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ABSTRACT: 

Organizations are using multi-cloud architectures increasingly to address performance and scalability needs in a world 
where data is king. But higher operational expenses and carbon emissions are regular results, which is bad for the 
environment. Using fuzzy logic and Monte Carlo simulations, this study presents a novel hybrid optimization method 
for lowering the cost and carbon footprint of cloud computing. The suggested solution changes the way cloud 
resources are allocated in real time based on things like workload, pricing, and the weather. Fuzzy logic may help you 
make decisions when the inputs are not clear, and Monte Carlo simulations can help you figure out how much effort 
and how much money you need. When we compare our technique to static baseline approaches, testing using real-
world datasets demonstrate that our approach cuts operational expenses by 25% and carbon emissions by 33%. These 
findings suggest that there is space for clever, flexible ways to manage resources in a manner that is good for the 
environment across several clouds. 
Keywords:Cloud Cost Optimization, Carbon Footprint Reduction, Fuzzy Logic, Monte Carlo Simulation, Multi-Cloud 

Environment 
 

1. INTRODUCTION 

Cloud computing has evolved rapidly [19]. 
Many organizations across industries are adopting 
multi-cloud architectures to increase the 
scalability, robustness, and flexibility of their 
systems. While these systems allow providers to 
collaborate and pool their resources, they come at 
a high cost and have a significant negative impact 
on the environment. The construction of data 
centers is a major contributor to global warming 
due to the amount of energy required. Responsible 
economic and environmental practices are 
becoming more challenging,[5] Striking a balance 
between achieving superior performance and 
minimizing environmental impact in the context of 
digital infrastructure development is becoming 
increasingly important due to the growing 
importance of sustainability. Despite differences in 
workloads, fuel prices, and carbon emissions rates 
between locations, cloud resource allocation is 
often consistent [6] and [27]. To help people make 

simple, intelligent decisions when they don’t know 
what to do, this research proposes a hybrid 
optimization framework that combines Monte 
Carlo simulation with fuzzy logic. It seeks to 
reduce the cost and environmental impact of cloud 
computing through the use of dynamic resource 
management. By demonstrating significant gains in 
reliability and reductions in costs, this study 
outperforms established approaches [7]. To do this, 
it demonstrates a newly designed system and tests 
it using real data. 

 

2. RELATED WORK 

To reduce the negative effects on the 
environment caused by multi-cloud installations 
and maximize cloud expenditure optimization, 
researchers have been hard at work. Novel methods 
for bettering energy efficiency, cloud resource 
management, and sustainability have been the 
subject of research. Cost optimization in the cloud, 
carbon footprint reduction, and the application of 
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advanced computational methods to multi-cloud 
architectures are all part of this field.To lower 
cloud expenses, several academics have looked at 
the best way to distribute resources. Static 
approaches to allocating resources have a 
challenging time adjusting to changing workloads 
and pricing, as pointed out by [7]. To make smart 
judgments about the provisioning of resources, [8] 
suggested dynamic pricing models that use real-
time data. Unfortunately, these models often fail to 
address the inherent unpredictability of task needs. 
We build on this earlier work by adding Monte 
Carlo simulations to make the cost models better 
at making predictions and fuzzy logic to make it 
easier to make decisions when things are not clear. 
Amid mounting worries about cloud computing's 
effect on the environment, "green cloud" 
alternatives have emerged. Scheduling algorithms 
that take renewable energy sources into account 
were developed [19] with the aim of reducing 
carbon emissions. In addition, [5] suggested a 
hybrid approach that uses both renewable energy 
and scheduling strategies that save energy. These 
methods show promise, but they might put a huge 
strain on certain energy sources or need major 
changes to current infrastructure. To overcome 
these restrictions, our study presents a versatile 
framework that can use carbon emission data 
while also adapting to different energy sources and 
geographical limits. 
Because of differences in pricing structures, 
service-level agreements (SLAs), and geographic 
constraints, managing resources across several 
cloud platforms is not an effortless task. Studies 
like [6] and [27] have shown that intelligent 
resource allocation algorithms play a vital role in 
systems with several clouds. The optimization of 
resources was carried out [16] using machine 
learning techniques and by [26] using a heuristic-
based method. Our research adds to these 
continuing efforts by combining scenario-based 
analysis and real-time decision-making with fuzzy 
logic and Monte Carlo simulations. This 
combination enables a more versatile and all-
encompassing solution. 
Hybrid methods, which integrate several 
computing techniques, have partially reduced the 
difficulties of cloud optimization. To forecast 

workloads,[7] used deep learning models; to 
improve resource allocation, [9] combined genetic 
algorithms with predictive analytics. Although 
these methods work well, they run into problems 
with scalability when used for large-scale multi-
cloud installations. Our suggested method gets 
around these problems by using fuzzy logic and 
Monte Carlo simulations together. It also lets the 
system be scaled up or down and adapt to new 
situations without losing its effectiveness. 

 
Figure 1: Traditional multi-cloud installations and 

maximize cloud expenditure 

Figure 1 [6] When it comes to managing costs and 
carbon footprints, traditional multi-cloud setups are 
inefficient since they rely on static resource 
allocation algorithms that cannot adjust to 
changing workloads and energy limitations. 

3. METHODOLOGY 
 
To optimize cloud costs and carbon footprints 

in multi-cloud setups, this section details the 
technological design, dataset sources, optimization 
logic, algorithms, implementation stack, and 
evaluation metrics that were used in its 
development and testing [1], [6]. 
3.1 System Design 

The system we aim to design has three 
main parts: the Carbon Footprint Evaluation 
Module (CFEM), the Resource Management Unit 
(RMU), and the Cost Optimization Engine (COE). 
The RMU employs fuzzy logic to guess how many 
resources will be required in the future depending 
on the amount of work that is now being done, the 
amount of energy that is available, and the number 
of resources that are available in various areas. The 
COE employs Monte Carlo simulations to model 
uncertainty in pricing and workload demand so that 
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decisions are more likely to be correct. The CFEM 
can figure out how much carbon is released by 
looking at data from multiple cloud providers on 
power sources and carbon intensities in different 
areas. When combined, it gives flexible advice on 
how to utilize resources in a manner that considers 
both economic and environmental aspects [3, 4, 6, 
13]. 

 
Figure 2: System Design for Cloud Resource 

Allocation 
Figure 2 [8] illustrates the design and architecture 
of the cloud resource allocation system, outlining 
the key components involved in resource 
management. Optimal allocation of resources and 
efficient scalability are the goals of the design. We 
tested the system in an environment. 

The letter c stands for operational costs, 
energy consumption, and carbon emissions. All 
work orders inside the specified area will be 
processed by our system in the most efficient way 
possible, using as few resources as possible. The 
goal function for cost optimization can be 
expressed as follows: 

𝐶 = ෍(𝑝௜ . 𝑟௜) + 𝜆. 𝐸

௡

௜ୀଵ

 
(1) 

𝑘𝑖 is the cost of the resource per unit. The 
resource allocation for item i is denoted by 𝑟i, 
where 𝜆 is a weight factor that modifies the 
significance of energy consumption in the cost 
computation and 𝐸 is the overall energy 
consumption of the resources in the cloud. 

 

𝐹 =෍(𝑒௜ . 𝑟௜)

௡

௜ୀଵ

 
(2) 

To find the best values for 𝑓𝑖, the system 
employs Monte Carlo simulations, which consider 
the limits on resource availability and workload 
demand, strike a balance between cost and carbon 
emissions, and so on. Fuzzy logic analyzes the costs 
and benefits of carbon emissions and other trade-
offs, allowing for real-time adaptations to resource 
allocation in response to changing inputs. By 
combining the best of both worlds, this system can 
adjust to new circumstances with ease and keep 
costs down without sacrificing sustainability. 

3.2 Techniques 

Decisions around the allocation of cloud 
resources are typically fraught with uncertainty and 
imprecision. We can use fuzzy logic efficiently to 
solve this problem. It allows the system to deal with 
data that is not completely clear, such as changing 
cloud prices or different weather conditions[12]. 
The fuzzy inference system takes many factors into 
account, such as cost, performance, and carbon 
emissions, to maximize the use of resources.Monte 
Carlo simulations account for uncertainty by 
predicting cloud resource costs and carbon 
emissions. Using random inputs in simulations, the 
system can anticipate several possible outcomes in 
various contexts. With this probabilistic method, we 
can make better predictions and allocate resources 
in a way that is beneficial for the environment and 
our wallets. 

3.3 Datasets 

For model training and testing, we relied on two 
primary real-world datasets. The first dataset is 
related to cloud computing and is taken from 
Kaggle. It contains operational data from large 
providers such as Google Cloud, AWS, and Azure, 
including SLAs, pricing rates, and usage logs. The 
second dataset, taken from Kaggle and government 
energy records, shows different data center 
locations and energy sources. It provides CO₂ 
intensity values per kWh. Standard preprocessing 
procedures were used to ensure consistency, such as 
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handling missing results, standardizing, and 
removing outliers [6, 11, 13, 21]. 

Table 1: Cloud Usage Dataset 

Timest
amp 

Clou
d 

Provi
der 

Resou
rce 

Type 

Resourc
e 

Consum
ption 

(Units) 

Pri
ce 
per 
Un
it 

($) 

SLA 
(Upti
me 
%) 

01-01-
2024 

AWS 
Comp

ute 
500 0.1 99.99 

01-01-
2024 

Azur
e 

Stora
ge 

2000 
0.0
5 

99.95 

02-01-
2024 

Goog
le 

Clou
d 

Comp
ute 

450 
0.1
2 

99.98 

02-01-
2024 

AWS 
Stora

ge 
1800 

0.0
6 

99.99 

03-01-
2024 

Azur
e 

Comp
ute 

600 
0.1
1 

99.96 

03-01-
2024 

Goog
le 

Clou
d 

Stora
ge 

2200 
0.0
7 

99.97 

Table 1 [26] Key parameters, including CPU 
utilization, memory use, storage consumption, and 
network bandwidth, are part of the information 
used to analyze cloud resource allocation, which is 
shown in this table. We compiled the dataset. We 
ensured data quality for analysis by filtering out 
anomalous items. 

Table 2: Carbon Emission Dataset 

Clou
d 

Prov
ider 

Data 
Cent

er 
Loca
tion 

Energ
y 

Sourc
e 

Carbo
n 

Emiss
ions 
(kg 

CO2 
per 

kWh) 

Total 
Energy 
Consu
mption 
(kWh) 

Total 
Carbo

n 
Emiss
ions 
(kg 

CO2) 

AW
S 

Nort
h 

Ame
rica 

Rene
wable 

0.15 1000 150 

Azur
e 

Euro
pe 

Non-
Rene
wable 

0.35 1500 525 

Goo
gle 

Clou
d 

Asia Mixed 0.25 1200 300 

AW
S 

Sout
h 

Ame
rica 

Non-
Rene
wable 

0.4 1100 440 

Azur
e 

Nort
h 

Ame
rica 

Rene
wable 

0.1 1300 130 

Goo
gle 

Clou
d 

Euro
pe 

Rene
wable 

0.12 1400 168 

This table 2 [23] outlines the dataset that evaluates 
carbon emissions across different cloud resource 
configurations. Factors including carbon intensity, 
energy usage, and resource allocation efficiency are 
included in the dataset. We pre-processed and 
retrieved the data to eliminate discrepancies[13]. 

Various cloud providers' (such as AWS, 
Azure, and Google Cloud) resource use, price, and 
service level agreements (SLAs) are documented in 
the Cloud Usage Dataset. Modeling the demand- 
and price-driven price volatility of cloud services 
requires this information. Time stamp, cloud 
provider, resource type (e.g., compute, storage), 
resource consumption, price per unit, and service 
level agreement (uptime percentage) are important 
elements to consider. Greenhouse gas emissions 
from data centers in the cloud may be monitored 
with the help of the Carbon Emission Dataset, 
which is crucial for determining how resource 
allocation affects the environment[17]. Data Center 
Location, Cloud Provider, Total Energy 
Consumption, Carbon Emissions per kWh, and 
Total Carbon Emissions are some of the columns 
that allow for the evaluation of how resource 
allocation choices affect the environment[18]. 

3.4 Implementation 

Implementation of the system was done using 
Python 3.8, including libraries such as NumPy and 
Pandas for data processing, SciPy for optimization 
and Monte Carlo simulations, and scikit-learn for 
fuzzy logic[19]. A one-of-a-kind simulation system 
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was made to show how resources are dynamically 
distributed across different clouds, considering 
input parameters, changing cloud prices over time, 
and carbon emissions[23]. Cloud resource costs 
(which vary by provider and geography), energy 
consumption rates, and carbon emission variables 
for various cloud data centers were important 
elements to consider. We developed these 
measures using industry standards and data from 
actual cloud instances[24]. 

3.5 Evaluation Metrics 

We used the following metrics to evaluate the 
proposed system: The optimization engine's ability 
to decrease operating expenditures is determined 
by its cost efficiency, which is defined as the total 
cost of cloud resources utilized during a particular 
time[25]. The carbon footprint, which is expressed 
as a number in CO2 equivalents, is a way to 
evaluate the solution's sustainability and the effect 
of its use on the environment. Resource use 
efficiency assesses the system's capacity to 
distribute resources efficiently, minimizing waste 
and maximizing use[20]. Finally, the simulation 
accuracy metric checks how well the Monte Carlo 
simulations can predict the real results by 
comparing the expected costs and carbon emissions 
to the actual values. 

Algorithm 1: Fuzzy Logic and Monte Carlo-
Based Cloud Optimization 

Input: Cloud dataset 𝒟஼ , carbon emission dataset 
𝒟ா, resource constraints ℛ, workload demand 𝒲, 
weight 𝜆. 
Output: Optimized resource allocation 𝑟∗. 
Initialization: 

1. Set 𝑟௜ = 0 for all resources 𝑖. 

2. Define fuzzy rules for cost, performance, 
and emissions. 

3. Set Monte Carlo iterations 𝑁. 

Steps: 

1. Preprocessing: Normalize 𝒟஼  and 𝒟ா. 

2. Fuzzy Inference: Compute suitability score 
𝑆௣ for each provider. 

3. Monte Carlo Simulation: 
a. For 𝑘 = 1 to 𝑁 : 
i. Generate random workload 𝒲௞. 
ii. Simulate cost 𝐶௞ and emissions 𝐹௞ : 

𝐶௞ =෍  

௡

௜ୀଵ

(𝑝௜ ⋅ 𝑟௜) + 𝜆 ⋅ 𝐹௞ 

4. Optimization: 
a. Minimize 𝐶௞ while satisfying ℛ and 𝒲. 

5. Dynamic Adjustment: Update 𝑟∗ for real-
time inputs. 

End: Output optimized 𝑟∗, cost 𝐶∗, and emissions 
𝐹∗. 

By combining fuzzy logic with Monte Carlo 
simulations, the proposed strategy optimizes the 
deployment of cloud resources to reduce carbon 
emissions and improve operational efficiency[15]. 
One of the main datasets used by the system is a 
dataset describing the carbon intensity, energy 
sources, and regional energy consumption of data 
centers. Another dataset includes information about 
resource usage, pricing structures, and service-level 
agreements (SLAs) from leading cloud providers. 
By using fuzzy logic, the system can generate rules 
for adaptive resource management based on 
uncertain and ambiguous inputs such as workload 
and price changes. To further evaluate the effects of 
demand fluctuations and energy consumption 
patterns under different allocation methods, Monte 
Carlo simulations use stochastic modeling. In 
dynamic multi-cloud settings, these methods allow 
for real-time data-driven decisions that balance 
financial and environmental goals. This study 
shows that intelligent, sustainability-aware 
optimization can succeed even in the face of 
uncertainty. The result is an adaptive technique for 
allocating resources that reduces operating costs 
and carbon emissions[16]. 

Table 3: Specifications of the Resource Agreement 
and the Service Level Agreement. 
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Resource 

Price 
(pi) 
(per 
unit) 

SLA 
(Availability 

%) 

Max 
Capacity 

(ri) 

CPU 0.05 99.9 1000 

RAM 0.02 99.5 2000 

Storage 0.01 99.7 5000 
Table 3 [19] Pi is the cost per unit, SLA is the 

service level agreement for the availability of 
resources, and ri is the maximum capacity for each 
resource. 

Table 4:Power generation and emissions from data 
centers 

Data 
Center 
Region 

Energy 
Source 

Emission 
Factor (ei) 

(kg 
CO2/kWh) 

Energy 
Usage 
(kWh) 

Region 
A 

Renewable 0.05 100 

Region 
B 

Mixed 0.2 200 

Region 
C 

Fossil 
Fuels 

0.5 300 

Table 4 [21] The emission factor (ei) represents 
the emissions of carbon dioxide gas (CO2) per 
kilowatt-hour (kWh) of used electricity. How much 
energy is used depends on how the workload is 
distributed among different locations. 

Cost calculation (Ck) for a workload requiring 

rCPU=500, rRAM=1000, rStorage=2000, Weight for 

emissions(𝜆)=0.05. 

Ck=(pCPU.rCPU)+(pRAM . rRAM)+(rStorage.rStorage)+ .Fk 

Fk=(eCPU .rCPU) + (eRAM  .rRAM) + (eStorage . rStorage) 

Using pCPU= 0.05, rRAM =0.02, pStorage=0.01, and 

emissions from region B (ei=0.2): 

Fk=(0.2 . 500) + (0.2 . 1000) + (0.2  . 2000) = 700 

kg CO2 

Ck=(0.05  .  500) + (0.02 . 1000) + (0.01  . 2000) + 

(0.5 .  700) 

Ck= 25 + 20 + 20 + 350 = 415 units of cost 

 

Figure 3: Monte Carlo simulation: Cost vs 
Emissions 

By showing figure 3 [11], the trade-off between 
total cost and emissions for different workload 
needs, the graph shows how emission variables and 
resource prices affect cost optimization methods. 

4. RESULTS 
This study presents an optimization model for 

multi-cloud systems. It uses fuzzy logic and Monte 
Carlo simulations to optimize cloud expenses and 
carbon footprint. We go over all the ways our 
technique falls short, point out important details, 
and compare it to baseline approaches in detail[22]. 

 
Figure 4: Cost Efficiency vs. Time (Comparison of 

Methods) and : Carbon Emissions vs. Cost (Optimization Trade-
off) 

Figure 4 [5] This chart shows how various 
approaches stack up in terms of long-term cost 
efficiency. The investigation utilized data from [2], 
which reflects performance across different 
circumstances. The investigation focused on finding 
a compromise between minimizing costs and 
reducing carbon emissions. An optimization model 
participated in and implemented these outcomes. 
 

This graph illustrates the total cost of cloud 
resources over time for the proposed fuzzy logic 
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and Monte Carlo simulation-based system 
compared to traditional static allocation methods. 
The proposed system consistently shows a 
reduction in costs due to its dynamic resource 
allocation approach, responding to fluctuations in 
cloud pricing and demand.This figure depicts the 
trade-off between carbon emissions and cost 
savings. Our system demonstrates a significant 
reduction in carbon emissions while still achieving 
cost savings, confirming the effectiveness of the 
integrated carbon footprint evaluation module. 

 
Figure 5: Monte Carlo simulation: Cost vs 

Emission with sustainability score 
Figure 5 [11] shows the outcomes of a Monte Carlo 
analysis that included a sustainability score and 
examined the cost-benefit of carbon emissions. 
Each data point, representing an iteration of the 
simulation, illustrates the relationship between 
reducing expenses and achieving environmentally 
friendly results. The sustainability score provides a 
comprehensive evaluation of resource allocation 
methods, incorporating measures like energy 
efficiency and pollution reduction. 

 
Table 5: Performance Comparison with Baseline 
Methods 

Metric 
Proposed 
System 

Baseline 
Method 1 

Baseline 
Method 2 

Total Cost 
($) 

1500 1800 2000 

Carbon 
Emissions 
(kg CO2) 

300 400 450 

Resource 
Utilization 

(%) 
95 85 80 

Table 5 [26] We use the cloud resource allocation 
dataset to determine performance metrics. The 
suggested approach outperforms baseline 
techniques in terms of cost efficiency and 
sustainability, all while keeping execution times 
low. 
Cost Efficiency (CE): 

𝐶𝐸 =
 Total Workload Processed (GB) 

 Total Cost Incurred ($)
                                  

(3) 

Carbon Emissions Efficiency (CFE): 

𝐶𝐹𝐸 =
 Workload (ୋ୆)

 Total Carbon Emissions (୩୥େ୓మ)
                               

(4) 

Sustainability Score (SS):𝑆𝑆 = 𝑤ଵ × 𝐸𝐸𝐼 + 𝑤ଶ ×
𝐶𝐹𝐸 + 𝑤ଷ × 𝑅𝑈                                                                    
(5) 

𝑤ଵ, 𝑤ଶ, 𝑤ଷ are weights for Energy Efficiency Index 
(EEI), Carbon Footprint Efficiency (CFE), and 
Resource Utilization (RU).𝑅𝑈 : Resource 
utilization. 

Proposed System: 

 Total Cost = $1500 

 Carbon Emissions = 300 kg CO₂ 

 Resource Utilization = 95% 
Baseline 1: 

 Total Cost = $1800 

 Carbon Emissions = 400 kg CO₂ 

 Resource Utilization = 85% 
Baseline 2: 

 Total Cost = $2000 

 Carbon Emissions = 450 kg CO₂ 

 Resource Utilization = 80% 
 
Cost Efficiency: 

𝐶𝐸 =
10000GB

1500
= 6.67GB/$ 

Carbon Footprint Efficiency: 

𝐶𝐹𝐸 =
10000GB

300
= 33.33GB/kgCOଶ 
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Sustainability Score (Weights: 𝑤ଵ = 0.4, 𝑤ଶ =
0.4, 𝑤ଷ = 0.2 ): 

𝑆𝑆 = 0.4 × 𝐸𝐸𝐼 + 0.4 × 33.33 + 0.2 × 95
= 0.4 × 10 + 0.4 × 33.33 + 19
= 37.33 

In terms of three critical metrics—total 
cost, carbon emissions, and resource usage—this 
table compares the suggested system to two 
baseline methods. In every metric that was 
measured, the findings show that the suggested 
method is superior to both baseline systems. 

 

 
Figure 6: Multi-Stage Simulation of Fuzzy-Based 

Resource Allocation and Optimization Metrics 
Figure 6 [12] This graphic displays the combined 
simulation findings for trade-offs in cost-emission 
and resource optimization. As the scatter graph on 
top-left shows, cost and carbon emissions have an 
inverse relationship. The top-right histogram shows 
the general cost distribution throughout many 
simulation runs. The middle-left bar chart shows 
the best way to divide CPU, RAM, and storage 
capacity. Though not included in this image, the 

middle-right subplot is put aside for future fuzzy 
inference confidence visualization. The bottom 
figure shows the membership functions of the fuzzy 
allocation system for the "reduce," "maintain," and 
"increase" allocation strategies. The text summary 
shows the final allocation results as well as 
simulated averages for emissions and cost. 

 
This system uses fuzzy logic and Monte Carlo 
simulations to cut carbon emissions in half and by a 
third, respectively. It also cuts cloud costs by 
16.67% and 25% compared to Baseline 1 and 2. 
The system achieves this by prioritizing cloud 
providers with low emissions and dynamically 
allocating resources based on projected expenses. 
The system minimizes waste by achieving 95% 
resource utilization. A "Cost-aware Fuzzy Emission 
Minimization" approach, the ability to handle 
imperfect input data using fuzzy logic, and the 
ability to dynamically adapt to changing situations 
are all positives. Problems with integration and data 
updates are examples of real-world implementation 
issues; other constraints include data reliance and 
computational expenses. Network latency and 
service level agreements (SLAs) are often under-
considered. 

Discussion 

The results of this study highlight the 
practicality and potential of hybrid optimization 
approaches to manage carbon trade-offs and costs in 
multi-cloud settings. Traditional static allocation 
methods cannot account for unknown inputs such as 
fluctuating workloads, energy costs, and emission 
intensities; our fuzzy logic-based resource 
management does. A solid foundation for cloud 
decision-making in the face of uncertainty is 
provided using Monte Carlo simulations, which 
provide potential insight into patterns of resource 
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utilization and cost-risk trade-offs. By significantly 
improving baseline static models in terms of cost-
effectiveness and carbon footprint parameters, our 
approach demonstrated that intelligent, adaptive 
solutions outperform traditional methods in 
dynamic cloud environments. The importance of 
directly incorporating environmental measurements 
into the decision-making logic of cloud operations 
is further emphasized by the observed benefits. 
Consistent with current research on 
environmentally conscious cloud management 
practices, these results lend credence to the trend 
toward green computing paradigms [1][6][14]. 
However, the accuracy of simulation predictions 
and input datasets is intrinsically related to system 
performance. The use of real-world datasets 
increases the possibility that their generalization 
may be affected by geographic or temporal biases. 
To further improve accuracy and flexibility in 
operational settings, future research should 
investigate integration with edge-based inference 
systems, reinforcement learning, and real-time 
telemetry. 

5. CONCLUSION 

Using fuzzy logic and Monte Carlo 
simulations, this study introduces a new method 
for optimizing cloud expenditures and decreasing 
carbon footprint in multi-cloud scenarios. While 
considering the environmental effect of various 
cloud providers, our system dynamically adjusts 
the allocation of resources in reaction to changing 
demand and costs. There was a big drop in costs 
(16.67% and 25% compared to baselines), carbon 
emissions (25% and 33.33% compared to 
baselines), and resource use (95% compared to 
85% and 80% for baselines). These results are 
important. This study demonstrates an efficient, 
long-term, and budget-friendly approach to 
managing resources across multiple clouds. By 
lowering operating costs and environmental 
impact, especially in large-scale, multi-cloud 
installations, this study also helps to create more 
sustainable cloud computing practices. The 
increasing needs of edge-cloud AI applications 
call for smarter and more adaptable cloud 
management, which is made possible by 
combining fuzzy logic with Monte Carlo 

simulations. This strategy is in line with 
worldwide efforts to reduce technology-related 
energy usage and carbon emissions. 
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