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ABSTRACT

Environmental sustainability and agricultural output are seriously threatened by soil erosion. This research
utilizes deep learning techniques to create an automated system that detects soil erosion from photographs in
or-der to solve these issues. Specifically, visual data and structured environ-mental parameters are combined
with a Convolutional Neural Network (CNN) to identify soil conditions and forecast the possibility of
erosion. Building a CNN model with the purpose of analyzing and categorizing photographs according to
soil conditions is the main task of this research. Lay-ers using max-pooling diminish the dimensionality of
feature maps and rec-ord the most important characteristics, eliminating the unnecessary information. Fully
linked layers then interpret these characteristics to create the final categorization. The model’s output is a
binary classification indicating the presence or absence of soil erosion. In addition to image data, the model
incorporates structured environmental data such as rainfall and temperature. This data is processed through a
separate branch of the network and combined with CNN's output to enhance prediction accuracy. By
integrating environmental factors, the model can account for conditions that in-fluence soil erosion, leading
to more robust predictions. The CNN model is trained using the Adam optimizer with binary cross-entropy
as the loss function. This configuration is suitable for binary classification tasks and helps optimize the
model’s performance. The training process includes 20 epochs with a batch size of 8, and class weights are
used to address any imbalance in the dataset.

Keywords: Soil Erosion, Deep Learning, Convolutional Neural Network (CNN), VGGI16, Binary Cross-

Entropy

1. INTRODUCTION erosion include time-consuming, tedious processes
including extensive fieldwork and manual data

Soil erosion [1] is one of the most frequent
environmental risks that jeopardizes ecological
balances, land integrity, and agricultural output. It
describes how topsoil is lost due to natural processes
like wind and water erosion or as a result of human
actions like poor land management and
deforestation. Because of this erosion, there is less
rich soil available for agriculture production, which
further deteriorates the ecosystem. Long-term, this
poses a threat to the ecosystem's health and food
security. Traditional techniques for identifying soil

processing [2]. The field of computer vision and
machine learning has had remarkable advancements
recently, which have created great prospects for
technique automation and innovation.

Convolutional neural networks are the best the
state of the art in image analysis due to the ability to
recognize hierarchies in visual data. CNNs are
capable of performing a variety of tasks, including
segmentation, object recognition, and image
classification. This is because these models can
extract complicated characteristics from pictures at
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several processing levels. This makes them a good fit
for detecting soil erosion from photos, offering a
more accurate and efficient substitute for the
conventional detection method [3]. In an effort to
increase detection accuracy and operational
effectiveness, the research investigates the use of
CNNs [4] in autonomous soil erosion detection.
Realizing a CNN-based model that can categorize
photos of soil conditions and also forecast the
dangers of erosion will be the project's primary
objective. This model is going to be trained using a
collection of several soil-related photos, each of
which represents a distinct condition of erosion and
a different type of soil. For greater uniformity, all
photos have been normalized and standardized in
size. Additionally, several data augmentation
techniques, including as rotation, scaling, and
flipping, had been applied to training pictures to
handle more variables in a real-world scenario in
order to increase the model's performance and
generalization ability.

In order to improve erosion forecasts, it will also
directly include other environmental elements, such
as temperature and precipitation, into the model at a
finer scale. These exogenous factors are merged with
the CNN's visual feature outputs and sent through a
sister network branch. This will allow the model to
generate more accurate predictions by taking into
account both the visual appearance of the soil and the
effects of environmental factors [5] on erosion.

Model performance was assessed using accuracy,
precision, recall, and area under the receiver
operating characteristic curve. These provide
information on how well a model can differentiate
between soil that has been eroded and soil that has
not, and the ROC-AUC metric [6] indicates how well
a model does overall in class differentiation.
Additionally, the research tests transfer learning by
optimizing a VGG16 model that had already
received pre-training on the subject of detecting soil
erosion. The fundamental principle of transfer
learning is to leverage the expertise gained from
models that have been trained on extensive datasets
in the past, making them highly valuable for
managing scenarios with sparse data. In this
instance, the model may employ these well-honed
feature extraction strategies to improve performance
with respect to the assigned task—that is, the
identification of soil erosion.

The trained model is incorporated in a web
application that offers easy application. An
application like this, which would make it simple for
a farmer or environmental-ist to submit photos,

would be useful for evaluating soil erosion in
conjunction with real-time environmental data. The
purpose of this program was to offer real-time
information on conservation efforts and soil
management to enhance sustainable land use for the
decision-makers. This paper is an excellent
illustration of how deep learning in CNN can be used
to identify soil erosion automatically. It does this by
fusing environmental data with picture analysis to
provide a novel, efficient approach to managing soil
erosion and reducing it negative effects on
ecosystems and agriculture [7]. The general
objectives of proposed system are:

e Feature Extraction: Develop CNN models
to automatically extract spatial and
temporal features from high-resolution
satellite images or drone data to identify
erosion patterns.

e Pattern Recognition: Train CNNs to
classify different types and severities of soil
erosion patterns, such as sheet erosion,
gully erosion, or rill erosion.

e Spatial Mapping: Create accurate spatial
maps of erosion-prone areas using CNN-
based image segmentation techniques to
delineate areas at risk.

e Temporal Analysis: Investigate temporal
changes in erosion patterns over time by
applying CNN models to time-series data,
identifying trends and seasonal variations.

e Model Optimization: Optimize CNN
architectures and parameters to improve
accuracy, speed, and generalizability of
erosion detection models.

e Validation and Comparison: Validate
CNN-based erosion detection models
against ground-truth data or existing
erosion maps, comparing their performance
with traditional methods.

e Application in Precision Agriculture:
Explore the practical applications of CNN-
based erosion detection in precision
agriculture for better land management and
conservation strategies.

e Data Integration: Integrate CNN outputs
with geographic information systems (GIS)
for comprehensive spatial analysis and
decision support in erosion control efforts.
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2. LITERATURE REVIEW

Manuscripts Traditionally, field surveys,
human observations, and geographic information
systems (GIS) have been used to identify soil
erosion. Viktor Polyakov, Claire Baffaut, Vito Ferro
and Scott Van Pelt [8] focused on how soil erosion
affects agricultural output and the shortcomings of
conventional  field-based techniques.  These
traditional methods frequently involve a large
amount of effort and resources, and human error as
well as the wide geographical diversity of erosion in
various terrains might affect their accuracy. The
study highlights the requirement for more scalable
and effective techniques to track and evaluate soil
erosion. The development of remote sensing
technology has made satellite photography an
invaluable resource in soil detection of erosion.
According to B.P. Ganasri and H. Ramesh [9] many
remote sensing methods that are applied to track soil
erosion at various scales. The study describes how
soil loss over wide regions may be estimated and
erosion risk can be modeled using remote sensing
data and GIS. However, in terms of spatial resolution
and the capacity to record fine-scale erosion
characteristics, remote sensing is limited. This
emphasizes the need for more precise and localized
methods, including deep learning algorithms for
image-based analysis.

Because Convolutional Neural Networks
(CNNs) can automatically extract characteristics
from raw pictures, they have become the industry
standard for many image analysis applications. S.
Gupta, R. K. Dwivedi, V. Kumar, R. Jain, S. Jain and
M. Singh [10] presents an overview of how CNNs
and other deep learning models have transformed
image processing in remote sensing applications in
tasks related to soil erosion detection, such as object
detection, picture segmentation, and classification,
the article highlights the benefits of convolutional
neural networks (CNNs). CNNs can recognize
intricate patterns in photos, such as gullies, rills, and
texture changes, that may be signs of soil erosion
since they have been trained on massive datasets.
Predictive accuracy may be greatly increased by
including environmental variables into machine
learning models, such as temperature and rainfall.
The integration of environmental factors into deep
learning models for erosion prediction is covered by
Ishita Afreen Ahmed, Swapan Talukdar, Abu Reza
Md Towfiqul Islam, Mohd Rihan, Guilherme
Malafaia, Somnath Bera, G.V. Ramana and Atiqur
Rahman [11]. The authors demonstrate how the
model's capacity to forecast erosion episodes signifi-

cantly increased with the addition of variables such
as slope, land cover, and rainfall intensity. This
strategy is in line with the project's methodology,
which combines image analysis and environmental
data to create a more comprehensive picture of
erosion risk. Transfer learning has shown to be an
effective method for raising mod-el performance,
especially in situations when there is a shortage of
training data. Yuchi Ma, Shuo Chen, Stefano Ermon
and David B. Lobell [12] examine a number of
transfer learning uses in remote sensing, including
the identification of soil erosion. The benefits of
employing pre-trained models, such VGG16, for
jobs with small datasets are highlighted in the study.
When using pre-trained networks to solve domain-
specific issues like soil erosion detection,
researchers may shorten the training period and
increase the precision of their models. The gap
analysis of this research is:

e Traditional soil erosion detection relies
heavily on empirical models and manual
interpretation of remote sensing data.

e There's a need for globally scalable CNN
models that perform well in varied
geographies.

e  Most approaches treat erosion detection as
a static problem, neglecting temporal
changes.

e There's no uniform benchmark or
evaluation protocol across studies, making
it difficult to compare performance and
validate CNN models effectively.

With the increasing availability of high-resolution
remote sensing data, there is a pressing need for
automated, scalable, and precise methods for
detecting and mapping soil erosion patterns.
Convolutional Neural Networks (CNNs), a type of
deep learning model that has been shown to be
effective for image classification and segmentation,
provide a powerful solution. However, its
applicability in soil erosion is restricted and
underexplored. The importance of this research is:

e Automate erosion detection with greater
speed and accuracy than traditional
methods.

e Enhance spatial analysis through precise
pattern recognition from satellite or drone
imagery.

e Support early intervention and land
management by providing near real-time
erosion monitoring tools.
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e Bridge the technological gap between
environmental science and artificial
intelligence, enabling data-driven decision-
making in climate resilience and
sustainable agriculture.

By utilizing CNNs, this study fills a key gap in
current soil monitoring technology and leads to more
sustainable land use and conservation measures.

3. METHODOLOGY

Predictive accuracy may be greatly
increased by including environmental variables into
machine learning models, such as temperature and
rainfall. Transfer learning has shown to be an
effective method for raising model performance,
especially in situations when there is a shortage of
training data. Compiling vital environmental
variables  from  satellite-derived data and
meteorological stations, such as tempera-ture,
precipitation, and land cover. Preprocessing of
images is performed with every image is scaled to a
consistent 128 by 128 pixels size, and the pixel
values are normalized to fall between 0 and 1. Data
augmentation is carried out by performing
operations like picture flipping, rotation, and
zooming, the input data is made more diverse, which
improves the emerging model's generalization.
Normalization of environmental data is obtained
with environmental measurements are adjusted such
that they all fall within a range that is representative
and consistent with the image data.

To extract features from the photos,
implement a Convolutional Neural Network with
many convolution and pooling layers. The model's
completely linked layers carry out the
categorization. The second branch for environmental
data processing following feature processing is the
hybrid model. The goal of this study is to
concatenate the output to CNN in order to improve
predictability. Two portions of the en-tire dataset
have been identified: 80% for training and 20% for
analysis. As a result, it provides a balanced dataset
that is really representative and includes all potential
erosion scenarios. In binary classification, use
Binary Cross entropy in conjunction with the Adam
optimizer to achieve efficient gradient descent. The
model may be trained with a 20-epoch batch size of
8 while performance is tracked on the validation set.
The metrics used for model evaluation are:
Accuracy: It gauges general accuracy, Precision [13]
and Recall [14]: It gauges how well the model avoids

false positives and correctly identifies real positives
and ROC-AUC [15]: The area under the receiver
operating characteristic curve, which is used to
assess each model's ability to discriminate
separately.

For big datasets, apply transfer learning to
a pre-trained model (VGG16) [16] and refine it for
soil erosion categorization. The proposed model
provide a web interface that allows users to
contribute photos and environmental data to be used
in real-time soil erosion prediction. The Web-based
application; create an online portal where users may
submit photos and environmental information to be
used in real-time soil erosion forecasting and
creating an intuitive application that will offer
forecasts and visual input while making decisions
about farming and land management. In order to
determine if the model performs better than more
traditional methods for detecting soil erosion, its
predictions must be compared to the unprocessed
field data. Formula for Soil Erosion Prediction is
with eq (1) and (2) and is illustrated in Figure 1.

A=R<K<XLS<CxP (1)
Where:

-A = Estimated soil loss per unit area
(tons/acre/year)

‘R = Rainfall and runoff erosivity factor
(dimensionless)

-K = Soil erodibility factor (dimensionless)

‘LS = Slope length and steepness factor
(dimensionless)

-C = Cover and management factor (dimensionless)
-P = Support practice factor (dimensionless)

S=11.8%(Qxgp)0.56xK~XLS<CxP (5

Where:

S = Sediment yield (tons)

Q = Runoff volume (acre-feet)

q_p = Peak runoff rate (cubic feet per second)

6788



Journal of Theoretical and Applied Information Technology ~

15" September 2025. Vol.103. No.17 N
© Little Lion Scientific AT
ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

Rainfall Digital STRM DEM Landsat §
Data Soil Map r Map Satellite Image
¥ -
Slope Enhancement
(Degree)
Flow

Direction
Assessment r\l)ﬂ
IDW Spatial 1
Flow LULC map
Accumolation

R factor map xmwm] ls{mm] —0{ P factor map C fator map

e 1

l A*R*K*LS*C*P
Field (Soil Loss Map)
visit o-{ Sub-watershed Prioritization Io—

Figure 1: Data flow diagram for Soil Erosion detection
using base formulas
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Figure 2: Convolutional layer for Soil erosion
detection

Several crucial phases, which are listed below, were
involved in developing the convolution layer for soil
erosion detection and are demonstrated in Figure 2.
Image dimensions: Every input image was resized to
256 by 256 pixels by scaling and standardizing it.
Channels: There are three color formation channels
in every RGB-processed picture.

Number of Filters: In the beginning, 32 or 64 filters
were employed in numbers to capture certain
fundamental properties. In order to extract
increasingly complicated information from deeper
layers, the number of filters was raised. A Filter Size:
Experiments are used to establish the filter size.
Generally speaking, 3x3 was the first filter size or
5x5 kernels to capture all the more intricate textures
and patterns found in the images.

Padding and Stride: Padding was used to retain the
spatial dimensions of the pictures, while Stride was
utilized to collect the information in a fine-grained
way.

The Activation Process

ReLU Activation: This made it possible for the
network to learn generalized features by introducing
non-linearity into the expression using a rectified
linear unit.

Layer of Pooling

After the convolutional layers, max pooling is
applied to down sample the data into feature maps.
It keeps important characteristics by employing
pooling windows, which are typically 2 by 2.
Adaptation

After the convolutional layers, batch normalization
was applied to minimize steps and expedite the
training process for normalizing activations.6.
Architecture of Networks

Layer stacking: To create a deep network and
understand the hierarchical characteristics of soil
erosion, it employed many convolutional layers.
Fully Connected Layers: Using the features that
were recovered, these layers—which came after
convolutional and pooling layers—made the final
classifications or regression predictions.

When these components were combined, the visual
input was processed and evaluated, and the soil
erosion pattern recognition from this architecture
was ultimately successfully learned.

4. RESULTS AND DISCUSSIONS

Three convolutional layers with progressively
higher filter counts made up the mod-el. Each layer
was flattened before max pooling and dense layers
were added. For binary classification, the last dense
layer used a sigmoid activation function. The model
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was trained using binary cross-entropy loss and the
Adam optimization [17] method for 20 epochs.
TensorBoard [ 18] was used to monitor development.
Over the course of the epochs, there was a steady
decline in training loss and a rise in training
accuracy. This shows that the model achieved high
accuracy with little loss, demonstrating that it has
learned from the training data well as in Figure 3. As
the validation accuracy rose, the validation loss
likewise reduced, indicating that the model well-
generalized to unknown data. The training and
validation curves' similar tendencies imply that there
was no major overfitting.
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Figure 3: Accurate Vs Loss Function

By adjusting the number of filters, kernel sizes, and
adding dropout layers, among other optimization
strategies, the training and validation losses have
decreased, indicating a more reliable and efficient
model. As seen in Figure 4 by the enhanced accuracy
metrics, the model is now able to classify erosion
characteristics more accurately in the training set as

well as, crucially, in the validation set. Examining
the confused matrix after improvement shows a
decrease in false positives (FP) and false negatives
(FN), suggesting a greater harmony between

specificity and sensitivity.
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Figure 4: Epochs - Synopsis of the model and
enhancements

Using class activation maps (CAMs) [19] yielded
insights helps to confirm that the CNNs are paying
attention to pertinent erosion characteristics, into the
regions of the photos the model concentrated on.
Potential Improvements Proceeding with Additional
Model Architecture Modifications to capture even
more minute details in the erosion patterns, consider
experimenting with more intricate constructions or
adding further layers. To further expand the variety
of training data and enhance generalization, apply
more advanced data augmentation techniques. By
adjusting the number of epochs, batch size, and
learning rate, among other hyperparameters, the
model's performance may be further enhanced.
Using a confusion matrix to analyze additional data
can assist pinpoint particular mistake kinds that can
be reduced, such the ratio of false positives to false
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negatives. By using CAMs continuously, model be-
havior may be continuously observed and adjusted
according on the way the model processes incoming
pictures.

5. CONCLUSION

Training and evaluating a convolutional neural
network for soil erosion detection produced
encouraging results. According to the training loss
degradation trend and the associated accuracy rise
across 20 epochs, the model showed a significant
capacity to learn from picture data, confirming that
the CNN model was capturing and recognizing the
key elements related to soil erosion. These validation
measures provided further information on how the
model will function with hypothetical data. The
model did, in fact, learn not entirely in accordance
with the training data, but rather primarily in the
classification of the data, as seen by the overall trend
of lowering validation loss and increasing validation
accuracy over time. There were certain indications
of possible overfitting, such as validation loss did not
decline as steadily as training loss did. This
suggested that while the model suited the training
data quite well, there was still potential for growth in
terms of its ability to generalize to a variety of
previously encountered situations. In light of the
aforementioned difficulties, a number of potential
future actions to address the model performance
issue were taken into consideration. In order to
improve the model's resilience and generalization,
greater diversity in the training dataset can be
achieved using the data augmentation strategies
covered in the next section. In order to do this,
hyperparameter tuning—which mostly included
changes to the learning rate, batch size, and number
of epochs—was done in order to maximize the
learning process. Additional architectural changes,
such as the addition of dropout layers or the use of
various filter sizes, were taken into consideration in
order to maximize to minimize overfitting and
optimize the amount of data gleaned from every
sample. In summary, the CNN demonstrated
remarkable promise for identifying and categorizing
soil erosion in photos; the results may provide a solid
basis for future advancements. While the model's
ability to recognize characteristics of soil erosion
suggested its usefulness, attempts to reduce
overfitting and enhance its functionality
demonstrated a dedication to increasing the model's
precision and capacity for generalization.
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