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ABSTRACT

The correct diagnosis and prediction of malignancy in brain tumors are critical for neuro-oncology, as they
directly influence clinical decision-making. Although deep learning models have had notable success in
tumor classification and segmentation based on MRI data, most existing approaches are limited in three
aspects: building on imaging modalities only, disregarding clinically relevant metadata, and lacking
interpretability because of non-integrated explainable Al (XAI). To overcome these limitations, we present
NeuroExplainAl, an explainable deep learning framework for a holistic brain tumor diagnosis and grading.
We present NeuroFusionNet, a dual task architecture to fuse deep CNN features with hand crafted radiomic
descriptors and patient-level clinical metadata in the form of data-attention. This allows for classification
(HGG versus LGG) and severity scoring to be performed concurrently. For decisor transparency, both
spatial and channel-level explanations are included using Grad CAM++ and SHAP. The model is trained
and tested on BraTS 2021 dataset with 98.34% accuracy, 97.73% F1-score and MAE=0.38 for severity
prediction. This paper provides novel insights into the clinical interpretability of multimodal fusion and
attention-based weighting, in addition to its effect on the predictive performance. Ablation study and
comparisons with state-of-the-arts demonstrate the necessity and effectiveness of each component. The
incorporation of explainableAl techniques builds trust and improves usability in clinical workflows,
making NeuroExplainAl an appealing platform for reliable, interpretable, and individualized brain tumor
assessment.

Keywords - Brain Tumor Diagnosis, Multimodal MRI, Explainable Al, Severity Prediction, Deep Learning

Framework

1. INTRODUCTION However, manual interpretation of MRI scans is

subject to inter-observer variability, and
Brain tumors are among the most critical and traditional radiological assessments may fail to
life-threatening conditions in neurology, often capture subtle imaging cues. Deep learning
requiring rapid and accurate diagnosis to guide techniques have emerged as powerful tools for
treatment  strategies. Magnetic  Resonance automating brain  tumor diagnosis and
Imaging (MRI) is central toidentifying and segmentation to address these challenges,
assessing brain tumors due to its high spatial offering high accuracy and consistency. While
resolution and multiparametric  capability. several recent models [1], [2] have demonstrated
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success in tumor classification or segmentation,
most rely solely on imaging data, neglecting
valuable non-imaging information such as
clinical metadata. Moreover, the lack of
explainability in many existing deep learning
models poses a significant barrier to clinical
adoption.

Recent studies have explored hybrid models
combining CNNs with vision transformers [2],
ensemble learning [3], and attention mechanisms
[4], showing improvements in classification and
segmentation  tasks. Nevertheless, few
approaches support dual-task learning for
classification and severity prediction, and even
fewer integrate radiomic features and clinical
metadata into the decision-making pipeline.
There remains a critical need for interpretable,
multimodal AI systems capable of providing
comprehensive diagnostic outputs that clinicians
can trust and validate.

This research proposes NeuroExplainAl, an
explainable and integrated Al framework for
brain tumor diagnosis and severity prediction
using multimodal MRI to address these gaps.
The primary objective is to design a deep-
learning model that classifies tumor types (HGG
vs. LGG) and predicts tumor severity scores
using a dual-task architecture. The proposed
system introduces several key novelties: (1)
multimodal feature fusion of deep CNN features,
radiomic descriptors, and clinical metadata; (2)
an attention-guided fusion layer to prioritize
informative features; and (3) explainability via
Grad-CAM++ and SHAP to ensure transparency
in decision-making. Additionally, the framework
includes statistical analysis to correlate tumor
features with severity outcomes, enhancing
clinical insight.

The contributions of this work are multifold.
First, we develop a robust NeuroFusionNet
architecture that performs classification and
regression jointly. Second, we demonstrate the
impact of radiomics and clinical metadata in
improving diagnostic performance. Third, we
implement a dual-level explainability module
that visualizes spatial and feature-level
attributions. We conduct extensive evaluations,
including ablation studies and comparisons with
state-of-the-art methods.

Notwithstanding the increasing enthusiasm in the
field of deep learning for brain tumor diagnosis,
most prior frameworks are confined either to a
single-task learning or a particularly narrow
application on imaging data, largely dismissing a
wealth of complementary information extracted

from radiomic features and patient-specific
clinical metadata. Additionally, the black-box
nature of these models is a major obstacle to the
clinical acceptance of these models because
clinicians cannot interpret the outputs of the
model or validate the decisions of the model.
Since brain tumors present a wide range of
morphological and contextual patterns from
patient to patient, an overall interpretable and
unified system, which integrates multimodal
information, is in high demand. This study fills
these key gaps by presenting a holistic
interpretable and dual-task Al model --
NeuroExplainAl -- aiming at both accurate tumor
classification, severity scoring and providing a
transparency to the decision-making. The use of
spatial (Grad-CAM++) and attribution-based
(SHAP) explainability modules strengthens
clinical trust, distinguishing this work from
classic black-box models, and sets a new state-
of-the-art for diagnostic assistance in neuro-
oncology.

The remainder of this paper is organized as
follows: Section 2 provides an in-depth literature
review on explainable deep learning-based brain
tumor diagnosis. Section 3 details the proposed
NeuroExplainAl methodology, which includes
the preprocessing stage, segmentation process,
feature extraction and description, model
architecture, and explainable Al integration.
Section 4 presents the experimental results,
including performance analysis, ablation studies,
and comparative evaluations. Section 5 discusses
the findings and limitations of the study in detail.
Finally, Section 6 summarizes the article with
some takeaways and directions for future
research.

2.RELATED WORK

This literature review highlights recent trends in
explainable Al and deep learning techniques for
braintumor diagnosis based on multi-modal
MRI. Zeineldin et al. For example, [1] examined
the incorporation of explainability into deep
neural networks used for MRI-based brain tumor
analysis, facilitating greater interpretability for
clinical decision-making. Zeineldinet al. [2]
recent work, where they employed vision
transformers along with CNNs in a hybrid
approach of multimodal glioma segmentation
that performed with high accuracies and
explainable study outputs. Farhan et al. [3]
introduced an ensemble 3D brain tumor
segmentation technique in XAI-MRI using dual-
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modality MRIs with attention-based
explainability. Ahmed et al. Proposed a hybrid
ViT-GRU model for brain tumor classification in
Bangladesh, with explanations through XAI
visualization to improve the transparency of the
model. Magsood et al. [5] employed deep neural
networks and support vector machines (SVM)
for multimodal tumor detection, achieving
promising classification performance. Aleid et al.
Al-based MRI analysis was used by [6] to deploy
an early detection method. Di Noia et al. [7]
discussed Al approaches used in outcome
prediction, specifically in MRI-based
prognostics. Anand et al. [8] present a
multimodal segmentation classification pipeline
with machine learning integration. Gesperger et
al. His work [9] applied deep learning and
multimodal microscopy to enhance diagnostic
imaging. Khalighi et al. [10] explored the state of
Al in neuro-oncology, emphasizing diagnosis,
prognosis, and precision therapy.

Li et al. [11] introduced a deep learning
framework for hemorrhagic lesion detection and
segmentation in brain CTs, showcasing
transferability to tumor detection tasks. Amin et
al. [12] developed a CNN-based brain tumor
classification model wusing MRI scans,
emphasizing high-speed detection. Saba et al.
[13] proposed a hybrid model that fuses
handcrafted and deep features, improving
classification accuracy and robustness. Amin et
al. [14] leveraged stacked autoencoders for
automatic  tumor  detection, offering a
hierarchical representation of tumor features.
Oksuz [15] addressed MRI artifacts using CNNs,
indirectly improving preprocessing for brain
tumor analysis. Wozniak et al. [16] used a
correlation learning mechanism for CT-based
tumor detection, highlighting potential cross-
modality generalizability. Kalaiselvi et al. [17]

utilized pseudo coloring to enhance multimodal
MRI features for tumor detection. Using
multimodal MRI, Sun et al. [18] developed a
deep-learning pipeline for tumor segmentation
and survival prediction. Li et al. [19] proposed a
CNN-based model integrating multimodal fusion
for tumor classification. Peng and Sun [20]
introduced AD-Net for multimodal
segmentation, achieving high performance using
attention-driven fusion.

Kermi et al. [21] applied a U-Net-based deep
CNN for brain tumor segmentation using
multimodal MRI, achieving substantial spatial
accuracy. Windisch et al. [22] emphasized
explainability by integrating model
interpretability into CNNs for essentialtumor
detection using MRI slices. Atasever et al. [23]
provided a comprehensive survey on medical
image analysis using deep learning, focusing on
the significance of transfer learning in diagnostic
tasks. Tripathy et al. [24] implemented
EfficientNet for brain tumor classification from
MRI, improving both  accuracy and
computational efficiency. Preetha et al. [25]
conducted a comparative study of deep neural
network architectures for tumor segmentation,
evaluating  performance  across  different
backbones. Ahmad and Choudhury [26] assessed
transfer learning models for brain tumor
detection, highlighting VGG and ResNet as
strong performers. Anaya-Isaza and Jiménez [27]
used data augmentation with transfer learning to
enhance classification from MRI. Khan et al.
[28] proposed a deep CNN framework with high
tumor detection accuracy. Solanki et al. [29]
reviewed intelligent techniques for tumor
classification. Ottom et al. [30] introduced ZNet
for 2D tumor segmentation with improved
boundary delineation.

Table 1: Literature Review Summary Of Selected Related Works On Brain Tumor Diagnosis Using Deep Learning

Author Model / Modality Task Explainability | Key Limitations

and Year | Technique

Zeineldin | Hybrid ViT + | Multimodal Segmentation Grad-CAM No severity

etal. [2] CNN MRI prediction; lacks
clinical metadata
integration

Farhan et Ensemble T1, T2 MRI 3D SHAP, Grad- No classification;

al. [3] CNNs Segmentation CAM lacks metadata and
global interpretability

Ahmed et | ViT + GRU Multimodal Classification Attention-based | No radionics; lacks

al. [4] MRI + Risk XAl spatial explainability
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Magsood | DNN + Multimodal Detection Not mentioned | No explainability;
etal. [5] Multiclass MRI limited field
SVM adaptability
Amin et CNN MRI Classification Not included Single modality; lacks
al. [12] Classifier severity scoring
Kermi et U-Net (CNN) | Multimodal Segmentation Not included Segmentation only;
al. [21] MRI lacks explainability
Volumes
Haque et NeuroNet19 MRI Classification Layer-wise No severity
al. [35] (DNN) Relevance prediction; lacks
multimodal
integration
Hosny et Ensemble T1, T2, Detection + Grad-CAM++, | No attention fusion;
al. [36] Deep CNN FLAIR Grading SHAP limited clinical
metadata use
Sun et al. Deep CNN Multimodal Segmentation Not clearly No classification;
[18] MRI + Survival stated lacks interpretability
Hassanet | XAI-CNN MRI Segmentation SHAP No classification; no
al. [38] metadata integration
Talukder et al. [31] proposed a fine-tuned deep- and explainability. The reviewed studies
learning model integrating reconstruction demonstrate a  growing  emphasis  on

mechanisms for improved tumor categorization
using MRIs. Anaya-Isaza et al. [32] presented a
comparative analysis of neural architectures for
MRI-based brain tumor detection, including
cross-transformers and  transfer  learning.
Nhlapho et al. [33] focused on bridging the
interpretability gap in deep models, offering
insights into explainable Al for MRI diagnosis.
Tasc1 [34] introduced DGXAINet, which
integrates attention-based deep feature extraction
with explainable learning for tumor localization.
Haque et al. [35] proposed NeuroNetl9, an
explainable DNN architecture for brain tumor
classification with high interpretability. Hosny et
al. [36] developed an explainable ensemble
model using multiple deep learners for detection
and grading. Sinha et al. [37] introduced an XAI-
enhanced model that aids clinicians in tumor
assessment. Hassan et al. [38] unfolded the
structure of explainable models for accurate
tumor segmentation. Li and Dib [39] emphasized
trustable diagnosis using explainable deep
learning. Naira et al. [40] built an explainable
diagnostic model utilizing discharge summaries
for MRI-based tumor classification.Table 1
summarizes key literature on brain tumor
diagnosis, comparing models' tasks, modalities,
and limitations. NeuroExplainAl outperforms
existing methods by integrating multimodal data

explainability, multimodal fusion, and hybrid
architectures in brain tumor analysis. Techniques
span CNNs, transformers, radionics, and transfer
learning, with several works integrating saliency
maps or SHAP for interpretability. They
highlight the importance of accuracy, clinical
trust, and robust multimodal diagnostic systems.

The literature  review  presents  many
improvements in brain tumor grading and
segmentation via deep learning. But a closer look
reveals some long overdue deficiencies, albeit
ones that are largely unaddressed. For instance,
Zeineldin et al. [2] and Farhan et al. [3]
implemented hybrids and ensembles which
performed well in segmentation but did not
support severity scoring or use of patient-level
metadata. Ahmed et al. [4] performed XAI-
driven classification, but did not include hand-
crafted radiomic features or validated predictions
using statistical analysis. In the same way, the
models like Magsood et al. [5] and Kermi et al.
[21] only considered imaging data without
explainability or multimodal fusion. However,
these studies, technically remarkable as they are,
either emphasize performance over
explainability, or lack overall diagnostic insights.
Third, the lack of frameworks that incorporate
dual-task learning (classification + severity),
multi-source feature integration and explainable
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Al modules also exists a significant disparity in
the practical application of these methods for
real-life clinical practice. This problem space
represents an unreasonable demand for a holistic,
interpretable, and multimodal framework, which
NeuroExplainAl  specifically addresses and
intends to ameliorate its shortcomings to
improve both diagnostic accuracy and clinical
utility.

3. PROPOSED FRAMEWORK

The proposed framework, named
NeuroExplainAl, is a novel, explainable Al and
statistical framework developed for automated
diagnosis and severity prediction of brain tumors
using multimodal MRI data. The system
integrates deep learning, radiomic feature

analysis, and clinical metadata to enhance
prediction accuracy and clinical interpretability.
It leverages a dual-path architecture for tumor
classification (HGG vs. LGG) and severity
scoring (e.g., WHO grade), supported by a
comprehensive XAl module using Grad-CAM-++
and SHAP for image-space and feature-space
explanations, respectively. The core deep
learning  model,  NeuroFusionNet, fuses
modality-specific CNN features, handcrafted
radiomic descriptors, and patient metadata
through an attention-guided fusion layer.
Additionally, statistical analysis complements
the model outputs with volumetric and
correlation-based insights to improve clinical
relevance.

Multimodal MRI Input Tumor Segmentation Preprocessing
T1 Whole Tumor Skull Stripping
T2 > Tumor Core ——>|| Bias Field Correction
FLAIR ; Z-Score Normalization
Enhancing Tumor
Tlce Resampling & Co-
Registration
.. . Feature Extraction
Statistical Analysis Diagnosis & Severity
Volume Prediction Radiomic
<_
Location Weight < R T
. Metadata,
Correlations Severity Score
l Fusion
Explainable Al Output
Grad-CAM++
SHAP Values

Figure 1: System Architecture Of Neuroexplainai Illustrating The Complete Pipeline For Brain Tumor Diagnosis And
Severity Prediction
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Figure 1 The NeuroExplainAl framework uses
multimodal MRI data to automate brain tumor
diagnosis and severity prediction. The system
begins with the input of four MRI modalities—
T1, Tlce, T2, and FLAIR—which undergo
standardized preprocessing steps, including skull
stripping, bias field correction, z-score
normalization, and spatial resampling with co-
registration. Segmentation of tumor subregions,
such as the whole tumor and tumor core, and
enhancing tumors is carried out using an

segmented regions, deep features from CNN
encoders applied to MRI inputs and clinical
metadata such as patient age and gender. These
features are fused into a unified representation
and passed to the NeuroFusionNet model, which
performs dual tasks: classifying tumor type as
HGG or LGG and predicting severity scores.
Statistical analysis involving tumor volume,
location weighting, and correlation metrics
enhances interpretability, while Grad-CAM++
and SHAP explainability outputs offer visual and

advanced segmentation model, facilitating feature-level insights. Table 2 presents the
precise region-of-interest extraction. notations used in the proposed methodology.
Subsequently, features are extracted from
multiple sources: radiomic features from

Table 2: Notations used in the methodology
Symbol (s) Description

Xe R4—XH><W><D

Multimodal MRI input volume (T1, Tlce, T2, FLAIR)

Ve RHXWXD ,V’

Single MRI modality volume and its z-score normalized version

uv, ov

Mean and standard deviation of non-zero voxels in V

M e {0‘1}H><WXD

Binary segmentation mask for tumor subregions (ET, TC, WT)

®

CNN feature extractor for modality ii

CNN
Fy, E.,F, Deep, radio mic, and clinical metadata feature vectors, respectively
F,F' F" Concatenated, fused, and attention-weighted feature vectors

a Attention weights for recalibrating fused features

Velasss Vser Predicted tumor class (HGG/LGG) and severity score or grade

Vie» Vsev Ground truth class label and severity score

Wf; bf: Wclassr bclass: VVsew bsev

Weights and biases in fusion, classification, and regression layers,
respectively

Phip () a(.) ReLU and sigmoid activation functions
O Element-wise multiplication and vector concatenation operators
AX, af CNN feature map and its importance weight in Grad-CAM++
L rad—camss Saliency map highlighting discriminative regions for class ¢
b0, P; SHAP base value and feature attribution for x;
S Location-weighted severity score
Ty, Ty, Ty Voxel resolutions along each axis (used in volume computation)
f(x) Model output decomposed by SHAP into contributions.
s(.) Attention or scoring function used for relevance computation

3.1Data Acquisition and Preprocessing

This study is based on the open-access BraTS
2021 dataset [41], which consists of pre-
operative multimodal MRI of patients with brain
tumors, targeting four imaging modalities: native
T1-weighted (T1), contrast-enhanced TI1-
weighted (Tl1ce), T2-weighted (T2), and fluid-
attenuated-inversion-recovery (FLAIR) imaging.
Data from each subject contains co-registered,
skull-stripped, and resampled volumes with a
standardized voxel size of 1 mm?* (isotropic),
normalizing the practical spatial dimension of all
inputs. The dataset contains expert annotated

ground truth regions of interest for tumor
subregions, including enhancing tumor (ET),
tumor core (TC), and whole tumor (WT), along
with corresponding tumor grade labels (high-
grade glioma (HGQG), low-grade glioma (LGQ)).
Although the dataset was preprocessed,
normalization across subjects was performed to
prevent the abovementioned artifacts from
troubling the data. This was the z-score
normalized for each modality volume.V €
REXWXD i the Eq. 1.

, V=uv

V= alV

®
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Where uV and pV Are the mean and standard
deviation of the non-zero voxels in the volume,
respectively?  Standardized  all  intensity
distributions are to be equivalent across patients
to help reduce scanner and subject variability. A
3D reslicing operation standardized all MRI
volumes, 240 X 240 x 155 Allowing batch
input for the neural network pipeline.In the
preprocessing step, skull stripping was again
confirmed by applying a binary brain mask to
remove any remaining extraneous brain tissue.
Also, the segmentation masks for tumor
subregions were encoded into three separate
channels, with each channel corresponding to
each tumor region (ET, TC, WT). They were
applied to monitor both the segmentation phase
and the extraction of radiomic characteristics in
anatomically relevant areas of the following
phases. The preprocessed dataset retains spatial
and intensity homogeneity, providing a solid
base for downstream deep learning and statistical
analysis.

3.2Tumor Segmentation

The authors use a variation of the U-Net++
architecture, which is modified to extract local
and global spatial features from the multimodal
MRI inputs for tumor segmentation. Each
patient's input is a four-channel 3D volume.X €
R¥*HXWXDyhere the four channels correspond
to modalities T1, Tlce, T2, and FLAIR. The
segmentation task learns < a  mapping
functionfy That predicts voxel-wise
predictions.Y = fy(X)with ¥ € REHXWD anq
C =3 The following  represent  tumor
subregions: enhancing tumor (ET), tumor core
(TC), and whole tumor (WT), respectively.

The classical encoder-decoder structure has been
extended to a modified U-Net++ architecture,
including attention gates and SE blocks. The
attention gates enhance the model’s focus on

tumor regions by inhibiting irrelevant
background activations, while SE blocks
adaptively recalibrate channel-wise feature
responses, facilitating  informative  feature

representations. The encoder comprises several
convolution blocks containing 3D convolution
layers followed by batch normalization and
ReLU activation. 3D max-pooling layers are
used for downsampling, and 3D transposed
convolutions are used for upsampling during the
decoder path. Skipping connectivity between the
encoding and decoding layers is retained and is
dense to preserve spatial details and prevent the
loss of features.

The model is trained with a compound loss
function.Lg,, Whichdescribes the sum of the
Dice loss and the binary cross entropy (BCE)
loss, expressed in Eq. 2.

Loy = A1 -Lpjce + 243 -Lpcp @
Where A4; and A,Are weighting parameters
empirically adjusted to balance the overlap
accuracy and voxel-wise precision. For
managing class imbalance, the Dice loss not only
maintains overlap with groot truth tumor regions
but also ensures that the segmentation model has
the highest overlap with the ground truth.

In the first step, segmentation output gives
multi-label masks for each tumor subregion that
the radiomic feature extraction module will use
as input; in the second stage, they are used as
auxiliary information to visualize tumor
structures (explainable Al) in the final stage.
Segmentation module of NeuroExplainAl
pipeline Anatomically accurate segmentation
provides a fundamental first step for subsequent
downstream analysis.

3.3Feature Extraction

After tumor segmentation, a full-feature
extraction method is utilized to achieve multi-
domain representations in diagnosis and
prognosis  prediction of tumor severity.
Depending on their interpretation, the features
are grouped into three categories: the deep
features, the radiomic features, and the clinical
metadata. In this sense, we expect the multi-
source feature strategy to enrich and generalize
the representation of the downstream
NeuroFusionNet model.

Dal city -M; € {T1,T1ce, T2, FLAIR}specific
MRI volume passes through separate 3D
convolutional branches to learn deep features—a
compact 3D CN encoder ed to learn each
modality's hierarchical spatial features in brain
tissue. We flatten and concoutputs from these
modality-specific ranches to generate a unified
dep feature vector, cap F sub d, element of
double-double-struck cap component n sub d,
end superscript, F; € R'n,is the
dimensionality of the learned features. These
features capture high-level semantic information,
including tumor location, shape, and texture
across modalities.

PyRadiomics toolkit is used to extract radiomic
features from the segmented tumor regions. A
feature set, which includes first-order statistics,
shape descriptors, and texture features calculated
using the Gray Level Co-occurrence Matrix
(GLCM), Gray Level Run Length Matrix
(GLRLM), and other related approaches, is
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computed from each subregion, i.e., enhancing
tumor (ET), tumor core (TC), and whole tumor
(WT). We denote the resultingradio mic feature
vector as F. € R"™ Such features provide
quantitative information of tumor heterogeneity
and morphology that supplements what is
captured in these deep learning-based model
representations."

Normalized numerical vector F, € R™To encode
clinical metadata such as patient age, gender, and
tumor location (if available). Except for the
targets, all non-numerical variables are one-hot
encoded, and continuous variables are min-max
scaled to the range [0, 1] so that neural network
input is compatible.All three sources are
concatenated to form the final composite feature
vector. F € R™ asin Eq. 3.

F=[FllEIF] (3)

where || is vector concatenation, and n = ny +
n, + n./This merged feature vector is the input to
the classification and regression branches of
NeuroFusionNet —architecture. The feature
extraction module guarantees that sufficient
tumor information is extracted for subsequent
prediction tasks by incorporating complementary
information and utilizing learned, handcrafted,
and clinical features from all domains.

3.4 Feature Fusion Layer

The resulting feature vector for deep, radiomic,
and clinical domains is fused into a final output
for input to a specialized feature fusion layer to
improve joint representation learning and reduce
the effects of potential modality imbalance. Such
a fusion layer is an integrative bridge across
heterogeneous features by mapping them into a
unified latent space for classification and severity
regression tasks. Fusion is realized in multiple
fully connected layers with non-linear
activations, dropout regularization, and an
additional optional attention-based weighting
strategy.Given the concatenate feature sector cap
F element of double-struck cap R to the tor cap F
element of double-struck cap R to the tor F €
R™ Defined in the preceding paragraph, the first
transformation stage is a fully connected (FC)
projection defined as in Eq. 4.

F' =¢(WsF + by) (4)

6732

Where W; € R"" " Is the learnable weight

matrix, by € R™ s the biased term and ¢(.) is
the ReLU activation function. This output F’ €

R™ Transition is the latent fusion of feature
embedding.

During the training phase, a dropout layer with
dropout ratep = 0.3 (to improve robustness in
low-frequency interpretation and reduce over-
fitting) is added. In addition, we develop an
optional self-attention mechanism for adaptive
anatomy of the importance of each type of
feature. This mechanism instead calculates a set

of attention weights.a € R via a learnable
scoring function s(.) and applies them in an
element-wise fashion to F' as in Eq. 5.
F'" =a (© F'where a =
)

where, © is element-wise multiplication and,
o(.) is the sigmoid activation function. The

output F" € RV It is the final fused
representation that incorporates cross-feature
dependencies and relevance scaling.

The resulting fused vector is passed on parallel to
a classification head to predict the type of brain
tumor (HGG vs LGG) and a regression head to
predict severity (WHO grade or risk score). The
feature fusion layer hence acts as the hub to
harmonize information from the multimodal,
handcrafted, and clinical domains, allowing
NeuroFusionNet to learn a rich and interpretable
representation space.

3.5 NeuroFusionNet Architecture

We present the NeuroFusionNet architecture, a
hybrid deep learning model catering to multi-
modality segmentation input to provide dual
outputs: brain tumor classification and severity
grading. It employs parallel convolutional
encoders for the MRI modalities, combines
handcrafted radio mic and clinical features, and
aggregates them through a shared fusion layer.
The architecture comprises three functional
components: modality-specific feature encoders,
a fusion and transformation core, and dual-task
output branches.

o (s(F")
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Multimodal MRI Inputs (T1, T2,
FLAIR, Tlce)

\ J

Segmentation-
- RelLU Gu:de(d Featu;le)
Maps (Option
- Max Pooling I
\\.; y /
Feature Fusion Layer (
A o
. X ¥ Clinical
Radiomic Concatenate Deep, Radiomic Metadata Input
Feature & Clinical Features
Input _4
- Dropout Layer
— - Attention Module

!

Diagnosis
Branch

SoftMax

— > Fully Connected Dense Layers <

Output: HGG /
LGG

Severity Branch
Regression Head
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Figure 2: Model Architecture Of Neurofusionnet For Brain Tumor Diagnosis And Severity Prediction

Figure 2 To extract its respective deep features, a

dedicated 3D convolutionalencoderfc(,t,),vis used
for each modality — T1, Tlce, T2, and FLAIR.
A stacked version of 3D convolution layers,
batch normalization, ReLU activations, and max
pooling operations form an encoder. All four
encoder outputs are flattened and concatenated
into single deep to cap F sub d , meanwhile to
cap F sub d , meanwhile to cap Fsubd, subd,
meanwhile to cap F sub d , meanwhile—
meanwhile.F; € R". Meanwhile, hand-crafted
radiomic features F. €ted and  prepared
separately as inputs. The joint representation F €
R™ of these three feature vectors is achieved
according to the fusion strategy defined above.

The fused feature vector F” € R™ It is then
passed through a shared transformation layer
consisting of fully connected layers, dropout, and
nonlinear activations. The standard layer allows
for more task-agnostic representation learning

before branching into two separate output
heads—a classification and regression head.

This is a classification branch meant for
predicting tumor type (HGG vs LGG). It consists
of a fully connected layer with a softmax

activation  function. The predicted class
probabilities are in Eq. 6.
Veiass = Softmax(WyqssF"
+ bclass) (6)
Where Weiassand bgqgs  are learnable

parameters and. The loss function applied is
categorical cross-entropy, given by Eq. 7.

K
Lclass = - Z Yk log(?k) (7)
k-1

The true label 1y, is one-hot encoded where K =
2 is used for binary classification (HGG/LGG),
and the severity prediction branch works in
regression mode to create a continuous severity
score or WHO grade. It employs a dense output
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layer with a linear activation, resulting in the
prediction in Eq. 8.

y\sev = VVsevF” + bsev (8)
Where W, and b,,Are regression weight and
bias, respectively. The loss in severity is
represented using mean squared error (MSE), as
in Eq. 9.

N
1 . N2
Lw =3 )08 -38)  ©
i-1

Eq. 10 gives the overall training objective, a
unified loss function that combines classification
and regression losses.

Liotar = A1, Lerass + Az Lsev (10)
where A; and A, Are the balancing
hyperparameters. This dual-output architecture
allows NeuroFusionNet to conduct multi-task

learning, improving the overhead of the
generalization ability of the model while
simultaneously =~ offering  diagnostic ~ and

prognostic information.

3.6Statistical Analysis

NeuroExplainAl has a deep learning-based
prediction module that is added to a statistical
analysis module to ensure interpretability from a
clinical perspective and complement profound
learning-based predictions. Module 1:
Quantitative measurements extracted from
segmented tumor regions and their association
with tumor severity and clinical metadata. It can
be used to determine the statistical significance
of morphological and spatial features related to
predicted tumor grade/severity scores.

The first stage is to calculate volumetric metrics
for each subregion of the tumor, specifically the
enhancing tumor (ET), tumor core (TC), and
whole tumor (WT). The corresponding volume
V in cubic millimeters is calculated from M €
{0,11*WxD A binary segmentation mask by Eq.

11.
H W D
V= Z Z My 1137,
i-1 j-1k-1

Where 7. 7,. 7, Are the voxel sizes (in mm) along
each dimension. They are critical components in
assessingtumor burden and progression.Apart
from some volume, we also derived spatial
features, including tumor location, by calculating
each tumor region's center of mass (CoM).
Tumor anatomical location is mapped to the
Center of Mass (CoM). It is projected onto brain
region atlases, which are then assigned specific
weights based on tumor proximity to clinically
critical domains. We define a location-weighted
severity metric.S asin Eq. 12.

(1D

n
S=Y wif, (12)

i-1
Where f; denotes a region-specific morphology
or intensity feature and w;Is the location-based
risk weight.Correlation and hypothesis testing
are used to assess relationships between these
quantitative features and the severity of the
tumor. To calculate linear associations between
tumor volume and severity score, we use
r Pearson correlation coefficient. Spearman's
rank correlation is applied when normality
assumptions are violated. For hypothesis testing,
feature distributions between HGG and LGG
classes are compared using two-sample t-tests.
Also, we used one-way ANOVA to analyze
multi-group differences by stratifying based on
the WHO grades.
P-value thresholds p < 0.05 Are reported for
statistical ~ significance. All analyses are
performed using standard Python libraries like
SciPy and StatsModels. These statistical patterns
confirm NeuroFusionNet's predictions and
uncover interpretable relationships between
anatomical features and disease severity, adding
to clinical relevance.
3.7Explainable AI Integration
This is possible by incorporating a dual-stage
explainable AI (XAI) module in the
NeuroExplainAl  framework that centerson
interpretability in image space and attribution in
the feature space to maintain the transparency
and clinical trust of the clinical predictions
generated by the NeuroExplainAl framework.
The detailed insights from the module are
expected to enable clinicians and researchers to
comprehend the months' concepts used by the
NeuroFusionNet model for decision formations,
enabling its integration in clinical decision-
making situations.
In the image domain, we use Grad-CAM++ on
the last convolutional layers from the CNN
branches, which process each MRI modality.
This method creates class-discriminative saliency
maps highlighting the spatial regions with the
most response frequency, contributing to the
model prediction. To have a predicted class score
y¢ Grad-CAM++ calculates the weight.af for
each feature mapA* With second-order gradients
as in Eq. 13.

1 0%y°
@ =70 sy
— & 0(Af,
derives the final heatmap L,qq_cam+
weighted sum of feature maps, as in Eq. 14.

(13)

As a
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c
Grad—CAM++

=ReLU[ ) afA* ) (14)
(2

This visualization is applied over the original
MRI slices to help clinicians assess whether the
model focuses on pathologically salient areas,
such as enhancing tumor boundaries or
infiltrative regions.
At the feature domain, SHAP (Shapley Additive
explanations) is used to assess the contribution of
each input feature (radio mic, deep, clinical) to
the model's output. SHAP values use
cooperative game theory to compute the
importance of a feature.x; as the average of its
marginal contributions among all possible
feature subsets on the training dataset.
Decomposition of the model output f(x) as in
Eq. 15.

f(x) =¢o + o

i-1

Where ¢; is the SHAP value of feature x; , and
the  ¢yexpected output. These values are
displayed via bar plots and summary plots,
which help understand what features (e.g.,tumor
volume, GLCM texture contrast, patient age)
had the most significant impact on a
classification or severity score.
The XAI module interprets model behavior
across diagnostic and prognostic tasks by
coupling Grad-CAM-++ for spatial attention
visualization with SHAP for feature-level
attribution. Instead, it allows for both feature-
level deep interpretability and flow maps, which,
unlike oft-empirical results, provide the
necessary foundation for validating
NeuroFusionNet, integrating the explanatory
process with increased potential for deployment
in practice.

n
(15)

4. EXPERIMENTAL RESULTS

This section presents the experimental results of
evaluating the proposed
NeuroExplainAlframework on the publicly
available BraTS 2021 dataset. The experiments
aim to validate the effectiveness of the
NeuroFusionNet model in predicting brain tumor
types and severity scores while also assessing the
utility of radio mic and clinical metadata
integration. Furthermore, the explainable Al
outputs and statistical validation demonstrate the

framework's  clinical interpretability  and
trustworthiness. All experiments were designed
to ensure reproducibility and detailed

configuration information was provided to assist
future researchers in replicating the results.

The model was implemented in Python using the
PyTorch and MONALI libraries. The training was
conducted on a system with an NVIDIA RTX
3090 GPU, 128 GB RAM, and an Intel Xeon
processor. The training dataset was split in a
70:15:15 ratio for training, validation, and
testing. Data loaders were configured with patch-
wise loading and on-the-fly augmentation,
including random rotation, flipping, and intensity
shifts. The input volumes were resized to a
uniform shape of 240x240x155 with four
channels representing T1, Tlce, T2, and FLAIR
sequences.

The optimizer used was Adam, with an initial
learning rate of 0.0001, reduced on plateau based
on validation loss with patience of 5 epochs. The
batch size was set to 4 due to GPU memory
constraints, and the model was trained for 100
epochs. Weight decay was set to 0.0005; dropout
layers with a dropout rate of 0.3 were included in
the fusion and dense layers. The attention
module within the fusion layer was implemented
using a sigmoid-based scoring mechanism
trained jointly with the primary model. Cross-
entropy loss was used for tumor classification,
while mean squared error loss was used for
severity prediction. A weighted total loss was
computed using a weight ratio of 1.0 for
classification and 0.5 for severity regression.

The prototype application of NeuroExplainAl is
structured to support end-to-end inference with
inputs comprising preprocessed MRI volumes
and patient metadata. After model inference, the
outputs include the predicted tumor Cclass,
severity score, Grad-CAM++ heatmaps for each
modality, and SHAP feature attribution scores.
All visual outputs are generated as PNG files and
stored per patient for interpretation. The entire
pipeline, including preprocessing, segmentation,
feature extraction, prediction, and explanation,
has been modularized for easy replication. Code
scripts, trained weights, and configuration files
are maintained with version control, allowing
other researchers to reproduce the system setup
under similar computational conditions.

4.1 Exploratory Data Analysis

This section presents the exploratory data
analysis conducted on the BraTS 2021 dataset,
offering insights into the nature of input data. It
includes representative samples from training
and testing sets across MRI modalities and a data
distribution graph highlighting the class
imbalance between HGG and LGG cases. This
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strategies.

(a) Fluid- (b) Tl-weighted
attenuated MRI
Inversion
Recovery

(c) Tl-weighted (d) T2-weighted
Contrast- MRI
Enhanced MRI

Figure 3:Representative MRI Modalities From Brats 2021 Training Samples: (4) FLAIR (Fluid-Attenuated Inversion
Recovery), (B) T1-Weighted MRI, (C) T1-Weighted Contrast-Enhanced MRI (Tlce), And (D) T2-Weighted MRI

Figure 3 displays four MRI modalities from the
BraTS 2021 training dataset used in this study.
Each modality highlights different tumor
characteristics: FLAIR for edema, TI1 for

structural detail, Tlce for enhanced tumor

NeuroExplainAl.

regions, and T2 for fluid content. Their
complementary information enables
comprehensive analysis, forming the foundation
for  effective  multimodal learning in

(a) Fluid- (b) Tl-weighted
attenuated MRI
Inversion
Recovery

(c) Tl-weighted (d) T2-weighted
Contrast- MRI
Enhanced MRI

Figure 4: Representative MRI Modalities From Brats 2021 Test Samples: (A) FLAIR (Fluid-Attenuated Inversion
Recovery), (B) T1-Weighted MRI, (C) T1-Weighted Contrast-Enhanced MRI (Tlce), And (D) T2-Weighted MRI

Figure 4 shows a sample test image from the
BraTS 2021 dataset for four MRI modalities. The
scanner types used in the data include FLAIR,
T1, Tlce, and T2-weighted scans, which possess
distinct features of the pathology of brain tumors.

Test samples are real-case-variety data employed
for evaluation to determine the generalizability,
robustness, and predictive power of the proposed
NeuroExplainAl framework.
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Data Distribution Dynamics in BraTS 2021 Dataset
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Figure 5:Data Distribution Dynamics Of The Brats 2021 Dataset Across Tumor Classes

Figure 5 shows the distribution of HGG and
LGG samples per class in the BraTS 2021
dataset for training, validation, and testing. The
above chart shows a significant class imbalance,
with HGG cases considerably outweighing LGG
cases. This imbalance reinforces the need for
efficient model training strategies for equal
performance across tumor types in the proposed
framework.

To mitigate such an inherent class imbalance, the
NeuroExplainAl ~ framework  leverages a
weighted categorical loss function during the
training phase for adapting weights to the
minority class (LGG) instances to ensure that
they contribute proportionally to model
optimization. Moreover, data augmentation
approaches were applied only to the type of
samples in the lower numbers for the targeted
class of samples to achieve generalization and
negate potential model bias towards the related
HGG type.

4.2 Performance Analysis

Performance Analysis follows, where we analyze
the performance of the proposed
NeuroExplainAl framework against significant
classification and regression parameters. We
provide further empirical results on accuracy,
precision, recall, Fl1-score, MAE, and RMSE in
this  section, showing our performance
outperforming the baseline as we publish our
results through this section. The results were

further validated in external patient cohorts,
confirming the system's robustness, reliability,
and clinical relevance in brain tumor diagnosis
and severity prediction.

- Training and Validation Accuracy Dynamics of NeuroExplainAl

Traning Accuracy
&~ Validation Accuracy /'

Accuracy (%)
&

75 J

0 5 10 15 20 25 3‘0
Epochs

Figure 6:Training And Validation Accuracy
Progression Of The Proposed Neuroexplainai Model
Over 30 Epochs
Figure 6 shows NeuroExplainAl's accuracy
evolution as it trained. The accuracy of training
and validation increases steadily, converging
around epoch 25. The validation accuracy, in this
case, is also similar to the training, having
reached well over 97%. This corroborates and
validates the learning that occurred without any
sign of overfitting throughout the training
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process, demonstrating generalization Figure 7 illustrates NeuroExplainAl's loss
performance. dynamics across training epochs. Both training
and validation losses decrease steadily,
Training and Validation Loss Dynamics of NeuroExplainAl indicating effective model optimization. By the
n S final epochs, the validation loss closely aligns
- ValdtonLoss with the training loss, confirming minimal
14 k’\\ overfitting. The smooth convergence pattern
highlights the stability of the training process and
12 the robustness of the model’s learning strategy.
10
g0 \\\
06 i
\
o '\/\\‘
02 '/\k\

0 5 10 5 2 5 W

Epochs

Figure 7:Training And Validation Loss Dynamics Of
The Neuroexplainai Model Over 30 Epochs

Confusion Matrices of Models for Tumor Classification
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Figure 8:Confusion Matrices Of Five Models For Brain Tumor Classification: (4) CNN Only, (B) Radiomics + SVM,
(C) CNN + Clinical Metadata, (D) CNN + Radiomics, And (E) Neuroexplainai

Figure 8 presents confusion matrices comparing
the classification performance of five models.
NeuroExplainAl achieves near-perfect prediction
accuracy ~ with  minimal errors, clearly
outperforming other models. CNN-only and
radiomics-based  methods show  higher

misclassification rates, especially between HGG
and LGG. The visualization highlights the
effectiveness of NeuroExplainAl in accurately
distinguishing  brain  tumor types using
multimodal data and fused features.
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Table 3: Performance Comparison Of The Proposed Neuroexplainai Framework With Baseline Models For Brain

Tumor Classification And Severity Prediction

Model Accuracy Precision Recall F1- MAE RMSE

(%) (%) (%) Score (Severity) (Severity)
(%)

CNN Only (MRI | 87.2 85.6 86.4 85.9 0.68 1.04

Modalities)

Radiomics + SVM 81.3 80.1 79.5 79.8 0.91 1.36

CNN + Clinical | 89.4 88.7 87.9 88.3 0.61 0.96

Metadata

CNN + Radiomics | 91.2 90.5 90.1 90.3 0.56 0.89

(Early Fusion)

NeuroExplainAl 98.34 97.91 97.56 97.73 0.38 0.63

(Ours)

Table 3 presents a comparative analysis of
NeuroExplainAl against baseline models using
key classification and regression metrics. The
proposed model outperforms all baselines,
achieving the highest accuracy of 98.34% and

the lowest error in severity prediction. This
highlights the effectiveness of multimodal
feature integration and attention-based fusion in
enhancing diagnostic accuracy and clinical
interpretability.

Performance Comparison Across Models
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Figure 9:Comparison Of Neuroexplainai And Baseline Models Across Classification Metrics (A—D) And severity
Prediction Metrics (E-F)

In Figure 9 Performance Comparison Against
Baseline ModelsDuring the evaluation process,
the proposed NeuroExplainAl is compared with
four existing baseline models. Parts (a) through
(d) of the subfigures show classification
performance's accuracy, precision, recall, and
Fl-score. We find that NeuroExplainAl results
has the most favorable performance on all of
these metrics, suggesting its ability to identify
brain tumor classes accurately and consistently.
We achieved a classification accuracy of

98.34%, which substantially outperforms the
next-best ensemble model, combining CNN and
radiomic features without attention or metadata.
Moreover, the precision, recall, and F1-score of
NeuroExplainAl models are consistently higher
than 97%, again confirming the advantage of
multimodal feature integration and attention-
based feature fusion.

Subfigures (e) and (f) emphasize the model's
predictive capabilities in terms of disease
severity, as assessed by MAE (mean absolute
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error) and RMSE (root mean squared error). It is
also important to note that NeuroExplainAl gives
the lowest MAE (0.38) and RMSE (0.63), thus
demonstrating its superiority in regressing
clinically relevant severity scores with increasing
accuracy compared to all baseline configurations.
Such performance is especially pronounced
compared to conventional radionics and support
vector machine-based models, which present
much higher error rates. The Joint improvement
in classification and regression metrics indicates
the robustness of the NeuroFusionNet
architecture and its potential to learn jointly from
the deep, radiomic, and clinical feature space.
These findings confirm that NeuroExplainAl

supports accurate and precise clinical diagnostics
and improves clinical decision-making through
precise severity estimation.

4.3 Ablation Study

An ablation study is performed to evaluate the
impact of specific elements in the
NeuroExplainAl framework—such as radiomic
features, clinical metadata,attention fusion, and
dual-task learning—on model performance. The
analysis shows the importance of these features
by iteratively slicing them away or changing
them. Our results underscore the importance of
each component in achieving the best diagnostic
accuracy and most accurate severity prediction.

Table 4: Ablation Study Results Showing The Performance Impact Of Removing Or Modifying Key Components In The
Neuroexplainai Framework

Model Variant Accuracy | Precision | Recall | F1- MAE RMSE

(%) (%) (%) Score (Severity) (Severity)
(%)

NeuroFusionNet without | 94.7 93.8 93.5 93.6 0.52 0.78

Radiomic Features

NeuroFusionNet without | 93.9 93.1 92.4 92.7 0.58 0.84

Clinical Metadata

NeuroFusionNet without | 92.6 91.5 91.1 91.3 0.61 0.88

Attention Fusion Layer

Single-Task Model | 91.4 90.7 90.1 90.4 —

(Classification Only)

Single-Task Model | — — — — 0.59 0.90

(Severity Prediction Only)

Full NeuroExplainAl (All | 98.34 97.91 97.56 97.73 0.38 0.63

Components)

As Table 4 shows, NeuroExplainAl's ablation
study results examine the exclusion of radiomic
features, clinical meta-data, attention fusion, and
dual-task learning. We found that all of these
components contribute significantly to the
model's performance, with the full model
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producing the highest accuracy and lowest
severity prediction errors. Six of these elements
showed that a lack of attention or metadata led to
decreased effectiveness in both classification and
regression, highlighting the significance of a
multimodal approach.
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Ablation Study: Performance Metrics of NeuroExplainAl Variants
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Figure 10:Ablation Study Results For Neuroexplainai Across Different Model Variants

We also conducted an ablation study to
demonstrate the importance of the introduced
features, the results of which can be found in
Figure 10. Classification metrics such as
accuracy, precision, recall, and Fl-score are
demonstrated in (a)-(d), while (e) and (f) show
the errors in severity prediction using MAE and
RMSE for regression, respectively. Our full
model shines in all metrics, indicating the power
of our multi-source design and attention-based
fusion.

The results show that removing the 2D radiomic
features leads to a significant drop in all
classification metrics, which indicates the
contribution of the 2D radiomic features to the
tumor texture and intensity patterns. A similar
trend can be observed in precision and recall
when excluding clinical metadata, highlighting
the importance of patient-specific contextual
data. Similarly, eliminating the
mechanism also leads to a performance drop
since the model cannot learn to pick essential
features.

6741

The capacities of the single-task varieties seem
to be finite. The classification model performs
less than the complete model, and the severity-
only model produces larger MAE and RMSE,
indicating that pattern joint learning promotes
generalization. The ablation results highlight that
all of these components, radionics, metadata,
attention, and multi-task learning, are critical for
the excellent diagnostic and predictive
performance of the NeuroExplainAl framework.
4.4 Performance Comparison with Existing
Methods

This section provides a comparative assessment
of NeuroExplainAl against leading existing
approaches for diagnosing brain tumors. The
comparison is made in terms of classification
accuracy, Fl-score, and severity prediction error

(MAE). NeuroExplainAl's end-to-end
multimodal structure, attention-based fusion
attention method, and explainable dual-task learning

ability enabled the outstanding performance
observed in the results.
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Table 5: Comparative Analysis Of The Proposed Neuroexplainai Framework Against Existing Methods

Method

Accurac
y (%)

F1-
Scor
e
(%)

MAE
(Severit

y)

Explainabili
ty

Modality
Used

Learning
Task

Remarks

Zeineldin et al.

(2]

94.5

93.6

Grad-CAM

Multimod
al MRI

Segmentatio
n

High
segmentatio
n
performance
; lacks
classificatio
n or severity
scoring

Farhan et al.

(3]

92.8

91.7

SHAP, Grad-
CAM

Tl1, T2
MRI

Segmentatio
n

Ensemble
with  XAI
no
classificatio
n or severity
prediction

Ahmed et al.

(4]

94.1

92.9

0.55

XAl
(Attention)

Multimod
al MRI

Classificatio
n + Risk

Includes
severity; no
radionics or
metadata

Haque et al

[35]

933

92.5

Layer-wise
Relevance

MRI

Classificatio
n

Explainable
classificatio
n; lacks
multimodal
integration
and severity

Hosny et al

[36]

95.4

94.6

0.49

Grad-
CAM++,
SHAP

TI, T2,
FLAIR

Detection +
Grading

Strong
grading
performance
; lacks
metadata
and
attention-
based fusion

NeuroExplain
Al (Ours)

98.34

97.7

0.38

Grad-
CAM++,
SHAP

T1, Tlce,
T2,
FLAIR +
Metadata

Classificatio
n + Severity
(Dual)

Outperform
s all
baselines;
full
integration
of
multimodal,
metadata,
XAl

Fl-score and the lowest MAE of the severity

Table 5 compares NeuroExplainAl with notable
existing methods in terms of performance,
modality, learning tasks, and explainability.
NeuroExplainAlobtains the highest accuracy and

prediction. It offers a top-notch diagnostic
framework by leveraging multimodal data,
clinical metadata, and advanced explainability
methods.
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Performance Comparison with Existing Methods
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Figure 11:Performance Comparison Of Neuroexplainai With Existing Methods. Subfigures Show (A4)
Classification Accuracy, (B) F1-Score, And (C) Severity Prediction Error (MAE)

In Figurell, we compare NeuroExplainAl's
performance with existing brain tumor diagnosis
models to demonstrate its superior performance.
As presented in the results, NeuroExplainAl
outperforms all the compared methods with an
accuracy of 98.34%. This is a significant
improvement over the existing approaches, such
as those by Hosny et al., Zeineldin et al., and
Ahmed et al., which showcase the proposed
architecture's robustness in fusing different data
sources and extracting strong representations.
For the Fl-score, which balances precision and
recall, NeuroExplainAl again performs the best
(97.73%), which means it can have lower false
favorable and false negative rates. Similarly,
Hosny et al. and Zeineldin et al. exhibit complex
(confidence) but lower F1-scores, indicating that
they perform strongly in some dimensions but
not in the overall balance across the contributed
elements that the proposed method offers with
limited features.

Only a few of the existing models are capable of
severity prediction. NeuroExplainAl shows the
Original Image

best performance with a MAE of 0.38, better
than Ahmed et al. and Hosny et al., which report
heightened prediction errors. The decreased
MAE observed in this scenario validates the
constructive impact of adopting a dual-task
learning approach combined with attention-
guided multimodal feature integration to refine
the accuracy of severity prediction. The results
collectively demonstrate the proposed
framework's competency for accurate
classification and clinically relevant severity
scoring, and its interpretability via there-within
integrated XAl modules.

4.5 Results of Explainable

We will illustrate the interpretability of the
NeuroExplainAl  framework approach using
Grad-CAM++ and SHAP. This will deliver
answers in both visual and quantitative forms as
to how the model generates predictions for
classification (HGG v LGG) and severity
prediction, thus granting further insight into the
model’s decision process.

Grad-CAM++ Visualization

Figure 12:Grad-CAM++ Visualization For Tumor Classification
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In the proposed NeuroExplainAl framework, we
show a Grad-CAM++ visualization of thetumor
classification task in Figure 12. The left
screenshot displays the original MRI scan of the
brain, and the right corresponds to the Grad-
CAM++ heatmap, which indicates the parts of
the remaining MRI scan that are most influential
to the model's decision. The regions highlighted

-

-0.100

] | ] {
-0.075 -0.050 -0.025 0.000

in red correspond to areas of maximum impact
on the classification, showing the tumor's
location. This visualization allows us to gain
insight into what the model focuses on during
classification, giving  transparency  and
interpretability, which are very important for
clinical validation and decision-making.

] | | |
0.025 0.050 0.075 0.100

SHAP value

Figure 13:SHAP Value Visualization For Feature Attribution

SHAP SHAPvalue visualization shows model
decision-making when classifying tumors, as
shown in Figure 13. The leftmost image is the
original MRI scan, overlaid with SHAP values,
which measure the contribution of each region to
the model’s prediction. The color scale
indicating the contribution to the tumor
classification from blue (negative impact ) to red
(positive effect) helps interpret how different
components of the image of the brain affect the
classification. On the right side, the image
displays a heatmap highlighting the SHAP
values, helping the clinicians to identify the
regionsmost relevant to the model prediction.

5. DISCUSSION
Background: Diagnosing and grading brain

tumors based on magnetic resonance imaging
(MRI) is a crucial task in neuro-oncology, and it

hassignificant consequences for clinical practice
and outcomes. In particular, deep learning-based
methods have shown great potential in tumor
segmentation and classification, but there are still
many challenges. Most models concentrate on
only segmentation or classification, frequently
using only one imaging modality and not
considering  essential  clinical  metadata.
Moreover, most so-called state-of-the-art
approaches have not sufficiently addressed
explainability and interpretability, making
acceptance in clinical settings more complex
where the transparency of decision-making is
essential.

To close these gaps, this work proposes
NeuroExplainAl: a complete and explainable
deep learning framework for automated brain
tumor diagnosis and severity prediction
leveraging multimodal MRI data. Our novelty is
underpinned by simultaneously fusing three key
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components—deep CNN-based imaging features
with radio mic descriptors and patient clinical
metadata, an attention-guided focal fusion
mechanism to filter the irrelevant feature regions,
and a dual-branch architecture for concurrent
classification and severity scoring. The combined
design optimally learns spatial, textural, and
contextual information, improving diagnostic
performance and clinical interpretability.

Experimental results confirm that
NeuroExplainAl is an effective method and
yields up to 98.34% in accuracy, 97.73% in F1-
score, and 0.38 in MAE for predicting the
severities, outperforming the baseline models as
well as existing approaches with high statistical
significance. Together with the ablation study,
these results confirm the critical contribution of
each component, especially the attention fusion
layer and the metadata, which are responsible for
the gains in classification accuracy and
prediction  robustness.  Additionally, the
complementary use of Grad-CAM++ and SHAP
brings transparency to our model, providing
visual and feature-based level explanations and
explicitly improving the explainability of the

existing models. In conclusion, this work
presents a patient-specific, practical, and
interpretable Al solution  for  clinical

neuroimaging workflows that facilitates more
trustworthy decision support systems further
upstream of the clinical workflow.

There are several important implications of the
current study for researchers and clinicians. First,
when incorporating deep CNN features with
radiomic and clinical metadata, the predictive
performance improves significantly on tumor
diagnosis and prognosis in the brain. Second, the
attention-guided fusion mechanism is introduced
to align heterogeneous data, so that the model
can focus on clinically informative information.
Third, interpretability tools such as Grad-
CAM++ and SHAP enhance transparency and
acts as a link between black-box model and
clinical decisions. Taken together, they shed
more insights in how reliable Al systems on
multimodal data can be made high-performance
as well as interpretable, serving as a roadmap for
future developments in trustworthy Al for
healthcare.

Although the proposed framework
NeuroExplainAl shows promising results for
classification accuracy, severity scoring, and
explainability, some issues deserve additional
consideration. First, challenging the brain tumor
subtype classification is of great clinical

significance, the incorporation of clinical
metadata did increase the performance, however,
the richness of metadata in the BraTS dataset
was limited to the basic demographics, more
clinical indicators (such as genetic markers,
treatment history, etc) would improve the
predictive  depth. Second, the attention
mechanism in the fusion layer, though improved,
may over-fit modality specific features with far-
fromperfect regularization between extremely
imbalanced samples. Finally, as efficient as dual-
task learning is, it can present a gradient
interference problem between the classification
and the regression, which may lead to
optimization issues on the edges. These factors
suggest future architectural improvement and
clinical validation.

This study is subject to limitations discussed
separately below in Section 5.1.

5.1 Limitations of the Study

The current study, despite its high performance,
has three limitations. First, it was trained and
validated on a single public dataset, which may
restrict its generalizability in invisible clinical
conditions. Second, the segmentation module is
based on pre-trained architectures, limiting
versatility in adapting to different tumor
morphologies. Third, Grad-CAM++ and SHAP
provide practical interpretability, but their
outputs necessitate expert validation before
incorporation into clinical practice. These
considerations, however, underline that this
early-stage study requires both multi-institutional
validation on larger datasets and the development
of adaptive segmentation functions, with
clinician-in-the-loop assessment of performance,
as necessary next steps as the full potential of
practical deployment of NeuroExplainAl into
real-world diagnostic routines will only be
realized by doing this.

Unlike previous works which typically target
single modality only (i.e., classification or
segmentation) using unimodal imaging data, our
work proposes a unified, explainable framework
that fills the gap in several aspects of the
literature. The majority of current models do not
incorporate handcrafted radiomic features and
clinical data and hence do not provide the
contextuality and personalization. Moreover,
multitask learning-combining tumor class and
severity predictions-are hardly investigated in
previous works. NeuroExplainAl contributes to
the literature by combining deep CNN features,
radiomic features and patient level metadata
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using an attention-guided approach, obtaining
superior diagnostic accuracy and severity
scoring. Moreover, the fusion of Grad-CAM++
and SHAP yields interpretable visual and
feature-level explanations that alleviate the
black-box nature of previous deep learning
models. Addition of statistical verification
further improves the clinical credibility of the
predictions. In summary, the proposed work is
significantly distinct and superior to existing
methods by providing a comprehensive,
interpretable, and multimodal solution that is
designed  for real-world  neuro-oncology
applications.

5.2 Challenges and Open Research Problems
Although NeuroExplainAl shows promising
results within the multimodal, interpretable
diagnosis of brain tumor and its related severity,
there are still several challenges and open
research issues towards success in the field. First,
the model was trained solely on one dataset
(BraTS 2021), which restricts the generalizability
to other imaging protocols and demographic
groups. Further investigation is needed to
validate its robustness across multi-institutional
datasets under different acquisition scenarios.
The second limitation lies in the fact that the
clinical data set we have used revolves around
more elementary phenotypes such as age and
gender; including deeper contextual information
on cases (e.g., treatment history and genomic
profiles) could lead to even more performance of
predictive power and personalization of
treatment. Third, while Grad-CAM++ and SHAP
offer valuable interpretation, their outputs need
clinical validation, and the missing of clinician-
in-the-loop feedback loops impede their practical
application in the real world. Furthermore, the
dual-task scheme may have optimization conflict
when considering more complex or multi-label
predictions. Last but not least, online inference
efficiency and model compression for edge
deployment to be applied in low-resource
hospital environments are yet to be fully
investigated regarding the technical challenges.
Solving these challenges will lay the foundation
for reliable, adaptive, and clinically applicable
Al systems in neuro-oncology.

6. CONCLUSION AND FUTURE WORK

In this paper, we presented NeuroExplainAl, a
science inspired and clinically motivated XDL
framework for brain tumor diagnosis and

severity prediction from multimodal MRI. The
novelty of our work lies in the creation and
validation of a  dual-task  framework
(NeuroFusionNet) which successfully integrates
deep features, radiomic features, and clinical
metadata using an attention based mechanism on
top of the conventional single-task, unimodal
models. Finally, the model is further combined
with a two-level explainability module (Grad-
CAM++ and SHAP) to achieve spatial and
feature-level understanding, helping to provide
explanations to clinicians and build trust in
clinical settings. Statistical validation encourages
links between model outputs and anatomical/
volumetric evidence, providing an unusual
combination of AI prediction and clinical
knowledge. The designed model surpassed all
the state-of-the-art methods in both classification
accuracy (98.34%) and severity prediction (MAE
=0.38). Those findings support the scientific and
translational relevance of our methodology. For
future work, we plan to generalize the framework
to other datasets, to improve segmentation
flexibility and receive clinician-in-the-loop
feedback to improve readiness for deployment..
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