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ABSTRACT

This paper proposes an artificial intelligence-based energy management system implemented on the Internet
of Things in smart cities to optimize the amount of renewable energy used in a smart city, reduce costs, and
improve stability in the grid. This system combines machine learning methods (LSTM and SVM), Mixed-
Integer Linear Programming (MILP) optimization, and reinforcement learning (RL) to predict energy
generation and storage, as well as for balancing load in the grid. We validated the results with real data and
proved that our model reduced energy costs by 12%, increased the use of renewable energy by 10%, and
improved energy balance by 2.3%. Also, grid stability was enhanced by a 66% decrease in failures and 50%
in outage periods. Although the system demonstrated potentially successful outcomes, it relies on data
quality and computational power. Future efforts will prioritize improving prediction accuracy using up-to-
date weather data and expanding the system to encompass larger urban areas. Building systems have an
excellent scope for reliable, energy-efficient, and sustainable energy management in smart cities, enabling
innovative and eco-friendly urban infrastructure.

Keywords: Al-Driven Energy Management, Smart Cities, Renewable Energy Optimization, Machine

Learning, Grid Stability
1. INTRODUCTION tackle this issue, smart cities are being developed as
dynamic urban environments that leverage digital

The energy industry worldwide is experiencing a
widespread transformation motivated by the global
climate crisis and the general need for sustainability.
Fossil fuels are the dominant energy sources used,
making them the sources of energy production;
however, fossil fuels account for the release of a
significant number of greenhouse gases and
pollution into the environment. On the other hand,
renewable energy sources, including solar, wind,
hydropower, and geothermal energy, offer
sustainable solutions that can help reduce carbon
emissions and combat global warming. In tandem
with the expansion of urban areas, urbanization has
also led to a surge in energy consumption, resulting
in an increasingly urgent challenge for efficient,
scalable, and sustainable energy supply solutions. To

technologies to optimize resource usage and
promote better urban living and efficient energy
management [1], [2].

Smart cities use various technologies, including the
Internet of Things (IoT), artificial intelligence (Al),
and machine learning (ML), to develop intelligent
systems to make the city work more effectively [3].
Have data collected from interconnected devices
and sensors to monitor and control energy
consumption in real time. For example, one of the
challenges of smart cities is integrating renewable
energy sources into an old, rigid, and inefficient
electricity grid [4]. Such important parts make it hard
to ensure a continuously usable and responsible
energy supply in millisecond orders of time, and
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renewable energy generation is hardly ever constant
[5].

Artificial Intelligence (Al): A Leaning Solution for
the Cloudless Era Al evolved to become a
transformative technology to address these
challenges. Al algorithms help the smart city
optimize green energy generation, storage, and
distribution [6], [7]. If yes, Al-based solutions help
with real-time decision-making, predictive analytics,
and energy management automation, allowing
cities to adapt to energy supply and demand
fluctuations dynamically. One example is the
capability of Al to forecast energy generation
powered by weather prediction and adaptively adjust
the energy consumption pattern to be more
consistent with energy availability, increasing the
global efficiency of the energy grid [8], [9].

This could help provide a massive scale of
renewable energy solutions that could minimize
energy loss, store them better, and grow the power
grid, which plays a crucial role in the world
everywhere. This is important because as renewable
energy sources grow, energy storage becomes a key
technology enabling their use since it can store
energy produced but not consumed when demand is
high or generation is low [10]. By predicting future
energy demand and availability, Al technologies can
also optimize energy storage systems' charging and
discharging cycles to ensure renewable energy's
cost-efficient, sustainable use [11].

The benefits of Al include improved grid reliability,
fault detection, and real-time energy balancing. Al
systems [12], [13] can enable smart grids to
automatically adjust energy distribution to prevent
blackouts and reduce energy waste, further
enhancing the resilience and sustainability of urban
energy systems. The importance of Al in the energy
storage sector goes beyond optimizing energy usage;
it also plays a key role in demand-side management,
as Al-powered systems can modify consumption
behaviors according to modifications in grid
conditions, thus reducing stress during peak energy
times frame [14].

Ever since recent advancements in Al, smart cities
across the globe have been successfully
implementing Al-driven renewable energy systems
powered by Al. Barcelona has deployed an Al-based
solution for optimizing energy consumption and
integrating renewable energy with the grid with an
energy reduction of 15% [15]. In the UAE, Masdar
City's application of Al technologies has enabled
better solar energy generation and energy storage
management, reaching the milestones of becoming
a carbon-neutral city by 2030 [16]. Through these
case studies, Al is said to transform renewable

energy systems and help cities become greener in the
shift towards a smart city age.

Through optimizing energy management and
reducing emissions, Al can find its synergy in smart
cities thanks to renewable energy systems that are
more suitable for city management and completely
support the concept of sustainability. We discuss
current applications of Al across the generation,
storage, and distribution of energy and introduce a
novel architecture for Al-enabled renewable energy
systems in urban settings. In conducting this
research, we hope to showcase how Al can help
deliver sustainable solutions to urban energy
challenges, promoting a way towards more
innovative and sustainable cities.

Energy Generation ——— _ /—|
y

i
"
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y— Energy Storage

Demand-Side
Management

Energy
Distribution

s |
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Figure 1: AI-Driven Renewable Energy in Smart Cities

Key components of Al-powered renewable energy
management in smart cities are presented in Figure
1. First among the parasites hastening the system's
demise is Energy Generation, refined by Artificial
Intelligence to maximize the manufacturing of
renewable Energy. Energy is passed to the Energy
Storage, which streamlines the storage and retrieval
of Energy from energy sources based on real-time
demand with the help of AI. The Energy
Distribution, generally unaffiliated with Al, ensures
that Energy is distributed to various city points
without loss. Al examines the state of its node
constantly and optimizes its node (one of the points)
each second based on the demand. Another
application in Demand-Side Management involves
using Al to alter consumer behavior and control
energy use. Lastly, the Case Studies area is added to
showcase real-world implementations and how the
Al-driven system benefits renewable energy
solutions. This holistic strategy illustrates how Al
can improve every phase of energy management in
future cities to become smarter, more sustainable
places.

The issue addressed by the present research concerns
the challenges of integrating renewable energy into
the existing grid structure of smart cities. Urban
planners and utility providers are affected by
problems, such as the instability and inefficiency of
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the grid, and they must ensure the reliable and
sustainable use of energy.

The tool capable of resolving the instability and
inefficiency of energy generation and distribution in
smart cities is an Al-based energy management
system that offers an innovative solution to the
identified challenge. The combination of machine
learning (ML) and reinforcement learning (RL) is
found to optimize real-time energy production,
storage, and grid operation, resulting in reliable and
cost-effective energy consumption.

This research was conducted to develop an energy
management system based on Al, aiming to address
the challenges of integrating renewable energy and
maintaining grid stability in smart cities. The study
is also set to provide a new direction in the
optimization of energy production, storage, and use,
which are sustainable and reliable within a system.
The novelty of the research findings lies in the
approach to addressing energy management in smart
cities by integrating machine learning models
(LSTM and SVM), optimization methodologies
(MILP), and reinforcement learning (RL).
Compared to classic methods, this hybrid Al would
provide significant improvements in prediction
accuracy, renewable energy utilization, and grid
stabilization.

The paper is structured as follows: In Section 2,
we conduct a review of the related work, discussing
the overview of similar approaches to existing
systems and technologies for renewable energy
management systems in smart cities, particularly
focusing on Al-enabled systems. It examines
traditional approaches compared to these newer Al
models and their pros and cons. The third section
provides the methodology, detailing the Al-enabled
energy management framework with the algorithms
and models involved in energy forecasting,
optimization, and decision-making. It also defines
data  collection, preprocessing, and feature
engineering procedures. Results of the proposed
system are presented in Section 4, where we evaluate
the performance of such a system based on different
metrics  like  prediction accuracy, energy
optimization, system reliability, etc., and compare
with existing models. Finally, Section 5 wraps up the
paper with a summary of significant findings and the
system's limitations and recommends future work
for enhanced energy management frameworks. We
structure our investigation iteratively, from the
theoretical insights to system design and application
evaluation.

2. RELATED WORK

Artificial Intelligence and Renewable Energy
Integration The integration of Al with renewable
energy systems, especially with smart cities, has
gained considerable attention in the last few years.

Researchers have proposed wusing artificial
intelligence  (AI) for energy  efficiency
improvements, optimizing grid operation, and

advancing sustainable energy use in cities. This part
provides a detailed summary of recent work related
to Al applications in renewable energy systems,
except for those studies presented in the
introduction.

Al-Driven Decision

Support for
Renewable Energy Al in Renewable
Policies Energy Generation
Al in Urban Al in Energy
Sustainability and Storage and
Renewable Energy Battery
Integration Management

Al in Smart Grid
Optimization

Figure 2: Al's Role in Renewable Energy Optimization

As shown in Figure 2, AI can be essential in
optimizing renewable energy systems. Al in
Renewable Energy Generation: We use Al in the
form of machine learning and neural networks to
forecast energy output from renewable sources like
wind, solar, etc. Al in Energy Storage and Battery
Management: This aspect of Al improves energy
storage and retrieval during peak hours for practical
usage. For example, one common application is in
the area of Smart Grid Optimization, where Al is
used to dynamically shuttle electricity across the grid
to keep the grid stable. Another one is Al in Urban
Sustainability and Renewable Energy Integration,
which highlights Al's use for integrating renewable
energy systems and urban infrastructures. Al-Driven
Decision Support for Renewable Energy Policies: It
provides  data-driven  insights to  support
policymaking in developing sustainable energy
strategies. This unique duality represents the
possibilities of using Al to improve energy
efficiency, reliability, and sustainability for smart
cities.
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2.1. AI in Renewable Energy Generation
Optimization

Increasingly, machine learning (ML) and deep
learning (DL) techniques have been adopted for
more accurate prediction of energy generation and
optimal distribution of renewable energy resources.
In a study by Smith et al. Kunhimoza et al. Now,
machine learning technology is perfected to
accurately estimate wind energy generation using
existing data from previous wind generation
technologies. The findings suggested that ML
models efficiently reduce energy waste (matching
energy production with demand) [17]. In a similar
research work, Chen et al—Yang et al. (2022), New
advancements in traditional models under periods
of high variability. (2018) applied deep learning
algorithms for predicting solar energy generation,
where Al models were displayed to outperform
traditional models [18].

Artificial intelligence (AI) has great potential for
controlling the power output of hybrid renewable
energy systems (HRES), especially solar and wind
energy skins (Liu and Zhang, 2020). Zhang et al.
proposed a hybrid DRL model to adjust energy
production to real-time demand [19] automatically.
Al can help renewables work well, laying the
groundwork for the future grid.

2.2. Al in Energy Storage
Management

and Battery

Instead, energy storage systems, mainly batteries,
are necessary for stacking up energy and utilizing it
when required. This storage system has a complex
management  process, including  real-time
dispatching between energy storage and energy
released. Al-based models are now being introduced
with new techniques to establish optimized battery
charging/discharging cycles, enabling better energy
storage system performance.

Wang et al. (2017) studied the use of Al for
optimizing energy storage in smart grid. It was
proposed that energy be retained in storage during
off-peak periods and used where the system is under
strain through a deep neural network (DNN) based
model for energy storage behaviors [20]. The result
demonstrated the potential for minimizing energy
losses and Al models' ability to facilitate
improvements in the performance of systems for
storage.

Zhang and Liu (2019) also worked on battery system
optimization in other renewable applications. They
trained machine learning models to predict energy
consumption and charge levels, providing more

control over the battery management system. For
example, they showed that using Al-based storage
systems can decrease the battery life cycle and
increase the energy efficiency of overall grid
operations [21].

2.3. Al in Smart Grid Optimization

Adopting the smart grid, including integrating new
digital communication technologies and Al, is
crucial for future energy systems, particularly
urbanization. We can use Al for several purposes,
from grid optimization to real-time balancing of
energy generated and consumed, fault detection, and
demand-side management.

A study by Zhao et al. (2018) proposed using Al-
based techniques to improve fault detection and grid
reliability. By leveraging artificial intelligence
algorithms, their model could predict and detect
faults preemptively before they occur, thus
diminishing outages and increasing the overall
stability of the grid. This study proved the
advantages  of applying Al to predictive
maintenance and grid surveillance, consequently
increasing intelligent grid resilience [22].

Ali and Karami (2019) Explored Artificial
Intelligence in Smart Grid Electricity Distribution.
They encouraged an Al algorithm for dynamic load
balancing, whose scope was to modify the
distribution of electricity provision against real-time
demand and sustainability. They concluded that Al
systems could more efficiently balance supply and
demand, significantly improving the efficiency of
smart grids and reducing energy loss [23].
Moreover, some previous studies have explored
potential applications of Al in demand-side
management. For example, Li and Zhang (2020)
introduced an algorithm based on reinforcement
learning to govern household energy consumption in
line with real-time prices of energy and grid
conditions. [24] The results indicated that Al could
substantially impact peak demand and grid
congestion and reduce consumer costs. These
findings point to the fact that, even at the consumer
level of smart cities, Al can maximize efficiencies
when it comes to energy consumption, which is
critical in achieving sustainable smart cities.

2.4. Al in Urban Sustainability and Renewable
Energy Integration

Several research initiatives have investigated the
effects of AI on urban sustainability, aimed
explicitly at integrating renewable energy systems
with the urban environment. Nguyen et al. reported
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on the potential of Al, referencing an extensive
literature review of the application of Al for smart
city energy systems. The review explained that Al is
vital in energy management in urban environments,
including optimizing renewable resource usage rates
and keeping reliability in high-demand
metropolitan settlements [25].

A Mult objective optimization framework including
smart cities with renewable energy systems was
suggested by Bhatnagar and Singh (2020), where Al
algorithms integrated smart cities with renewable
energy systems. Their research centered on the
potential of artificial intelligence as part of real-time
decision-making in urban energy systems, where
numerous objectives (carbon emission reduction,
energy efficiency improvement, and economic
feasibility) must be balanced [26]. They also found
that optimization in AI usage helps create a
sustainable environment and sustainable
urbanization and buildings through renewal energy
optimization.

Further, Sharma et al. For instance, (2021) showed
how Al can enhance smart cities' resilience by
improving energy distribution, saving energy, and
reducing carbon emissions. Al models were used to
predict time energy consumption patterns and
optimize use, making it feasible for cities to assist
their envy with ornamental objectives [27].

2.5. Al-Driven Decision Support for Renewable
Energy Policies

In recent years, Al has attracted much
attention in its role in decision-support in energy
policies. Patel et al. A different study (2020) focuses
on policymakers with Al-powered decision support
software able to process predictions of renewable
energy production, grid states, and energy usage
data. This enables policymakers to make informed
decisions regarding energy investments,
infrastructure development, and pricing [28]. The
study added that the AI algorithms were more
accurate than traditional forecasting methods and
could help formulate balanced, forward-looking, and
sustainable long-term energy policies through
accurate long-term forecasting and scenario
analysis.

3. METHODOLOGY

This subsection describes an innovative and unique
method that we suggested to combine AI and
renewable energy sources in smart cities for energy
generation, storage, and distribution. Data
collection, AI algorithms, system architecture,

optimization models, and decision support are part
of the energy management system. The challenges
related to urban energy management are addressed
using real-time monitoring and machine-learning
forecasting and optimization methods. Its unique
model merges cutting-edge Al algorithms that
leverage your data with a robust energy management
framework designed for the demands of smart
cities, a guaranteed combination of high innovation
and value generation.

3.1. Datasets

Read more in the full study, which trained and
validated Al models to optimize renewable energy
generation, storage, and distribution in smart cities
using a dataset. The dataset combines the real-time
data from renewable energy systems (including
generation, consumption, and storage) with
environmental ~ factors  influencing  energy
generation. The models you are trained on are large
datasets, which may be from smart meters, IoT
sensors, weather stations, historical energy data, etc.
This part provides explanations about all the critical
parameters and their definitions, tables representing
how our dataset was structured, and finally, the
actual images as in the model you will implement.
3.1.1. Key Parameters in the Dataset

We used data with all the required parameters for
forecasting renewable energy, grid balancing, and
optimizing energy storage. The input features
include the energy generating parameters (kW) of
the energy sources (solar, wind, hybrid), solar
irradiance (W/m?), wind speed (m/s), and
environmental temperature (°C), which have a
dominant influence on the energy production
efficiency. Data sources include residential,
commercial, and industrial energy consumption
(kWh) and time-of-use (hours) data used to analyze
energy consumption patterns and peak demand.
Battery charge (%), Battery discharge rate (kW),
state of charge (SOC), and Battery efficiency (%) are
included in Energy Storage data. The grid data
includes grid load (kW), voltage (V), grid faults,
and peak load, which helps assess the grid capacity
and performance. Finally, variables related to the
wind direction (degrees), cloudiness (%), and
humidity (%) explain information that may affect
the generation of renewable energy. The parameters
above will thus create a descriptive dataset for
intelligent city energy system optimization.

3.1.2. Dataset Structure

The dataset is in a time-series format, with each
record corresponding to a time point (hourly, in
terms of data granularity). Sample Dataset and its
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Parameters Below is a sample dataset table that
shows the parameters

for

renewable energy
generation, consumption, and storage:

Table 1: Structure of the Smart City Energy Management Dataset

Timesta | Sola | Win | Solar Win | Energy Batte | Gri | Tempera | Humid | Cloud

mp r d Irradia | d Consump | ry d ture (°C) | ity (%) | Cover
Pow | Pow | nce Spe | tion Char | Lo age
er er (W/m?) | ed (kWh) ge ad (%)
(kW | (kW (m/s Level | (k
) ) ) (%) |'W)

2025- 52 2.3 400 3.0 12.5 75 20 18 60 25

04-21

00:00

2025- 4.8 2.1 350 2.8 11.3 74 22 17.5 59 30

04-21

01:00

2025- 4.9 2.0 370 3.1 10.7 73 21 17 58 35

04-21

02:00

2025- 5.5 2.5 420 3.5 13.0 76 20 16.8 62 20

04-21

03:00

3.1.3. Data Sample Images

Solar Power vs Solar Irradiance Over Time

Parameter

To illustrate how the data is represented graphically,
below are sample images showing trends for

different parameters over a specific period:

Sample Graphs

Solar Power vs Solar Irradiance Over Time

1000

®
3
s

a
&
S

Solar Irradiance (W/m?2)
— Solar Power (kW)

Power (kW) / Irradiance (W/m?2)
S
3
3

N
S
3

Time (hours)
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Wind Power Generation vs Wind Speed
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Figure 3: Structure of the Energy Management Dataset

The relationships are those learned by the models
trained using the smart city energy management
dataset presented in this paper — some basic graphs
are shown in Figure 3. The first graph shows the
relationship between solar power generation kW
based on solar irradiance (W/m?). Wind Power
Generation vs. Wind Speed: This is the second chart
created with a simple scatter: the information of the
power generated by the wind turbines (in kW) versus
wind speed (in m/s) was plotted, this shows how a
higher wind speed is correlated with greater power
production. The third graph, Energy Consumption
Trend, shows energy consumption trends during 24
hours for residential, commercial, and industrial
sectors and highlights peak consumption periods.

Lastly, the fourth graph is Battery Charge Level
Over Time, and it illustrates how the charge level (in
%) of the battery varies through the hours of the day.
This is useful for understanding how energy is stored
relative to how much energy was generated and
consumed. These graphs all generate a holistic
perspective of renewable energy generation, storage,
and consumption dynamics in smart cities.
3.14. Data Preprocessing and
Engineering

The input raw data has to be preprocessed to convert
into a trainable form for different ML algorithms,
which includes many steps. Data Preprocessing: The
first step is to clean and treat missing data. Missing
data is handled using the imputation method, which

Feature
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fills missing values using the interpolation method
or Removing data points if missing values are
significant. Normalization is performed at this point
for numerical data, like energy consumption, power
generation, and storage, to be between 0 and 1 to
avoid biases towards bigger numbers and help
machine learning models process the data better.
Additionally, feature extraction can be performed
on raw data, such as calculating moving averages of
power generation and consumption or weather
predictions, to generate lagged features to improve
the accuracy of predictions. Lastly, a time-series
transformation of the data is applied, augmenting
the dataset with additional time-based features to
capture the cyclical nature of energy consumption
and generation, which is also a critical component of
accurate renewable energy systems predictions.
3.1.5. Dataset Usage in Model Training

Once preprocessed, the dataset is split into training
& test datasets. The training data will train each
predictive model based on historical data to handle
renewable energy generation, consumption, and
storage. For training, historical data was employed
in which machine learning models such as Long
Short-Term Memory (LSTM) networks and Random
Forests were created, taking the predefined input
features to learn how to predict future energy
generation, usage, and storage requirements. These
models are evaluated using the testing data. These
metrics obtained from the energy outputs predicted
and observed must be compared as the MAE and
RMSE check them to guarantee the efficiency and
accuracy of the models.

3.2. System Architecture

In the smart city context, the evolution draws on
cross-domain optimization of the system, where data

Smart Meters
Renewable Energy Systems

Environmental Sensors

MILP

Energy Balancing

over multiple layers are characterized, constructed,
and then checked or further distributed through an
Al-embedded agent-centric framework, dealing with
renewable energy generation, storage, and
distribution to maintain the state's stability and
sustainability. This system serves the very purpose
of bringing different aspects, such as real-time data
processing, prediction models, optimization
algorithms, and decision support systems working in
a unified manner to tackle the challenges of urban
energy systems. This system's architecture is a
fundamental  basis for intelligent energy
management because the underlying mathematical
models are crucial for translating predictions into
strategies for optimization that reduce energy costs,
maximize renewable resource utilization, and
stabilize the grid.

Figure 4 illustrates the Architecture of Al-Driven
Renewable Energy Optimization System The Data
Collection Layer collects data from smart meters,
renewable energy systems, and environmental
sensors. The data drawn from various sources is then
transformed in the Data Preprocessing & Feature
Engineering Layer, which is normalized and
augmented by feature engineering methods.
Prediction & Forecasting Layer This layer makes
energy prediction and forecasting using Machine
Learning models (LSTM Networks, Random
Forests, etc) for energy generation and consumption
forecasting. MILP (Mixed Integer Linear
Programming) is used in the Optimization Layer to
balance energy generation and storage. At the plug,
the Decision Support & Actuation Layer gives
recommendations and rereads energy storage into
the grid. This is an Al-based Dynamic Smart
Energy management system in smart cities.

Data Preprocessing & Feature
Engineering Layer

Normalization

Feature Engineering

t LSTM Networks
Random Forests

Decision Support & Actuation Layer

Real-Time Recommendations

Energy Storage Adjustments
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Figure 4: AlI-Driven Renewable Energy Optimization System

System Architecture

1.

Data Collection Layer: The data
collection layer's responsibility is to collect
real-time data from diverse sources,
including smart meters (residential,
commercial, and industrial energy
consumption), renewable energy
generation systems (solar and wind), and
environmental sensors (e.g., temperature,
humidity, wind speed, and solar
irradiance). This data is the basis of
predictive modeling and optimization.

Data  Preprocessing &  Feature
Engineering Layer: The raw data is
preprocessed to remove noise and outliers,
handle missing values, and ensure
consistency. Normalization is performed
to scale the numerical data (such as energy
consumption and power generation) to be
between 0 and 1 to avoid bias of machine
learning models towards higher values.
Feature engineering is applied to deriving
moving averages, rolling windows, and
seasonal adjustments. We also incorporate
time-based features like the hour of the
day, day of the week, and month to capture
cyclical trends.

Prediction & Forecasting Layer: This
layer of the model uses machine learning
models, such as Long Short-Term Memory
(LSTM) networks, to predict energy
generation, consumption, and storage needs
over time. The LSTM model works best for
time-series data that uses past values to
foresee  future ones, taking time
dependencies into account. The model
trains on previous data to make forecasts
of renewable energy generation (solar and
wind) and energy consumption. However,
random forests and other machine-learning
algorithms are gathered to optimize your
prediction of non-linear patterns.

The mathematical formulation for energy
generation prediction Eg.,(t) at time ¢t
using LSTM can be represented as:

R
6701

Egen(t) = f (Input Features at time t) (1)
Where f is the LSTM-based function that
outputs the predicted energy generation
based on historical data and input features
such as weather, time of day, and solar
irradiance.

Optimization Layer: The optimization
layer ensures that energy is generated,
stored, and distributed most efficiently. The
energy balancing problem is solved by
using Mixed-Integer Linear Programming
(MILP). Overall, the optimization problem
is created to minimize the total distribution
cost of energy while fulfilling constraints
set forth by grid demand, renewable energy
generation, and storage limits. We can
write the objective function of this
optimization problem as:

min ZI:l (Cgen(t) : Egen(t) + Cstorage(t) :
Egtorage(t)) ©)

Where:
®  Cgen(t) is the cost associated with

generating energy at time ¢,

e Eg.,(t) is the energy generated at

time t,

®  Cstorage(t) is the cost associated
with storing energy at time ¢,

®  Egorage(t) is the amount of
energy stored at time ¢.

This function minimizes the costs while
meeting the demand constraints, ensuring
that the system operates within its
capabilities.

The balance between energy demand and
supply is captured by the constraint:
Egen(t) + Estorage (t) = Edemand (t) (3)
Where Ejomana(t) represents the energy
demand at time t. This constraint ensures
that the total energy generated and stored is
sufficient to meet the demand at all times.
Decision Support & Actuation Layer:
After optimizing, DSS makes
recommendations to grid operators based
on real-time data. This actuation

component applies these decisions by
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changing the storage and distribution of
energy in  different infrastructures
(residential, commercial, industrial). The
system can choose whether to store excess
renewable energy, modify grid usage, or
output energy where needed.

Integration of Prediction and Optimization

A unified prediction and optimization layer enables
seamless integration. The forecasts from the
forecasting models are directly inputted into the
optimization models. Forecasts in energy generation,
for instance, guide decisions on how much energy
needs to be stored or fed into distribution networks
to optimize the use of renewable energy. The
optimization model then leverages these predictions
to make real-time storage level, load balancing, and
distribution decisions.

Additionally, Reinforcement Learning (RL)
enhances the decision-making process over time.
The RL agent would learn from past decisions it
made (e.g., storing energy, not storing energy,
discharging too much energy, etc.) and adapt its
policy to minimize future energy costs while
maximizing the use of renewable energy. The RL
agent receives feedback from the energy system,
allowing for an optimization strategy that can be
adjusted.

Mathematical Formulation for Energy Storage
Optimization

Energy storage optimization is a mathematical
model based on maximizing efficiency. The
incentive formulation for this optimization problem
is:

max E?:l (ncharging (t) : Egen(t) -

ndischarging (t) : Estorage (t)) (4)
Where:
®  Tcharging(t) is the charging efficiency of
the energy storage system at time ¢,
®  TNaischargin (t) i the  discharging
efficiency of the storage system,

®  Egorage(t) is the energy stored at time t,
e Egen(t) is the energy generated at time ¢.

It does so by storing energy whenever surplus
renewable energy is generated and discharging it
only when high consumer demand coincides,
considering that storage is inefficient.

Dynamic Load Balancing with Reinforcement
Learning

To further enhance the optimization process,
Reinforcement Learning (RL) is employed to
handle dynamic energy management. The RL agent
continuously interacts with the environment, making
decisions based on the state of the system and
adjusting its actions to improve overall performance.
The agent updates its policy  based on the reward
R, received at each time step:

Tyq = aAIG %%X[Rt(ﬂ' State,)] (%)

Where:
e 1., is the updated policy at time t +1,

e  R.(m, State;) is the reward based on the
state of the system at time t under policy .

The reward function is designed to reward the RL
agent for decisions that reduce energy costs, improve
storage efficiency, and ensure that the grid remains
stable while minimizing emissions.

Algorithm for Dynamic Energy Management
in Smart Cities Using AI and Optimization
Techniques
Preprocess Data:
e Clean and normalize the raw data D,
from IoT devices and sensors to obtain

Dnormalized .

Train Models:

e Train the LSTM model Eg,(t) and
SVM model E_,(t) on historical data
Dhpistorica historical to predict energy
generation E;n (t) and  energy
consumption E_(t).

Optimize Energy Distribution:

e Use the MILP optimization model to
balance grid load Ly;q, manage energy
storage Estorqge, and forecast demand

Edemand:
T

minz (Cgen (t) : Egen(t) + Cstorage (t)
t=1
: Estoruge (t))
Subject to the constraint:
Egen (t) + Estorage (t) = Edemand (t)
Apply Reinforcement Learning:
e Use RL to adjust the energy distribution
strategy m based on real-time feedback
R;, improving energy cost C, and
system reliability Ryygem:
My = arg m;\xE [R;(m, State,)]

nergy

Iterative Improvement:
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e Continuously repeat the above steps,
improving the policy m over time,
minimizing energy costs and enhancing
system reliability at each time step t.

Its methodology includes training machine
learning models using real-time data gathered from
renewable energy sources. Preprocessing, feature
engineering, and model validation were carefully
undertaken to guarantee the quality of the findings
and the solidity of the predictive models.

4. RESULTS

In this section, we provide some results related to the
proposed Al-based energy management system
integrating ML-based simulation models, optimal
scheduling methods, and RL techniques for the
recent dynamic operation of renewable resources in
smart cities. The evaluation is done based on three
aspects, namely prediction accuracy, energy
optimization results, and comparison with the
existing model. We further support our argument
with charts and graphs showing the system's effect
on energy production, consumption, cost-efficiency.
4.1. Assessment Criteria

The proposed system was evaluated concerning the
following primary metrics:

1. Prediction Accuracy:

e MAE (Mean Absolute
Error) — It measures the
average error in magnitude.

e Root Mean Squared Error
(RMSE): A metric that
penalizes larger errors more
than more minor errors,

providing insight into the

prediction model's ability to
avoid making
deviations.

large

2. Energy Optimization:

e Cost Efficiency: The total
energy generation / storage
costs over the given period. A
lower price means better
energy management.

e Energy Balance: This metric

expresses the system's ability

to balance energy generation,
storage, and demand. A stable
grid requires energy
generation and energy use to
be in balance.

3. System Reliability:

e  Grid Stability: Assessing the
system's ability to maintain
grid stability, particularly
during peak demand periods
or low renewable energy
generation periods.
Reliability is measured by
how many times there is an
outage or disruption in the
grid.

e Renewable Energy: The

share of energy demand met

by renewables as opposed to
total grid electricity.

4.2. Model Evaluation and Results

4.2.1. Prediction Accuracy

Table 2 presents evaluation results of prediction
models used in the system. It is used to have the
Hybrid LSTM-SVM model tested against both
energy generation prediction (solar and wind) and
energy consumption forecasting.

Table 2: Performance Evaluation of Prediction Models

(Ener (Ener e e
Model | gy y y
gy Consu Consu
Gener R R
] Gener | mption | mption
ation) .
ation) ) )
Hybri
d 0.045 | 0.073 0.089 0.14
LSTM kW kW kWh kWh
-SVM
I;St:r?; 0.069 | 0.096 0.105 0.19
kW kW kWh kWh
alone)
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:VMd 0.065 | 0.089 | 0097 | 0.15 SP "’p"s‘zll ) i
Gtand | w1 kW | kwh | kwh ystem (Al- '
alone) driven)

Analysis: The proposed method demonstrated better Baseline

accuracy in predicting energy generation and (Non-Al 6 10.7

consumption than traditional LSTM and SVM Model)

models with minimal MAE and RMSE values. This

suggests the hybrid model can better capture the
complicated temporal and nonlinear relationship
hidden in energy data.

4.2.2. Energy Optimization Performance

Table 3 illustrates the proposed system's energy
optimization performance by comparing total
energy costs and efficiency in utilizing renewable
sources between the proposed algorithm and a
baseline model that does not apply Al-based

optimization.
Table 3: Energy Optimization Performance Comparison
Total
Ener Renewa Energ
ble Grid y
Model Cgoyst Energy | Relian | Balan
(USD Utilizati | ce (%) ce
) on (%) (%)
Propos
ed
12,50
System 0 85% 15% | 99.8%
(AI-
driven)
Baselin
e (Non- | 14,20
759 259 97.59
Al 0 & % &
Model)

Analysis: The Al system saves 12% in total energy
cost, increases renewable energy utilization by 10%,
and improves energy balance by 2.3%. These
improvements demonstrate the power of artificial
intelligence in energy efficiency.
4.2.3. System Reliability
The system reliability was evaluated by monitoring
the stability of the grid and the number of
interruptions, which is shown in Table 4. The results
are as follows:

Table 4: Grid Stability and Reliability Analysis

Grid Average
Stability Duration of
Model
ode (No. of Failures
Failures) (minutes)

R
6704

Analysis: Implementing an Al-based system not
only stabilized the grid but also reduced failures by
more than 66% and the average duration of failure
by over 50%. Thus, the optimization and RL
components are shown to be effective in always
guaranteeing grid stability, even when demand is at
its highest and renewable generation is at its lowest.

4.3. Comparison with Existing Models

To evaluate the effectiveness of the proposed
system, we will compare it with traditional energy
management models that rely on conventional
methods. In Table 5, we compare the performance
of the proposed Al-driven system against these
existing models.

Table 5: Comparison of Performance Metrics with

Existing Energy Management Models
Ener Ener
Renewa .
gy ble gy Grid
Model Cost ... .. | Balan | Stabil
Utilizati .
(US ce ity
on (%)
D) (%)
Proposed | 12,50 99.8 .
859 High
Al System 0 & % ‘&
Rule-
15,00 Medi
based . 70% | 95% | oo
0 m
System
Linear
Program 13,80 20% 98% Mediu
ming 0 m
Model

Analysis: By measuring its performance against the
rule-based and linear programming models, the
human hybrid Al solution performs better, balancing
cost, aligning with renewable energy generation, and
providing stable grid management. Given the
increase in renewable utilization and energy balance,
Al-based network optimization enables a more
sustainable and reliable energy system.
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4.4. Graphs and Charts

Figures 5 and 6 illustrate the energy generation and
consumption trends during a typical 24-hour period,
comparing the system performance against the
baseline model.

Energy Generation vs. Time

5

: \AN /

—— Al-driven Energy Generation
Baseline Energy Generation

Energy Generation (kW)
~

[} 5 10 15 20
Time (hours)

Figure 5: Energy Generation vs. Time

In the graph, we see the renewable energy generation
24-hour curve. The Al-enabled approach makes
generation dependent upon demand and
consumption patterns, greatly reducing non-
renewable energy generation dependent on peak
hours.

Energy Consumption vs. Time

30 — Residential
—— Ccommercial

—— Industrial

N
5

Energy Consumption (kWh)

0 s 10 15 20
Time (hours)

Figure 6: Energy Consumption vs. Time

At the same time, the Al system uses dynamic load
shifting during low consumption hours to optimize
energy consumption and help balance out demand
so that it is more even and the grid is not overly
stressed.

Cost Comparison of Different Models

14000

12000

10000

8000

6000

Total Energy Cost (USD)

4000

2000

Al-driven Rule-based

Models

Figure 7: Cost comparison of Different Models

Figure 7 provides a month-long cost analysis
indicating the other advances made using the Al
system for optimization instead of traditional means.
4.5. Result Discussion
The outcomes validate that the suggested intelligent
management system powered by Al enhances
energy administration in smart cities. The system
achieves better performance than conventional
approaches in prediction accuracy, energy cost
minimization, renewable energy hair usage, and grid
stability, thanks to the use of machine learning
models (LSTM and SVM), optimization (MILP),
and reinforcement learning (RL).
With advanced forecasting of energy demand and
generation, real-time optimization, and
reinforcement learning capabilities, the Al system
results in a more reliable and cost-effective energy
system. Given the system's better performance in
terms of many metrics they might be concerned
with, like cost, efficiency, and reliability, results are
very good signs for its wide application in smart city
energy management. Future work includes
improving the RL model, leveraging more data
sources like real-time meteorological forecasts, and
expanding the model to scale to larger cities with
more complicated energy infrastructures.

These findings confirm how Al can be used to
develop solutions for energy system optimization
and potential applications in future sustainable,
robust, and resilient urban infrastructure.

Linear Programming

5. CONCLUSION

We hypothesized and addressed an Al-powered
energy management system for smart cities,
particularly a combination of machine learning
(LSTM and SVM), optimization (MILP), and
reinforcement learning (RL), and assessed it in this
study. Past results illustrated superior energy
management  capabilities than  conventional
methods. Lowered total energy costs by 12%
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compared to existing systems, 10% more harnessed
renewable energies, and an improved energy balance
of 2.3%. In addition, the prediction models had high
accuracy, yielding a Mean Absolute Error (MAE) of
0.045 kW for the energy generation and 0.089 kWh
for the energy consumption, well above the lone
LSTM and SVM models. Grid stability also
improved, with a 66 % reduction in grid failures and
a 50% reduction in the duration of outages. Key
themes of this study include the necessity to
minimize data errors to enhance the quality of
predictions and projections made by the model, as
well as the challenges of scaling Al systems to larger
cities with more complex energy infrastructures.
Despite these encouraging results, there were
several drawbacks. Especially in less credible data
sources, the system's performance greatly hinges on
the quality and granularity of the data fed into it.
Moreover, although the optimization model is
reasonably accurate under standard conditions, it
may not reflect real results in unexpected weather
conditions or other factors determining renewable
energy generation. Although powerful, this RL
component, in its approach to finding a trajectory,
requires significant computation and takes a long
time to train, which limits its scalability to bigger
cities as it requires heavy computational resources.

In the future, we will work to enhance the
prediction quality by integrating more detailed and
updated weather forecasts and extending the
network to support more complex urban grids. A
significant challenge will be to extend the RL model
to scale to the size of a smart city. Advancing hybrid
optimization models that leverage deep
reinforcement learning, along with other artificial
intelligence methods, may also enable greater
improvement in decision-making and system
efficiency. This abstraction is a high-level overview
and understanding of how you would assemble your
combined neural net application to achieve the
optimization goal in this way. Key themes of this
study include the necessity to minimize data errors
to enhance the quality of predictions and projections
made by the model, as well as the challenges of
scaling Al systems to larger cities with more
complex energy infrastructures.
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