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ABSTRACT 
 

Human emotions are crucial across various domains by closing the divide between human and current 
technologies, thus fostering better understanding on critical mental health conditions. Traditional 
approaches rely mainly on facial expressions along with body gestures and are met with limited success as 
they miss underlying or repressed emotions. Electro Encephalo Gram (EEG) signals offer a direct glimpse 
into brain activity, making them a promising avenue for fool-proof emotion recognition. However, the 
complex temporal dynamics of EEG data pose challenges for classical machine learning algorithms, which 
often fail to capture spatial and temporal patterns effectively. To overcome these issues, we introduced a 
novel model called Spatio-Temporal Difference Identification - Convolution Neural Network (STDI-CNN). 
Our model efficiently captures the complex temporal dynamics of EEG data, indicating brain activity 
across time in various lobes, by utilizing deep learning approaches, especially a combination of CNN and 
sequential neural network architectures. Extensive experiments on the SEED EEG dataset demonstrate the 
efficacy of the proposed STDI-CNN model, achieving an impressive accuracy of 98.52%. Additional tests 
using CNN-LSTM and CNN-BiLSTM models also yielded strong performance, with accuracy rates of 
97.04%. This surpasses current SOA models and highlights the potential of STDI-CNN in extracting 
meaningful patterns from EEG signals for emotion recognition. Our work reduces the gap by featuring a 
significant step forward in harnessing EEG signals to build well informed emotionally intelligent system 
that fosters prior detection and improved diagnosis for neurological disorders. 
Keywords: EEG Emotion Recognition, CNN For Emotion Recognition, Fusion of CNN and LSTM, Spatial 

and Temporal Patterns, SEED Dataset. 
 
1. INTRODUCTION  
 

Recognizing human emotion is critical in 
various domains and has impact and relevance in 
determining human behavior, cognition and 
interaction with the environment. External 
indicators of emotion, such as facial expressions 
and vocal intonations, are non-physiological signals 
that help convey emotions. Distortions in these non-
physiological signals, whether deliberately or 
accidentally, may be obstructive to the correct 
identification of an individual’s mood [1], [2]. It is 
therefore crucial to appreciate and guarantee the 
purity of such signs in recognizing emotions and 
subsequent applications. 

The brain is the primary integrative organ 
and the source of initiative in generating and 
mobilizing affective responses at the physiological 

level in the body. Electro Cardio Gram (ECG), 
Electro Muscular Gram (EMG), EOG, and EEG are 
the main physiological signals that contain 
information concerning the body. In contrast to the 
analysis of outer emotional experience, the EEG 
allows the study of neurological processes in the 
brain and is a better indicator of a person's 
emotional state. Unlike other physiological 
measurements, EEG has a higher spatial and 
temporal density which may be more informative 
for understanding the time course of affective 
processes. 

However, in the medical field, EEG 
signals are used in diagnosing neurological 
disorders including epilepsy, Parkinson’s, seizures 
[3], and Alzheimer’s [4] and in modern usage for 
personalized teacher-student interaction [5], to 
understand customer’s unhindered preferences on a 
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broad range of product images [6]. This could make 
a substantial contribution to the fields of Assistive 
technology and Affective Computing [7], [8]. 

The EMG and ECG are physiological 
signals that show emotions along with the EEG, 
which may have noise from brain cells. Hence, 
EEG signals are extensively used for emotion 
detection, and many researchers have conducted 
experiments to analyze EEG signals by applying 
various algorithms. 

The general procedure of classifying 
human emotions from the EEG signals, as 
illustrated in figure 1, begins with the recording of 

raw EEG data from human brain lobes at a high 
frequency. The EEG headset records brain signals, 
and an accompanying waveform represents the raw 
data. Next, we pre-process the signal to reduce 
high-frequency noise; we decimate the raw EEG 
signal and then send it through a band-pass filter. 
And then eliminate undesired artifacts from the 
EEG data, like muscular contractions or eye blinks, 
along with it, and make sure that the signal is noise-
free. Later, the pre-processed signal has to be 
decomposed into frequency bands and then features 
are extracted. Thereafter apply any classifier which 
accurately classifies the human emotion. 

 

Figure 1: Procedure of emotion recognition from EEG recordings 

Machine learning (ML) algorithms are 
hindered by the fact that feature selection has to be 
done explicitly or manually, where important 
features are identified for inclusion based on 
domain knowledge and statistical analysis, which 
may overlook spatial latent features in the dataset. 
The conventional machine learning algorithms have 
been challenged to extract prominent features and 

identify patterns of emotions because of the 
transient nature of EEG signals. The temporal 
behaviour and low Signal to Noise Ratio (SNR) 
feature of EEG signals adds to the complexity of 
feature extraction with traditional ML approaches 
[9].  

Deep Learning (DL) architectures have 
proven capacity to process spatial and temporal 
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information from raw data; Convolution Neural 
Networks (CNNs) are expressly crafted to process 
spatial data, and the Long Short-Term Memory 
(LSTM) can effectively process temporal data. The 
spatiotemporal feature extraction process is crucial 
in identifying emotions from EEG signals. 
However, with deep learning (DL) algorithms, all 
the features hidden in the dataset can be extracted, 
and the electrode selection is automated based on 
the best input selection procedure of the specified 
neural network architecture. Despite this 
automation, the design and training of deep 
learning models still involve manual decisions such 
as selecting architecture and topology, tuning hyper 
parameters, and preprocessing data; sometimes 
manual feature engineering remains valuable, 
particularly with structured data or when domain 
expertise provides crucial insights beyond what the 
model can capture autonomously. 

1.1 Related Work 

Nouman et al., [11] works with non-
physiological signals for emotion recognition. In 
their work, they considered facial edges but also 
traced eyeballs for detecting emotions through 
Hough circle transform.  

Mu Li et al., [12] stated that the gamma 
frequency band is most relevant to emotional states. 
Techniques like LDS smoothing and minimal-
redundancy maximal-relevance (MRMR) 
algorithms enhance classifier accuracy and 
efficiency.  Chen Wei (2020) et al., [13] also stated 
that the higher frequency bands such as beta and 
gamma are most prominent while extracting 
emotions from the EEG signals. Ruo-Nan Duan et 
al., [14] proposed a DE feature as the best feature 
among the existing features of SEED for emotion 
recognition. G. Li et al., [15] proposed an 
experiment-level Batch-Normalization (BN) to 
capture individual differences for recognizing 
emotions on the SEED dataset. The author intends 
to work with fewer electrode channels instead of 
using all. There are cases, where working with 
unwanted data, the model quality will be 
significantly affected. The author tested PSD and 
DE features of SEED to get improved results out of 
it. Chunawale. A et al., [16] stated that feature 
selection and extraction of EEG signals plays a 
crucial role while applying machine learning 
techniques. Here, they preferred PSD features for 
processing EEG data and achieved 96.42% 
accuracy. 

On DE features of SEED dataset, MLP 
(Multi-Layer Perceptron) and CNN has been 
implemented by Mohith Kumar et al., [17], CNN's 
positioning in this model is to learn from the spatial 
structure of placing different EEG channels on the 
scalp and, therefore, capture subtle patterns in brain 
activity. This feature enables CNN to outcompete 
MLP models in EGG data analysis procedures, 
which do not automatically include spatial 
information. Another research done by Mitul 
Kumar Ahirwal et al. [18] was for recognizing 
emotions using EEG signals, the work mainly 
covered pattern recognition and classification. Time 
domain, frequency domain, and statistical entropy 
are analysed with great detail, coupled with a 
methodical comparison of various classifiers 
including ANN, demonstrated as the best classifier 
with a mean accuracy of 93.75 % when using 
entropy-based features.  

Li et al., [19] addressed the over fitting 
challenge in traditional machine learning 
algorithms while recognizing emotions through 
EEG signal analysis. Hierarchical Convolutional 
Neural Network (HCNN) outperforms especially 
elucidates nuances in classifying emotions within 
high-frequency Beta and Gamma wave bands. 
Comparative evaluations confirm HCNN's 
superiority with accuracy of 86.2% and 88.2% on 
the former, marking a significant advancement in 
affective computing.  

R. K. Jeevanet et al., [20] look into EEG 
Based Emotion Recognition through LSTM-RNN 
and LSTM-CNN models. EEG signals feel discrete 
wavelet transforms for spectral filtrate and wavelet-
based filtering for the division of the spectra band is 
used for classifying. Subjects watch objects for 
1200ms which are images and music associated 
with babies or scenes. EEG signals are collected 
using a 32-channel configuration recorded at 350 
Hz sampling rate. The LSTM + CNN models were 
better than conventional methods with 64% 
accuracy while the LSTM or RNN took 4 to 5 
hours for training the model however it had an 
accuracy of 63.61%.   

To enhance the performance of EEG-
based emotion recognition, S Hwang et al., [21] 
used topology preserved DE images for classifying 
emotions on the SEED dataset by applying CNN 
along with LSTM. Shen et al. [22] put forward a 
new approach called the 4D convolutional RNN 
(4D-CRNN). Finally, a CRNN model, LSTM, is 
used to learn from these features and demonstrates 
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the feasibility of adopting various EEG features for 
recognising emotions. T. Song et al. [23] suggested 
a new model, namely DGCNN for the specific task 
of emotion recognition from EEG signals. It 
supplies a dynamic adjacency matrix which makes 
the model have the ability to learn the inherent 
relativity among EEG channels dynamically.  

Kulkarni, D. et al., [24] applied Bi-LSTM 
and Improved-RNN on the DEAP dataset and also, 
they contributed in creating a new DOSE dataset 
similar to DEAP. Yuling Luo et al., [25] 
spatiotemporal correlations have been identified in 
the encoded data and applied to SNN (Spiking 
Neural Network) to classify emotion on both SEED 
and DEAP datasets. Xiangyu Juet et. al., [26] 
another model called Temporal-Difference 
Minimising Neural Network (TDMNN) is designed 
based on the premise that emotional activity 
exhibits temporal stability, considering the fact that 
the temporal variation of emotion is relatively 
slower than changes in physiological signs. This 
model used the Maximum Mean Discrepancy 
(MMD) statistic to assess and minimize differences 
in EEG features over time intervals which led to the 
enhancement of the model performance in 
recognizing emotions. 

Jianhua Wang et al. [27] reported that 
CNNs have outperformed LSTMs for classification 
of EEG signals for BCI. This is attributed to the 
CNNs ability of capturing spatial features from the 
input data by striving to overcome the problems 
encountered when training large signals for 
classification. Despite their success in working with 
sequential data, it was found that using LSTMs in 
cases where location matters in classification may 
not yield a great accuracy. Specifically, this study 
shows that CNNs are more appropriate for this 
particular use than LSTMs are.  

Due to the rapid fluctuations in the EEG 
signals, traditional machine learning algorithms 
have limited capability to capture minute changes 
of nonstationary nature in EEG signals. Hence, 
identifying spatiotemporal patterns in the EEG 
signals is challenging. Designing a novel deep-
learning architecture optimized for identifying 
spatiotemporal features essential for emotion 
recognition relies on appropriate hyper parameter 
settings to capture important information from EEG 
signals. 

 

The main contributions of our research as 
follows: 
1) Proposed a novel framework STDI-CNN to 
overcome subject variability. 
2) The automated feature selection mechanism for 
identification of optimal frequency bands employed 
in STDI-CNN model has been impactful on 
improving the predictive accuracy. 
3) Framework helps in identifying complex spatio-
temporal correlations which tends to highlight the 
performance of the proposed model. 

In our proposed workflow, firstly we will 
be discussing the dataset and its preprocessing 
methodology. Later we experimented with 
proposed models CNN-LSTM, CNN-BiLSTM, 
STDI-CNN. STDI-CNN outperformed the other 
proposed models as well as SOA models, which 
will be analysed in the results and discussion 
section. Lastly, we have summarised the findings of 
this paper and outlined potential areas for 
improvement in the existing research. 

 
2. PROPOSED FRAMEWORK 

Deep learning models were used not just 
to overcome subject variability but also to get 
beyond the drawbacks of conventional machine 
learning methods, which can pick up on the minute 
variations in nonstationary EEG data and capture 
complex spatiotemporal patterns that are necessary 
for emotion recognition. The deep learning model 
has the potential to identify the important temporal 
and spatial correlations in the data, however, is 
largely dependent on the proper hyper-parameter 
choices, including learning rate, number of layers, 
filter sizes, and batch size. By carefully adjusting 
these settings, the deep learning architecture can 
extract the important information from EEG signals 
more effectively, improving performance in tasks 
linked to emotion perception. 

2.1. Dataset: SEED (Shanghai Jiao Tong 
University Emotion EEG Dataset) [28]: 

The SEED dataset was generated from 
EEG signals. EEG is a nonintrusive neuroimaging 
technique that records electrical activity in the brain 
and captures physiological activity. Table 1 
describes the components of the experimental data 
collection for the SEED dataset.  
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Table 1. Parameters of the Stimuli and Description 
Parameters of 

the stimuli 
Values of the 
parameters 

Description 

Video clips 
15 Chinese (4-
minute video 

clips) 

The film clips for the experiment were chosen based on: (i) The total 
duration of the experiment is kept moderate to prevent participant 
fatigue. (ii) Selected clips should be easily understood without 
requiring additional context. (iii) The chosen clips are curated to evoke 
a single, target emotion, ensuring consistency in emotional response. 

Subjects 15 
Seven males and eight females participated in the experiment. The 
mean and standard deviation of their age are 23.27 and 2.37 
respectively. 

Number of 
experiments 

on each 
subject 

3 

Each experiment consists of 15 trials. Each trail is associated with only 
one emotion and constitutes three experiments conducted on each 
subject, with a maximum gap of one week. Thus, the total number of 
experiments done is 675, which is equivalent to 15*3*15 (subjects * 
experiments * trials) 

Signal 
Frequency 

1000 Hz. 

The signal was decimated to 200 Hz and used a 0 to 75 Hz bandpass 
frequency filter. The filtered frequency was separated into five 
frequency bands. δ [1-3Hz], θ [4-7Hz], α [8-13Hz], β [14-30Hz], and γ 
[31-50Hz]. 

Number of 
electrode 
channels 

62 
62 electrode channels were used at prescribed locations on the scalp to 
extract EEG signals [28]. 

Number of 
features 

6 

Asymmetry (ASM), Differential Asymmetry (DASM), Rational 
Asymmetry (RASM), Power Spectral Density (PSD), Differential 
Entropy (DE), and Differential CAUdality (DCAU). Not all electrodes 
are utilized by all the features. 

Feature 
smoothing 
techniques 

2 

Linear Dynamic System (LDS), Moving average 
window(movingAve). Each feature was smoothed using both of the 
techniques. Now, the features extracted from the EEG signals turned 
12. 

No. of 
Emotions 

3 
Negative as -1, Neutral as 0, Positive as 1. These labels are encoded to 
0, 1, and 2, respectively. 

 
The SEED dataset adheres to a 

standardized method for electrode placement in 
EEG recordings widely used in neuroscientific 
research and clinical practice, which is the 
International 10-20 electrode system using the ESI 
(EEG Source Imaging) NeuroScan system at a 
sampling rate of 1000 Hz. SEED considers the 
video stimuli to record EEG signals. 

The SEED dataset provided 45.mat files, 
each .mat file contains data related to one 
experiment. Data was extracted from the recorded 
EEG signals with one second of Hanning Window 
(HW) and 0% overlapping between two 
consecutive HWs [10]. As shown in Figure 1, the 
Differential Entropy (DE) feature was extracted 
from the pre-processed EEG signal because it is 
most prominent in the said features [13, 14] shown 
in Table 1. The proposed method uses the DE 
features where each trial comprises of various 

sequence lengths 235, 233, 206, 238, 185, 195, 237, 
216, 265, 237, 235, 233, 235, 238, 206, associated 
with the encoded labels 2, 1, 0, 0, 1, 2, 0, 1, 2, 2, 1, 
0, 1, 2, 0 respectively. DE feature signal has been 
decomposed into 5 frequency bands such as δ, θ, α, 
β, γ. Experiment-wise data has been given to the 
data-pre-processing of the proposed framework. 

2.2. Data Pre-processing 
Significant variations were observed in the 

recorded EEG signals from session to session 
across experiments. The main cause of these 
differences is the transient nature of EEG signals, 
which are susceptible to a number of variables like 
cognitive moods, and minor physiological changes 
that occur between sessions. In order to neutralize 
these variations, the signal distributions within each 
experiment should be standardized to minimize the 
effect of experiment-to-experiment fluctuations. 
The pre-processing of the data is shown in Figure 2. 



 
 Journal of Theoretical and Applied Information Technology 

31st August 2025. Vol.103. No.16 
©   Little Lion Scientific  

 
ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
6407 

 

 
Figure 2: Proposed Framework

Experiment-wise data is pre-processed in 3 
steps as depicted in Figure 2. After determining the 
minimum and maximum values of features, batch 
normalisation is applied for each experiment, and 
then the lengths of the sequences are equalised 
based on the maximum duration of the experiment's 
trial. Later in the proposed framework, the dataset 
has been split into train and test sets to generate a 
model with the proposed STDI-CNN architecture to 
predict emotions. 

Let the dataset X[D] ∈ RE*T*C*F be the 
EEG data generated as sequences in T trails of E 
experiments described by F frequency bands and C 
channels where |E| = 3, |T| = 15, |F| = 5, and |C| = 
62. X[D] is 50Hz down-sampled with a 
nonoverlapping sliding window of 1-second. The 
sampling points in each experiment is denoted by 
X[i][j] where j = 1,2,3…….,3394. All the 
sequences contained in X[D] are experiment-level 
batch-normalized. Later, data would be reshaped 
trial-wise and fed to the proposed STDI-CNN 
architecture. A trial T contains X[T]∈ RS*C*F 
where each trail X[T] = X[i] (i = 1,2,3…675), S 
data points S[ts]= (1,2,...,265) indicating the time-
stamps in a sequence possibly extended by zero-
padding. F denotes the frequency bands F[i] 
(i=1,2..,5), and C denotes channels C[i] (i=1,2,..,62) 
in each trial X[T]. As a result, the dataset is 
reshaped to Z with dimension (675,265,310) where 
F*C=310 to be fed as input for model building 
using different deep learning architectures. 

We normalized the data Z[i] (i = 1,..,E*T) 
using experiment-level batch normalization to 
enable more trustworthy comparison of EEG 

signals across multiple trails. Batch normalization 
reduces the discrepancies owing to nonstationary 
nature while highlighting consistent subject-
specific trends. As a result, this method enhanced 
the model's generalization and robustness when 
processing EEG signals from several sessions for 
the same participant. Experiment-level batch 
normalization is applied to account for variations in 
individuals’ human behaviour and physiological 
responses. 

The sequence lengths of trials of the 
experiment are different from one another. To 
address this issue, as in Figure 2, the maximum 
sequence length is identified and each sequence is 
extended by padding zeros up to the maximum 
sequence length to ensure consistency. The dataset 
is rearranged trial-wise; each trial out of the total 
675 trials consists of data points belonging to five 
frequency bands. The pre-processed data is 
employed to train models on proposed 

architectures. 

2.3. Proposed STDI-CNN (Spatio-Temporal 

Convolution Neural Network) model 

The authors proposed a novel STDI-CNN 
model as illustrated in Figure 3 provides an 
automated feature selection mechanism for 
identification of optimal frequency bands and 
subsequent channels, which contributes to classify 
emotions efficiently. This capability leads to 
improvement in the model performance for emotion 
recognition. Input feature (IF) map is Z[i] with 
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dimensions (trials, time-steps, features) = (675, 265, 310). 

 
 

Figure 3: Proposed STDI-CNN model 

The STDI-CNN model comprises three 
components such as a frequency band extractor, a 
spatiotemporal feature extractor, and a classifier is 
capable of recognizing spatial differences along 
with temporal. 

2.3.1 Frequency band extractor 

As illustrated in Figure 3, the Band 
Extractor is responsible for extracting efficient 
frequency bands from each electrode channel, 
which contain latent features of human emotions. It 
comprises 3 layers such as masking, convolution, 
and a batch-normalization layer respectively. 

A masking layer was primarily 
incorporated to ignore the extended portion of 
sequences padded with zeros at the preprocessing 
phase. This layer effectively distinguishes between 
real and padded samples to allow downstream 
processes to disregard the padded values during 
convolution.  

Let S[i] denote the ith sample in the sequence, 
where 𝑖=1,2,...,265.  

The masking function M(Si) can be defined as: 

M(Si)= 1 if and only if Si is a real sample 
0 if and only if Si is a padded sample 

The purpose of M(Si) function is to yield 1 for the 
real samples and 0 for the remaining padded 
samples. 

The mathematical notation for the masking layer is 
represented as: 

Masking layer = [M(S1), M(S2),..., M(S255), 
M(S256),..., M(S265)] =[1,1,...,1,0,0,...,0] 

The architecture of the frequency band 
extractor was illustrated in Figure 4 as 2D 
convolution layer processes the masked feature 
map M(S) with a kernel matrix of (5*5) which 
processes five frequency bands and selects one for 
each channel. The stride is 5 so that the kernel 
moves to the frequency bands of the next channel 
till it completes all the channels, resulting in a total 
of 62 features out of 310 raw features.  

The batch normalization layer is applied to 
adjust and scale the activations of a neural network 
layer by normalizing them to center around a mean 
of 0 and standardize to a deviation of 1, to make it 
feasible for the network to learn and adapt during 
training. 

2.3.2 Spatiotemporal feature extractor 
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As shown in Figure 3 Spatiotemporal 
Feature Extractor in succession to the frequency 
band extractor module has two consecutive 2D-
convolution layers with a unit stride and 5*5 kernel 
to extract spatiotemporal features. A 2D-max-
pooling layer with a kernel of 5 is used to 
regularize the model parameters to avoid overfitting 
the model. Followed by a flatten layer employed to 
change the 3D feature vector into a 1D feature 
vector to be fed to the classifier module. The 
architecture of the spatiotemporal feature extractor 
was illustrated in Figure 4. 

2.3.3 Classifier 

As shown in Figure 3, the classifier is the 
final module of the proposed STDI-CNN model, 
designed to prognosticate based on the processed 

data. The classifier module is made up of a dense 
layer with three output neurons, each representing 
an emotion class that is processed using a 1D 
feature vector obtained from the spatiotemporal 
feature extractor module. The soft-max activation 
function is employed to transform raw outputs of 
the dense layer into probabilities, making it ideal 
for multiclass classification. Categorical cross-
entropy loss function computes the divergence 
among predicted probabilities and true labels, 
penalizing incorrect predictions. Soft-max and 
categorical cross-entropy collectively ensure 
effective learning and reliable multiclass 
classification performance. The architecture of the 
classifier was illustrated in Figure 4. 

 

Figure 4: Proposed STDI-CNN Architecture

 The detailed layered process of the 
proposed STDI-CNN model was depicted in the 
architecture. Relu activation function has been 
applied on all the convolution layers and soft-max 
function applied on the dense layer of the classifier 

module for multi-class classification. Categorical 
cross-entropy loss function assesses in reducing the 
distance between observed and predicted labels. To 
further enhance training efficiency and stability, the 
Adam (Adaptive Moment Estimation) optimizer is 
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employed to dynamically adjust learning rate using 
1st and 2nd moment estimates of the gradient for 
model stability and convergence. The proposed 
model has been trained for a maximum of 20 
epochs with initial learning rate as 0.01. 

2.4. Proposed Fusion models 

The fusion of CNN with LSTM and CNN 
with Bi-LSTM is also explored. The fusion of CNN 
with LSTM network and CNN with Bi-directional 
LSTM (Bi-LSTM) has shown superior performance 
compared to individual recurrent neural networks 
such as RNN, GRU, and LSTM alone. CNNs are 
best in identifying spatial patterns, making them 
well-suited for processing EEG signals. While 
LSTMs are effective at capturing temporal patterns 
and the bidirectional nature of LSTM enables it to 
analyze dependencies in both ways, leveraging past 
and future context for a better understanding of the 
data. The input feature map was processed through 
CNN architecture, extracted node embedding from 
the CNN architecture, and those embeddings were 
adjusted to map the input feature map of 4-layered 
LSTM and Bi-LSTM architecture to categorize the 
emotions. 

3. RESULTS AND DISCUSSION 

Experimentation done on the SEED to 
assess the performance of proposed architectures 
using a suite of standard metrics including 
precision, recall, F1-score, prediction accuracy, and 
loss. These metrics offer valuable insights into 
various facets of a model's performance. While our 
problem is a multi-class classification issue, 
precision, recall, and the F1-score are calculated for 
each class in the model independently. These 
metrics are then aggregated to derive overall 
precision, recall, and F1-score. 

The authors compared the performance of 
the newly proposed STDI-CNN model with SOA 
models involving CNN, LSTM, and other deep 
learning architectures well established in the 
literature on emotion recognition from EEG signals. 
This comparative analysis also involves the simpler 
fusion architectures proposed in this paper named 
CNN-LSTM and CNN-BiLSTM. 

Recurrent Neural Networks (RNNs) are 
identified as the potential solution for working with 
EEG data in the context of emotion recognition 
because of their capability of processing temporal 

dynamics in EEG signals as evidenced by the 
performance. The LSTM and Bi-LSTM networks in 
RNN family provide methods to tackle the 
vanishing gradient problem to capture long term 
dependencies which make these networks even 
more suitable for EEG based emotion recognition. 
Use of CNN’s architecture has proven results for 
real-time EEG applications, particularly when the 
relevant information is localized within specific 
temporal or spatial regions of the brain signals. 

Hence the fusion of CNN-LSTM and 
CNN-BiLSTM is explored in this research work. 
The fusion architectures developed in this paper 
shared a common CNN architecture and they 
yielded approximately equal accuracy which is 
clearly higher than most of the SOA architectures 
for emotion recognition. 

The TDMNN presented by Xiangyu Ju et 
al., is the only one existing architecture found to be 
a close competitor for the fusion models on 
prediction accuracy. However, the decrease in loss 
from 10.68% with LSTM to 8.91% with Bi-LSTM 
signifies a significant enhancement in the model's 
predictive capability, instilling greater confidence 
in its outcomes. From this loss reduction, it could 
be realized that the Bi-LSTM architecture is well 
suited to capture temporal features of the EEG 
signals thereby advancing predictions. 

It can be observed from the results 
provided in table 2 that the proposed STDI-CNN 
model outperformed among all SOA architectures 
and fusion models, CNN-LSTM and CNN-Bi 
LSTM proposed in this paper. Specifically, the 
STDI-CNN model yielded 98.52% accuracy and 
5% loss as mentioned in table 3 which reflects a 
better performance compared to the fusion models 
which are its closest competitors. 

The automated feature selection 
mechanism for identification of optimal frequency 
bands employed in STDI-CNN model has been 
impactful on improving the predictive accuracy by 
approximately 1.5% over that could be achieved by 
the best model among the SOA architectures. At the 
same time, the model loss is also kept at 5% which 
is comparatively low. Similarly, the detailed 
performance comparison in terms of precision, 
recall and F1-score in addition to accuracy and loss 
for the proposed models is presented in table 3. 
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From the results tabulated in table 2 and 
table 3 is evident that the STDI-CNN model has 
been more effective in capturing the intricate 
temporal dynamics of the EEG signal as it could 
extract meaningful features for accurate emotion 
recognition. 

Table 2. Comparison of proposed models with State-of-
the-art models 

Existing/Proposed 
models 

Reference paper Accuracy 

DBN - 2015 [10] 86.08% 

CNN - 2022 [15] 62.04% 

LSTM-2022 [15] 64.84% 

MLP-2022 [15] 78.16% 

HCNN-2017 [19] 88.2% 

CNN+LSTM -2019 [21] 89.88% 

SRU-2020 [13] 90% 

Spiking Neural 
Network-2020 

[25] 96.67% 

CNN-2022 [17] 93.81% 

TDMNN-2023 [26] 97.2% 

CNN-LSTM proposed 97.04% 

CNN-BiLSTM proposed 97.04% 

STDI-CNN proposed 98.52% 

Table 3: Performance metrics of Proposed models. 

Model 
No. 

Proposed 
models 

Accuracy Loss Precision Recall F1-
score 

1 CNN-
LSTM 

97.04% 10.68% 97% 97% 97% 

2 CNN-
BiLSTM 

97.04% 8.91% 97% 97% 97% 

3 STDI-
CNN 

98.52% 5.43% 98.4% 98.6% 97.54% 

4. CONCLUSION AND FUTURE SCOPE 

The proposed STDI-CNN model is able to 
predict emotions precisely and has proven the best 
accuracy of 98.52%, increased approximately by 
1.5% above the SOA models. The model handles 
the nonstationary nature of EEG data efficiently 
while considering subject variability and also 
minimizes extraneous spatial features while 
preserving the inherent spatial characteristics to 
capture differences in temporal dynamics. The 
proposed model has the potential to automatically 
extract spatiotemporal features from the complex 
EEG signals without human intervention, achieved 
through appropriate hyper-parameter tuning at each 

layer in the seven-layered architecture. The 
Experimental findings demonstrate that the model 
outperforms SOA methods in recognizing emotions 
on the benchmark dataset SEED. The proposed 
model can acknowledge inexpressible emotions of 
patients suffering from neurological disorders 
which facilitates better decision making for better 
diagnosis. The emotion can be better expressed 
through our model for enhanced BCI. 

Despite being trained on less data of 15 
subjects, the proposed model has proven better 
results. Although larger data corresponds to better 
generalizability. But acquiring larger EEG dataset 
is challenging; to handle this challenge we can 
explore transfer learning in the future research as it 
supports model-building by refining pre-trained 
models as per the characteristics of target domain 
with limited data. Additionally, federated learning 
can increase the scope for decentralized model 
building in a constrained environment to foster 
deeper understanding of human emotions. 
Furthermore, future work can extend towards 
attention-based transformer models which better 
captures the temporal dynamics of EEG data. 
Altogether, future avenues can resolve these 
limitations to foster a better understanding of 
human emotions. 
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