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ABSTRACT 

 
The correct diagnosis and prediction of malignancy in brain tumors are critical for neuro-oncology, as they 
directly influence clinical decision-making. Although deep learning models have had notable success in 
tumor classification and segmentation based on MRI data, most existing approaches are limited in three 
aspects: building on imaging modalities only, disregarding clinically relevant metadata, and lacking 
interpretability because of non-integrated explainable AI (XAI). To overcome these limitations, we present 
NeuroExplainAI, an explainable deep learning framework for a holistic brain tumor diagnosis and grading. 
We present NeuroFusionNet, a dual task architecture to fuse deep CNN features with hand crafted radiomic 
descriptors and patient-level clinical metadata in the form of data-attention. This allows for classification 
(HGG versus LGG) and severity scoring to be performed concurrently. For decisor transparency, both 
spatial and channel-level explanations are included using Grad CAM++ and SHAP. The model is trained 
and tested on BraTS 2021 dataset with 98.34% accuracy, 97.73% F1-score and MAE=0.38 for severity 
prediction. This paper provides novel insights into the clinical interpretability of multimodal fusion and 
attention-based weighting, in addition to its effect on the predictive performance. Ablation study and 
comparisons with state-of-the-arts demonstrate the necessity and effectiveness of each component. The 
incorporation of explainableAI techniques builds trust and improves usability in clinical workflows, 
making NeuroExplainAI an appealing platform for reliable, interpretable, and individualized brain tumor 
assessment. 
Keywords - Brain Tumor Diagnosis, Multimodal MRI, Explainable AI, Severity Prediction, Deep Learning 

Framework 
 
1. INTRODUCTION  
 
Brain tumors are among the most critical and 
life-threatening conditions in neurology, often 
requiring rapid and accurate diagnosis to guide 
treatment strategies. Magnetic Resonance 
Imaging (MRI) is central toidentifying and 
assessing brain tumors due to its high spatial 
resolution and multiparametric capability. 

However, manual interpretation of MRI scans is 
subject to inter-observer variability, and 
traditional radiological assessments may fail to 
capture subtle imaging cues. Deep learning 
techniques have emerged as powerful tools for 
automating brain tumor diagnosis and 
segmentation to address these challenges, 
offering high accuracy and consistency. While 
several recent models [1], [2] have demonstrated 
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success in tumor classification or segmentation, 
most rely solely on imaging data, neglecting 
valuable non-imaging information such as 
clinical metadata. Moreover, the lack of 
explainability in many existing deep learning 
models poses a significant barrier to clinical 
adoption. 
Recent studies have explored hybrid models 
combining CNNs with vision transformers [2], 
ensemble learning [3], and attention mechanisms 
[4], showing improvements in classification and 
segmentation tasks. Nevertheless, few 
approaches support dual-task learning for 
classification and severity prediction, and even 
fewer integrate radiomic features and clinical 
metadata into the decision-making pipeline. 
There remains a critical need for interpretable, 
multimodal AI systems capable of providing 
comprehensive diagnostic outputs that clinicians 
can trust and validate. 
This research proposes NeuroExplainAI, an 
explainable and integrated AI framework for 
brain tumor diagnosis and severity prediction 
using multimodal MRI to address these gaps. 
The primary objective is to design a deep-
learning model that classifies tumor types (HGG 
vs. LGG) and predicts tumor severity scores 
using a dual-task architecture. The proposed 
system introduces several key novelties: (1) 
multimodal feature fusion of deep CNN features, 
radiomic descriptors, and clinical metadata; (2) 
an attention-guided fusion layer to prioritize 
informative features; and (3) explainability via 
Grad-CAM++ and SHAP to ensure transparency 
in decision-making. Additionally, the framework 
includes statistical analysis to correlate tumor 
features with severity outcomes, enhancing 
clinical insight. 
The contributions of this work are multifold. 
First, we develop a robust NeuroFusionNet 
architecture that performs classification and 
regression jointly. Second, we demonstrate the 
impact of radiomics and clinical metadata in 
improving diagnostic performance. Third, we 
implement a dual-level explainability module 
that visualizes spatial and feature-level 
attributions. We conduct extensive evaluations, 
including ablation studies and comparisons with 
state-of-the-art methods. 
Notwithstanding the increasing enthusiasm in the 
field of deep learning for brain tumor diagnosis, 
most prior frameworks are confined either to a 
single-task learning or a particularly narrow 
application on imaging data, largely dismissing a 
wealth of complementary information extracted 

from radiomic features and patient-specific 
clinical metadata. Additionally, the black-box 
nature of these models is a major obstacle to the 
clinical acceptance of these models because 
clinicians cannot interpret the outputs of the 
model or validate the decisions of the model. 
Since brain tumors present a wide range of 
morphological and contextual patterns from 
patient to patient, an overall interpretable and 
unified system, which integrates multimodal 
information, is in high demand. This study fills 
these key gaps by presenting a holistic 
interpretable and dual-task AI model -- 
NeuroExplainAI -- aiming at both accurate tumor 
classification, severity scoring and providing a 
transparency to the decision-making. The use of 
spatial (Grad-CAM++) and attribution-based 
(SHAP) explainability modules strengthens 
clinical trust, distinguishing this work from 
classic black-box models, and sets a new state-
of-the-art for diagnostic assistance in neuro-
oncology. 
The remainder of this paper is organized as 
follows: Section 2 provides an in-depth literature 
review on explainable deep learning-based brain 
tumor diagnosis. Section 3 details the proposed 
NeuroExplainAI methodology, which includes 
the preprocessing stage, segmentation process, 
feature extraction and description, model 
architecture, and explainable AI integration. 
Section 4 presents the experimental results, 
including performance analysis, ablation studies, 
and comparative evaluations. Section 5 discusses 
the findings and limitations of the study in detail. 
Finally, Section 6 summarizes the article with 
some takeaways and directions for future 
research. 
 
2.RELATED WORK 
 
This literature review highlights recent trends in 
explainable AI and deep learning techniques for 
braintumor diagnosis based on multi-modal 
MRI. Zeineldin et al. For example, [1] examined 
the incorporation of explainability into deep 
neural networks used for MRI-based brain tumor 
analysis, facilitating greater interpretability for 
clinical decision-making. Zeineldinet al. [2] 
recent work, where they employed vision 
transformers along with CNNs in a hybrid 
approach of multimodal glioma segmentation 
that performed with high accuracies and 
explainable study outputs. Farhan et al. [3] 
introduced an ensemble 3D brain tumor 
segmentation technique in XAI-MRI using dual-
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modality MRIs with attention-based 
explainability. Ahmed et al. Proposed a hybrid 
ViT-GRU model for brain tumor classification in 
Bangladesh, with explanations through XAI 
visualization to improve the transparency of the 
model. Maqsood et al. [5] employed deep neural 
networks and support vector machines (SVM) 
for multimodal tumor detection, achieving 
promising classification performance. Aleid et al. 
AI-based MRI analysis was used by [6] to deploy 
an early detection method. Di Noia et al. [7] 
discussed AI approaches used in outcome 
prediction, specifically in MRI-based 
prognostics. Anand et al. [8] present a 
multimodal segmentation classification pipeline 
with machine learning integration. Gesperger et 
al. His work [9] applied deep learning and 
multimodal microscopy to enhance diagnostic 
imaging. Khalighi et al. [10] explored the state of 
AI in neuro-oncology, emphasizing diagnosis, 
prognosis, and precision therapy. 
Li et al. [11] introduced a deep learning 
framework for hemorrhagic lesion detection and 
segmentation in brain CTs, showcasing 
transferability to tumor detection tasks. Amin et 
al. [12] developed a CNN-based brain tumor 
classification model using MRI scans, 
emphasizing high-speed detection. Saba et al. 
[13] proposed a hybrid model that fuses 
handcrafted and deep features, improving 
classification accuracy and robustness. Amin et 
al. [14] leveraged stacked autoencoders for 
automatic tumor detection, offering a 
hierarchical representation of tumor features. 
Oksuz [15] addressed MRI artifacts using CNNs, 
indirectly improving preprocessing for brain 
tumor analysis. Woźniak et al. [16] used a 
correlation learning mechanism for CT-based 
tumor detection, highlighting potential cross-
modality generalizability. Kalaiselvi et al. [17] 

utilized pseudo coloring to enhance multimodal 
MRI features for tumor detection. Using 
multimodal MRI, Sun et al. [18] developed a 
deep-learning pipeline for tumor segmentation 
and survival prediction. Li et al. [19] proposed a 
CNN-based model integrating multimodal fusion 
for tumor classification. Peng and Sun [20] 
introduced AD-Net for multimodal 
segmentation, achieving high performance using 
attention-driven fusion. 
Kermi et al. [21] applied a U-Net-based deep 
CNN for brain tumor segmentation using 
multimodal MRI, achieving substantial spatial 
accuracy. Windisch et al. [22] emphasized 
explainability by integrating model 
interpretability into CNNs for essentialtumor 
detection using MRI slices. Atasever et al. [23] 
provided a comprehensive survey on medical 
image analysis using deep learning, focusing on 
the significance of transfer learning in diagnostic 
tasks. Tripathy et al. [24] implemented 
EfficientNet for brain tumor classification from 
MRI, improving both accuracy and 
computational efficiency. Preetha et al. [25] 
conducted a comparative study of deep neural 
network architectures for tumor segmentation, 
evaluating performance across different 
backbones. Ahmad and Choudhury [26] assessed 
transfer learning models for brain tumor 
detection, highlighting VGG and ResNet as 
strong performers. Anaya-Isaza and Jiménez [27] 
used data augmentation with transfer learning to 
enhance classification from MRI. Khan et al. 
[28] proposed a deep CNN framework with high 
tumor detection accuracy. Solanki et al. [29] 
reviewed intelligent techniques for tumor 
classification. Ottom et al. [30] introduced ZNet 
for 2D tumor segmentation with improved 
boundary delineation. 

 
 

Table 1: Literature Review Summary Of Selected Related Works On Brain Tumor Diagnosis Using Deep Learning 
Author 
and Year 

Model / 
Technique 

Modality Task Explainability Key Limitations 

Zeineldin 
et al. [2] 

Hybrid ViT + 
CNN 

Multimodal 
MRI 

Segmentation Grad-CAM No severity 
prediction; lacks 
clinical metadata 
integration 

Farhan et 
al. [3] 

Ensemble 
CNNs 

T1, T2 MRI 3D 
Segmentation 

SHAP, Grad-
CAM 

No classification; 
lacks metadata and 
global interpretability 

Ahmed et 
al. [4] 

ViT + GRU Multimodal 
MRI 

Classification 
+ Risk 

Attention-based 
XAI 

No radionics; lacks 
spatial explainability 
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Maqsood 
et al. [5] 

DNN + 
Multiclass 
SVM 

Multimodal 
MRI 

Detection Not mentioned No explainability; 
limited field 
adaptability 

Amin et 
al. [12] 

CNN 
Classifier 

MRI Classification Not included Single modality; lacks 
severity scoring 

Kermi et 
al. [21] 

U-Net (CNN) Multimodal 
MRI 
Volumes 

Segmentation Not included Segmentation only; 
lacks explainability 

Haque et 
al. [35] 

NeuroNet19 
(DNN) 

MRI Classification Layer-wise 
Relevance 

No severity 
prediction; lacks 
multimodal 
integration 

Hosny et 
al. [36] 

Ensemble 
Deep CNN 

T1, T2, 
FLAIR 

Detection + 
Grading 

Grad-CAM++, 
SHAP 

No attention fusion; 
limited clinical 
metadata use 

Sun et al. 
[18] 

Deep CNN Multimodal 
MRI 

Segmentation 
+ Survival 

Not clearly 
stated 

No classification; 
lacks interpretability 

Hassan et 
al. [38] 

XAI-CNN MRI Segmentation SHAP No classification; no 
metadata integration 

 
Talukder et al. [31] proposed a fine-tuned deep-
learning model integrating reconstruction 
mechanisms for improved tumor categorization 
using MRIs. Anaya-Isaza et al. [32] presented a 
comparative analysis of neural architectures for 
MRI-based brain tumor detection, including 
cross-transformers and transfer learning. 
Nhlapho et al. [33] focused on bridging the 
interpretability gap in deep models, offering 
insights into explainable AI for MRI diagnosis. 
Taşcı [34] introduced DGXAINet, which 
integrates attention-based deep feature extraction 
with explainable learning for tumor localization. 
Haque et al. [35] proposed NeuroNet19, an 
explainable DNN architecture for brain tumor 
classification with high interpretability. Hosny et 
al. [36] developed an explainable ensemble 
model using multiple deep learners for detection 
and grading. Sinha et al. [37] introduced an XAI-
enhanced model that aids clinicians in tumor 
assessment. Hassan et al. [38] unfolded the 
structure of explainable models for accurate 
tumor segmentation. Li and Dib [39] emphasized 
trustable diagnosis using explainable deep 
learning. Naira et al. [40] built an explainable 
diagnostic model utilizing discharge summaries 
for MRI-based tumor classification.Table 1 
summarizes key literature on brain tumor 
diagnosis, comparing models' tasks, modalities, 
and limitations. NeuroExplainAI outperforms 
existing methods by integrating multimodal data 

and explainability. The reviewed studies 
demonstrate a growing emphasis on 
explainability, multimodal fusion, and hybrid 
architectures in brain tumor analysis. Techniques 
span CNNs, transformers, radionics, and transfer 
learning, with several works integrating saliency 
maps or SHAP for interpretability. They 
highlight the importance of accuracy, clinical 
trust, and robust multimodal diagnostic systems. 
The literature review presents many 
improvements in brain tumor grading and 
segmentation via deep learning. But a closer look 
reveals some long overdue deficiencies, albeit 
ones that are largely unaddressed. For instance, 
Zeineldin et al. [2] and Farhan et al. [3] 
implemented hybrids and ensembles which 
performed well in segmentation but did not 
support severity scoring or use of patient-level 
metadata. Ahmed et al. [4] performed XAI-
driven classification, but did not include hand-
crafted radiomic features or validated predictions 
using statistical analysis. In the same way, the 
models like Maqsood et al. [5] and Kermi et al. 
[21] only considered imaging data without 
explainability or multimodal fusion. However, 
these studies, technically remarkable as they are, 
either emphasize performance over 
explainability, or lack overall diagnostic insights. 
Third, the lack of frameworks that incorporate 
dual-task learning (classification + severity), 
multi-source feature integration and explainable 
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AI modules also exists a significant disparity in 
the practical application of these methods for 
real-life clinical practice. This problem space 
represents an unreasonable demand for a holistic, 
interpretable, and multimodal framework, which 
NeuroExplainAI specifically addresses and 
intends to ameliorate its shortcomings to 
improve both diagnostic accuracy and clinical 
utility. 
3. PROPOSED FRAMEWORK 
The proposed framework, named 
NeuroExplainAI, is a novel, explainable AI and 
statistical framework developed for automated 
diagnosis and severity prediction of brain tumors 
using multimodal MRI data. The system 
integrates deep learning, radiomic feature 

analysis, and clinical metadata to enhance 
prediction accuracy and clinical interpretability. 
It leverages a dual-path architecture for tumor 
classification (HGG vs. LGG) and severity 
scoring (e.g., WHO grade), supported by a 
comprehensive XAI module using Grad-CAM++ 
and SHAP for image-space and feature-space 
explanations, respectively. The core deep 
learning model, NeuroFusionNet, fuses 
modality-specific CNN features, handcrafted 
radiomic descriptors, and patient metadata 
through an attention-guided fusion layer. 
Additionally, statistical analysis complements 
the model outputs with volumetric and 
correlation-based insights to improve clinical 
relevance. 

 
Figure 1: System Architecture Of Neuroexplainai Illustrating The Complete Pipeline For Brain Tumor Diagnosis And 
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Figure 1 The NeuroExplainAI framework uses 
multimodal MRI data to automate brain tumor 
diagnosis and severity prediction. The system 
begins with the input of four MRI modalities—
T1, T1ce, T2, and FLAIR—which undergo 
standardized preprocessing steps, including skull 
stripping, bias field correction, z-score 
normalization, and spatial resampling with co-
registration. Segmentation of tumor subregions, 
such as the whole tumor and tumor core, and 
enhancing tumors is carried out using an 
advanced segmentation model, facilitating 
precise region-of-interest extraction. 
Subsequently, features are extracted from 
multiple sources: radiomic features from 

segmented regions, deep features from CNN 
encoders applied to MRI inputs and clinical 
metadata such as patient age and gender. These 
features are fused into a unified representation 
and passed to the NeuroFusionNet model, which 
performs dual tasks: classifying tumor type as 
HGG or LGG and predicting severity scores. 
Statistical analysis involving tumor volume, 
location weighting, and correlation metrics 
enhances interpretability, while Grad-CAM++ 
and SHAP explainability outputs offer visual and 
feature-level insights. Table 2 presents the 
notations used in the proposed methodology.  

 
Table 2: Notations used in the methodology 

Symbol (s) Description 
𝑋 ∈ ℝସ×ு×ௐ×஽ Multimodal MRI input volume (T1, T1ce, T2, FLAIR) 

𝑉 ∈ ℝு×ௐ×஽  , 𝑉ᇱ Single MRI modality volume and its z-score normalized version 
𝜇𝑣, 𝜎𝑣 Mean and standard deviation of non-zero voxels in 𝑉 

𝑀 ∈ {0,1}ு×ௐ×஽ Binary segmentation mask for tumor subregions (ET, TC, WT) 

𝑓஼ேே
(௜)  CNN feature extractor for modality ii 

𝐹ௗ , 𝐹௥ , 𝐹௖ Deep, radio mic, and clinical metadata feature vectors, respectively 
𝐹, 𝐹ᇱ, 𝐹ᇱᇱ Concatenated, fused, and attention-weighted feature vectors 

𝛼 Attention weights for recalibrating fused features 
𝑦ො௖௟௔௦௦ ,   𝑦ො௦௘௩ Predicted tumor class (HGG/LGG) and severity score or grade 

𝑦௞ , 𝑦௦௘௩  Ground truth class label and severity score 
𝑊௙ , 𝑏௙ , 𝑊௖௟௔௦௦ , 𝑏௖௟௔௦௦ , 𝑊௦௘௩ , 𝑏௦௘௩  Weights and biases in fusion, classification, and regression layers, 

respectively 
𝑃ℎ𝑖𝜙(. ) 𝜎(. ) ReLU and sigmoid activation functions 

 ⊙, ∥ Element-wise multiplication and vector concatenation operators 
𝐴௞, 𝛼௞

௖  CNN feature map and its importance weight in Grad-CAM++ 
𝐿ீ௥௔ௗି஼஺ெାା

௖  Saliency map highlighting discriminative regions for class 𝑐 
𝜙଴, 𝜙௜ SHAP base value and feature attribution for 𝑥௜ 

𝑆 Location-weighted severity score 
𝑇௑ , 𝑇௒ , 𝑇௓ Voxel resolutions along each axis (used in volume computation) 

𝑓(𝑥) Model output decomposed by SHAP into contributions. 
𝑠(. ) Attention or scoring function used for relevance computation 

 
3.1Data Acquisition and Preprocessing 
This study is based on the open-access BraTS 
2021 dataset [41], which consists of pre-
operative multimodal MRI of patients with brain 
tumors, targeting four imaging modalities: native 
T1-weighted (T1), contrast-enhanced T1-
weighted (T1ce), T2-weighted (T2), and fluid-
attenuated-inversion-recovery (FLAIR) imaging. 
Data from each subject contains co-registered, 
skull-stripped, and resampled volumes with a 
standardized voxel size of 1 mm³ (isotropic), 
normalizing the practical spatial dimension of all 
inputs. The dataset contains expert annotated 

ground truth regions of interest for tumor 
subregions, including enhancing tumor (ET), 
tumor core (TC), and whole tumor (WT), along 
with corresponding tumor grade labels (high-
grade glioma (HGG), low-grade glioma (LGG)). 
Although the dataset was preprocessed, 
normalization across subjects was performed to 
prevent the abovementioned artifacts from 
troubling the data. This was the z-score 
normalized for each modality volume.𝑉 ∈
ℝு×ௐ×஽ in the Eq. 1.  

𝑉ᇱ =
𝑉 − 𝜇𝑉

𝜎𝑉
                       (1) 
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Where 𝜇𝑉  and 𝜇𝑉 Are the mean and standard 
deviation of the non-zero voxels in the volume, 
respectively? Standardized all intensity 
distributions are to be equivalent across patients 
to help reduce scanner and subject variability. A 
3D reslicing operation standardized all MRI 
volumes, 240 × 240 × 155 Allowing batch 
input for the neural network pipeline.In the 
preprocessing step, skull stripping was again 
confirmed by applying a binary brain mask to 
remove any remaining extraneous brain tissue. 
Also,  the segmentation masks for tumor 
subregions were encoded into three separate 
channels, with each channel corresponding to 
each tumor region (ET, TC, WT). They were 
applied to monitor both the segmentation phase 
and the extraction of radiomic characteristics in 
anatomically relevant areas of the following 
phases. The preprocessed dataset retains spatial 
and intensity homogeneity, providing a solid 
base for downstream deep learning and statistical 
analysis. 
3.2Tumor Segmentation 
The authors use a variation of the U-Net++ 
architecture, which is modified to extract local 
and global spatial features from the multimodal 
MRI inputs for tumor segmentation. Each 
patient's input is a four-channel 3D volume.𝑋 ∈
ℝସ×ு×ௐ×஽where the four channels correspond 
to modalities T1, T1ce, T2, and FLAIR. The 
segmentation task learns a mapping 
function𝑓ఏ  That predicts voxel-wise 
predictions.𝑌෠  = 𝑓ఏ(𝑋)with 𝑌෠  ∈  ℝ஼×ு×ௐ஽  and 
𝐶 = 3 The following represent tumor 
subregions: enhancing tumor (ET), tumor core 
(TC), and whole tumor (WT), respectively. 
The classical encoder-decoder structure has been 
extended to a modified U-Net++ architecture, 
including attention gates and SE blocks. The 
attention gates enhance the model’s focus on 
tumor regions by inhibiting irrelevant 
background activations, while SE blocks 
adaptively recalibrate channel-wise feature 
responses, facilitating informative feature 
representations. The encoder comprises several 
convolution blocks containing 3D convolution 
layers followed by batch normalization and 
ReLU activation. 3D max-pooling layers are 
used for downsampling, and 3D transposed 
convolutions are used for upsampling during the 
decoder path. Skipping connectivity between the 
encoding and decoding layers is retained and is 
dense to preserve spatial details and prevent the 
loss of features. 

The model is trained with a compound loss 
function.ℒ௦௘௚   Whichdescribes the sum of the 
Dice loss and the binary cross entropy (BCE) 
loss, expressed in Eq. 2.  

ℒ௦௘௚  = 𝜆ଵ . ℒ஽௜௖௘  + 𝜆ଶ . ℒ஻஼ா                   (ଶ) 
Where 𝜆ଵ and  𝜆ଶAre weighting parameters 
empirically adjusted to balance the overlap 
accuracy and voxel-wise precision. For 
managing class imbalance, the Dice loss not only 
maintains overlap with groot truth tumor regions 
but also ensures that the segmentation model has 
the highest overlap with the ground truth. 
In the first step, segmentation output gives 
multi-label masks for each tumor subregion that 
the radiomic feature extraction module will use 
as input; in the second stage, they are used as 
auxiliary information to visualize tumor 
structures (explainable AI) in the final stage. 
Segmentation module of NeuroExplainAI 
pipeline Anatomically accurate segmentation 
provides a fundamental first step for subsequent 
downstream analysis. 
3.3Feature Extraction 
After tumor segmentation, a full-feature 
extraction method is utilized to achieve multi-
domain representations in diagnosis and 
prognosis prediction of tumor severity. 
Depending on their interpretation, the features 
are grouped into three categories: the deep 
features, the radiomic features, and the clinical 
metadata. In this sense, we expect the multi-
source feature strategy to enrich and generalize 
the representation of the downstream 
NeuroFusionNet model. 
 Dal city  -𝑀௜  ∈  {𝑇1, 𝑇1𝑐𝑒, 𝑇2, 𝐹𝐿𝐴𝐼𝑅}specific 
MRI volume passes through separate 3D 
convolutional branches to learn deep features—a 
compact 3D CN encoder 𝑒𝑑 to learn each 
modality's hierarchical spatial features in brain 
tissue. We flatten and concoutputs from these 
modality-specific ranches to generate a unified 
dep feature vector, cap F sub d, element of 
double-double-struck cap component n sub d, 
end superscript, 𝐹ௗ  ∈ ℝ௡೏𝑛ௗis the 
dimensionality of the learned features. These 
features capture high-level semantic information, 
including tumor location, shape, and texture 
across modalities. 
PyRadiomics toolkit is used to extract radiomic 
features from the segmented tumor regions. A 
feature set, which includes first-order statistics, 
shape descriptors, and texture features calculated 
using the Gray Level Co-occurrence Matrix 
(GLCM), Gray Level Run Length Matrix 
(GLRLM), and other related approaches, is 
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computed from each subregion, i.e., enhancing 
tumor (ET), tumor core (TC), and whole tumor 
(WT). We denote the resultingradio mic feature 
vector as 𝐹௥  ∈ ℝ௡ೝ Such features provide 
quantitative information of tumor heterogeneity 
and morphology that supplements what is 
captured in these deep learning-based model 
representations." 
Normalized numerical vector 𝐹௖ ∈ ℝ௡೎To encode 
clinical metadata such as patient age, gender, and 
tumor location (if available). Except for the 
targets, all non-numerical variables are one-hot 
encoded, and continuous variables are min-max 
scaled to the range [0, 1] so that neural network 
input is compatible.All three sources are 
concatenated to form the final composite feature 
vector. 𝐹 ∈ ℝ௡    as in Eq. 3.  
𝐹 = [𝐹ௗ‖𝐹௥‖𝐹௖]     (3) 
where ∥  is vector concatenation, and 𝑛 =  𝑛ௗ +
𝑛௥ + 𝑛௖This merged feature vector is the input to 
the classification and regression branches of 
NeuroFusionNet architecture. The feature 
extraction module guarantees that sufficient 
tumor information is extracted for subsequent 
prediction tasks by incorporating complementary 
information and utilizing learned, handcrafted, 
and clinical features from all domains. 
3.4 Feature Fusion Layer 
The resulting feature vector for deep, radiomic, 
and clinical domains is fused into a final output 
for input to a specialized feature fusion layer to 
improve joint representation learning and reduce 
the effects of potential modality imbalance. Such 
a fusion layer is an integrative bridge across 
heterogeneous features by mapping them into a 
unified latent space for classification and severity 
regression tasks. Fusion is realized in multiple 
fully connected layers with non-linear 
activations, dropout regularization, and an 
additional optional attention-based weighting 
strategy.Given the concatenate feature sector cap 
F element of double-struck cap R to the tor cap F 
element of double-struck cap R to the tor 𝐹 ∈
ℝ௡   Defined in the preceding paragraph, the first 
transformation stage is a fully connected (FC) 
projection defined as in Eq. 4.  

𝐹ᇱ  = 𝜙൫𝑊௙ 𝐹 +  𝑏௙൯                    (4) 

Where 𝑊௙  ∈ ℝ௡ᇲ×೙  
Is the learnable weight 

matrix, 𝑏௙  ∈ ℝ௡ᇲ  
 is the biased term and 𝜙(. ) is 

the ReLU activation function. This output 𝐹ᇱ  ∈

 ℝ௡ᇲ
Transition is the latent fusion of feature 

embedding. 
During the training phase, a dropout layer with 
dropout_rate𝑝 = 0.3    (to improve robustness in 
low-frequency interpretation and reduce over-
fitting) is added. In addition, we develop an 
optional self-attention mechanism for adaptive 
anatomy of the importance of each type of 
feature. This mechanism instead calculates a set 
of attention weights.𝛼 ∈ ℝ௡ᇲ   

 via a learnable 
scoring function 𝑠(. ) and applies them in an 
element-wise fashion to 𝐹ᇱ as in Eq. 5.  
𝐹ᇱᇱ  = 𝛼  ⊙  𝐹ᇱwhere 𝛼  =  𝜎 ൫𝑠(𝐹ᇱ)൯                         
(5) 
where,  ⊙  is element-wise multiplication and, 
𝜎(. ) is the sigmoid activation function. The 
output  𝐹ᇱᇱ  ∈  ℝ௡ᇲ  

It is the final fused 
representation that incorporates cross-feature 
dependencies and relevance scaling. 
The resulting fused vector is passed on parallel to 
a classification head to predict the type of brain 
tumor (HGG vs LGG) and a regression head to 
predict severity (WHO grade or risk score). The 
feature fusion layer hence acts as the hub to 
harmonize information from the multimodal, 
handcrafted, and clinical domains, allowing 
NeuroFusionNet to learn a rich and interpretable 
representation space. 
3.5 NeuroFusionNet Architecture 
We present the NeuroFusionNet architecture, a 
hybrid deep learning model catering to multi-
modality segmentation input to provide dual 
outputs: brain tumor classification and severity 
grading. It employs parallel convolutional 
encoders for the MRI modalities, combines 
handcrafted radio mic and clinical features, and 
aggregates them through a shared fusion layer. 
The architecture comprises three functional 
components: modality-specific feature encoders, 
a fusion and transformation core, and dual-task 
output branches. 
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Figure 2: Model Architecture Of Neurofusionnet For Brain Tumor Diagnosis And Severity Prediction 

 
Figure 2 To extract its respective deep features, a 

dedicated 3D convolutionalencoder𝑓஼ேே
(௜) is used 

for each modality — T1, T1ce, T2, and FLAIR. 
A stacked version of 3D convolution layers, 
batch normalization, ReLU activations, and max 
pooling operations form an encoder. All four 
encoder outputs are flattened and concatenated 
into single deep to cap F sub d , meanwhile to 
cap F sub d , meanwhile to cap F sub d ,  sub d , 
meanwhile to cap F sub d , meanwhile—
meanwhile.𝐹ௗ  ∈ ℝ௡೏. Meanwhile, hand-crafted 
radiomic features 𝐹௥  ∈ted and prepared 
separately as inputs. The joint representation 𝐹 ∈
ℝ௡   of these three feature vectors is achieved 
according to the fusion strategy defined above. 
The fused feature vector 𝐹ᇱᇱ ∈ ℝ௡ᇲ  

It is then 
passed through a shared transformation layer 
consisting of fully connected layers, dropout, and 
nonlinear activations. The standard layer allows 
for more task-agnostic representation learning 

before branching into two separate output 
heads—a classification and regression head. 
This is a classification branch meant for 
predicting tumor type (HGG vs LGG). It consists 
of a fully connected layer with a softmax 
activation function. The predicted class 
probabilities are in Eq. 6.  

𝑦ො௖௟௔௦௦  = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊௖௟௔௦௦𝐹ᇱᇱ  
+ 𝑏௖௟௔௦௦)                 (6) 

Where 𝑊௖௟௔௦௦and  𝑏௖௟௔௦௦   are learnable 
parameters and. The loss function applied is 
categorical cross-entropy, given by Eq. 7.  

ℒ௖௟௔௦௦  =  − ෍ 𝑦௞ log(𝑦ො௞)                   (7)

௄

௞ିଵ

 

The true label  𝑦௞ is one-hot encoded where 𝐾 =
2    is used for binary classification (HGG/LGG), 
and the severity prediction branch works in 
regression mode to create a continuous severity 
score or WHO grade. It employs a dense output 
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layer with a linear activation, resulting in the 
prediction in Eq. 8.  

𝑦ො௦௘௩  = 𝑊௦௘௩𝐹ᇱᇱ + 𝑏௦௘௩                       (8) 
Where 𝑊௦௘௩  and 𝑏௦௘௩Are regression weight and 
bias, respectively. The loss in severity is 
represented using mean squared error (MSE), as 
in Eq. 9.  

ℒ௦௘௩  =
1

𝑁
෍൫𝑦ො௦௘௩

(௜)
− 𝑦௦௘௩

(௜)
൯

ଶ
ே

௜ିଵ

           (9) 

Eq. 10 gives the overall training objective, a 
unified loss function that combines classification 
and regression losses.  

ℒ௧௢௧௔௟  = 𝜆ଵ, ℒ௖௟௔௦௦ + 𝜆ଶ. ℒ௦௘௩               (10) 
where 𝜆ଵ and 𝜆ଶ Are the balancing 
hyperparameters. This dual-output architecture 
allows NeuroFusionNet to conduct multi-task 
learning, improving the overhead of the 
generalization ability of the model while 
simultaneously offering diagnostic and 
prognostic information. 
3.6Statistical Analysis 
NeuroExplainAI has a deep learning-based 
prediction module that is added to a statistical 
analysis module to ensure interpretability from a 
clinical perspective and complement profound 
learning-based predictions. Module 1: 
Quantitative measurements extracted from 
segmented tumor regions and their association 
with tumor severity and clinical metadata. It can 
be used to determine the statistical significance 
of morphological and spatial features related to 
predicted tumor grade/severity scores. 
The first stage is to calculate volumetric metrics 
for each subregion of the tumor, specifically the 
enhancing tumor (ET), tumor core (TC), and 
whole tumor (WT). The corresponding volume  
𝑉 in cubic millimeters is calculated from  𝑀 ∈
{0,1}ு×ௐ×஽  A binary segmentation mask by Eq. 
11.  

𝑉 = ෍ ෍ ෍ 𝑀௜,௝,௞. 𝑟௫ . 𝑟௬ . 𝑟௭              (11)

஽

௞ିଵ

ௐ

௝ିଵ

ு

௜ିଵ

 

Where 𝑟௫ . 𝑟௬ . 𝑟௭Are the voxel sizes (in mm) along 
each dimension. They are critical components in 
assessingtumor burden and progression.Apart 
from some volume, we also derived spatial 
features, including tumor location, by calculating 
each tumor region's center of mass (CoM). 
Tumor anatomical location is mapped to the 
Center of Mass (CoM). It is projected onto brain 
region atlases, which are then assigned specific 
weights based on tumor proximity to clinically 
critical domains. We define a location-weighted 
severity metric.𝑆  as in Eq. 12.  

𝑆 = ෍ 𝑤௜ . 𝑓௜                     (12)

௡

௜ିଵ

 

Where 𝑓௜ denotes a region-specific morphology 
or intensity feature and 𝑤௜Is the location-based 
risk weight.Correlation and hypothesis testing 
are used to assess relationships between these 
quantitative features and the severity of the 
tumor. To calculate linear associations between 
tumor volume and severity score, we use 
𝑟 Pearson correlation coefficient. Spearman's 
rank correlation is applied when normality 
assumptions are violated. For hypothesis testing, 
feature distributions between HGG and LGG 
classes are compared using two-sample t-tests. 
Also, we used one-way ANOVA to analyze 
multi-group differences by stratifying based on 
the WHO grades. 
P-value thresholds 𝑝 < 0.05 Are reported for 
statistical significance. All analyses are 
performed using standard Python libraries like 
SciPy and StatsModels. These statistical patterns 
confirm NeuroFusionNet's predictions and 
uncover interpretable relationships between 
anatomical features and disease severity, adding 
to clinical relevance. 
3.7Explainable AI Integration 
This is possible by incorporating a dual-stage 
explainable AI (XAI) module in the 
NeuroExplainAI framework that centerson 
interpretability in image space and attribution in 
the feature space to maintain the transparency 
and clinical trust of the clinical predictions 
generated by the NeuroExplainAI framework. 
The detailed insights from the module are 
expected to enable clinicians and researchers to 
comprehend the months' concepts used by the 
NeuroFusionNet model for decision formations, 
enabling its integration in clinical decision-
making situations. 
In the image domain, we use Grad-CAM++ on 
the last convolutional layers from the CNN 
branches, which process each MRI modality. 
This method creates class-discriminative saliency 
maps highlighting the spatial regions with the 
most response frequency, contributing to the 
model prediction. To have a predicted class score 
𝑦௖   Grad-CAM++ calculates the weight.𝛼௞

௖   for 
each feature map𝐴௞  With second-order gradients 
as in Eq. 13.  

𝛼௞
௖  =

1

𝑍
෍ ෍

𝜕ଶ𝑦௖

𝜕൫𝐴௜௝
௞ ൯

ଶ      

௝௜

              (13) 

 derives the final heatmap 𝐿ீ௥௔ௗି஼஺ெା    
௖ As a 

weighted sum of feature maps, as in Eq. 14.  
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𝐿ீ௥௔ௗି஼஺ெାା   
௖  

= 𝑅𝑒𝐿𝑈 ൭෍ 𝛼௞
௖

௞

𝐴௞  ൱             (14) 

This visualization is applied over the original 
MRI slices to help clinicians assess whether the 
model focuses on pathologically salient areas, 
such as enhancing tumor boundaries or 
infiltrative regions. 
At the feature domain, SHAP (Shapley Additive 
explanations) is used to assess the contribution of 
each input feature (radio mic, deep, clinical) to 
the model's output. SHAP values use 
cooperative game theory to compute the 
importance of a feature.𝑥௜   as the average of its 
marginal contributions among all possible 
feature subsets on the training dataset. 
Decomposition of the model output 𝑓(𝑥) as in 
Eq. 15.  

𝑓(𝑥)  = 𝜙଴   + ෍ 𝜙௜              (ଵହ)

௡

௜ିଵ

 

Where 𝜙௜   is the SHAP value of feature  𝑥௜  , and 
the  𝜙଴expected output. These values are 
displayed via bar plots and summary plots, 
which help understand what features (e.g.,tumor 
volume, GLCM texture contrast, patient age) 
had the most significant impact on a 
classification or severity score. 
The XAI module interprets model behavior 
across diagnostic and prognostic tasks by 
coupling Grad-CAM++ for spatial attention 
visualization with SHAP for feature-level 
attribution. Instead, it allows for both feature-
level deep interpretability and flow maps, which, 
unlike oft-empirical results, provide the 
necessary foundation for validating 
NeuroFusionNet, integrating the explanatory 
process with increased potential for deployment 
in practice. 
 
4. EXPERIMENTAL RESULTS 
This section presents the experimental results of 
evaluating the proposed 
NeuroExplainAIframework on the publicly 
available BraTS 2021 dataset. The experiments 
aim to validate the effectiveness of the 
NeuroFusionNet model in predicting brain tumor 
types and severity scores while also assessing the 
utility of radio mic and clinical metadata 
integration. Furthermore, the explainable AI 
outputs and statistical validation demonstrate the 
framework's clinical interpretability and 
trustworthiness. All experiments were designed 
to ensure reproducibility and detailed 

configuration information was provided to assist 
future researchers in replicating the results. 
The model was implemented in Python using the 
PyTorch and MONAI libraries. The training was 
conducted on a system with an NVIDIA RTX 
3090 GPU, 128 GB RAM, and an Intel Xeon 
processor. The training dataset was split in a 
70:15:15 ratio for training, validation, and 
testing. Data loaders were configured with patch-
wise loading and on-the-fly augmentation, 
including random rotation, flipping, and intensity 
shifts. The input volumes were resized to a 
uniform shape of 240×240×155 with four 
channels representing T1, T1ce, T2, and FLAIR 
sequences. 
The optimizer used was Adam, with an initial 
learning rate of 0.0001, reduced on plateau based 
on validation loss with patience of 5 epochs. The 
batch size was set to 4 due to GPU memory 
constraints, and the model was trained for 100 
epochs. Weight decay was set to 0.0005; dropout 
layers with a dropout rate of 0.3 were included in 
the fusion and dense layers. The attention 
module within the fusion layer was implemented 
using a sigmoid-based scoring mechanism 
trained jointly with the primary model. Cross-
entropy loss was used for tumor classification, 
while mean squared error loss was used for 
severity prediction. A weighted total loss was 
computed using a weight ratio of 1.0 for 
classification and 0.5 for severity regression. 
The prototype application of NeuroExplainAI is 
structured to support end-to-end inference with 
inputs comprising preprocessed MRI volumes 
and patient metadata. After model inference, the 
outputs include the predicted tumor class, 
severity score, Grad-CAM++ heatmaps for each 
modality, and SHAP feature attribution scores. 
All visual outputs are generated as PNG files and 
stored per patient for interpretation. The entire 
pipeline, including preprocessing, segmentation, 
feature extraction, prediction, and explanation, 
has been modularized for easy replication. Code 
scripts, trained weights, and configuration files 
are maintained with version control, allowing 
other researchers to reproduce the system setup 
under similar computational conditions. 
4.1 Exploratory Data Analysis 
This section presents the exploratory data 
analysis conducted on the BraTS 2021 dataset, 
offering insights into the nature of input data. It 
includes representative samples from training 
and testing sets across MRI modalities and a data 
distribution graph highlighting the class 
imbalance between HGG and LGG cases. This 
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analysis supports the design of robust training strategies. 
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Figure 3:Representative MRI Modalities From Brats 2021 Training Samples: (A) FLAIR (Fluid-Attenuated Inversion 
Recovery), (B) T1-Weighted MRI, (C) T1-Weighted Contrast-Enhanced MRI (T1ce), And (D) T2-Weighted MRI 

 
Figure 3 displays four MRI modalities from the 
BraTS 2021 training dataset used in this study. 
Each modality highlights different tumor 
characteristics: FLAIR for edema, T1 for 
structural detail, T1ce for enhanced tumor 

regions, and T2 for fluid content. Their 
complementary information enables 
comprehensive analysis, forming the foundation 
for effective multimodal learning in 
NeuroExplainAI. 

 
 

 
 

 
 

 
 

(a) Fluid-
attenuated 
Inversion 
Recovery 

 

(b) T1-weighted 
MRI 

 

(c) T1-weighted 
Contrast-
Enhanced MRI 

 

(d) T2-weighted 
MRI 

 

Figure 4: Representative MRI Modalities From Brats 2021 Test Samples: (A) FLAIR (Fluid-Attenuated Inversion 
Recovery), (B) T1-Weighted MRI, (C) T1-Weighted Contrast-Enhanced MRI (T1ce), And (D) T2-Weighted MRI 

 
Figure 4 shows a sample test image from the 
BraTS 2021 dataset for four MRI modalities. The 
scanner types used in the data include FLAIR, 
T1, T1ce, and T2-weighted scans, which possess 
distinct features of the pathology of brain tumors. 

Test samples are real-case-variety data employed 
for evaluation to determine the generalizability, 
robustness, and predictive power of the proposed 
NeuroExplainAI framework. 
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Figure 5:Data Distribution Dynamics Of The Brats 2021 Dataset Across Tumor Classes 

 
Figure 5 shows the distribution of HGG and 
LGG samples per class in the BraTS 2021 
dataset for training, validation, and testing. The 
above chart shows a significant class imbalance, 
with HGG cases considerably outweighing LGG 
cases. This imbalance reinforces the need for 
efficient model training strategies for equal 
performance across tumor types in the proposed 
framework. 
To mitigate such an inherent class imbalance, the 
NeuroExplainAI framework leverages a 
weighted categorical loss function during the 
training phase for adapting weights to the 
minority class (LGG) instances to ensure that 
they contribute proportionally to model 
optimization. Moreover, data augmentation 
approaches were applied only to the type of 
samples in the lower numbers for the targeted 
class of samples to achieve generalization and 
negate potential model bias towards the related 
HGG type. 
4.2 Performance Analysis 
Performance Analysis follows, where we analyze 
the performance of the proposed 
NeuroExplainAI framework against significant 
classification and regression parameters. We 
provide further empirical results on accuracy, 
precision, recall, F1-score, MAE, and RMSE in 
this section, showing our performance 
outperforming the baseline as we publish our 
results through this section. The results were 

further validated in external patient cohorts, 
confirming the system's robustness, reliability, 
and clinical relevance in brain tumor diagnosis 
and severity prediction. 

 
Figure 6:Training And Validation Accuracy 

Progression Of The Proposed Neuroexplainai Model 
Over 30 Epochs 

Figure 6 shows NeuroExplainAI's accuracy 
evolution as it trained. The accuracy of training 
and validation increases steadily, converging 
around epoch 25. The validation accuracy, in this 
case, is also similar to the training, having 
reached well over 97%. This corroborates and 
validates the learning that occurred without any 
sign of overfitting throughout the training 
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process, demonstrating generalization 
performance. 
 

 
Figure 7:Training And Validation Loss Dynamics Of 

The Neuroexplainai Model Over 30 Epochs 

Figure 7 illustrates NeuroExplainAI's loss 
dynamics across training epochs. Both training 
and validation losses decrease steadily, 
indicating effective model optimization. By the 
final epochs, the validation loss closely aligns 
with the training loss, confirming minimal 
overfitting. The smooth convergence pattern 
highlights the stability of the training process and 
the robustness of the model’s learning strategy. 

 
Figure 8:Confusion Matrices Of Five Models For Brain Tumor Classification: (A) CNN Only, (B) Radiomics + SVM, 

(C) CNN + Clinical Metadata, (D) CNN + Radiomics, And (E) Neuroexplainai 
 
Figure 8 presents confusion matrices comparing 
the classification performance of five models. 
NeuroExplainAI achieves near-perfect prediction 
accuracy with minimal errors, clearly 
outperforming other models. CNN-only and 
radiomics-based methods show higher 

misclassification rates, especially between HGG 
and LGG. The visualization highlights the 
effectiveness of NeuroExplainAI in accurately 
distinguishing brain tumor types using 
multimodal data and fused features. 
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Table 3: Performance Comparison Of The Proposed Neuroexplainai Framework With Baseline Models For Brain 
Tumor Classification And Severity Prediction 

Model Accuracy 
(%) 

Precision 
(%) 

Recall 
(%) 

F1-
Score 
(%) 

MAE 
(Severity) 

RMSE 
(Severity) 

CNN Only (MRI 
Modalities) 

87.2 85.6 86.4 85.9 0.68 1.04 

Radiomics + SVM 81.3 80.1 79.5 79.8 0.91 1.36 
CNN + Clinical 
Metadata 

89.4 88.7 87.9 88.3 0.61 0.96 

CNN + Radiomics 
(Early Fusion) 

91.2 90.5 90.1 90.3 0.56 0.89 

NeuroExplainAI 
(Ours) 

98.34 97.91 97.56 97.73 0.38 0.63 

 
Table 3 presents a comparative analysis of 
NeuroExplainAI against baseline models using 
key classification and regression metrics. The 
proposed model outperforms all baselines, 
achieving the highest accuracy of 98.34% and 

the lowest error in severity prediction. This 
highlights the effectiveness of multimodal 
feature integration and attention-based fusion in 
enhancing diagnostic accuracy and clinical 
interpretability. 

 
Figure 9:Comparison Of Neuroexplainai And Baseline Models Across Classification Metrics (A–D) And severity 

Prediction Metrics (E–F) 
 
In Figure 9 Performance Comparison Against 
Baseline ModelsDuring the evaluation process, 
the proposed NeuroExplainAI is compared with 
four existing baseline models. Parts (a) through 
(d) of the subfigures show classification 
performance's accuracy, precision, recall, and 
F1-score. We find that NeuroExplainAI results 
has the most favorable performance on all of 
these metrics, suggesting its ability to identify 
brain tumor classes accurately and consistently. 
We achieved a classification accuracy of 

98.34%, which substantially outperforms the 
next-best ensemble model, combining CNN and 
radiomic features without attention or metadata. 
Moreover, the precision, recall, and F1-score of 
NeuroExplainAI models are consistently higher 
than 97%, again confirming the advantage of 
multimodal feature integration and attention-
based feature fusion. 
Subfigures (e) and (f) emphasize the model's 
predictive capabilities in terms of disease 
severity, as assessed by MAE (mean absolute 
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error) and RMSE (root mean squared error). It is 
also important to note that NeuroExplainAI gives 
the lowest MAE (0.38) and RMSE (0.63), thus 
demonstrating its superiority in regressing 
clinically relevant severity scores with increasing 
accuracy compared to all baseline configurations. 
Such performance is especially pronounced 
compared to conventional radionics and support 
vector machine-based models, which present 
much higher error rates. The Joint improvement 
in classification and regression metrics indicates 
the robustness of the NeuroFusionNet 
architecture and its potential to learn jointly from 
the deep, radiomic, and clinical feature space. 
These findings confirm that NeuroExplainAI 

supports accurate and precise clinical diagnostics 
and improves clinical decision-making through 
precise severity estimation. 
4.3 Ablation Study 
An ablation study is performed to evaluate the 
impact of specific elements in the 
NeuroExplainAI framework—such as radiomic 
features, clinical metadata,attention fusion, and 
dual-task learning—on model performance. The 
analysis shows the importance of these features 
by iteratively slicing them away or changing 
them. Our results underscore the importance of 
each component in achieving the best diagnostic 
accuracy and most accurate severity prediction. 

 
Table 4: Ablation Study Results Showing The Performance Impact Of Removing Or Modifying Key Components In The 

Neuroexplainai Framework 
Model Variant Accuracy 

(%) 
Precision 
(%) 

Recall 
(%) 

F1-
Score 
(%) 

MAE 
(Severity) 

RMSE 
(Severity) 

NeuroFusionNet without 
Radiomic Features 

94.7 93.8 93.5 93.6 0.52 0.78 

NeuroFusionNet without 
Clinical Metadata 

93.9 93.1 92.4 92.7 0.58 0.84 

NeuroFusionNet without 
Attention Fusion Layer 

92.6 91.5 91.1 91.3 0.61 0.88 

Single-Task Model 
(Classification Only) 

91.4 90.7 90.1 90.4 — — 

Single-Task Model 
(Severity Prediction Only) 

— — — — 0.59 0.90 

Full NeuroExplainAI (All 
Components) 

98.34 97.91 97.56 97.73 0.38 0.63 

 
As Table 4 shows, NeuroExplainAI's ablation 
study results examine the exclusion of radiomic 
features, clinical meta-data, attention fusion, and 
dual-task learning. We found that all of these 
components contribute significantly to the 
model's performance, with the full model 

producing the highest accuracy and lowest 
severity prediction errors. Six of these elements 
showed that a lack of attention or metadata led to 
decreased effectiveness in both classification and 
regression, highlighting the significance of a 
multimodal approach. 
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Figure 10:Ablation Study Results For Neuroexplainai Across Different Model Variants 

 
We also conducted an ablation study to 
demonstrate the importance of the introduced 
features, the results of which can be found in 
Figure 10. Classification metrics such as 
accuracy, precision, recall, and F1-score are 
demonstrated in (a)-(d), while (e) and (f) show 
the errors in severity prediction using MAE and 
RMSE for regression, respectively. Our full 
model shines in all metrics, indicating the power 
of our multi-source design and attention-based 
fusion. 
The results show that removing the 2D radiomic 
features leads to a significant drop in all 
classification metrics, which indicates the 
contribution of the 2D radiomic features to the 
tumor texture and intensity patterns. A similar 
trend can be observed in precision and recall 
when excluding clinical metadata, highlighting 
the importance of patient-specific contextual 
data. Similarly, eliminating the attention 
mechanism also leads to a performance drop 
since the model cannot learn to pick essential 
features. 

The capacities of the single-task varieties seem 
to be finite. The classification model performs 
less than the complete model, and the severity-
only model produces larger MAE and RMSE, 
indicating that pattern joint learning promotes 
generalization. The ablation results highlight that 
all of these components, radionics, metadata, 
attention, and multi-task learning, are critical for 
the excellent diagnostic and predictive 
performance of the NeuroExplainAI framework. 
4.4 Performance Comparison with Existing 
Methods 
This section provides a comparative assessment 
of NeuroExplainAI against leading existing 
approaches for diagnosing brain tumors. The 
comparison is made in terms of classification 
accuracy, F1-score, and severity prediction error 
(MAE). NeuroExplainAI's end-to-end 
multimodal structure, attention-based fusion 
method, and explainable dual-task learning 
ability enabled the outstanding performance 
observed in the results. 
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Table 5: Comparative Analysis Of The Proposed Neuroexplainai Framework Against Existing Methods 
Method Accurac

y (%) 
F1-
Scor
e 
(%) 

MAE 
(Severit
y) 

Explainabili
ty 

Modality 
Used 

Learning 
Task 

Remarks 

Zeineldin et al. 
[2] 

94.5 93.6 — Grad-CAM Multimod
al MRI 

Segmentatio
n 

High 
segmentatio
n 
performance
; lacks 
classificatio
n or severity 
scoring 

Farhan et al. 
[3] 

92.8 91.7 — SHAP, Grad-
CAM 

T1, T2 
MRI 

Segmentatio
n 

Ensemble 
with XAI; 
no 
classificatio
n or severity 
prediction 

Ahmed et al. 
[4] 

94.1 92.9 0.55 XAI 
(Attention) 

Multimod
al MRI 

Classificatio
n + Risk 

Includes 
severity; no 
radionics or 
metadata 

Haque et al. 
[35] 

93.3 92.5 — Layer-wise 
Relevance 

MRI Classificatio
n 

Explainable 
classificatio
n; lacks 
multimodal 
integration 
and severity 

Hosny et al. 
[36] 

95.4 94.6 0.49 Grad-
CAM++, 
SHAP 

T1, T2, 
FLAIR 

Detection + 
Grading 

Strong 
grading 
performance
; lacks 
metadata 
and 
attention-
based fusion 

NeuroExplain
AI (Ours) 

98.34 97.7
3 

0.38 Grad-
CAM++, 
SHAP 

T1, T1ce, 
T2, 
FLAIR + 
Metadata 

Classificatio
n + Severity 
(Dual) 

Outperform
s all 
baselines; 
full 
integration 
of 
multimodal, 
metadata, 
XAI 

 
Table 5 compares NeuroExplainAI with notable 
existing methods in terms of performance, 
modality, learning tasks, and explainability. 
NeuroExplainAIobtains the highest accuracy and 

F1-score and the lowest MAE of the severity 
prediction. It offers a top-notch diagnostic 
framework by leveraging multimodal data, 
clinical metadata, and advanced explainability 
methods. 
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Figure 11:Performance Comparison Of Neuroexplainai With Existing Methods. Subfigures Show (A) 

Classification Accuracy, (B) F1-Score, And (C) Severity Prediction Error (MAE) 
 

In Figure11, we compare NeuroExplainAI's 
performance with existing brain tumor diagnosis 
models to demonstrate its superior performance. 
As presented in the results, NeuroExplainAI 
outperforms all the compared methods with an 
accuracy of 98.34%. This is a significant 
improvement over the existing approaches, such 
as those by Hosny et al., Zeineldin et al., and 
Ahmed et al., which showcase the proposed 
architecture's robustness in fusing different data 
sources and extracting strong representations. 
For the F1-score, which balances precision and 
recall, NeuroExplainAI again performs the best 
(97.73%), which means it can have lower false 
favorable and false negative rates. Similarly, 
Hosny et al. and Zeineldin et al. exhibit complex 
(confidence) but lower F1-scores, indicating that 
they perform strongly in some dimensions but 
not in the overall balance across the contributed 
elements that the proposed method offers with 
limited features. 
Only a few of the existing models are capable of 
severity prediction. NeuroExplainAI shows the 

best performance with a MAE of 0.38, better 
than Ahmed et al. and Hosny et al., which report 
heightened prediction errors. The decreased 
MAE observed in this scenario validates the 
constructive impact of adopting a dual-task 
learning approach combined with attention-
guided multimodal feature integration to refine 
the accuracy of severity prediction. The results 
collectively demonstrate the proposed 
framework's competency for accurate 
classification and clinically relevant severity 
scoring, and its interpretability via there-within 
integrated XAI modules. 
4.5 Results of Explainable  
We will illustrate the interpretability of the 
NeuroExplainAI framework approach using 
Grad-CAM++ and SHAP. This will deliver 
answers in both visual and quantitative forms as 
to how the model generates predictions for 
classification (HGG v LGG) and severity 
prediction, thus granting further insight into the 
model’s decision process. 

 
Figure 12:Grad-CAM++ Visualization For Tumor Classification 
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In the proposed NeuroExplainAI framework, we 
show a Grad-CAM++ visualization of thetumor 
classification task in Figure 12. The left 
screenshot displays the original MRI scan of the 
brain, and the right corresponds to the Grad-
CAM++ heatmap, which indicates the parts of 
the remaining MRI scan that are most influential 
to the model's decision. The regions highlighted 

in red correspond to areas of maximum impact 
on the classification, showing the tumor's 
location. This visualization allows us to gain 
insight into what the model focuses on during 
classification, giving transparency and 
interpretability, which are very important for 
clinical validation and decision-making. 

 
Figure 13:SHAP Value Visualization For Feature Attribution 

 
SHAP SHAPvalue visualization shows model 
decision-making when classifying tumors, as 
shown in Figure 13. The leftmost image is the 
original MRI scan, overlaid with SHAP values, 
which measure the contribution of each region to 
the model’s prediction. The color scale 
indicating the contribution to the tumor 
classification from blue (negative impact ) to red 
(positive effect) helps interpret how different 
components of the image of the brain affect the 
classification. On the right side, the image 
displays a heatmap highlighting the SHAP 
values, helping the clinicians to identify the 
regionsmost relevant to the model prediction. 
 
5. DISCUSSION 
 
Background: Diagnosing and grading brain 
tumors based on magnetic resonance imaging 
(MRI) is a crucial task in neuro-oncology, and it 

hassignificant consequences for clinical practice 
and outcomes. In particular, deep learning-based 
methods have shown great potential in tumor 
segmentation and classification, but there are still 
many challenges. Most models concentrate on 
only segmentation or classification, frequently 
using only one imaging modality and not 
considering essential clinical metadata. 
Moreover, most so-called state-of-the-art 
approaches have not sufficiently addressed 
explainability and interpretability, making 
acceptance in clinical settings more complex 
where the transparency of decision-making is 
essential. 
To close these gaps, this work proposes 
NeuroExplainAI: a complete and explainable 
deep learning framework for automated brain 
tumor diagnosis and severity prediction 
leveraging multimodal MRI data. Our novelty is 
underpinned by simultaneously fusing three key 
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components—deep CNN-based imaging features 
with radio mic descriptors and patient clinical 
metadata, an attention-guided focal fusion 
mechanism to filter the irrelevant feature regions, 
and a dual-branch architecture for concurrent 
classification and severity scoring. The combined 
design optimally learns spatial, textural, and 
contextual information, improving diagnostic 
performance and clinical interpretability. 
Experimental results confirm that 
NeuroExplainAI is an effective method and 
yields up to 98.34% in accuracy, 97.73% in F1-
score, and 0.38 in MAE for predicting the 
severities, outperforming the baseline models as 
well as existing approaches with high statistical 
significance. Together with the ablation study, 
these results confirm the critical contribution of 
each component, especially the attention fusion 
layer and the metadata, which are responsible for 
the gains in classification accuracy and 
prediction robustness. Additionally, the 
complementary use of Grad-CAM++ and SHAP 
brings transparency to our model, providing 
visual and feature-based level explanations and 
explicitly improving the explainability of the 
existing models. In conclusion, this work 
presents a patient-specific, practical, and 
interpretable AI solution for clinical 
neuroimaging workflows that facilitates more 
trustworthy decision support systems further 
upstream of the clinical workflow.  
There are several important implications of the 
current study for researchers and clinicians. First, 
when incorporating deep CNN features with 
radiomic and clinical metadata, the predictive 
performance improves significantly on tumor 
diagnosis and prognosis in the brain. Second, the 
attention-guided fusion mechanism is introduced 
to align heterogeneous data, so that the model 
can focus on clinically informative information. 
Third, interpretability tools such as Grad-
CAM++ and SHAP enhance transparency and 
acts as a link between black-box model and 
clinical decisions. Taken together, they shed 
more insights in how reliable AI systems on 
multimodal data can be made high-performance 
as well as interpretable, serving as a roadmap for 
future developments in trustworthy AI for 
healthcare.  
Although the proposed framework 
NeuroExplainAI shows promising results for 
classification accuracy, severity scoring, and 
explainability, some issues deserve additional 
consideration. First, challenging the brain tumor 
subtype classification is of great clinical 

significance, the incorporation of clinical 
metadata did increase the performance, however, 
the richness of metadata in the BraTS dataset 
was limited to the basic demographics, more 
clinical indicators (such as genetic markers, 
treatment history, etc) would improve the 
predictive depth. Second, the attention 
mechanism in the fusion layer, though improved, 
may over-fit modality specific features with far-
fromperfect regularization between extremely 
imbalanced samples. Finally, as efficient as dual-
task learning is, it can present a gradient 
interference problem between the classification 
and the regression, which may lead to 
optimization issues on the edges. These factors 
suggest future architectural improvement and 
clinical validation. 
This study is subject to limitations discussed 
separately below in Section 5.1. 
 
5.1 Limitations of the Study 
The current study, despite its high performance, 
has three limitations. First, it was trained and 
validated on a single public dataset, which may 
restrict its generalizability in invisible clinical 
conditions. Second, the segmentation module is 
based on pre-trained architectures, limiting 
versatility in adapting to different tumor 
morphologies. Third, Grad-CAM++ and SHAP 
provide practical interpretability, but their 
outputs necessitate expert validation before 
incorporation into clinical practice. These 
considerations, however, underline that this 
early-stage study requires both multi-institutional 
validation on larger datasets and the development 
of adaptive segmentation functions, with 
clinician-in-the-loop assessment of performance, 
as necessary next steps as the full potential of 
practical deployment of NeuroExplainAI into 
real-world diagnostic routines will only be 
realized by doing this. 
Unlike previous works which typically target 
single modality only (i.e., classification or 
segmentation) using unimodal imaging data, our 
work proposes a unified, explainable framework 
that fills the gap in several aspects of the 
literature. The majority of current models do not 
incorporate handcrafted radiomic features and 
clinical data and hence do not provide the 
contextuality and personalization. Moreover, 
multitask learning-combining tumor class and 
severity predictions-are hardly investigated in 
previous works. NeuroExplainAI contributes to 
the literature by combining deep CNN features, 
radiomic features and patient level metadata 
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using an attention-guided approach, obtaining 
superior diagnostic accuracy and severity 
scoring. Moreover, the fusion of Grad-CAM++ 
and SHAP yields interpretable visual and 
feature-level explanations that alleviate the 
black-box nature of previous deep learning 
models. Addition of statistical verification 
further improves the clinical credibility of the 
predictions. In summary, the proposed work is 
significantly distinct and superior to existing 
methods by providing a comprehensive, 
interpretable, and multimodal solution that is 
designed for real-world neuro-oncology 
applications. 
 
5.2 Challenges and Open Research Problems 
Although NeuroExplainAI shows promising 
results within the multimodal, interpretable 
diagnosis of brain tumor and its related severity, 
there are still several challenges and open 
research issues towards success in the field. First, 
the model was trained solely on one dataset 
(BraTS 2021), which restricts the generalizability 
to other imaging protocols and demographic 
groups. Further investigation is needed to 
validate its robustness across multi-institutional 
datasets under different acquisition scenarios. 
The second limitation lies in the fact that the 
clinical data set we have used revolves around 
more elementary phenotypes such as age and 
gender; including deeper contextual information 
on cases (e.g., treatment history and genomic 
profiles) could lead to even more performance of 
predictive power and personalization of 
treatment. Third, while Grad-CAM++ and SHAP 
offer valuable interpretation, their outputs need 
clinical validation, and the missing of clinician-
in-the-loop feedback loops impede their practical 
application in the real world. Furthermore, the 
dual-task scheme may have optimization conflict 
when considering more complex or multi-label 
predictions. Last but not least, online inference 
efficiency and model compression for edge 
deployment to be applied in low-resource 
hospital environments are yet to be fully 
investigated regarding the technical challenges. 
Solving these challenges will lay the foundation 
for reliable, adaptive, and clinically applicable 
AI systems in neuro-oncology. 
 
6. CONCLUSION AND FUTURE WORK  
 
In this paper, we presented NeuroExplainAI, a 
science inspired and clinically motivated XDL 
framework for brain tumor diagnosis and 

severity prediction from multimodal MRI. The 
novelty of our work lies in the creation and 
validation of a dual-task framework 
(NeuroFusionNet) which successfully integrates 
deep features, radiomic features, and clinical 
metadata using an attention based mechanism on 
top of the conventional single-task, unimodal 
models. Finally, the model is further combined 
with a two-level explainability module (Grad-
CAM++ and SHAP) to achieve spatial and 
feature-level understanding, helping to provide 
explanations to clinicians and build trust in 
clinical settings. Statistical validation encourages 
links between model outputs and anatomical/ 
volumetric evidence, providing an unusual 
combination of AI prediction and clinical 
knowledge. The designed model surpassed all 
the state-of-the-art methods in both classification 
accuracy (98.34%) and severity prediction (MAE 
= 0.38). Those findings support the scientific and 
translational relevance of our methodology. For 
future work, we plan to generalize the framework 
to other datasets, to improve segmentation 
flexibility and receive clinician-in-the-loop 
feedback to improve readiness for deployment.. 
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