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ABSTRACT 
 

This paper proposes an artificial intelligence-based energy management system implemented on the Internet 
of Things in smart cities to optimize the amount of renewable energy used in a smart city, reduce costs, and 
improve stability in the grid. This system combines machine learning methods (LSTM and SVM), Mixed-
Integer Linear Programming (MILP) optimization, and reinforcement learning (RL) to predict energy 
generation and storage, as well as for balancing load in the grid. We validated the results with real data and 
proved that our model reduced energy costs by 12%, increased the use of renewable energy by 10%, and 
improved energy balance by 2.3%. Also, grid stability was enhanced by a 66% decrease in failures and 50% 
in outage periods. Although the system demonstrated potentially successful outcomes, it relies on data 
quality and computational power. Future efforts will prioritize improving prediction accuracy using up-to-
date weather data and expanding the system to encompass larger urban areas. Building systems have an 
excellent scope for reliable, energy-efficient, and sustainable energy management in smart cities, enabling 
innovative and eco-friendly urban infrastructure. 

Keywords: AI-Driven Energy Management, Smart Cities, Renewable Energy Optimization, Machine 
Learning, Grid Stability 

 
1. INTRODUCTION  
 
The energy industry worldwide is experiencing a 
widespread transformation motivated by the global 
climate crisis and the general need for sustainability. 
Fossil fuels are the dominant energy sources used, 
making them the sources of energy production; 
however, fossil fuels account for the release of a 
significant number of greenhouse gases and 
pollution into the environment. On the other hand, 
renewable energy sources, including solar, wind, 
hydropower, and geothermal energy, offer 
sustainable solutions that can help reduce carbon 
emissions and combat global warming. In tandem 
with the expansion of urban areas, urbanization has 
also led to a surge in energy consumption, resulting 
in an increasingly urgent challenge for efficient, 
scalable, and sustainable energy supply solutions. To 

tackle this issue, smart cities are being developed as 
dynamic urban environments that leverage digital 
technologies to optimize resource usage and 
promote better urban living and efficient energy 
management [1], [2]. 
Smart cities use various technologies, including the 
Internet of Things (IoT), artificial intelligence (AI), 
and machine learning (ML), to develop intelligent 
systems to make the city work more effectively [3]. 
Have data collected from interconnected devices 
and sensors to monitor and control energy 
consumption in real time. For example, one of the 
challenges of smart cities is integrating renewable 
energy sources into an old, rigid, and inefficient 
electricity grid [4]. Such important parts make it hard 
to ensure a continuously usable and responsible 
energy supply in millisecond orders of time, and 
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renewable energy generation is hardly ever constant 
[5]. 
Artificial Intelligence (AI): A Leaning Solution for 
the Cloudless Era AI evolved to become a 
transformative technology to address these 
challenges. AI algorithms help the smart city 
optimize green energy generation, storage, and 
distribution [6], [7]. If yes, AI-based solutions help 
with real-time decision-making, predictive analytics, 
and energy management automation, allowing 
cities to adapt to energy supply and demand 
fluctuations dynamically. One example is the 
capability of AI to forecast energy generation 
powered by weather prediction and adaptively adjust 
the energy consumption pattern to be more 
consistent with energy availability, increasing the 
global efficiency of the energy grid [8], [9]. 
This could help provide a massive scale of 
renewable energy solutions that could minimize 
energy loss, store them better, and grow the power 
grid, which plays a crucial role in the world 
everywhere. This is important because as renewable 
energy sources grow, energy storage becomes a key 
technology enabling their use since it can store 
energy produced but not consumed when demand is 
high or generation is low [10]. By predicting future 
energy demand and availability, AI technologies can 
also optimize energy storage systems' charging and 
discharging cycles to ensure renewable energy's 
cost-efficient, sustainable use [11]. 
The benefits of AI include improved grid reliability, 
fault detection, and real-time energy balancing. AI 
systems [12], [13] can enable smart grids to 
automatically adjust energy distribution to prevent 
blackouts and reduce energy waste, further 
enhancing the resilience and sustainability of urban 
energy systems. The importance of AI in the energy 
storage sector goes beyond optimizing energy usage; 
it also plays a key role in demand-side management, 
as AI-powered systems can modify consumption 
behaviors according to modifications in grid 
conditions, thus reducing stress during peak energy 
times frame [14]. 
Ever since recent advancements in AI, smart cities 
across the globe have been successfully 
implementing AI-driven renewable energy systems 
powered by AI. Barcelona has deployed an AI-based 
solution for optimizing energy consumption and 
integrating renewable energy with the grid with an 
energy reduction of 15% [15]. In the UAE, Masdar 
City's application of AI technologies has enabled 
better solar energy generation and energy storage 
management, reaching the milestones of becoming 
a carbon-neutral city by 2030 [16]. Through these 
case studies, AI is said to transform renewable 

energy systems and help cities become greener in the 
shift towards a smart city age. 
Through optimizing energy management and 
reducing emissions, AI can find its synergy in smart 
cities thanks to renewable energy systems that are 
more suitable for city management and completely 
support the concept of sustainability. We discuss 
current applications of AI across the generation, 
storage, and distribution of energy and introduce a 
novel architecture for AI-enabled renewable energy 
systems in urban settings. In conducting this 
research, we hope to showcase how AI can help 
deliver sustainable solutions to urban energy 
challenges, promoting a way towards more 
innovative and sustainable cities. 
 

 
Figure 1: AI-Driven Renewable Energy in Smart Cities 

 
Key components of AI-powered renewable energy 
management in smart cities are presented in Figure 
1. First among the parasites hastening the system's 
demise is Energy Generation, refined by Artificial 
Intelligence to maximize the manufacturing of 
renewable Energy. Energy is passed to the Energy 
Storage, which streamlines the storage and retrieval 
of Energy from energy sources based on real-time 
demand with the help of AI. The Energy 
Distribution, generally unaffiliated with AI, ensures 
that Energy is distributed to various city points 
without loss. AI examines the state of its node 
constantly and optimizes its node (one of the points) 
each second based on the demand. Another 
application in Demand-Side Management involves 
using AI to alter consumer behavior and control 
energy use. Lastly, the Case Studies area is added to 
showcase real-world implementations and how the 
AI-driven system benefits renewable energy 
solutions. This holistic strategy illustrates how AI 
can improve every phase of energy management in 
future cities to become smarter, more sustainable 
places. 
The issue addressed by the present research concerns 
the challenges of integrating renewable energy into 
the existing grid structure of smart cities. Urban 
planners and utility providers are affected by 
problems, such as the instability and inefficiency of 
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the grid, and they must ensure the reliable and 
sustainable use of energy. 
The tool capable of resolving the instability and 
inefficiency of energy generation and distribution in 
smart cities is an AI-based energy management 
system that offers an innovative solution to the 
identified challenge. The combination of machine 
learning (ML) and reinforcement learning (RL) is 
found to optimize real-time energy production, 
storage, and grid operation, resulting in reliable and 
cost-effective energy consumption. 
This research was conducted to develop an energy 
management system based on AI, aiming to address 
the challenges of integrating renewable energy and 
maintaining grid stability in smart cities. The study 
is also set to provide a new direction in the 
optimization of energy production, storage, and use, 
which are sustainable and reliable within a system. 
The novelty of the research findings lies in the 
approach to addressing energy management in smart 
cities by integrating machine learning models 
(LSTM and SVM), optimization methodologies 
(MILP), and reinforcement learning (RL). 
Compared to classic methods, this hybrid AI would 
provide significant improvements in prediction 
accuracy, renewable energy utilization, and grid 
stabilization. 

The paper is structured as follows: In Section 2, 
we conduct a review of the related work, discussing 
the overview of similar approaches to existing 
systems and technologies for renewable energy 
management systems in smart cities, particularly 
focusing on AI-enabled systems. It examines 
traditional approaches compared to these newer AI 
models and their pros and cons. The third section 
provides the methodology, detailing the AI-enabled 
energy management framework with the algorithms 
and models involved in energy forecasting, 
optimization, and decision-making. It also defines 
data collection, preprocessing, and feature 
engineering procedures. Results of the proposed 
system are presented in Section 4, where we evaluate 
the performance of such a system based on different 
metrics like prediction accuracy, energy 
optimization, system reliability, etc., and compare 
with existing models. Finally, Section 5 wraps up the 
paper with a summary of significant findings and the 
system's limitations and recommends future work 
for enhanced energy management frameworks. We 
structure our investigation iteratively, from the 
theoretical insights to system design and application 
evaluation. 

 

 

2. RELATED WORK 

Artificial Intelligence and Renewable Energy 
Integration The integration of AI with renewable 
energy systems, especially with smart cities, has 
gained considerable attention in the last few years. 
Researchers have proposed using artificial 
intelligence (AI) for energy efficiency 
improvements, optimizing grid operation, and 
advancing sustainable energy use in cities. This part 
provides a detailed summary of recent work related 
to AI applications in renewable energy systems, 
except for those studies presented in the 
introduction. 
 

 
Figure 2: AI's Role in Renewable Energy Optimization 

 
As shown in Figure 2, AI can be essential in 
optimizing renewable energy systems. AI in 
Renewable Energy Generation: We use AI in the 
form of machine learning and neural networks to 
forecast energy output from renewable sources like 
wind, solar, etc. AI in Energy Storage and Battery 
Management: This aspect of AI improves energy 
storage and retrieval during peak hours for practical 
usage. For example, one common application is in 
the area of Smart Grid Optimization, where AI is 
used to dynamically shuttle electricity across the grid 
to keep the grid stable. Another one is AI in Urban 
Sustainability and Renewable Energy Integration, 
which highlights AI's use for integrating renewable 
energy systems and urban infrastructures. AI-Driven 
Decision Support for Renewable Energy Policies: It 
provides data-driven insights to support 
policymaking in developing sustainable energy 
strategies. This unique duality represents the 
possibilities of using AI to improve energy 
efficiency, reliability, and sustainability for smart 
cities. 
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2.1. AI in Renewable Energy Generation 
Optimization 
 
Increasingly, machine learning (ML) and deep 
learning (DL) techniques have been adopted for 
more accurate prediction of energy generation and 
optimal distribution of renewable energy resources. 
In a study by Smith et al. Kunhimoza et al. Now, 
machine learning technology is perfected to 
accurately estimate wind energy generation using 
existing data from previous wind generation 
technologies. The findings suggested that ML 
models efficiently reduce energy waste (matching 
energy production with demand) [17]. In a similar 
research work, Chen et al—Yang et al. (2022), New 
advancements in traditional models under periods 
of high variability. (2018) applied deep learning 
algorithms for predicting solar energy generation, 
where AI models were displayed to outperform 
traditional models [18]. 
Artificial intelligence (AI) has great potential for 
controlling the power output of hybrid renewable 
energy systems (HRES), especially solar and wind 
energy skins (Liu and Zhang, 2020). Zhang et al. 
proposed a hybrid DRL model to adjust energy 
production to real-time demand [19] automatically. 
AI can help renewables work well, laying the 
groundwork for the future grid. 
 
2.2. AI in Energy Storage and Battery 
Management 
 
Instead, energy storage systems, mainly batteries, 
are necessary for stacking up energy and utilizing it 
when required. This storage system has a complex 
management process, including real-time 
dispatching between energy storage and energy 
released. AI-based models are now being introduced 
with new techniques to establish optimized battery 
charging/discharging cycles, enabling better energy 
storage system performance. 
Wang et al. (2017) studied the use of AI for 
optimizing energy storage in smart grid. It was 
proposed that energy be retained in storage during 
off-peak periods and used where the system is under 
strain through a deep neural network (DNN) based 
model for energy storage behaviors [20]. The result 
demonstrated the potential for minimizing energy 
losses and AI models' ability to facilitate 
improvements in the performance of systems for 
storage. 
Zhang and Liu (2019) also worked on battery system 
optimization in other renewable applications. They 
trained machine learning models to predict energy 
consumption and charge levels, providing more 

control over the battery management system. For 
example, they showed that using AI-based storage 
systems can decrease the battery life cycle and 
increase the energy efficiency of overall grid 
operations [21]. 
 
2.3. AI in Smart Grid Optimization 
 
Adopting the smart grid, including integrating new 
digital communication technologies and AI, is 
crucial for future energy systems, particularly 
urbanization. We can use AI for several purposes, 
from grid optimization to real-time balancing of 
energy generated and consumed, fault detection, and 
demand-side management. 
A study by Zhao et al. (2018) proposed using AI-
based techniques to improve fault detection and grid 
reliability. By leveraging artificial intelligence 
algorithms, their model could predict and detect 
faults preemptively before they occur, thus 
diminishing outages and increasing the overall 
stability of the grid. This study proved the 
advantages of applying AI to predictive 
maintenance and grid surveillance, consequently 
increasing intelligent grid resilience [22]. 
Ali and Karami (2019) Explored Artificial 
Intelligence in Smart Grid Electricity Distribution. 
They encouraged an AI algorithm for dynamic load 
balancing, whose scope was to modify the 
distribution of electricity provision against real-time 
demand and sustainability. They concluded that AI 
systems could more efficiently balance supply and 
demand, significantly improving the efficiency of 
smart grids and reducing energy loss [23]. 
Moreover, some previous studies have explored 
potential applications of AI in demand-side 
management. For example, Li and Zhang (2020) 
introduced an algorithm based on reinforcement 
learning to govern household energy consumption in 
line with real-time prices of energy and grid 
conditions. [24] The results indicated that AI could 
substantially impact peak demand and grid 
congestion and reduce consumer costs. These 
findings point to the fact that, even at the consumer 
level of smart cities, AI can maximize efficiencies 
when it comes to energy consumption, which is 
critical in achieving sustainable smart cities. 
 
2.4. AI in Urban Sustainability and Renewable 
Energy Integration 
 
Several research initiatives have investigated the 
effects of AI on urban sustainability, aimed 
explicitly at integrating renewable energy systems 
with the urban environment. Nguyen et al. reported 
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on the potential of AI, referencing an extensive 
literature review of the application of AI for smart 
city energy systems. The review explained that AI is 
vital in energy management in urban environments, 
including optimizing renewable resource usage rates 
and keeping reliability in high-demand 
metropolitan settlements [25]. 
A Mult objective optimization framework including 
smart cities with renewable energy systems was 
suggested by Bhatnagar and Singh (2020), where AI 
algorithms integrated smart cities with renewable 
energy systems. Their research centered on the 
potential of artificial intelligence as part of real-time 
decision-making in urban energy systems, where 
numerous objectives (carbon emission reduction, 
energy efficiency improvement, and economic 
feasibility) must be balanced [26]. They also found 
that optimization in AI usage helps create a 
sustainable environment and sustainable 
urbanization and buildings through renewal energy 
optimization. 
Further, Sharma et al. For instance, (2021) showed 
how AI can enhance smart cities' resilience by 
improving energy distribution, saving energy, and 
reducing carbon emissions. AI models were used to 
predict time energy consumption patterns and 
optimize use, making it feasible for cities to assist 
their envy with ornamental objectives [27]. 
 
2.5. AI-Driven Decision Support for Renewable 
Energy Policies 
 

In recent years, AI has attracted much 
attention in its role in decision-support in energy 
policies. Patel et al. A different study (2020) focuses 
on policymakers with AI-powered decision support 
software able to process predictions of renewable 
energy production, grid states, and energy usage 
data. This enables policymakers to make informed 
decisions regarding energy investments, 
infrastructure development, and pricing [28]. The 
study added that the AI algorithms were more 
accurate than traditional forecasting methods and 
could help formulate balanced, forward-looking, and 
sustainable long-term energy policies through 
accurate long-term forecasting and scenario 
analysis.  

 
3. METHODOLOGY 

This subsection describes an innovative and unique 
method that we suggested to combine AI and 
renewable energy sources in smart cities for energy 
generation, storage, and distribution. Data 
collection, AI algorithms, system architecture, 

optimization models, and decision support are part 
of the energy management system. The challenges 
related to urban energy management are addressed 
using real-time monitoring and machine-learning 
forecasting and optimization methods. Its unique 
model merges cutting-edge AI algorithms that 
leverage your data with a robust energy management 
framework designed for the demands of smart 
cities, a guaranteed combination of high innovation 
and value generation. 
 
3.1. Datasets 
 
Read more in the full study, which trained and 
validated AI models to optimize renewable energy 
generation, storage, and distribution in smart cities 
using a dataset. The dataset combines the real-time 
data from renewable energy systems (including 
generation, consumption, and storage) with 
environmental factors influencing energy 
generation. The models you are trained on are large 
datasets, which may be from smart meters, IoT 
sensors, weather stations, historical energy data, etc. 
This part provides explanations about all the critical 
parameters and their definitions, tables representing 
how our dataset was structured, and finally, the 
actual images as in the model you will implement. 
3.1.1. Key Parameters in the Dataset 
We used data with all the required parameters for 
forecasting renewable energy, grid balancing, and 
optimizing energy storage. The input features 
include the energy generating parameters (kW) of 
the energy sources (solar, wind, hybrid), solar 
irradiance (W/m²), wind speed (m/s), and 
environmental temperature (°C), which have a 
dominant influence on the energy production 
efficiency. Data sources include residential, 
commercial, and industrial energy consumption 
(kWh) and time-of-use (hours) data used to analyze 
energy consumption patterns and peak demand. 
Battery charge (%), Battery discharge rate (kW), 
state of charge (SOC), and Battery efficiency (%) are 
included in Energy Storage data. The grid data 
includes grid load (kW), voltage (V), grid faults, 
and peak load, which helps assess the grid capacity 
and performance. Finally, variables related to the 
wind direction (degrees), cloudiness (%), and 
humidity (%) explain information that may affect 
the generation of renewable energy. The parameters 
above will thus create a descriptive dataset for 
intelligent city energy system optimization. 
3.1.2. Dataset Structure 
The dataset is in a time-series format, with each 
record corresponding to a time point (hourly, in 
terms of data granularity). Sample Dataset and its 
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Parameters Below is a sample dataset table that 
shows the parameters for renewable energy 
generation, consumption, and storage: 

 

 
Table 1: Structure of the Smart City Energy Management Dataset 

 
Timesta
mp 

Sola
r 
Pow
er 
(kW
) 

Win
d 
Pow
er 
(kW
) 

Solar 
Irradia
nce 
(W/m²) 

Win
d 
Spe
ed 
(m/s
) 

Energy 
Consump
tion 
(kWh) 

Batte
ry 
Char
ge 
Level 
(%) 

Gri
d 
Lo
ad 
(k
W) 

Tempera
ture (°C) 

Humid
ity (%) 

Cloud 
Cover
age 
(%) 

2025-
04-21 
00:00 

5.2 2.3 400 3.0 12.5 75 20 18 60 25 

2025-
04-21 
01:00 

4.8 2.1 350 2.8 11.3 74 22 17.5 59 30 

2025-
04-21 
02:00 

4.9 2.0 370 3.1 10.7 73 21 17 58 35 

2025-
04-21 
03:00 

5.5 2.5 420 3.5 13.0 76 20 16.8 62 20 

 
3.1.3. Data Sample Images To illustrate how the data is represented graphically, 

below are sample images showing trends for 
different parameters over a specific period: 

 
Parameter Sample Graphs 

Solar Power vs Solar Irradiance Over Time 
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Wind Power Generation vs Wind Speed 

 

Energy Consumption by Sector 

 

Battery Charge Level Over Time 

 
 

Figure 3: Structure of the Energy Management Dataset 
 

The relationships are those learned by the models 
trained using the smart city energy management 
dataset presented in this paper – some basic graphs 
are shown in Figure 3. The first graph shows the 
relationship between solar power generation kW 
based on solar irradiance (W/m²). Wind Power 
Generation vs. Wind Speed: This is the second chart 
created with a simple scatter: the information of the 
power generated by the wind turbines (in kW) versus 
wind speed (in m/s) was plotted, this shows how a 
higher wind speed is correlated with greater power 
production. The third graph, Energy Consumption 
Trend, shows energy consumption trends during 24 
hours for residential, commercial, and industrial 
sectors and highlights peak consumption periods. 

Lastly, the fourth graph is Battery Charge Level 
Over Time, and it illustrates how the charge level (in 
%) of the battery varies through the hours of the day. 
This is useful for understanding how energy is stored 
relative to how much energy was generated and 
consumed. These graphs all generate a holistic 
perspective of renewable energy generation, storage, 
and consumption dynamics in smart cities. 
3.1.4. Data Preprocessing and Feature 
Engineering 
The input raw data has to be preprocessed to convert 
into a trainable form for different ML algorithms, 
which includes many steps. Data Preprocessing: The 
first step is to clean and treat missing data. Missing 
data is handled using the imputation method, which 
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fills missing values using the interpolation method 
or Removing data points if missing values are 
significant. Normalization is performed at this point 
for numerical data, like energy consumption, power 
generation, and storage, to be between 0 and 1 to 
avoid biases towards bigger numbers and help 
machine learning models process the data better. 
Additionally, feature extraction can be performed 
on raw data, such as calculating moving averages of 
power generation and consumption or weather 
predictions, to generate lagged features to improve 
the accuracy of predictions. Lastly, a time-series 
transformation of the data is applied, augmenting 
the dataset with additional time-based features to 
capture the cyclical nature of energy consumption 
and generation, which is also a critical component of 
accurate renewable energy systems predictions. 
3.1.5. Dataset Usage in Model Training 
Once preprocessed, the dataset is split into training 
& test datasets. The training data will train each 
predictive model based on historical data to handle 
renewable energy generation, consumption, and 
storage. For training, historical data was employed 
in which machine learning models such as Long 
Short-Term Memory (LSTM) networks and Random 
Forests were created, taking the predefined input 
features to learn how to predict future energy 
generation, usage, and storage requirements. These 
models are evaluated using the testing data. These 
metrics obtained from the energy outputs predicted 
and observed must be compared as the MAE and 
RMSE check them to guarantee the efficiency and 
accuracy of the models. 
3.2. System Architecture 
In the smart city context, the evolution draws on 
cross-domain optimization of the system, where data 

over multiple layers are characterized, constructed, 
and then checked or further distributed through an 
AI-embedded agent-centric framework, dealing with 
renewable energy generation, storage, and 
distribution to maintain the state's stability and 
sustainability. This system serves the very purpose 
of bringing different aspects, such as real-time data 
processing, prediction models, optimization 
algorithms, and decision support systems working in 
a unified manner to tackle the challenges of urban 
energy systems. This system's architecture is a 
fundamental basis for intelligent energy 
management because the underlying mathematical 
models are crucial for translating predictions into 
strategies for optimization that reduce energy costs, 
maximize renewable resource utilization, and 
stabilize the grid. 
Figure 4 illustrates the Architecture of AI-Driven 
Renewable Energy Optimization System The Data 
Collection Layer collects data from smart meters, 
renewable energy systems, and environmental 
sensors. The data drawn from various sources is then 
transformed in the Data Preprocessing & Feature 
Engineering Layer, which is normalized and 
augmented by feature engineering methods. 
Prediction & Forecasting Layer This layer makes 
energy prediction and forecasting using Machine 
Learning models (LSTM Networks, Random 
Forests, etc) for energy generation and consumption 
forecasting. MILP (Mixed Integer Linear 
Programming) is used in the Optimization Layer to 
balance energy generation and storage. At the plug, 
the Decision Support & Actuation Layer gives 
recommendations and rereads energy storage into 
the grid. This is an AI-based Dynamic Smart 
Energy management system in smart cities. 
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Figure 4: AI-Driven Renewable Energy Optimization System 
System Architecture 

1. Data Collection Layer: The data 
collection layer's responsibility is to collect 
real-time data from diverse sources, 
including smart meters (residential, 
commercial, and industrial energy 
consumption), renewable energy 
generation systems (solar and wind), and 
environmental sensors (e.g., temperature, 
humidity, wind speed, and solar 
irradiance). This data is the basis of 
predictive modeling and optimization. 

2. Data Preprocessing & Feature 
Engineering Layer: The raw data is 
preprocessed to remove noise and outliers, 
handle missing values, and ensure 
consistency. Normalization is performed 
to scale the numerical data (such as energy 
consumption and power generation) to be 
between 0 and 1 to avoid bias of machine 
learning models towards higher values. 
Feature engineering is applied to deriving 
moving averages, rolling windows, and 
seasonal adjustments. We also incorporate 
time-based features like the hour of the 
day, day of the week, and month to capture 
cyclical trends. 

3. Prediction & Forecasting Layer: This 
layer of the model uses machine learning 
models, such as Long Short-Term Memory 
(LSTM) networks, to predict energy 
generation, consumption, and storage needs 
over time. The LSTM model works best for 
time-series data that uses past values to 
foresee future ones, taking time 
dependencies into account. The model 
trains on previous data to make forecasts 
of renewable energy generation (solar and 
wind) and energy consumption. However, 
random forests and other machine-learning 
algorithms are gathered to optimize your 
prediction of non-linear patterns. 

The mathematical formulation for energy 
generation prediction 𝐸௚௘௡

෣(𝑡) at time 𝑡 
using LSTM can be represented as: 

𝐸௚௘௡
෣(𝑡) = 𝑓(Input Features at time 𝑡)   (1) 
Where 𝑓 is the LSTM-based function that 
outputs the predicted energy generation 
based on historical data and input features 
such as weather, time of day, and solar 
irradiance. 

4. Optimization Layer: The optimization 
layer ensures that energy is generated, 
stored, and distributed most efficiently. The 
energy balancing problem is solved by 
using Mixed-Integer Linear Programming 
(MILP). Overall, the optimization problem 
is created to minimize the total distribution 
cost of energy while fulfilling constraints 
set forth by grid demand, renewable energy 
generation, and storage limits. We can 
write the objective function of this 
optimization problem as: 

min ∑ ቀ𝐶௚௘௡(𝑡) ⋅ 𝐸௚௘௡(𝑡) + 𝐶௦௧௢௥௔௚௘(𝑡) ⋅்
௧ୀଵ

𝐸௦௧௢௥௔௚௘(𝑡)ቁ                                                         (2) 

Where: 
 𝐶௚௘௡(𝑡) is the cost associated with 

generating energy at time 𝑡, 

 𝐸௚௘௡(𝑡) is the energy generated at 

time 𝑡, 

 𝐶௦௧௢௥௔௚௘(𝑡) is the cost associated 

with storing energy at time 𝑡, 

 𝐸௦௧௢௥௔௚௘(𝑡) is the amount of 

energy stored at time 𝑡. 

This function minimizes the costs while 
meeting the demand constraints, ensuring 
that the system operates within its 
capabilities. 
The balance between energy demand and 
supply is captured by the constraint: 
𝐸௚௘௡(𝑡) + 𝐸௦௧௢௥௔௚௘(𝑡) = 𝐸ௗ௘௠௔௡ௗ(𝑡)   (3) 
Where 𝐸ௗ௘௠௔௡ௗ(𝑡) represents the energy 
demand at time 𝑡. This constraint ensures 
that the total energy generated and stored is 
sufficient to meet the demand at all times. 

5. Decision Support & Actuation Layer: 
After optimizing, DSS makes 
recommendations to grid operators based 
on real-time data. This actuation 
component applies these decisions by 
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changing the storage and distribution of 
energy in different infrastructures 
(residential, commercial, industrial). The 
system can choose whether to store excess 
renewable energy, modify grid usage, or 
output energy where needed. 

Integration of Prediction and Optimization 
A unified prediction and optimization layer enables 
seamless integration. The forecasts from the 
forecasting models are directly inputted into the 
optimization models. Forecasts in energy generation, 
for instance, guide decisions on how much energy 
needs to be stored or fed into distribution networks 
to optimize the use of renewable energy. The 
optimization model then leverages these predictions 
to make real-time storage level, load balancing, and 
distribution decisions. 
Additionally, Reinforcement Learning (RL) 
enhances the decision-making process over time. 
The RL agent would learn from past decisions it 
made (e.g., storing energy, not storing energy, 
discharging too much energy, etc.) and adapt its 
policy to minimize future energy costs while 
maximizing the use of renewable energy. The RL 
agent receives feedback from the energy system, 
allowing for an optimization strategy that can be 
adjusted. 
Mathematical Formulation for Energy Storage 
Optimization 
Energy storage optimization is a mathematical 
model based on maximizing efficiency. The 
incentive formulation for this optimization problem 
is: 

max ∑ ቀ𝜂௖௛௔௥௚௜௡௚(𝑡) ⋅ 𝐸௚௘௡(𝑡) −்
௧ୀଵ

𝜂ௗ௜௦௖௛௔௥௚௜௡௚(𝑡) ⋅ 𝐸௦௧௢௥௔௚௘(𝑡)ቁ                             (4) 

Where: 
 𝜂௖௛௔௥௚௜௡௚(𝑡) is the charging efficiency of 

the energy storage system at time 𝑡, 

 𝜂ௗ௜௦௖௛௔௥௚௜௡ (𝑡) is the discharging 

efficiency of the storage system, 

 𝐸௦௧௢௥௔௚௘(𝑡) is the energy stored at time 𝑡, 

 𝐸௚௘௡(𝑡) is the energy generated at time 𝑡. 

It does so by storing energy whenever surplus 
renewable energy is generated and discharging it 
only when high consumer demand coincides, 
considering that storage is inefficient. 
Dynamic Load Balancing with Reinforcement 
Learning 

To further enhance the optimization process, 
Reinforcement Learning (RL) is employed to 
handle dynamic energy management. The RL agent 
continuously interacts with the environment, making 
decisions based on the state of the system and 
adjusting its actions to improve overall performance. 
The agent updates its policy 𝜋 based on the reward 
𝑅௧ received at each time step: 
𝜋௧ାଵ = arg max

గா
[𝑅௧(𝜋, State௧)]                             (5) 

Where: 
 𝜋௧ାଵ is the updated policy at time 𝑡 +1, 

 𝑅௧(𝜋, State௧) is the reward based on the 
state of the system at time 𝑡 under policy 𝜋. 

The reward function is designed to reward the RL 
agent for decisions that reduce energy costs, improve 
storage efficiency, and ensure that the grid remains 
stable while minimizing emissions. 
 

Algorithm for Dynamic Energy Management 
in Smart Cities Using AI and Optimization 
Techniques 
Preprocess Data: 

 Clean and normalize the raw data 𝐷raw 
from IoT devices and sensors to obtain 
𝐷normalized. 

Train Models: 
 Train the LSTM model 𝐸gen෢ (𝑡) and 

SVM model 𝐸cons෣(𝑡) on historical data 
𝐷historical historical to predict energy 
generation 𝐸gen෢ (𝑡) and energy 
consumption 𝐸cons෣(𝑡). 

Optimize Energy Distribution: 
 Use the MILP optimization model to 

balance grid load 𝐿grid, manage energy 
storage 𝐸௦௧௢௥௔௚௘ , and forecast demand 
𝐸ௗ௘௠௔௡ௗ : 

min ෍ ቀ𝐶௚௘௡(𝑡) ⋅ 𝐸௚௘௡(𝑡) + 𝐶௦௧௢௥௔௚௘(𝑡)

்

௧ୀଵ

⋅ 𝐸௦௧௢௥௔௚௘(𝑡)ቁ 

Subject to the constraint: 
𝐸௚௘௡(𝑡) + 𝐸௦௧௢௥௔௚௘(𝑡) = 𝐸ௗ௘௠௔௡ௗ(𝑡) 

Apply Reinforcement Learning: 
 Use RL to adjust the energy distribution 

strategy 𝜋 based on real-time feedback 
𝑅௧, improving energy cost 𝐶energy and 
system reliability 𝑅system: 

𝜋௧ାଵ = arg max
గ

𝐸 [𝑅௧(𝜋, State௧)] 

Iterative Improvement: 
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 Continuously repeat the above steps, 
improving the policy 𝜋 over time, 
minimizing energy costs and enhancing 
system reliability at each time step 𝑡. 

 
 

Its methodology includes training machine 
learning models using real-time data gathered from 
renewable energy sources. Preprocessing, feature 
engineering, and model validation were carefully 
undertaken to guarantee the quality of the findings 
and the solidity of the predictive models. 
 

4. RESULTS 

In this section, we provide some results related to the 
proposed AI-based energy management system 
integrating ML-based simulation models, optimal 
scheduling methods, and RL techniques for the 
recent dynamic operation of renewable resources in 
smart cities. The evaluation is done based on three 
aspects, namely prediction accuracy, energy 
optimization results, and comparison with the 
existing model. We further support our argument 
with charts and graphs showing the system's effect 
on energy production, consumption, cost-efficiency. 
4.1. Assessment Criteria 
The proposed system was evaluated concerning the 
following primary metrics: 

1. Prediction Accuracy: 

 MAE (Mean Absolute 
Error) – It measures the 
average error in magnitude. 

 Root Mean Squared Error 
(RMSE): A metric that 
penalizes larger errors more 
than more minor errors, 
providing insight into the 
prediction model's ability to 
avoid making large 
deviations. 

2. Energy Optimization: 

 Cost Efficiency: The total 
energy generation / storage 
costs over the given period. A 
lower price means better 
energy management. 

 Energy Balance: This metric 
expresses the system's ability 

to balance energy generation, 
storage, and demand. A stable 
grid requires energy 
generation and energy use to 
be in balance. 

 
3. System Reliability: 

 Grid Stability: Assessing the 
system's ability to maintain 
grid stability, particularly 
during peak demand periods 
or low renewable energy 
generation periods. 
Reliability is measured by 
how many times there is an 
outage or disruption in the 
grid. 

 Renewable Energy: The 
share of energy demand met 
by renewables as opposed to 
total grid electricity. 

4.2. Model Evaluation and Results 
4.2.1. Prediction Accuracy 
Table 2 presents evaluation results of prediction 
models used in the system. It is used to have the 
Hybrid LSTM-SVM model tested against both 
energy generation prediction (solar and wind) and 
energy consumption forecasting. 
 

Table 2: Performance Evaluation of Prediction Models 

Model 

MAE 
(Ener

gy 
Gener
ation) 

RMS
E 

(Ener
gy 

Gener
ation) 

MAE 
(Energ

y 
Consu
mption

) 

RMSE 
(Energ

y 
Consu
mption

) 

Hybri
d 

LSTM
-SVM 

0.045 
kW 

0.073 
kW 

0.089 
kWh 

0.14 
kWh 

LSTM 
(Stand
alone) 

0.069 
kW 

0.096 
kW 

0.105 
kWh 

0.19 
kWh 
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SVM 
(Stand
alone) 

0.065 
kW 

0.089 
kW 

0.097 
kWh 

0.15 
kWh 

Analysis: The proposed method demonstrated better 
accuracy in predicting energy generation and 
consumption than traditional LSTM and SVM 
models with minimal MAE and RMSE values. This 
suggests the hybrid model can better capture the 
complicated temporal and nonlinear relationship 
hidden in energy data. 
4.2.2. Energy Optimization Performance 
Table 3 illustrates the proposed system's energy 
optimization performance by comparing total 
energy costs and efficiency in utilizing renewable 
sources between the proposed algorithm and a 
baseline model that does not apply AI-based 
optimization. 
Table 3: Energy Optimization Performance Comparison 

Model 

Total 
Ener

gy 
Cost 
(USD

) 

Renewa
ble 

Energy 
Utilizati
on (%) 

Grid 
Relian
ce (%) 

Energ
y 

Balan
ce 

(%) 

Propos
ed 

System 
(AI-

driven) 

12,50
0 

85% 15% 99.8% 

Baselin
e (Non-

AI 
Model) 

14,20
0 

75% 25% 97.5% 

Analysis: The AI system saves 12% in total energy 
cost, increases renewable energy utilization by 10%, 
and improves energy balance by 2.3%. These 
improvements demonstrate the power of artificial 
intelligence in energy efficiency. 
4.2.3. System Reliability 
The system reliability was evaluated by monitoring 
the stability of the grid and the number of 
interruptions, which is shown in Table 4. The results 
are as follows: 

Table 4: Grid Stability and Reliability Analysis 

Model 

Grid 
Stability 
(No. of 

Failures) 

Average 
Duration of 

Failures 
(minutes) 

Proposed 
System (AI-

driven) 
2 5.2 

Baseline 
(Non-AI 
Model) 

6 10.7 

Analysis: Implementing an AI-based system not 
only stabilized the grid but also reduced failures by 
more than 66% and the average duration of failure 
by over 50%. Thus, the optimization and RL 
components are shown to be effective in always 
guaranteeing grid stability, even when demand is at 
its highest and renewable generation is at its lowest. 
 
4.3. Comparison with Existing Models 
 
To evaluate the effectiveness of the proposed 
system, we will compare it with traditional energy 
management models that rely on conventional 
methods. In Table 5, we compare the performance 
of the proposed AI-driven system against these 
existing models. 

Table 5: Comparison of Performance Metrics with 
Existing Energy Management Models 

Model 

Ener
gy 

Cost 
(US
D) 

Renewa
ble 

Utilizati
on (%) 

Ener
gy 

Balan
ce 

(%) 

Grid 
Stabil

ity 

Proposed 
AI System 

12,50
0 

85% 
99.8
% 

High 

Rule-
based 

System 

15,00
0 

70% 95% 
Mediu

m 

Linear 
Program

ming 
Model 

13,80
0 

80% 98% 
Mediu

m 

Analysis: By measuring its performance against the 
rule-based and linear programming models, the 
human hybrid AI solution performs better, balancing 
cost, aligning with renewable energy generation, and 
providing stable grid management. Given the 
increase in renewable utilization and energy balance, 
AI-based network optimization enables a more 
sustainable and reliable energy system. 
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4.4. Graphs and Charts 
 
Figures 5 and 6 illustrate the energy generation and 
consumption trends during a typical 24-hour period, 
comparing the system performance against the 
baseline model. 

 
Figure 5: Energy Generation vs. Time 

 
In the graph, we see the renewable energy generation 
24-hour curve. The AI-enabled approach makes 
generation dependent upon demand and 
consumption patterns, greatly reducing non-
renewable energy generation dependent on peak 
hours. 

 
Figure 6: Energy Consumption vs. Time 

 
At the same time, the AI system uses dynamic load 
shifting during low consumption hours to optimize 
energy consumption and help balance out demand 
so that it is more even and the grid is not overly 
stressed. 

 
Figure 7: Cost comparison of Different Models 

Figure 7 provides a month-long cost analysis 
indicating the other advances made using the AI 
system for optimization instead of traditional means. 
4.5. Result Discussion 
The outcomes validate that the suggested intelligent 
management system powered by AI enhances 
energy administration in smart cities. The system 
achieves better performance than conventional 
approaches in prediction accuracy, energy cost 
minimization, renewable energy hair usage, and grid 
stability, thanks to the use of machine learning 
models (LSTM and SVM), optimization (MILP), 
and reinforcement learning (RL). 
With advanced forecasting of energy demand and 
generation, real-time optimization, and 
reinforcement learning capabilities, the AI system 
results in a more reliable and cost-effective energy 
system. Given the system's better performance in 
terms of many metrics they might be concerned 
with, like cost, efficiency, and reliability, results are 
very good signs for its wide application in smart city 
energy management. Future work includes 
improving the RL model, leveraging more data 
sources like real-time meteorological forecasts, and 
expanding the model to scale to larger cities with 
more complicated energy infrastructures. 

These findings confirm how AI can be used to 
develop solutions for energy system optimization 
and potential applications in future sustainable, 
robust, and resilient urban infrastructure. 
 
5. CONCLUSION 

We hypothesized and addressed an AI-powered 
energy management system for smart cities, 
particularly a combination of machine learning 
(LSTM and SVM), optimization (MILP), and 
reinforcement learning (RL), and assessed it in this 
study. Past results illustrated superior energy 
management capabilities than conventional 
methods. Lowered total energy costs by 12% 
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compared to existing systems, 10% more harnessed 
renewable energies, and an improved energy balance 
of 2.3%. In addition, the prediction models had high 
accuracy, yielding a Mean Absolute Error (MAE) of 
0.045 kW for the energy generation and 0.089 kWh 
for the energy consumption, well above the lone 
LSTM and SVM models. Grid stability also 
improved, with a 66 % reduction in grid failures and 
a 50% reduction in the duration of outages. Key 
themes of this study include the necessity to 
minimize data errors to enhance the quality of 
predictions and projections made by the model, as 
well as the challenges of scaling AI systems to larger 
cities with more complex energy infrastructures. 
Despite these encouraging results, there were 
several drawbacks. Especially in less credible data 
sources, the system's performance greatly hinges on 
the quality and granularity of the data fed into it. 
Moreover, although the optimization model is 
reasonably accurate under standard conditions, it 
may not reflect real results in unexpected weather 
conditions or other factors determining renewable 
energy generation. Although powerful, this RL 
component, in its approach to finding a trajectory, 
requires significant computation and takes a long 
time to train, which limits its scalability to bigger 
cities as it requires heavy computational resources. 

In the future, we will work to enhance the 
prediction quality by integrating more detailed and 
updated weather forecasts and extending the 
network to support more complex urban grids. A 
significant challenge will be to extend the RL model 
to scale to the size of a smart city. Advancing hybrid 
optimization models that leverage deep 
reinforcement learning, along with other artificial 
intelligence methods, may also enable greater 
improvement in decision-making and system 
efficiency. This abstraction is a high-level overview 
and understanding of how you would assemble your 
combined neural net application to achieve the 
optimization goal in this way. Key themes of this 
study include the necessity to minimize data errors 
to enhance the quality of predictions and projections 
made by the model, as well as the challenges of 
scaling AI systems to larger cities with more 
complex energy infrastructures. 
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