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ABSTRACT

Human emotions are crucial across various domains by closing the divide between human and current
technologies, thus fostering better understanding on critical mental health conditions. Traditional
approaches rely mainly on facial expressions along with body gestures and are met with limited success as
they miss underlying or repressed emotions. Electro Encephalo Gram (EEG) signals offer a direct glimpse
into brain activity, making them a promising avenue for fool-proof emotion recognition. However, the
complex temporal dynamics of EEG data pose challenges for classical machine learning algorithms, which
often fail to capture spatial and temporal patterns effectively. To overcome these issues, we introduced a
novel model called Spatio-Temporal Difference Identification - Convolution Neural Network (STDI-CNN).
Our model efficiently captures the complex temporal dynamics of EEG data, indicating brain activity
across time in various lobes, by utilizing deep learning approaches, especially a combination of CNN and
sequential neural network architectures. Extensive experiments on the SEED EEG dataset demonstrate the
efficacy of the proposed STDI-CNN model, achieving an impressive accuracy of 98.52%. Additional tests
using CNN-LSTM and CNN-BiLSTM models also yielded strong performance, with accuracy rates of
97.04%. This surpasses current SOA models and highlights the potential of STDI-CNN in extracting
meaningful patterns from EEG signals for emotion recognition. Our work reduces the gap by featuring a
significant step forward in harnessing EEG signals to build well informed emotionally intelligent system
that fosters prior detection and improved diagnosis for neurological disorders.
Keywords: EEG Emotion Recognition, CNN For Emotion Recognition, Fusion of CNN and LSTM, Spatial
and Temporal Patterns, SEED Dataset.
1. INTRODUCTION level in the body. Electro Cardio Gram (ECG),
Electro Muscular Gram (EMG), EOG, and EEG are
Recognizing human emotion is critical in the main physiological signals that contain

various domains and has impact and relevance in
determining human behavior, cognition and
interaction with the environment. External
indicators of emotion, such as facial expressions
and vocal intonations, are non-physiological signals
that help convey emotions. Distortions in these non-
physiological signals, whether deliberately or
accidentally, may be obstructive to the correct
identification of an individual’s mood [1], [2]. It is
therefore crucial to appreciate and guarantee the
purity of such signs in recognizing emotions and
subsequent applications.

The brain is the primary integrative organ
and the source of initiative in generating and
mobilizing affective responses at the physiological

information concerning the body. In contrast to the
analysis of outer emotional experience, the EEG
allows the study of neurological processes in the
brain and is a better indicator of a person's
emotional state. Unlike other physiological
measurements, EEG has a higher spatial and
temporal density which may be more informative
for understanding the time course of affective
processes.

However, in the medical field, EEG
signals are used in diagnosing neurological
disorders including epilepsy, Parkinson’s, seizures
[3], and Alzheimer’s [4] and in modern usage for
personalized teacher-student interaction [5], to
understand customer’s unhindered preferences on a
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broad range of product images [6]. This could make
a substantial contribution to the fields of Assistive
technology and Affective Computing [7], [8].

The EMG and ECG are physiological
signals that show emotions along with the EEG,
which may have noise from brain cells. Hence,
EEG signals are extensively used for emotion
detection, and many researchers have conducted
experiments to analyze EEG signals by applying
various algorithms.

The general procedure of classifying

raw EEG data from human brain lobes at a high
frequency. The EEG headset records brain signals,
and an accompanying waveform represents the raw
data. Next, we pre-process the signal to reduce
high-frequency noise; we decimate the raw EEG
signal and then send it through a band-pass filter.
And then eliminate undesired artifacts from the
EEG data, like muscular contractions or eye blinks,
along with it, and make sure that the signal is noise-
free. Later, the pre-processed signal has to be
decomposed into frequency bands and then features
are extracted. Thereafter apply any classifier which

human emotions from the EEG signals, as

illustrated in figure 1, begins with the recording of
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Figure 1: Procedure of emotion recognition from EEG recordings

Machine learning (ML) algorithms are
hindered by the fact that feature selection has to be
done explicitly or manually, where important
features are identified for inclusion based on
domain knowledge and statistical analysis, which
may overlook spatial latent features in the dataset.
The conventional machine learning algorithms have
been challenged to extract prominent features and

identify patterns of emotions because of the
transient nature of EEG signals. The temporal
behaviour and low Signal to Noise Ratio (SNR)
feature of EEG signals adds to the complexity of
feature extraction with traditional ML approaches

[9].

Deep Learning (DL) architectures have
proven capacity to process spatial and temporal
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information from raw data; Convolution Neural
Networks (CNNs) are expressly crafted to process
spatial data, and the Long Short-Term Memory
(LSTM) can effectively process temporal data. The
spatiotemporal feature extraction process is crucial
in identifying emotions from EEG signals.
However, with deep learning (DL) algorithms, all
the features hidden in the dataset can be extracted,
and the electrode selection is automated based on
the best input selection procedure of the specified
neural network architecture. Despite  this
automation, the design and training of deep
learning models still involve manual decisions such
as selecting architecture and topology, tuning hyper
parameters, and preprocessing data; sometimes
manual feature engineering remains valuable,
particularly with structured data or when domain
expertise provides crucial insights beyond what the
model can capture autonomously.

1.1 Related Work

Nouman et al., [11] works with non-
physiological signals for emotion recognition. In
their work, they considered facial edges but also
traced eyeballs for detecting emotions through
Hough circle transform.

Mu Li et al., [12] stated that the gamma
frequency band is most relevant to emotional states.
Techniques like LDS smoothing and minimal-
redundancy maximal-relevance (MRMR)
algorithms enhance classifier accuracy and
efficiency. Chen Wei (2020) et al., [13] also stated
that the higher frequency bands such as beta and
gamma are most prominent while extracting
emotions from the EEG signals. Ruo-Nan Duan et
al., [14] proposed a DE feature as the best feature
among the existing features of SEED for emotion
recognition. G. Li et al, [15] proposed an
experiment-level Batch-Normalization (BN) to
capture individual differences for recognizing
emotions on the SEED dataset. The author intends
to work with fewer electrode channels instead of
using all. There are cases, where working with
unwanted data, the model quality will be
significantly affected. The author tested PSD and
DE features of SEED to get improved results out of
it. Chunawale. A et al., [16] stated that feature
selection and extraction of EEG signals plays a
crucial role while applying machine learning
techniques. Here, they preferred PSD features for
processing EEG data and achieved 96.42%
accuracy.

On DE features of SEED dataset, MLP
(Multi-Layer Perceptron) and CNN has been
implemented by Mohith Kumar et al., [17], CNN's
positioning in this model is to learn from the spatial
structure of placing different EEG channels on the
scalp and, therefore, capture subtle patterns in brain
activity. This feature enables CNN to outcompete
MLP models in EGG data analysis procedures,
which do not automatically include spatial
information. Another research done by Mitul
Kumar Ahirwal et al. [18] was for recognizing
emotions using EEG signals, the work mainly
covered pattern recognition and classification. Time
domain, frequency domain, and statistical entropy
are analysed with great detail, coupled with a
methodical comparison of various classifiers
including ANN, demonstrated as the best classifier
with a mean accuracy of 93.75 % when using
entropy-based features.

Li et al., [19] addressed the over fitting
challenge in traditional —machine learning
algorithms while recognizing emotions through
EEG signal analysis. Hierarchical Convolutional
Neural Network (HCNN) outperforms especially
elucidates nuances in classifying emotions within
high-frequency Beta and Gamma wave bands.
Comparative  evaluations  confirm  HCNN's
superiority with accuracy of 86.2% and 88.2% on
the former, marking a significant advancement in
affective computing.

R. K. Jeevanet et al., [20] look into EEG
Based Emotion Recognition through LSTM-RNN
and LSTM-CNN models. EEG signals feel discrete
wavelet transforms for spectral filtrate and wavelet-
based filtering for the division of the spectra band is
used for classifying. Subjects watch objects for
1200ms which are images and music associated
with babies or scenes. EEG signals are collected
using a 32-channel configuration recorded at 350
Hz sampling rate. The LSTM + CNN models were
better than conventional methods with 64%
accuracy while the LSTM or RNN took 4 to 5
hours for training the model however it had an
accuracy of 63.61%.

To enhance the performance of EEG-
based emotion recognition, S Hwang et al., [21]
used topology preserved DE images for classifying
emotions on the SEED dataset by applying CNN
along with LSTM. Shen et al. [22] put forward a
new approach called the 4D convolutional RNN
(4D-CRNN). Finally, a CRNN model, LSTM, is
used to learn from these features and demonstrates
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the feasibility of adopting various EEG features for
recognising emotions. T. Song et al. [23] suggested
a new model, namely DGCNN for the specific task
of emotion recognition from EEG signals. It
supplies a dynamic adjacency matrix which makes
the model have the ability to learn the inherent
relativity among EEG channels dynamically.

Kulkarni, D. et al., [24] applied Bi-LSTM
and Improved-RNN on the DEAP dataset and also,
they contributed in creating a new DOSE dataset
similar to DEAP. Yuling Luo et al, [25]
spatiotemporal correlations have been identified in
the encoded data and applied to SNN (Spiking
Neural Network) to classify emotion on both SEED
and DEAP datasets. Xiangyu Juet et. al., [26]
another model called Temporal-Difference
Minimising Neural Network (TDMNN) is designed
based on the premise that emotional activity
exhibits temporal stability, considering the fact that
the temporal variation of emotion is relatively
slower than changes in physiological signs. This
model used the Maximum Mean Discrepancy
(MMD) statistic to assess and minimize differences
in EEG features over time intervals which led to the
enhancement of the model performance in
recognizing emotions.

Jianhua Wang et al. [27] reported that
CNNs have outperformed LSTMs for classification
of EEG signals for BCI. This is attributed to the
CNNs ability of capturing spatial features from the
input data by striving to overcome the problems
encountered when training large signals for
classification. Despite their success in working with
sequential data, it was found that using LSTMs in
cases where location matters in classification may
not yield a great accuracy. Specifically, this study
shows that CNNs are more appropriate for this
particular use than LSTMs are.

Due to the rapid fluctuations in the EEG
signals, traditional machine learning algorithms
have limited capability to capture minute changes
of nonstationary nature in EEG signals. Hence,
identifying spatiotemporal patterns in the EEG
signals is challenging. Designing a novel deep-
learning architecture optimized for identifying
spatiotemporal features essential for emotion
recognition relies on appropriate hyper parameter
settings to capture important information from EEG
signals.

The main contributions of our research as
follows:
1) Proposed a novel framework STDI-CNN to
overcome subject variability.
2) The automated feature selection mechanism for
identification of optimal frequency bands employed
in STDI-CNN model has been impactful on
improving the predictive accuracy.
3) Framework helps in identifying complex spatio-
temporal correlations which tends to highlight the
performance of the proposed model.

In our proposed workflow, firstly we will
be discussing the dataset and its preprocessing
methodology. Later we experimented with
proposed models CNN-LSTM, CNN-BiLSTM,
STDI-CNN. STDI-CNN outperformed the other
proposed models as well as SOA models, which
will be analysed in the results and discussion
section. Lastly, we have summarised the findings of
this paper and outlined potential areas for
improvement in the existing research.

2. PROPOSED FRAMEWORK

Deep learning models were used not just
to overcome subject variability but also to get
beyond the drawbacks of conventional machine
learning methods, which can pick up on the minute
variations in nonstationary EEG data and capture
complex spatiotemporal patterns that are necessary
for emotion recognition. The deep learning model
has the potential to identify the important temporal
and spatial correlations in the data, however, is
largely dependent on the proper hyper-parameter
choices, including learning rate, number of layers,
filter sizes, and batch size. By carefully adjusting
these settings, the deep learning architecture can
extract the important information from EEG signals
more effectively, improving performance in tasks
linked to emotion perception.

2.1. Dataset: SEED (Shanghai Jiao Tong
University Emotion EEG Dataset) [28]:

The SEED dataset was generated from
EEG signals. EEG is a nonintrusive neuroimaging
technique that records electrical activity in the brain
and captures physiological activity. Table 1
describes the components of the experimental data
collection for the SEED dataset.
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Table 1. Parameters of the Stimuli and Description

Description

The film clips for the experiment were chosen based on: (i) The total
duration of the experiment is kept moderate to prevent participant
fatigue. (ii) Selected clips should be easily understood without
requiring additional context. (iii) The chosen clips are curated to evoke
a single, target emotion, ensuring consistency in emotional response.

Seven males and eight females participated in the experiment. The
mean and standard deviation of their age are 23.27 and 2.37

Each experiment consists of 15 trials. Each trail is associated with only|
one emotion and constitutes three experiments conducted on each
subject, with a maximum gap of one week. Thus, the total number of]
experiments done is 675, which is equivalent to 15*3*15 (subjects *

The signal was decimated to 200 Hz and used a 0 to 75 Hz bandpass
frequency filter. The filtered frequency was separated into five
frequency bands. 6 [1-3Hz], 6 [4-7Hz], o [8-13Hz], B [14-30Hz], and |

62 electrode channels were used at prescribed locations on the scalp to

Asymmetry (ASM), Differential Asymmetry (DASM), Rational
Asymmetry (RASM), Power Spectral Density (PSD), Differential
Entropy (DE), and Differential CAUdality (DCAU). Not all electrodes|

System (LDS), Moving average|
window(movingAve). Each feature was smoothed using both of the
techniques. Now, the features extracted from the EEG signals turned

Negative as -1, Neutral as 0, Positive as 1. These labels are encoded to

Parameters of | Values of the
the stimuli parameters
15 Chinese (4-
Video clips minute video
clips)
Subjects 15
respectively.
Number of
experiments 3
on each
subject experiments * trials)
Signal 1000 Hz.
Frequency
[31-50Hz].
Number of
electrode 62 .
channels extract EEG signals [28].
Number of 6
features
are utilized by all the features.
Feature Linear Dynamic
smoothing 2
techniques 1.
No. of 3
Emotions 0, 1, and 2, respectively.
The SEED dataset adheres to a

sequence lengths 235, 233, 206, 238, 185, 195, 237,

standardized method for electrode placement in
EEG recordings widely used in neuroscientific
research and clinical practice, which is the
International 10-20 electrode system using the ESI
(EEG Source Imaging) NeuroScan system at a
sampling rate of 1000 Hz. SEED considers the
video stimuli to record EEG signals.

The SEED dataset provided 45.mat files,
each .mat file contains data related to one
experiment. Data was extracted from the recorded
EEG signals with one second of Hanning Window
(HW) and 0% overlapping between two
consecutive HWs [10]. As shown in Figure 1, the
Differential Entropy (DE) feature was extracted
from the pre-processed EEG signal because it is
most prominent in the said features [13, 14] shown
in Table 1. The proposed method uses the DE
features where each trial comprises of various

216, 265, 237, 235, 233, 235, 238, 2006, associated
with the encoded labels 2, 1,0,0,1,2,0,1,2,2, 1,
0, 1, 2, 0 respectively. DE feature signal has been
decomposed into 5 frequency bands such as 9, 0, a,
B, v. Experiment-wise data has been given to the
data-pre-processing of the proposed framework.

2.2. Data Pre-processing

Significant variations were observed in the
recorded EEG signals from session to session
across experiments. The main cause of these
differences is the transient nature of EEG signals,
which are susceptible to a number of variables like
cognitive moods, and minor physiological changes
that occur between sessions. In order to neutralize
these variations, the signal distributions within each
experiment should be standardized to minimize the
effect of experiment-to-experiment fluctuations.
The pre-processing of the data is shown in Figure 2.
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Figure 2: Proposed Framework

Experiment-wise data is pre-processed in 3
steps as depicted in Figure 2. After determining the
minimum and maximum values of features, batch
normalisation is applied for each experiment, and
then the lengths of the sequences are equalised
based on the maximum duration of the experiment's
trial. Later in the proposed framework, the dataset
has been split into train and test sets to generate a
model with the proposed STDI-CNN architecture to
predict emotions.

Let the dataset X[D] € RE*T*C*F be the
EEG data generated as sequences in T trails of E
experiments described by F frequency bands and C
channels where |[E| = 3, |T| = 15, [F| =5, and |C| =
62. X[D] is 50Hz down-sampled with a
nonoverlapping sliding window of 1-second. The
sampling points in each experiment is denoted by
X[i][j1 where j = 1,2,3...... ,3394.  All  the
sequences contained in X[D] are experiment-level
batch-normalized. Later, data would be reshaped
trial-wise and fed to the proposed STDI-CNN
architecture. A trial T contains X[T]€ RS*C*F
where each trail X[T] = X[i] (i = 1,2,3...675), S
data points S[ts]= (1,2,...,265) indicating the time-
stamps in a sequence possibly extended by zero-
padding. F denotes the frequency bands F[i]
(i=1,2..,5), and C denotes channels C[i] (i=1,2,..,62)
in each trial X[T]. As a result, the dataset is
reshaped to Z with dimension (675,265,310) where
F*C=310 to be fed as input for model building
using different deep learning architectures.

We normalized the data Z[i] (i = 1,..,E*T)
using experiment-level batch normalization to
enable more trustworthy comparison of EEG

signals across multiple trails. Batch normalization
reduces the discrepancies owing to nonstationary
nature while highlighting consistent subject-
specific trends. As a result, this method enhanced
the model's generalization and robustness when
processing EEG signals from several sessions for
the same participant. Experiment-level batch
normalization is applied to account for variations in
individuals’ human behaviour and physiological
responses.

The sequence lengths of trials of the
experiment are different from one another. To
address this issue, as in Figure 2, the maximum
sequence length is identified and each sequence is
extended by padding zeros up to the maximum
sequence length to ensure consistency. The dataset
is rearranged trial-wise; each trial out of the total
675 trials consists of data points belonging to five
frequency bands. The pre-processed data is
employed to train models on proposed

architectures.

2.3. Proposed STDI-CNN (Spatio-Temporal
Convolution Neural Network) model

The authors proposed a novel STDI-CNN
model as illustrated in Figure 3 provides an
automated feature selection mechanism for
identification of optimal frequency bands and
subsequent channels, which contributes to classify
emotions efficiently. This capability leads to
improvement in the model performance for emotion
recognition. Input feature (IF) map is Z[i] with
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dimensions (trials, time-steps, features) = (675,

265, 310).
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with stride 5

Convolution Layer

Batch
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Frequency Band
Extractor

Fully
Connected
Max Pooling layer Layer
Flatten Layer
Spatiotemporal Classifier

Feature Extractor

Figure 3: Proposed STDI-CNN model

The STDI-CNN model comprises three
components such as a frequency band extractor, a
spatiotemporal feature extractor, and a classifier is
capable of recognizing spatial differences along
with temporal.

2.3.1 Frequency band extractor

As illustrated in Figure 3, the Band
Extractor is responsible for extracting efficient
frequency bands from each electrode channel,
which contain latent features of human emotions. It
comprises 3 layers such as masking, convolution,
and a batch-normalization layer respectively.

A  masking layer was primarily
incorporated to ignore the extended portion of
sequences padded with zeros at the preprocessing
phase. This layer effectively distinguishes between
real and padded samples to allow downstream
processes to disregard the padded values during
convolution.

Let S[i] denote the i" sample in the sequence,
where i=1,2,...,265.

The masking function M(Si) can be defined as:

M(Si)=1 if and only if Si is a real sample
0 if and only if Si is a padded sample

The purpose of M(Si) function is to yield 1 for the
real samples and 0 for the remaining padded
samples.

The mathematical notation for the masking layer is
represented as:

Masking layer = [M(S1), M(S2),..., M(S255),
M(S256),..., M(S265)] =[1,1,...,1,0,0,...,0]

The architecture of the frequency band
extractor was illustrated in Figure 4 as 2D
convolution layer processes the masked feature
map M(S) with a kernel matrix of (5*5) which
processes five frequency bands and selects one for
each channel. The stride is 5 so that the kernel
moves to the frequency bands of the next channel
till it completes all the channels, resulting in a total
of 62 features out of 310 raw features.

The batch normalization layer is applied to
adjust and scale the activations of a neural network
layer by normalizing them to center around a mean
of 0 and standardize to a deviation of 1, to make it
feasible for the network to learn and adapt during
training.

2.3.2 Spatiotemporal feature extractor
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As shown in Figure 3 Spatiotemporal
Feature Extractor in succession to the frequency
band extractor module has two consecutive 2D-
convolution layers with a unit stride and 5*5 kernel
to extract spatiotemporal features. A 2D-max-
pooling layer with a kernel of 5 is used to
regularize the model parameters to avoid overfitting
the model. Followed by a flatten layer employed to
change the 3D feature vector into a 1D feature
vector to be fed to the classifier module. The
architecture of the spatiotemporal feature extractor
was illustrated in Figure 4.

2.33 Classifier

As shown in Figure 3, the classifier is the
final module of the proposed STDI-CNN model,
designed to prognosticate based on the processed

data. The classifier module is made up of a dense
layer with three output neurons, each representing
an emotion class that is processed using a 1D
feature vector obtained from the spatiotemporal
feature extractor module. The soft-max activation
function is employed to transform raw outputs of
the dense layer into probabilities, making it ideal
for multiclass classification. Categorical cross-
entropy loss function computes the divergence
among predicted probabilities and true labels,
penalizing incorrect predictions. Soft-max and
categorical cross-entropy  collectively  ensure
effective  learning and reliable  multiclass
classification performance. The architecture of the
classifier was illustrated in Figure 4.

.
(265,310, (265,62,62)  (26562,62) (2658160 (565 60, 60)
‘ . (265,30, 60)
k
Ksys 5 ixl oy
kml‘m
(477000,) (3)
o =
Hlatten Layer Fully connected
Dense Layer
softmax
/'/‘J
/‘f"
// Max Pooling
N 4 Layer =
+ Kernel size
Mask the padded ~ Convolution Layer - Batch Normalization Convolution Convolution kim:m,n ::J“g;.-;,)k '
data of the trails  with stride 5 + ReLU Layer Layer 1+RelU  Layer2 + ReLU
Frequency Band Extractor Spatiotemporal Feature Extractor Classifier

Figure 4: Proposed STDI-CNN Architecture

The detailed layered process of the
proposed STDI-CNN model was depicted in the
architecture. Relu activation function has been
applied on all the convolution layers and soft-max
function applied on the dense layer of the classifier

module for multi-class classification. Categorical
cross-entropy loss function assesses in reducing the
distance between observed and predicted labels. To
further enhance training efficiency and stability, the
Adam (Adaptive Moment Estimation) optimizer is
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employed to dynamically adjust learning rate using
Ist and 2nd moment estimates of the gradient for
model stability and convergence. The proposed
model has been trained for a maximum of 20
epochs with initial learning rate as 0.01.

2.4. Proposed Fusion models

The fusion of CNN with LSTM and CNN
with Bi-LSTM is also explored. The fusion of CNN
with LSTM network and CNN with Bi-directional
LSTM (Bi-LSTM) has shown superior performance
compared to individual recurrent neural networks
such as RNN, GRU, and LSTM alone. CNNs are
best in identifying spatial patterns, making them
well-suited for processing EEG signals. While
LSTMs are effective at capturing temporal patterns
and the bidirectional nature of LSTM enables it to
analyze dependencies in both ways, leveraging past
and future context for a better understanding of the
data. The input feature map was processed through
CNN architecture, extracted node embedding from
the CNN architecture, and those embeddings were
adjusted to map the input feature map of 4-layered
LSTM and Bi-LSTM architecture to categorize the
emotions.

3. RESULTS AND DISCUSSION

Experimentation done on the SEED to
assess the performance of proposed architectures
using a suite of standard metrics including
precision, recall, F1-score, prediction accuracy, and
loss. These metrics offer valuable insights into
various facets of a model's performance. While our
problem is a multi-class classification issue,
precision, recall, and the F1-score are calculated for
each class in the model independently. These
metrics are then aggregated to derive overall
precision, recall, and F1-score.

The authors compared the performance of
the newly proposed STDI-CNN model with SOA
models involving CNN, LSTM, and other deep
learning architectures well established in the
literature on emotion recognition from EEG signals.
This comparative analysis also involves the simpler
fusion architectures proposed in this paper named
CNN-LSTM and CNN-BiLSTM.

Recurrent Neural Networks (RNNs) are
identified as the potential solution for working with
EEG data in the context of emotion recognition
because of their capability of processing temporal

dynamics in EEG signals as evidenced by the
performance. The LSTM and Bi-LSTM networks in
RNN family provide methods to tackle the
vanishing gradient problem to capture long term
dependencies which make these networks even
more suitable for EEG based emotion recognition.
Use of CNN’s architecture has proven results for
real-time EEG applications, particularly when the
relevant information is localized within specific
temporal or spatial regions of the brain signals.

Hence the fusion of CNN-LSTM and
CNN-BiLSTM is explored in this research work.
The fusion architectures developed in this paper
shared a common CNN architecture and they
yielded approximately equal accuracy which is
clearly higher than most of the SOA architectures
for emotion recognition.

The TDMNN presented by Xiangyu Ju et
al., is the only one existing architecture found to be
a close competitor for the fusion models on
prediction accuracy. However, the decrease in loss
from 10.68% with LSTM to 8.91% with Bi-LSTM
signifies a significant enhancement in the model's
predictive capability, instilling greater confidence
in its outcomes. From this loss reduction, it could
be realized that the Bi-LSTM architecture is well
suited to capture temporal features of the EEG
signals thereby advancing predictions.

It can be observed from the results
provided in table 2 that the proposed STDI-CNN
model outperformed among all SOA architectures
and fusion models, CNN-LSTM and CNN-Bi
LSTM proposed in this paper. Specifically, the
STDI-CNN model yielded 98.52% accuracy and
5% loss as mentioned in table 3 which reflects a
better performance compared to the fusion models
which are its closest competitors.

The  automated  feature  selection
mechanism for identification of optimal frequency
bands employed in STDI-CNN model has been
impactful on improving the predictive accuracy by
approximately 1.5% over that could be achieved by
the best model among the SOA architectures. At the
same time, the model loss is also kept at 5% which
is comparatively low. Similarly, the detailed
performance comparison in terms of precision,
recall and F1-score in addition to accuracy and loss
for the proposed models is presented in table 3.
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From the results tabulated in table 2 and
table 3 is evident that the STDI-CNN model has
been more effective in capturing the intricate
temporal dynamics of the EEG signal as it could
extract meaningful features for accurate emotion
recognition.

Table 2. Comparison of proposed models with State-of-
the-art models

Existing/Proposed
models Reference paper| Accuracy
DBN - 2015 [10] 86.08%
CNN - 2022 [15] 62.04%
LSTM-2022 [15] 64.84%
MLP-2022 [15] 78.16%
HCNN-2017 [19] 88.2%
CNN+LSTM -2019 [21] 89.88%
SRU-2020 [13] 90%
Spiking Neural o
Network-2020 [25] 96.67%
CNN-2022 [17] 93.81%
TDMNN-2023 [26] 97.2%
CNN-LSTM proposed 97.04%
CNN-BiLSTM proposed 97.04%
STDI-CNN proposed 98.52%
Table 3: Performance metrics of Proposed models.
Model | Proposed | Accuracy | Loss |Precision | Recall | FI-
No. models score
1 CNN- 97.04% [10.68%| 97% 97% | 97%
LSTM
2 CNN- 97.04% [891%| 97% 97% | 97%
BiLSTM
3 STDI- 98.52% [5.43% | 98.4% |[98.6% [97.54%)
CNN

4. CONCLUSION AND FUTURE SCOPE

The proposed STDI-CNN model is able to
predict emotions precisely and has proven the best
accuracy of 98.52%, increased approximately by
1.5% above the SOA models. The model handles
the nonstationary nature of EEG data efficiently
while considering subject variability and also
minimizes extraneous spatial features while
preserving the inherent spatial characteristics to
capture differences in temporal dynamics. The
proposed model has the potential to automatically
extract spatiotemporal features from the complex
EEG signals without human intervention, achieved
through appropriate hyper-parameter tuning at each

layer in the seven-layered architecture. The
Experimental findings demonstrate that the model
outperforms SOA methods in recognizing emotions
on the benchmark dataset SEED. The proposed
model can acknowledge inexpressible emotions of
patients suffering from neurological disorders
which facilitates better decision making for better
diagnosis. The emotion can be better expressed
through our model for enhanced BCI.

Despite being trained on less data of 15
subjects, the proposed model has proven better
results. Although larger data corresponds to better
generalizability. But acquiring larger EEG dataset
is challenging; to handle this challenge we can
explore transfer learning in the future research as it
supports model-building by refining pre-trained
models as per the characteristics of target domain
with limited data. Additionally, federated learning
can increase the scope for decentralized model
building in a constrained environment to foster
deeper understanding of human emotions.
Furthermore, future work can extend towards
attention-based transformer models which better
captures the temporal dynamics of EEG data.
Altogether, future avenues can resolve these
limitations to foster a better understanding of
human emotions.
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