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ABSTRACT:

Organizations are using multi-cloud architectures increasingly to address performance and scalability needs in a world
where data is king. But higher operational expenses and carbon emissions are regular results, which is bad for the
environment. Using fuzzy logic and Monte Carlo simulations, this study presents a novel hybrid optimization method
for lowering the cost and carbon footprint of cloud computing. The suggested solution changes the way cloud
resources are allocated in real time based on things like workload, pricing, and the weather. Fuzzy logic may help you
make decisions when the inputs are not clear, and Monte Carlo simulations can help you figure out how much effort
and how much money you need. When we compare our technique to static baseline approaches, testing using real-
world datasets demonstrate that our approach cuts operational expenses by 25% and carbon emissions by 33%. These
findings suggest that there is space for clever, flexible ways to manage resources in a manner that is good for the
environment across several clouds.
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simple, intelligent decisions when they don’t know
what to do, this research proposes a hybrid
optimization framework that combines Monte
Carlo simulation with fuzzy logic. It seeks to
reduce the cost and environmental impact of cloud
computing through the use of dynamic resource
management. By demonstrating significant gains in
reliability and reductions in costs, this study
outperforms established approaches [7]. To do this,
it demonstrates a newly designed system and tests
it using real data.

1. INTRODUCTION

Cloud computing has evolved rapidly [19].
Many organizations across industries are adopting
multi-cloud  architectures to increase the
scalability, robustness, and flexibility of their
systems. While these systems allow providers to
collaborate and pool their resources, they come at
a high cost and have a significant negative impact
on the environment. The construction of data
centers is a major contributor to global warming
due to the amount of energy required. Responsible
economic and environmental practices are
becoming more challenging,[5] Striking a balance 2. RELATED WORK
between achieving superior performance and To reduce the negative effects on the
minimizing environmental impact in the context of ~ environment caused by multi-cloud installations
digital infrastructure development is becoming  and maximize cloud expenditure optimization,
increasingly important due to the growing researchers have been hard at work. Novel methods
importance of sustainability. Despite differences in for bettering energy efficiency, cloud resource
workloads, fuel prices, and carbon emissions rates ~ management, and sustainability have been the
between locations, cloud resource allocation is subject of research. Cost optimization in the cloud,

often consistent [6] and [27]. To help people make ~ carbon footprint reduction, and the application of

e
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advanced computational methods to multi-cloud
architectures are all part of this field.To lower
cloud expenses, several academics have looked at
the best way to distribute resources. Static
approaches to allocating resources have a
challenging time adjusting to changing workloads
and pricing, as pointed out by [7]. To make smart
judgments about the provisioning of resources, [8]
suggested dynamic pricing models that use real-
time data. Unfortunately, these models often fail to
address the inherent unpredictability of task needs.
We build on this earlier work by adding Monte
Carlo simulations to make the cost models better
at making predictions and fuzzy logic to make it
easier to make decisions when things are not clear.
Amid mounting worries about cloud computing's
effect on the environment, "green cloud"
alternatives have emerged. Scheduling algorithms
that take renewable energy sources into account
were developed [19] with the aim of reducing
carbon emissions. In addition, [5] suggested a
hybrid approach that uses both renewable energy
and scheduling strategies that save energy. These
methods show promise, but they might put a huge
strain on certain energy sources or need major
changes to current infrastructure. To overcome
these restrictions, our study presents a versatile
framework that can use carbon emission data
while also adapting to different energy sources and
geographical limits.
Because of differences in pricing structures,
service-level agreements (SLAs), and geographic
constraints, managing resources across several
cloud platforms is not an effortless task. Studies
like [6] and [27] have shown that intelligent
resource allocation algorithms play a vital role in
systems with several clouds. The optimization of
resources was carried out [16] using machine
learning techniques and by [26] using a heuristic-
based method. Our research adds to these
continuing efforts by combining scenario-based
analysis and real-time decision-making with fuzzy

logic and Monte Carlo simulations. This
combination enables a more versatile and all-
encompassing solution.
Hybrid methods, which integrate several

computing techniques, have partially reduced the
difficulties of cloud optimization. To forecast

workloads,[7] used deep learning models; to
improve resource allocation, [9] combined genetic
algorithms with predictive analytics. Although
these methods work well, they run into problems
with scalability when used for large-scale multi-
cloud installations. Our suggested method gets
around these problems by using fuzzy logic and
Monte Carlo simulations together. It also lets the
system be scaled up or down and adapt to new
situations without losing its effectiveness.
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Figure 1: Traditional multi-cloud installations and
maximize cloud expenditure

Figure 1 [6] When it comes to managing costs and
carbon footprints, traditional multi-cloud setups are
inefficient since they rely on static resource
allocation algorithms that cannot adjust to
changing workloads and energy limitations.

3. METHODOLOGY

To optimize cloud costs and carbon footprints
in multi-cloud setups, this section details the
technological design, dataset sources, optimization
logic, algorithms, implementation stack, and
evaluation metrics that were wused in its
development and testing [1], [6].

3.1 System Design

The system we aim to design has three
main parts: the Carbon Footprint Evaluation
Module (CFEM), the Resource Management Unit
(RMU), and the Cost Optimization Engine (COE).
The RMU employs fuzzy logic to guess how many
resources will be required in the future depending
on the amount of work that is now being done, the
amount of energy that is available, and the number
of resources that are available in various areas. The
COE employs Monte Carlo simulations to model
uncertainty in pricing and workload demand so that

6239

accessed by same



Journal of Theoretical and Applied Information Technology

B
31% August 2025. Vol.103. No.16
© Little Lion Scientific % a
S/
ISSN: 1992-8645 WWwWw.jatit.org E-ISSN: 1817-3195
decisions are more likely to be correct. The CFEM 2)

can figure out how much carbon is released by
looking at data from multiple cloud providers on
power sources and carbon intensities in different
areas. When combined, it gives flexible advice on
how to utilize resources in a manner that considers
both economic and environmental aspects [3, 4, 6,
13].

Workload Data Environmental Data

Resource Management Unit (RMU)
Real-time monitoring & fuzzy logic

Optimized resource allocation

User Energy
Preferences

Cost Optimization

Engine (COE) Cloud Providers

Carbon footpr
analysis & fee

Carbon Footprint
Evaluation Module
(CFEM)

Simulated cloud energy & demand

Figure 2: System Design for Cloud Resource
Allocation

Figure 2 [8] illustrates the design and architecture
of the cloud resource allocation system, outlining
the key components involved resource
management. Optimal allocation of resources and
efficient scalability are the goals of the design. We
tested the system in an environment.

in

The letter ¢ stands for operational costs,
energy consumption, and carbon emissions. All
work orders inside the specified area will be
processed by our system in the most efficient way
possible, using as few resources as possible. The
goal function for cost optimization can be
expressed as follows:

N (M
C = (plrl)+ﬂE
2

ki is the cost of the resource per unit. The
resource allocation for item i is denoted by i,
where Ais a weight factor that modifies the
significance of energy consumption in the cost
computation and Eis the overall
consumption of the resources in the cloud.

energy

F = i(ei. )

To find the best values for fi, the system
employs Monte Carlo simulations, which consider
the limits on resource availability and workload
demand, strike a balance between cost and carbon
emissions, and so on. Fuzzy logic analyzes the costs
and benefits of carbon emissions and other trade-
offs, allowing for real-time adaptations to resource
allocation in response to changing inputs. By
combining the best of both worlds, this system can
adjust to new circumstances with ease and keep
costs down without sacrificing sustainability.

3.2 Techniques

Decisions around the allocation of cloud
resources are typically fraught with uncertainty and
imprecision. We can use fuzzy logic efficiently to
solve this problem. It allows the system to deal with
data that is not completely clear, such as changing
cloud prices or different weather conditions[12].
The fuzzy inference system takes many factors into
account, such as cost, performance, and carbon
emissions, to maximize the use of resources.Monte
Carlo simulations account for uncertainty by
predicting cloud costs and carbon
emissions. Using random inputs in simulations, the
system can anticipate several possible outcomes in
various contexts. With this probabilistic method, we
can make better predictions and allocate resources
in a way that is beneficial for the environment and

resource

our wallets.
3.3 Datasets

For model training and testing, we relied on two
primary real-world datasets. The first dataset is
related to cloud computing and is taken from
Kaggle. It contains operational data from large
providers such as Google Cloud, AWS, and Azure,
including SLAs, pricing rates, and usage logs. The
second dataset, taken from Kaggle and government
energy records, shows different data center
locations and energy sources. It provides CO:
intensity values per kWh. Standard preprocessing
procedures were used to ensure consistency, such as
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handling missing results, standardizing, and
removing outliers [6, 11, 13, 21].

Table 1: Cloud Usage Dataset
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Timest d per (Upti
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der P ({)Jnits) it %)
&)
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02-01- Stora 0.0
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03-01- Azur Comp 0.1
2024 e ute 600 1 99.96
Goog
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2024 Clou ge 2200 7 99.97
d

Goo
gle . .
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Clou
d
Sout
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AW h  pene 04 1100 440
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Nort
Azur h Rene
. Ame  wable 0.1 1300 130
rica
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gle Euro Rene
Clou pe wable 0.12 1400 168
d

Table 1 [26] Key parameters, including CPU
utilization, memory use, storage consumption, and
network bandwidth, are part of the information
used to analyze cloud resource allocation, which is
shown in this table. We compiled the dataset. We
ensured data quality for analysis by filtering out
anomalous items.

Table 2: Carbon Emission Dataset

Carbo

n Total
Clou Data Energ  Emiss Total Carbo
Cent . Energy n
d y ions .
er Consu  Emiss
Prov Sourc (kg . .
ider L.oca R cO2 mption ons
tion . (kWh) (kg
be C02)
kWh)
Nort
AW h Rene
S Ame  wable 0.15 1000 150
rica
Non-
Azur BUrO - poe 035 1500 525
e pe
wable

This table 2 [23] outlines the dataset that evaluates
carbon emissions across different cloud resource
configurations. Factors including carbon intensity,
energy usage, and resource allocation efficiency are
included in the dataset. We pre-processed and
retrieved the data to eliminate discrepancies[13].

Various cloud providers' (such as AWS,
Azure, and Google Cloud) resource use, price, and
service level agreements (SLAs) are documented in
the Cloud Usage Dataset. Modeling the demand-
and price-driven price volatility of cloud services
requires this information. Time stamp, cloud
provider, resource type (e.g., compute, storage),
resource consumption, price per unit, and service
level agreement (uptime percentage) are important
elements to consider. Greenhouse gas emissions
from data centers in the cloud may be monitored
with the help of the Carbon Emission Dataset,
which is crucial for determining how resource
allocation affects the environment[17]. Data Center
Location, Cloud Provider, Total Energy
Consumption, Carbon Emissions per kWh, and
Total Carbon Emissions are some of the columns
that allow for the evaluation of how resource
allocation choices affect the environment[18].

3.4 Implementation

Implementation of the system was done using
Python 3.8, including libraries such as NumPy and
Pandas for data processing, SciPy for optimization
and Monte Carlo simulations, and scikit-learn for
fuzzy logic[19]. A one-of-a-kind simulation system
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was made to show how resources are dynamically
distributed across different clouds, considering
input parameters, changing cloud prices over time,
and carbon emissions[23]. Cloud resource costs
(which vary by provider and geography), energy
consumption rates, and carbon emission variables
for various cloud data centers were important
elements to consider. We developed these
measures using industry standards and data from
actual cloud instances[24].

3.5 Evaluation Metrics

We used the following metrics to evaluate the
proposed system: The optimization engine's ability
to decrease operating expenditures is determined
by its cost efficiency, which is defined as the total
cost of cloud resources utilized during a particular
time[25]. The carbon footprint, which is expressed
as a number in CO2 equivalents, is a way to
evaluate the solution's sustainability and the effect
of its use on the environment.
efficiency assesses the system's capacity to
distribute resources efficiently, minimizing waste
and maximizing use[20]. Finally, the simulation
accuracy metric checks how well the Monte Carlo
simulations can predict the real results by
comparing the expected costs and carbon emissions
to the actual values.

Resource use

2. Fuzzy Inference: Compute suitability score
S, for each provider.

3. Monte Carlo Simulation:
a.Fork=1toN:
i. Generate random workload W,,.
ii. Simulate cost C;, and emissions Fj, :

n
Ckzz (i -1) +A-F

i=1
4. Optimization:
a. Minimize C,, while satisfying R and W.

5. Dynamic Adjustment: Update r* for real-
time inputs.

End: Output optimized r*, cost C*, and emissions
F~.

Algorithm 1: Fuzzy Logic and Monte Carlo-
Based Cloud Optimization

Input: Cloud dataset D, carbon emission dataset
Dg, resource constraints R, workload demand W,
weight A.

Output: Optimized resource allocation r*.
Initialization:

1. Setr; = 0 for all resources i.

2. Define fuzzy rules for cost, performance,
and emissions.

3. Set Monte Carlo iterations N.

Steps:

1. Preprocessing: Normalize D and Dg.

By combining fuzzy logic with Monte Carlo
simulations, the proposed strategy optimizes the
deployment of cloud resources to reduce carbon
emissions and improve operational efficiency[15].
One of the main datasets used by the system is a
dataset describing the carbon intensity, energy
sources, and regional energy consumption of data
centers. Another dataset includes information about
resource usage, pricing structures, and service-level
agreements (SLAs) from leading cloud providers.
By using fuzzy logic, the system can generate rules
for adaptive resource management based on
uncertain and ambiguous inputs such as workload
and price changes. To further evaluate the effects of
demand fluctuations and energy consumption
patterns under different allocation methods, Monte
Carlo simulations use stochastic modeling. In
dynamic multi-cloud settings, these methods allow
for real-time data-driven decisions that balance
financial and environmental goals. This study
shows that intelligent, sustainability-aware
optimization can succeed even in the face of
uncertainty. The result is an adaptive technique for
allocating resources that reduces operating costs
and carbon emissions[16].

Table 3: Specifications of the Resource Agreement
and the Service Level Agreement.
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P(“ic)e SLA Max
Resource  P”  (Availability Capacity
(pex %) (ri)
unit)
CPU 0.05 99.9 1000
RAM  0.02 99.5 2000
Storage 0.01 99.7 5000

Table 3 [19] Pi is the cost per unit, SLA is the
service level agreement for the availability of
resources, and ri is the maximum capacity for each
resource.

Table 4:Power generation and emissions from data
centers

Data Emission Ener
Energy Factor (ei) gy
Center Source (kg Usage
Region CO2/kWh) (kWh)
REBON  Renewable  0.05 100
ReBOn Mixed 0.2 200
Region Fossil
C Fuels 0.5 300

Table 4 [21] The emission factor (ei) represents
the emissions of carbon dioxide gas (CO2) per
kilowatt-hour (kWh) of used electricity. How much
energy is used depends on how the workload is
distributed among different locations.

Cost calculation (Cy) for a workload requiring
repu=500, rram=1000, I'siorae=2000, Weight for
emissions(4)=0.05.

Ci=(pcpu-repu)H(PrAM - TRAM) T (Tstorage-Tstorage) T -Fik
Fi=(ecpu -rcpu) + (€ram -Tram) T (Estorage - Isiorage)
Using pcpu= 0.05, rram =0.02, Pstorage=0.01, and
emissions from region B (¢;=0.2):

Fk=(0.2 . 500) + (0.2 . 1000) + (0.2 . 2000) = 700
kg CO2

Ck=(0.05 . 500) + (0.02 . 1000) + (0.01 . 2000) +
(0.5. 700)

Ck=25+20+ 20 + 350 = 415 units of cost

Monte Carlo Simulation: Cost vs Emissions

Simulated Data
3 2504 ==~ Initial Cost

g | --- initial Emissions | aad
3
200

PO e oo e A i A JP“,’ """"

100 200 300 400 500 600 700
Emissions (kg CO2)

Figure 3: Monte Carlo simulation: Cost vs
Emissions

By showing figure 3 [11], the trade-off between
total cost and emissions for different workload
needs, the graph shows how emission variables and
resource prices affect cost optimization methods.

4. RESULTS

This study presents an optimization model for
multi-cloud systems. It uses fuzzy logic and Monte
Carlo simulations to optimize cloud expenses and
carbon footprint. We go over all the ways our
technique falls short, point out important details,
and compare it to baseline approaches in detail[22].

Cost Efficiency vs. Iterations Carbon Emissions vs. Cost Trade-off

— Optimized Costs ‘ wwessss somesee s o @

250 00

° semesse s ¢ o =

Carbon Emissions (kg CO2)

HEYY)
338

o Tradeoff

a00 601 800 1000 © 150
Simulation Rterations cost(s)

Figure 4: Cost Efficiency vs. Time (Comparison of
Methods) and : Carbon Emissions vs. Cost (Optimization Trade-

off)
Figure 4 [5] This chart shows how various

approaches stack up in terms of long-term cost
efficiency. The investigation utilized data from [2],
which reflects performance across different
circumstances. The investigation focused on finding
a compromise between minimizing costs and
reducing carbon emissions. An optimization model
participated in and implemented these outcomes.

This graph illustrates the total cost of cloud
resources over time for the proposed fuzzy logic
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and Monte Carlo simulation-based system
compared to traditional static allocation methods.
The proposed system consistently shows a
reduction in costs due to its dynamic resource
allocation approach, responding to fluctuations in
cloud pricing and demand.This figure depicts the
trade-off between carbon emissions and cost
savings. Our system demonstrates a significant
reduction in carbon emissions while still achieving
cost savings, confirming the effectiveness of the
integrated carbon footprint evaluation module.

Monte Carlo Simulation: Cost vs. Emissions with Sustainability Score

450 675
° o
°
°
(]
° L R A
a5 ° ° 650
S o
o L ]
0 ° 625
5 ¢
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o @
2375 ) 5
& 600 %
2 o |0 2
23501 P& H
£ 575 2
o ° . =
g 325 * B ]
2 L a
5 e . 550
[¥] ° o o
300 . % o® B
N 525
275 ° '. . e .
° ° o 500
250 e .
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Resource
Utilization 95 85 80
(%)

Table 5 [26] We use the cloud resource allocation
dataset to determine performance metrics. The
suggested  approach  outperforms  baseline
techniques in terms of cost efficiency and
sustainability, all while keeping execution times
low.

Cost Efficiency (CE):

Total Workload Processed (GB)

CE =
Total Cost Incurred ($)

3)

Carbon Emissions Efficiency (CFE):

Workload (GB)

CFE = Total Carbon Emissions (kgCO>)

4)

Sustainability Score (SS):SS = w; X EEl +w, X
CFE + w3 X RU

(5)

wy, W,, Wy are weights for Energy Efficiency Index
(EEI), Carbon Footprint Efficiency (CFE), and

Figure 5: Monte Carlo simulation: Cost vs Resource  Utilization (RU).RU Resource
Emission with sustainability score utilization.
Figure 5 [11] shows the outcomes of a Monte Carlo  proposed System:
analysis that included a sustainability score and e Total Cost = $1500
1eExarlrlm(lled the' cost-beneﬁt' of carPon 'em1ss;01;15. e Carbon Emissions = 300 kg CO»
.ac 'ata p(.nnt, representing an' 1ter§t10n of the e Resource Utilization = 95%
simulation, illustrates the relationship between Baseline 1:
;efiuzlllg explfns;il and fc-hli)\{ir-ltg env1ronme.12cally e Total Cost = $1800
riendly resg s. The sus. ainability score provi e.s a e Carbon Emissions = 400 kg CO:
comprehensive evaluation of resource allocation .
. . . e Resource Utilization = 85%
methods, incorporating measures like energy Baseline 2:
efficiency and pollution reduction. aselne =
e Total Cost = $2000
Average Cost: 0.12245300428979804 o
Average Emissions: ©.1854938036348478 e Carbon Emissions = 450 kg CO:
Average Sustainability Score: 0.482521138322¢ e Resource Utilization = 80%
Table 5: Performance Comparison with Baseline
Methods Cost Efficiency:
Metric Proposed Baseline Baseline _ 10000GB
System  Method 1  Method 2 = g0 - 0-67GB/%
Total Cost . .
© ?$) o8 1500 1800 2000 Carbon Footprint Efficiency:
10000GB
Carbon CFE = W = 3333GB/kgC02
Emissions 300 400 450
(kg CO2)
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Sustainability Score (Weights: w; = 0.4, w, =
0.4,w; =0.2):
S§=04XEEl+04x33334+0.2x95

=04x10+ 0.4 x 33.33+19
= 37.33

In terms of three critical metrics—total
cost, carbon emissions, and resource usage—this
table compares the suggested system to two
baseline methods. In every metric that was
measured, the findings show that the suggested
method is superior to both baseline systems.

Cost vs Carbon Emission Trade-off

Cost Distribution

2001

02

= P orage 00 02 04 06 o 10

Fuzzy Allocation System
1.0

0.8 1

Membership
o
o

o
'S

0.2 4
— reduce

maintain
—— increase

0.0

0.0 0.2 0.4 0.6 0.8 1.0
allocation

Figure 6: Multi-Stage Simulation of Fuzzy-Based
Resource Allocation and Optimization Metrics
Figure 6 [12] This graphic displays the combined
simulation findings for trade-offs in cost-emission
and resource optimization. As the scatter graph on
top-left shows, cost and carbon emissions have an
inverse relationship. The top-right histogram shows
the general cost distribution throughout many
simulation runs. The middle-left bar chart shows
the best way to dividle CPU, RAM, and storage
capacity. Though not included in this image, the

middle-right subplot is put aside for future fuzzy
inference confidence visualization. The bottom
figure shows the membership functions of the fuzzy
allocation system for the "reduce," "
"increase" allocation strategies. The text summary
shows the final allocation results as well as
simulated averages for emissions and cost.

Optimization Results:

CPU Allocation: -4000.0 units

RAM Allocation: 2000.0 units

Storage Allocation: 5000.0 units

maintain," and

Simulation Averages:
Mean Cost: $131.98
Mean Emissions: 292.68 kg C02

This system uses fuzzy logic and Monte Carlo
simulations to cut carbon emissions in half and by a
third, respectively. It also cuts cloud costs by
16.67% and 25% compared to Baseline 1 and 2.
The system achieves this by prioritizing cloud
providers with low emissions and dynamically
allocating resources based on projected expenses.
The system minimizes waste by achieving 95%
resource utilization. A "Cost-aware Fuzzy Emission
Minimization" approach, the ability to handle
imperfect input data using fuzzy logic, and the
ability to dynamically adapt to changing situations
are all positives. Problems with integration and data
updates are examples of real-world implementation
issues; other constraints include data reliance and
computational expenses. Network latency and
service level agreements (SLAs) are often under-
considered.

Discussion

The results of this study highlight the
practicality and potential of hybrid optimization
approaches to manage carbon trade-offs and costs in
multi-cloud settings. Traditional static allocation
methods cannot account for unknown inputs such as
fluctuating workloads, energy costs, and emission
intensities; our fuzzy logic-based resource
management does. A solid foundation for cloud
decision-making in the face of uncertainty is
provided using Monte Carlo simulations, which
provide potential insight into patterns of resource
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utilization and cost-risk trade-offs. By significantly simulations. This strategy is in line with

improving baseline static models in terms of cost-
effectiveness and carbon footprint parameters, our
approach demonstrated that intelligent, adaptive
solutions outperform traditional methods in
dynamic cloud environments. The importance of
directly incorporating environmental measurements
into the decision-making logic of cloud operations
is further emphasized by the observed benefits.
Consistent with current research on
environmentally conscious cloud management
practices, these results lend credence to the trend
toward green computing paradigms [1][6][14].
However, the accuracy of simulation predictions
and input datasets is intrinsically related to system
performance. The use of real-world datasets
increases the possibility that their generalization
may be affected by geographic or temporal biases.
To further improve accuracy and flexibility in
operational settings, future research should
investigate integration with edge-based inference
systems, reinforcement learning, and real-time
telemetry.

5. CONCLUSION

Using fuzzy logic and Monte Carlo
simulations, this study introduces a new method
for optimizing cloud expenditures and decreasing
carbon footprint in multi-cloud scenarios. While
considering the environmental effect of various
cloud providers, our system dynamically adjusts
the allocation of resources in reaction to changing
demand and costs. There was a big drop in costs
(16.67% and 25% compared to baselines), carbon
emissions (25% and 33.33% compared to
baselines), and resource use (95% compared to
85% and 80% for baselines). These results are
important. This study demonstrates an efficient,
long-term, and budget-friendly approach to
managing resources across multiple clouds. By
lowering operating costs and environmental
impact, especially in large-scale, multi-cloud
installations, this study also helps to create more
sustainable cloud computing practices. The
increasing needs of edge-cloud Al applications
call for smarter and more adaptable cloud
management, which is made possible by
combining fuzzy logic with Monte Carlo

worldwide efforts to reduce technology-related
energy usage and carbon emissions.
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