t)
denotes the previous iteration’s coefficient, 7 is the
learning rate, P(S|X) represents the probability
output, and y denotes the actual sentiment label.
Bayesian posterior estimation has ensured that
feature weights align with probabilistic sentiment
distributions, refining classification precision.

Gradient descent has been optimized using
probabilistic constraints from Bayesian inference,
ensuring that logistic regression updates parameters
efficiently. The gradient of the loss function with
respect to coefficient ;has been defined as:

m

aJ
Er ;[P(Sﬂxj) -y

where % represents the gradient, P(Slej) denotes
L

(32)

the probability output for sentiment label S;,y;
represents the actual sentiment label, and X;; refers
to the feature contribution. Probabilistic gradient
descent has optimized parameter learning, ensuring
that sentiment classification maintains robustness.

Decision boundaries in logistic regression
have been adjusted using Bayesian priors, ensuring
that  probabilistic ~ dependencies  influence
classification thresholds. The updated decision
boundary equation has been structured as:

P(S)
Z,BLX,+L061_P(S) 0

where Zl 1 PiX; represents the weighted feature
contributions, and the logarithmic term ensures that
prior probability distributions influence
classification decisions. Bayesian prior integration
has refined decision boundaries, ensuring that
sentiment classification remains adaptive to
uncertainty-aware distributions.

(33)

Variational inference has optimized feature
contributions by  approximating  posterior
distributions, refining logistic regression
classification decisions. The variational lower bound
equation has been formulated as:

P(X;|S)

L@ = Z PUIS)log— oo

where L(q) represents the variational lower bound,
P(X;|S) denotes the probability of the feature given
the sentiment label, and q(X;) represents the
approximate posterior distribution. This formulation
has ensured that logistic regression benefits from

(34)

probabilistic constraints, refining feature selection
for sentiment classification.

Confidence calibration in sentiment
classification has been optimized using Bayesian
inference, ensuring that probability outputs reflect
predictive confidence. The confidence score for a
sentiment prediction has been structured as:

P(S1X)

CSIX) =G —ray
2L, P(S;1X)
where C(S|X) represents the confidence score for
predicting sentiment S, P(S|X) denotes the
probability of the sentiment given feature set X, and
the denominator ensures normalization across all
sentiment classes. Bayesian confidence calibration
has refined classification decisions, ensuring that
sentiment predictions align with uncertainty-aware
probability distributions.

(35)

Thresholds  for  logistic  regression
classification have been optimized using Bayesian
probability distributions, ensuring that sentiment
predictions reflect probabilistic dependencies. The
optimized threshold function has been structured as:

_ iz P(SilXy)

h n
where T represents the classification threshold,
P(S;|X;) denotes the probability of sentiment
S;given feature set X;, and n ensures averaging
across all sentiment predictions. Threshold
optimization has ensured that logistic regression
adapts to probabilistic sentiment distributions,
improving classification robustness.

(36)

The loss function in logistic regression has
been optimized using Bayesian constraints, ensuring
that probability distributions influence classification
optimization. The regularized loss function has been
defined as:

n

J®) = =) [yilogP(Silx)

- +(1- yi)log(l
- P(flilXi))]

+AZ|3,-|

where J(B) represents the loss function, y;denotes
the actual sentiment label, P(S;|X;) rrepresents the
probability output, A controls regularization
strength, and | ﬁj| ensures sparsity in feature
selection. Bayesian regularization has ensured that

(37)
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logistic regression remains optimized for sentiment
classification in online shopping.

3.7. Bayesian-driven weight adjustment in
logistic regression

Bayesian-driven weight adjustment has
ensured that logistic regression integrates
probabilistic dependencies derived from sentiment-
related features. The process has dynamically
adjusted model coefficients by incorporating
Bayesian posterior estimations, ensuring that feature
contributions align with sentiment classification.
Weight updates have been optimized to reflect
uncertainty-aware learning, preventing overfitting
while enhancing classification precision. Integrating
Bayesian principles has ensured that logistic
regression maintains stable and interpretable
coefficients, refining predictive performance in
online shopping sentiment analysis.

The  probabilistic  dependencies  of
sentiment-related features have influenced weight
adjustments in logistic regression. The posterior
probability of a weight f3;given sentiment training
data has been structured as:

P . .

Py = PP B

(D)
where P(B;|D) represents the probability of the
weight given the dataset, P(D|B;) denotes the
likelihood of the data given the weight,
P(B;) represents the prior probability of the weight,
and P(D) normalizes the probability distribution.
This Bayesian probability integration has ensured
that weight adjustments align with sentiment-driven
probabilistic dependencies, refining classification
boundaries.

(38)

Maximum A Posteriori (MAP) estimation
has refined logistic regression weights by integrating
prior knowledge with data likelihood. The MAP
estimate of a weight 8; has been formulated as:

MAP __
i aryrr}gX[ZOgP (D18 (39)
+logP(B;)]

where BMAP represents the weight that maximizes
the posterior probability, P(D|B;) denotes the log-
likelihood of the dataset, logP(f;) incorporates
prior knowledge. This estimation has ensured that
weight adjustments reflect both observed sentiment

data and prior distributions, stabilizing logistic
regression coefficients.

Gradient descent optimization has been
modified using Bayesian posterior probability
distributions, ensuring that weight updates reflect
probabilistic constraints. The weight update
equation using Bayesian gradient descent has been
structured as:

@) _ p0 _[9
BT = B0 |55+ a6
ﬁi(t+1)

(40)

where represents the updated weight,

ﬁi(t)denotes the previous iteration’s weight, 7 is the
. a .
learning rate, # represents the gradient of the loss
i

function, and Apf; introduces  Bayesian
regularization. This probabilistic weight adjustment
has ensured that logistic regression remains stable
under uncertainty-aware learning conditions.

The learning rate in weight optimization
has been adjusted using Bayesian priors, ensuring
that updates remain controlled for sentiment
classification stability. The Bayesian-adaptive
learning rate function has been defined as:
n(t)

1+ at

where n*1) represents the adjusted learning rate,
n(® denotes the previous iteration’s learning rate, a
controls the adaptation rate, and t represents the
iteration number. This adaptation has ensured that
weight adjustments remain gradual, preventing
abrupt changes that could lead to instability in
sentiment classification.

D = (41)

Variational inference has optimized weight
estimation by approximating posterior distributions
and refining logistic regression weight assignments.

The wvariational lower bound for weight
approximation has been formulated as:
n
P(D|B)P(B)
L(g) = Blog ——— (42)
(q g q(B)log o)

i=1

where L(q) represents the variational lower bound,
q(B;) denotes the approximate posterior
distribution, P(D|pB;) represents the likelihood
function, and P(f;) incorporates prior probability.
This formulation ensured weight updates align with
Bayesian constraints, refining sentiment
classification accuracy.

Confidence weighting has ensured that
feature contributions to logistic regression remain
optimized based on probabilistic dependencies. The
confidence-weighted adjustment for a weight f; has
been structured as:
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[)’i(tﬂ) = ﬁi(t) + VZ C(Xi)[P(S|Xf)

j=1
- yilxy
represents  the

(43)

where ﬁi(tﬂ)

ﬁi(t)denotes the previous iteration’s weight, y is the
confidence adjustment factor, C (X]-)represents the
confidence score for feature X;, P(S |Xj) denotes the
probability of the sentiment given the feature, and y;
represents the actual sentiment label. This
confidence-based adjustment has ensured that
weight modifications align with certainty in
sentiment classification.

Entropy-based penalization has optimized
weight adjustments by controlling the influence of
high-uncertainty features. The entropy-regularized
weight adjustment function has been defined as:

I L m (Xi)]

BY —p [aﬁi

where ﬁi(tﬂ) represents the updated weight, ﬁi(t)
denotes the previous weight, 1 is the learning rate,

updated weight,

By = (44)

% represents the loss gradient, and tH(X;)
L
introduces entropy-based regularization. This

penalization has refined weight updates, ensuring
that  highly uncertain features contribute
proportionally to classification.

Multimodal weight adjustment has ensured
logistic regression accounts for different sentiment
categories using Bayesian inference. The
multimodal weight update function has been
structured as:

K
B = B0+ D Wil PG - yidX: 45)
k=1
where ﬁi(tﬂ) represents the updated weight, ﬁi(t)
denotes the previous weight, w,represents the
probability weight assigned to the sentiment
category Sy, P(S;|X) denotes the probability of the
category given the feature and y, represents the
actual sentiment label. This multimodal adjustment
has ensured that weight modifications reflect
category-specific sentiment probabilities.

3.8. Dynamic sentiment classification using
Bayesian posterior probabilities

Dynamic sentiment classification has been
optimized by integrating Bayesian posterior
probabilities into the classification process.
Bayesian inference has ensured that probabilistic
dependencies among sentiment-related attributes
dynamically adjust classification thresholds based

on sentiment uncertainty. Posterior probabilities
have refined decision-making by incorporating prior
sentiment distributions and likelihood estimates,
optimizing classification robustness. Integrating
Bayesian-driven  probability adjustments has
ensured that sentiment predictions reflect contextual
variations, enabling precise classification in online
shopping sentiment analysis.

Posterior  probability — estimation has
ensured that sentiment classification reflects updated
probabilistic dependencies. The Bayesian posterior
probability of a sentiment label S given feature set X
has been structured as:

P(X|S)P(S)
P(S1X) PX) (46)
where P(S|X) represents the probability of

sentiment S given features X, P(X|S) denotes the
likelihood of features given sentiment, P(S)
represents the prior probability of sentiment, and
P(X) normalizes the probability distribution.
Bayesian posterior estimation has ensured that
classification reflects sentiment variability, refining
decision-making under uncertainty.

Classification boundaries have been
optimized using Bayesian posterior probabilities,
ensuring that sentiment decisions adjust based on
probabilistic sentiment variations dynamically. The
adjusted sentiment decision boundary equation has
been deﬁned as:

Z,BLX +log1 (st) =0

where lelﬁle represents the weighted feature
contributions, and the logarithmic term ensures that
prior sentiment probabilities influence classification
decisions. Bayesian adjustment has refined
classification boundaries, ensuring that sentiment
classification remains adaptable under dynamic
probability distributions.

Confidence estimation has ensured that
sentiment classification reflects probabilistic
certainty, preventing misclassification due to
uncertain features. The confidence score for a
sentiment prediction has been structured as:

P(S1X)

™ PSIX)
where C(S|X) represents the confidence score for
sentiment S, P(S|X) denotes the probability of
sentiment given feature set X, and the denominator
normalizes the probability across sentiment labels.
Confidence  estimation has  ensured that

(47)

C(S|X) = (48)
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classification reflects certainty-aware probability
distributions, refining predictive accuracy.

Classification  thresholds have been
dynamically adjusted based on Bayesian probability
distributions, ensuring that sentiment predictions

reflect sentiment uncertainty. The optimized
threshold function has been structured as:
n o p(S.|X:
T — i=1 ( I.| I.) (49)

n
where T represents the classification threshold,
P(S;|X;) denotes the probability of sentiment S;
given feature set X;, and n ensures averaging across

sentiment  predictions.  Adaptive  threshold
optimization has ensured that classification adjusts
based on  sentiment-dependent  probability
variations.

Using Bayesian posterior probabilities,
weighting sentiment scores has ensured that
classification remains optimized based on
probabilistic dependencies. The weighted sentiment
score function has been defined as:

n
Su= Y PG,
i=1

where S, represents the weighted sentiment score,
P(S|X;) denotes the probability of sentiment given
feature X;, and W; represents the weight assigned to
feature X;. Weighted sentiment scoring has refined
classification, ensuring that sentiment probabilities
influence classification strength.

(50)

Expectation-Maximization = (EM)  has
refined sentiment probabilities by iteratively
updating classification confidence. The probability
update function using EM has been structured as:

P(s“V]x) = P(s©[X)

+1 P(X1|S)
P(X) (1
— p(_g(t)| X)]
where  P(S®*V|X) represents  the  updated

probability in the next iteration, P(S®|X) denotes

the previous probability estimate, n controls the
PX1S)

learning rate, and refines the probability

distribution. Expectation-Maximization has ensured
that sentiment probabilities remain dynamically
optimized.

Uncertainty measures have ensured that
sentiment  classification reflects probabilistic
dependency confidence, preventing

misclassification. The Bayesian uncertainty function
has been defined as:

n
VOO == ) P(SIN)IogP(S1X)
i=1
where U(X) represents the uncertainty measure,
P(S;|X) denotes the probability of sentiment-given
features, and the summation ensures probabilistic
entropy computation. Uncertainty measures have
ensured that sentiment classification adapts to
probability-driven classification refinements.

(52)

Hierarchical classification has ensured that
sentiment predictions reflect multi-level probability
distributions, optimizing classification across
sentiment granularity. The Bayesian hierarchical
classification function has been structured as:

PGS = ) PEUSHIPEIO  (53)
=1

where P(S,|X) represents the probability of
sentiment Sy, P(Sk|S;) denotes the probability of
transitioning from sentiment S; to Sy, and P(S;|X)
represents the probability of the previous sentiment
level given features. Hierarchical classification has
ensured that sentiment analysis reflects sentiment
variations across probability levels.

3.9. Bayesian model evidence for sentiment
prediction calibration

Bayesian model evidence has ensured that
sentiment  prediction maintains  probabilistic
calibration,  preventing  overconfidence in
classification decisions. Model evidence has
integrated Bayesian principles to assess prediction
reliability by incorporating prior probability
distributions, likelihood estimations, and posterior
probabilities. The calibration process has refined
classification confidence by ensuring that sentiment
predictions align with observed sentiment
distributions, optimizing precision in sentiment
analysis for online shopping. Integrating Bayesian
model evidence has ensured that classification
remains uncertainty-aware, reducing the likelihood
of sentiment misclassification.

Model evidence has been computed by
integrating prior knowledge and likelihood
estimates, ensuring that sentiment prediction reflects

Bayesian probability constraints. The model
evidence function has been structured as:
P(D) = fP(D|6)P(6)dG (54)
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where P(D)represents the Bayesian model evidence,
P(D|6) denotes the likelihood of the observed
sentiment data given parameters 6, and P(0)
represents the prior probability distribution of model
parameters. Bayesian model evidence computation
has ensured that classification maintains calibrated
probability  distributions, refining  sentiment
prediction confidence.

Model complexity has been evaluated using
the Bayesian Information Criterion (BIC), ensuring
that sentiment classification remains optimized
without overfitting. The BIC function has been
formulated as:

BIC = 2logP(D|) + klogn (55)

where BIC represents the Bayesian Information
Criterion, P(D|) denotes the maximum likelihood

estimate of the sentiment data given parameters 8, k
represents the number of parameters, and n denotes
the dataset size. The BIC evaluation has ensured that
model calibration integrates sentiment dependency
constraints, preventing overfitting while refining
classification accuracy.

Posterior predictive distributions have
calibrated sentiment prediction confidence, ensuring
that classification remains aligned with probability-
adjusted outcomes. The posterior predictive function
has been defined as:

P(S|D) = fP(SlH)P(0|D)d9 (56)

where P(S|D) represents the posterior predictive
probability of sentiment S given observed data D,
P(S]08) denotes the probability of sentiment given
model parameters 6, and P(8|D) represents the
posterior probability of parameters given data.
Posterior predictive calibration has refined sentiment
prediction, ensuring that classification remains
aligned with probabilistic dependencies.

Model averaging has ensured that
sentiment prediction confidence remains optimized
by integrating probability-adjusted classification
refinements. The Bayesian model averaging
function has been structured as:

M
P(SIX) = ) P(SIX, Myp)P(MplD)  (57)
m=1
where P(S|X) represents the probability of
sentiment S given feature set X, P(S|X, M,,,)denotes
the probability of sentiment under model M,,, and
P(M,,|D) represents the posterior probability of
model M, given data D. Model averaging has

refined sentiment classification, ensuring that
predictive confidence reflects Bayesian probability
distributions.

3.10. Probabilistic model fusion for robust
sentiment analysis

Probabilistic model fusion has ensured that
sentiment  classification  integrates  multiple
Bayesian-driven models to refine predictive
performance. The fusion process has combined
outputs from Bayesian inference, logistic regression,
and probabilistic dependencies to enhance
classification accuracy. By leveraging multiple
models, the process has optimized feature
interactions and classification thresholds, ensuring
that sentiment analysis remains uncertainty-aware.
Probabilistic model fusion has ensured that
classification robustness improves by dynamically
adjusting probability distributions based on
sentiment variability in online shopping reviews.

Model fusion has been implemented by
integrating probability-weighted outputs from
Bayesian sentiment classification. The probability-
weighted fusion function has been structured as:

P(SIX) = ) winPu(SIX)

m=1
where P(S|X) represents the fused probability of
sentiment S given feature set X, w,, denotes the
weight assigned to model m, and B, (S|X) represents
the sentiment probability from model m.
Probability-weighted fusion has ensured that
classification integrates sentiment dependencies

(58)

from multiple probabilistic models, refining
sentiment predictions dynamically.
Consensus  learning has  optimized

sentiment classification by aggregating outputs from
multiple Bayesian models. The consensus
probability function has been formulated as follows:
M
1
P(SIX) =27 ) Pu(SIX) (59)
m=1
where P(S|X) represents the consensus probability
of sentiment S,P,,(S|X) denotes the probability
output from model m, and M represents the number
of Bayesian models used in fusion. Consensus
learning has ensured that sentiment predictions

remain stable by averaging probability estimates
across multiple classification models.

Confidence-weighted fusion has ensured
that sentiment classification adjusts based on model-
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specific confidence scores. The confidence-

weighted probability function has been structured as:
M

PGSIX) = D CuPa(SIN) (60)

m=1

where P(S|X) represents the final sentiment

probability, C,, denotes the confidence score of

modelm, and P, (S|X) represents the sentiment

probability from model m. Confidence-weighted

fusion has ensured that sentiment predictions align

with the most reliable probabilistic models, refining

classification accuracy.

Model stacking has enhanced sentiment
classification by combining Bayesian-driven
classification layers. The stacked probability
function has been defined as:

M
PGSIX) = Pi(SIX) +24 ) Pu(SIX) (61
=2

m=
where P(S|X) represents the stacked probability of
sentiment S, P; (S|X) denotes the probability from
the base model, 4 controls model fusion weighting,
and P, (S|X) represents probability contributions
from additional models. Model stacking has ensured
that sentiment classification integrates probabilistic
dependencies across multiple classification layers,
improving robustness.

3.11. Overall framework of BN-LR

The overall algorithm of BN-LR integrates
Bayesian Networks with Logistic Regression to
enhance sentiment classification in online shopping
reviews. Training on sentiment-labelled datasets,
Bayesian structure learning constructs a directed
acyclic graph (DAG) to capture feature
dependencies, refining input representation for LR.
Conditional Probability Distributions (CPDs)
dynamically adjust probabilistic weights, ensuring
accurate feature influence. Dependency-aware
feature selection eliminates redundant attributes,
optimizing classification efficiency. Using Gaussian
and Laplace priors, Bayesian regularization prevents
overfitting while stabilizing model coefficients.
Bayesian inference dynamically adjusts LR weights,
refining probability-based decision boundaries.
Bayesian Model Evidence calibrates sentiment
predictions, improving classification confidence,
reducing false positives, and ensuring adaptability to
evolving sentiment trends.

Algorithm 5.11: BN-LR

Input:
e Sentiment feature set X extracted from
online shopping reviews.
e Bayesian Network G
feature dependencies.
e Training dataset D with sentiment labels.
Output:
e Optimized logistic regression model
with Bayesian-enhanced features.
Procedure:
1. Construct a Bayesian Network structure
to capture probabilistic dependencies.

representing

2. Estimate  Conditional  Probability
Distributions (CPDs) for sentiment
features.

3. Transform sentiment-related features
into probabilistic representations.

4. Perform dependency-aware feature
selection using Bayesian principles.

5. Apply Bayesian regularization to
optimize logistic regression coefficients.

6. Train logistic regression using Bayesian-
enhanced features.

7. Adjust logistic regression weights
dynamically using Bayesian inference.

8. Perform sentiment classification using

Bayesian posterior probabilities.

9. Calibrate sentiment predictions using

Bayesian model evidence.

10. Fuse probabilistic models for robust
sentiment classification.

The BN-LR algorithm has ensured that
sentiment  classification integrates  Bayesian
probability distributions, optimizing sentiment
analysis precision in online shopping.

4. DATASET

The dataset used in this research comprises
product review data collected from the Amazon
platform, covering four distinct domains: Books,
DVDs, Electronics, and Kitchen Appliances. Each
domain includes customer-written reviews in
English, labelled with binary sentiment categories:
positive and negative. The dataset structure is
designed to reflect domain diversity, offering a
comprehensive environment for evaluating cross-
domain sentiment classification systems. Review
lengths contain subjective expressions, domain-
specific vocabulary, and varying degrees of
emotional intensity. The Book domain features
narrative-focused reviews with literary expressions,
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while Electronics and Kitchen Appliances contain
functionality-oriented and usage-specific
sentiments. DVD reviews often reflect experiential
and entertainment-based opinions. The presence of
distinct linguistic patterns and sentiment framing
across domains makes this dataset suitable for
testing generalizability and robustness in domain-
adaptive sentiment models. The balanced nature of
positive and negative samples supports fair training
and evaluation. This dataset enables analysis of
vocabulary drift, feature transferability, and polarity
consistency  across  heterogeneous  product
categories. Domain-specific shifts in sentiment cues
and review structures create a challenging
benchmark for adaptive sentiment analysis
frameworks. The dataset has been preprocessed for
noise reduction through stop-word removal, POS
tagging, and tokenization, ensuring that only
sentiment-relevant terms contribute to classification.
Its multi-domain nature aligns with the research goal
of building scalable, cross-domain sentiment
classifiers.

5. RESULTS AND DISCUSSIONS
5.1. Precision Analysis

Figure 1 displays the average precision
values on the y-axis across four Amazon product
review datasets—Books, DVDs, Electronics, and
Kitchen Appliances—shown on the x-axis. Table 1
presents the corresponding numerical precision
values for BN-LR in comparison with EBC and
MMASA. Precision represents the proportion of
correctly predicted positive sentiments out of all
instances classified as positive, making it a critical
metric in evaluating the trustworthiness of sentiment
classification.
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Figure 1: Average Precision Comparison of BN-LR Across
Classification Instances

EBC produces the lowest precision across
all datasets, averaging 56.82%, reflecting its
inability to eliminate false positives due to its lack of
contextual filtering and probabilistic weighting.
MMASA shows moderate precision improvements
(average 64.54%) through multimodal inputs but
fails to maintain sentiment focus where visual
signals are irrelevant. BN-LR achieves the highest
average precision of 86.77%, demonstrating
consistent superiority across all four domains. Its
strength lies in its Bayesian inference layer, which
dynamically adjusts feature relevance based on
observed dependencies, supported by the stability of
logistic regression in separating sentiment classes.
Particularly in electronics and kitchen appliances,
BN-LR effectively isolates sentiment-bearing
expressions even in feature-rich or descriptive
reviews. These results confirm BN-LR’s high
selectivity and reliability in predicting positive
sentiment, as illustrated in Figure 1 and detailed in
Table 1.

Table 1: Numerical Evaluation of Precision Values for

BN-LR Model
Amazon
PrO(!uct EBC MMAS BN-LR
Review A
Datasets
Book 59.9435 | 65.0084 | 83.4168
DVD 55.2904 | 63.5245 | 86.6233
Electronics | 51.8957 | 63.0722 | 88.3889
Kitchen | ¢ 1275 | 66.5830 | 88.6902
Appliances
Average 56.8293 | 64.5470 | 86.7798

5.2. BN-LR - Recall Analysis

Figure 2 illustrates the average recall values
along the y-axis across four Amazon product review
datasets displayed on the x-axis. Table 2 provides the
exact recall values for BN-LR in comparison with
EBC and MMASA. Recall quantifies the proportion
of actual positive sentiment instances correctly
identified by the model, highlighting its ability to
recover relevant sentiment expressions. EBC records
the lowest average recall (56.03%), as it fails to
capture subtle or distributed opinion cues due to its
non-adaptive, entropy-based structure. MMASA
performs moderately better (64.91%), aided by
image-text integration, though it lacks contextual
calibration when visual sentiment is sparse or
ambiguous.
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BN-LR attains the highest recall average of
86.74%, showcasing strong sentiment detection
capabilities across all domains. This result stems
from its Bayesian graph structure that reweights
features based on inter-token dependencies,
improving the identification of low-frequency or
embedded sentiment terms. In domains such as
DVDs and Electronics, where user sentiment is often
distributed across multi-clause reviews, BN-LR
maintains high recovery performance. Its ability to
preserve context through probabilistic inference
leads to a more complete sentiment extraction
process. This consistent performance is evident
across all four domains in Figure 2 and Table 2.

100

80

ves
.o
.o
......
0o

et
o
st

[

Regplts (%),
< =]

<o

EBC MMASA
Sentiment Classification...

BN-LR

Figure 2: Average Recall Comparison of BN-LR Across
Classification Instances

Table 2: Numerical Evaluation of Recall Values for BN-

LR Model
Amazon
Proc!uct EBC MMAS BN-LR
Review A
Datasets
Book 59.8038 | 65.9621 85.7494
DVD 55.4202 63.0287 88.6371
Electronics 52.2412 63.2154 87.6163
Kitchen 56.6751 | 67.4553 | 84.9865
Appliances
Average 56.0351 | 64.9154 | 86.7473

5.3. BN-LR — F-Measure Analysis

Figure 3 showcases the F-Measure values
of sentiment classification models across four
product review domains, with the y-axis indicating
score magnitude and the x-axis denoting the dataset
categories. Table 3 provides precise values for EBC,
MMASA, and BN-LR. The F-Measure highlights a

model’s ability to balance precision and recall. EBC
remains the weakest performer, demonstrating
inconsistent sentiment boundary recognition across
all review categories. Its rigid structure struggles to
detect embedded opinions and fails to manage false
detection events, leading to lower F-Measure output.
MMASA achieves better results but continues to fall
short in cases where sentiment-bearing text lacks
corresponding visual reinforcement. Its inability to
re-priorities  signals dynamically limits its
effectiveness. BN-LR, in contrast, maintains a clear
edge across all four domains, exhibiting a near-
stable F-Measure average of 86.74%. This
performance is not driven by either recall or
precision alone but by its ability to sustain harmony
between the two, even in noisy and feature-rich
feedback environments. BN-LR excels particularly
in electronics and kitchen appliances, where polarity
often intermingles with descriptive language. The
model’s context-aware architecture ensures both
detection fidelity and classification accuracy, which
is visually affirmed in Figure 3 and supported
numerically in Table 3.
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Figure 3: Average F-Measure Comparison of BN-LR
Across Classification Instances

Table 3: Numerical Evaluation of F-Measure Values for

BN-LR Model
Amazon
Proc!uct EBC MMAS BN-LR
Review A
Datasets
Book 59.8736 | 65.4818 84.5670
DVD 55.3552 | 63.2756 87.6186
Electronics 52.0679 | 63.1437 88.0009
Kitchen | 50 3765 | 67.0163 | 86.7989
Appliances
Average 56.4188 | 64.7294 86.7464

Sentiment Classification Algorithms
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5.4. BN-LR - classification accuracy analysis

Figure 4 illustrates the classification Table 4: Numerical Evaluation of Classification
accuracy of BN-LR across four Amazon product Accuracy for BN-LR Model
review domains, with the y-axis reflecting accuracy Amazon
scores and the x-axis representing datasets. Table 4 Product EBC MMA | pNCLR
provides the numerical evaluation alongside EBC Review SA
and MMASA. Accuracy measures the overall Datasets
proportion of correctly predicted sentiment Book 59.5664 | 65.2980 | 84.2550
classes—both positive and negative. DVD 54.6950 | 62.8708 | 87.4437
Electronics 51.6437 | 62.7322 | 87.9345
100 Kitchen | 50 1557 | 666731 | 86.4358
Appliances
80 | Average 56.0152 | 64.3935 | 86.5173
’260 ....... 5.5. BN-LR — Matthews correlation coefficient
S analysis
A0
-5 Figure 5 displays Matthews Correlation
;?220 Coefficient (MCC) scores on the y-axis across
0 Amazon product review datasets shown on the x-
EBC  MMASA  BN-LR s
Sentiment Classification Algorithms 100
Figure 4: Average Classification Accuracy Comparison 80
of BN-LR Across Classification Instances
60
EBC shows a consistent underperformance ;\;
with an average of 56.01%, mainly due to its 540
inability to contextualise sentiment within feature- = .
rich reviews. It fails to discriminate factual phrasing ;:-’20 ........
from emotional expressions, especially in I_'A—|
electronics, where technical descriptions dominate. 0
MMASA raises the average to 64.39%, yet it EBC MMASA BN-LR
struggles when visual content carries limited Sentiment Classification Algorithms

sentiment, reducing consistency in domains like
books. BN-LR, however, excels with an average
accuracy of 86.51%, outperforming both models
across all datasets. Its Bayesian graph models
interdependencies among sentiment tokens, while
logistic regression handles classification margins
with precision. This architecture supports accurate
prediction even in reviews that present blended
polarity or aspect-heavy feedback. The model adapts
effectively to wvariable sentence structures and
sentiment intensities. Whether dealing with
expressive narratives in books or mixed-form input
in kitchen appliances, BN-LR preserves class
integrity and delivers stable classification outcomes.
This superior performance is visibly confirmed by
Figure 4 and the statistical summary in Table 4.

Figure 5: Average Matthews Correlation Coefficient
Comparison of BN-LR Across Classification Instances

Table 5 provides MCC values for EBC,
MMASA, and BN-LR. MCC accounts for all
elements of the confusion matrix—true and false
positives and negatives—making it ideal for
evaluating binary classifiers under potential class
imbalance. EBC shows a weak average MCC of
12.04%, indicating highly inconsistent prediction
alignment. Its lack of polarity sensitivity, especially
in sentiment-sparse reviews, results in frequent
misclassification of neutral or ambiguous content.
MMASA improves to 28.78%, leveraging
multimodal input, but fails to ensure consistent class
boundaries across all datasets. Polarity interference
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between visual and textual channels contributes to
prediction drift.

BN-LR, by contrast, achieves a strong
average MCC of 73.06%. The model balances true
positives and negatives effectively, with its
probabilistic dependency structure identifying subtle
sentiment shifts even in feature-dense or layered
reviews. In electronics and DVDs, where sentiment
may alternate within short intervals, BN-LR
maintains high directional accuracy. Its logistic core
reinforces class stability while the Bayesian layer
adapts to context-specific transitions. The
consistently superior correlation seen across
domains is evident in Figure 5 and clearly
summarized in Table 5.

Table 5: Numerical Evaluation of Matthews Correlation
Coefficient Scores for BN-LR Model

Amazon
Proc!uct EBC MMAS BN-LR
Review A
Datasets
Book 19.1281 | 30.6010 68.5305
DVD 9.3704 | 25.7346 74.9062
Electronics | 3.2809 | 25.4553 75.8716
Kitchen 1\ (155 | 333447 | 72.9343
Appliances
Average 12.0487 | 28.7839 | 73.0607

5.6. BN-LR — FOWLKES-MALLOWS INDEX
ANALYSIS

Figure 6 presents Fowlkes—Mallows Index
(FMI) values on the y-axis across four Amazon
product review datasets shown on the x-axis. Table
6 outlines the corresponding FMI scores for EBC,
MMASA, and BN-LR. FMI evaluates the geometric
mean of precision and recall, effectively capturing
how well predicted sentiment clusters match true
sentiment groupings. EBC records the lowest
average FMI at 56.42%, reflecting weak consistency
in maintaining accurate pairwise sentiment
associations.

The model frequently binds unrelated or
weakly polar expressions into incorrect clusters,
particularly in domains like electronics where
opinion and information are densely mixed.
MMASA improves moderately to an average of
64.73%, but it lacks a mechanism to regulate inter-
modal noise. The model’s performance fluctuates
when visual inputs offer low sentiment relevance or

contradict textual cues. BN-LR achieves a high FMI
average of 86.75%, demonstrating its ability to
preserve cluster integrity across all domains. Its
Bayesian structure detects contextual dependencies,
enabling better token grouping based on sentiment
influence.
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Figure 6: Average Fowlkes—Mallows Index Comparison of BN-
LR Across Classification Instances

Table 6: Numerical Evaluation of Fowlkes—Mallows
Index Scores for BN-LR Model

Amazon
Product | ppc | yvivasa | BN-LR
Review
Datasets
Book 59.8736 | 65.4835 84.5751
DVD 55.3553 | 63.2761 87.6244
Electronics | 52.0682 | 63.1438 88.0018
Kitchen .0 /10 | 67.0177 | 86.8186
Appliances
Average 56.4255 | 64.7303 | 86.7550
The logistic component reinforces

boundary precision, keeping related sentiment
expressions tightly aligned. In multi-aspect reviews,
such as kitchen appliances and books, BN-LR
maintains clear sentiment grouping, as seen in the
results of Figure 6 and Table 6.

5.7. Critical
Discussion
The BN-LR framework demonstrates
consistent superiority in precision, recall, F-
measure, accuracy, MCC, and FMI across all four
Amazon product review domains. Compared to EBC
and MMASA, the model achieves substantial
performance gains, driven by its dynamic integration
of Bayesian dependencies with logistic regression’s

Reflection and Comparative
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linear classification boundary. While MMASA
leverages multimodal inputs and EBC applies
entropy-based heuristics, both fail to dynamically
adjust feature weights or model latent sentiment
dependencies, limiting their adaptability across
shifting review domains. BN-LR, in contrast,
captures contextual shifts through dependency-
aware probability modeling, achieving better
alignment with sentiment-bearing patterns.

Despite  these  advantages, certain
limitations remain. The current model is trained and
evaluated solely on binary sentiment labels,
excluding neutral or mixed-sentiment cases, which
often appear in real-world scenarios. Further, BN-
LR operates on structurally clean, domain-balanced
data, and its robustness under noisy or low-resource
language contexts remains untested. Sentiment
ambiguity caused by sarcasm, slang, or implicit
expression also presents challenges not fully
addressed in the current framework.

Future enhancements should explore the
inclusion of neutral sentiment, cross-lingual
generalization, and integration with semantic role
labeling or contextual emotion detection. Expanding
BN-LR toward few-shot learning and dynamic
Bayesian adaptation may improve generalization
under constrained or evolving sentiment conditions.
These areas represent critical opportunities for
extending the model’s utility across broader
sentiment analysis applications.

5.8. Threats to Validity and Justification of
Evaluation Criteria

The evaluation of BN-LR is grounded in
widely accepted classification metrics including
precision, recall, F-measure, classification accuracy,
Matthews Correlation Coefficient (MCC), and
Fowlkes—Mallows Index (FMI). These criteria have
been selected for their comprehensive coverage of
performance aspects critical to  sentiment
classification, particularly under class-imbalance
and domain-shift scenarios. Precision and recall
directly measure relevance and completeness of
sentiment detection. F-measure provides a balanced
trade-off, accuracy reflects overall correctness,
MCC captures true-versus-false classification
correlation under class proportion variance, and FMI
quantifies clustering consistency. This combination
ensures robustness in both binary decision-making
and distributional alignment, justifying their
appropriateness for comparative critique.

Despite the consistent results observed,
certain threats to wvalidity may influence
interpretation. Internal validity may be impacted by
domain-specific biases within the Amazon review
datasets, where sentiment expressions differ not only
by product category but also by review style and user
demographics. External validity is limited as the
model is tested only on English language reviews
within e-commerce, leaving its generalizability to
multilingual or social media contexts unverified.
Construct validity may be influenced by the
exclusion of neutral sentiment and reliance on binary
labels, which simplify sentiment expression.
Conclusion validity could be affected by possible
dataset overlap or reviewer subjectivity embedded in
the original labels.

Steps were taken to minimize these threats.
All datasets were preprocessed uniformly to reduce
noise. The use of multiple domains aimed to
simulate realistic domain shifts. Comparative
baselines such as EBC and MMASA were included
for contrast under identical settings. Yet, future work
must involve cross-lingual datasets, inclusion of
neutral sentiment, and experimental control for
cultural variance to fully establish the model’s cross-
context stability.

6. CONCLUSION

This study has proposed BN-LR as a
statistically grounded and domain-adaptive sentiment
classification model, which effectively combines
Bayesian network—based dependency modeling with
logistic  regression for robust cross-domain
performance. The model achieved an average
classification accuracy of 86.5173%, significantly
outperforming baseline methods such as EBC and
MMASA across multiple product categories. Beyond
performance metrics, the approach introduces a
structured, interpretable method for managing
polarity shifts and vocabulary variations inherent in
cross-domain sentiment analysis. From the author’s
perspective, BN-LR not only meets the technical
objective of generalizability but also reflects a
practical solution that balances transparency and
predictive reliability. The model demonstrates how
integrating probabilistic dependencies into a classical
classifier ~can address nuanced sentiment
inconsistencies across domains without sacrificing
interpretability. While confident in the contributions
made, the author acknowledges certain limitations—
specifically, the binary sentiment assumption and the
model's current evaluation on linguistically consistent
datasets. There remains a strong interest in advancing
this framework by incorporating neutral sentiment,
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sarcasm detection, and cross-lingual adaptability to
better reflect the real-world complexity of sentiment-
rich data streams.

6.1. Future Enhancements

BN-LR, while effective for binary sentiment
classification across structured English reviews,
requires further development to support neutral and
mixed sentiments, cross-lingual adaptability, and
shorter or informal text formats. The model's current
design does not explicitly handle sarcasm, implicit
expressions, or sentiment ambiguity. Future work
should extend BN-LR with multi-class sentiment
capability, multilingual feature alignment, and
context-sensitive enhancements such as semantic role
labeling. Real-time deployment through incremental
learning and streaming analysis also remains an open
direction. Addressing these aspects will improve the
model’s generalizability, scalability, and real-world
applicability in broader IT ecosystems.
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