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ABSTRACT 
 

Dysarthric speech recognition concentrates on understanding speech impairments caused by neurological 
disorders. Speech recognition increases communication by enhancing adaptability and clarity for individuals. 
However, dysarthric speech recognition struggles to transcribe speech accurately due to variations in pitch, 
articulation, and rhythm that significantly differ from typical speech and processing dysarthric across 
different speakers. In this research, the WaveNet Convolutional Neural Network with Prosody Consistency 
Loss Function (WNCNN-PCLF) is proposed to recognise and classify dysarthric speech accurately. In CNN, 
WaveNet is incorporated for capturing local speech features that enhance the model’s ability to determine 
intricate variations and patterns in distorted speech. The PCLF assist in preserving natural speech patterns, 
which makes for more accurate rhythm and tone representation. Therefore, this integration enables better 
adaptation to dysarthric speech, which addresses both prosody and articulation issues effectively. Hence, the 
proposed WNCNN-PCLF achieves a high accuracy of 99.92% and 98.34% using UA-Speech and Kannada 
datasets compared to existing methods like Densely Squeezed and excitation Attention-gated Network 
(DySARNet). 

Keywords: Dysarthric Speech Recognition, Local Speech, Prosody Consistency Loss Function, Speakers, 
Wavenet Convolutional Neural Network. 

 
1. INTRODUCTION  

Dysarthria is a neuro-motor disorder resulting 
from neurological damage to the motor element of 
speech production. It is primarily produced by an 
acquired or congenital neurological problem like 
brain tumor, cerebral palsy, stroke, brain injury, or 
neurodegenerative diseases like Huntington disease, 
amyotrophic lateral sclerosis, or Parkinson’s disease 
[1] [2]. Dysarthric speech is primarily characterised 
by abnormalities in resonatory, phonatory, prosodic, 
and articulatory features of speech production, which 
influence speech intelligibility. Speech-language 
pathologists perform in clinical settings by utilizing 
standard intelligibility tests to enhance speech 
quality and intelligibility [3]. This process involves 
detaching speech signals and eliminating distortions 
from noisy speech [4]. It involves numerous origins 
and a multitude of probable speech patterns from 
slight modifications to complete 
incomprehensibility. Individuals with dysarthria 
have difficulties associated with voice and 
pronunciation that obstruct their capability to 

communicate efficiently [5]. The alterations in 
dysarthric speaker’s speech are caused by 
neurological muscle impairments that affect speech 
production, which leads to neurological disorders or 
cognitive disabilities. Such disorders disrupt fluency, 
pronunciation, minimise human intelligibility and 
affect the verbal expression of emotions, resulting in 
social isolation [6]. In the speech subsystem, muscles 
and muscle groups are effectively coordinated with 
space and time for speech production, which renders 
dysarthric speech normally unintelligible. Higher the 
dysarthria severity, intelligibility of dysarthria 
speech is lower [7] [8].  

The neurological damage affects the function of 
the speech-motor that impacts physical activities 
related to motor neurons as well. Human interface 
with devices and gadgets comprises typing into a 
keyboard by utilizing hand movement, which is 
slowed down by a factor of 150 to 300 in dysarthria 
severe cases in comparison with regular users [9] 
[10]. Moreover, dysarthric speech is slow by 10 to 
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17 factors compared to regular speech, around fifteen 
words per minute in most severe cases. Additionally, 
it is determined that dysarthric speakers show better 
prosodic control, which helps to increase 
communication effectiveness [11]. Over the past 
decade, researchers have made important strides in 
severity assessments and dysarthric classification. It 
determined numerous speech features like pitch 
variation, speech rate, phonation quality, and 
articulation precision that help in differentiating 
various kinds and dysarthria’s severity levels. 
Though, despite these advancements, there are still 
gaps in understanding which features are most 
significant for accurately classifying and 
characterising the severity of dysarthria [12]. 
However, Deep Learning (DL) provide a promising 
solution for bridging these communication gaps to 
determine intricate patterns in speech data [13]. This 
makes it better to manage speech variations, 
including background noise and accents. Compared 
with conventional methods, DL-based methods 
present significant enhancements in speech 
performance [14] [15].  

1.1 Problem Statement 

Despite advancements in dysarthric speech 
recognition, existing methods struggles with 
accurately capturing dysarthric speech complexity 
especially in the variations of articulation, prosody, 
and rhythm. Dysarthric speech significantly deviates 
from typical speech patterns which enable challenges 
for traditional methods to generalize across distant 
speakers and severity levels. Furthermore, most of 
the existing methods focus on spectral features 
without preserving natural prosodic features which 
are crucial for emotion perception. Therefore, there 
is a critical need for a more robust and 
comprehensive model which is effectively process 
and recognize prosodic features effectively across 
numerous speakers and languages. 

1.2 Objective 

The main objective of this research is to enhance 
recognition accuracy of dysarthric speech which is 
often impaired because of variations in prosody, 
articulation, and rhythm. To solve this issue, the 
research proposes novel DL method as WaveNet 
Convolutional Neural Network with Prosody 
Consistency Loss Function (WNCNN-PCLF) for 
recognising and classifying dysarthric speech 
accurately by leveraging WaveNet CNN’s structure 
in capturing intricate temporal dependencies in 
dysarthric speech. The PCLF ensures stability in 
articulation, pitch, and rhythm variations across 
various speakers. This improves the model’s ability 

in learning speaker-independent speech patterns 
while conserving phonetic integrity.  

1.3 Scope and Contributions 

This research concentrates on development of DL 
based methods for dysarthric speech recognition by 
utilizing a combination of WaveNet and CNN 
models with PCLF. The scope is limited to binary 
classification using two datasets like UA-Speech and 
Kannada by considering prosodic and articulatory 
distortions. 

The primary contributions are discussed below in 
detail: 

 In CNN, WaveNet is integrated in modelling 
long-range dependencies, which enables it to 
understand intricate speech patterns over 
time, which is essential for dysarthric speech 
recognition. 

 PCLF is applied to preserve natural speech 
patterns like rhythm, stress, and intonation 
which results in better alignment with 
dysarthric speech variations that enhance 
intelligibility. 

 The Mel-Frequency Cepstral Coefficient 
(MFCC), Linear prediction cepstral 
coefficient, spectral flux, spectral centroid, 
spectral crest, and pitch chroma are used to 
extract features by capturing both spectral and 
temporal characteristics of the speech signal. 
This enhances the model’s ability to 
differentiate between dysarthric and healthy 
speech variations.  

 Compared to existing methods like Densely 
Squeezed and excitation Attention-gated 
Network (DySARNet), proposed WNCNN-
PCLF achieves a superior accuracy of 99.92% 
and 98.34% on UA-Speech and Kannada 
datasets. This improvement is because of 
integration of WaveNet with CNN that 
effectively captures spectral features in 
dysarthric speech. Moreover, PCLF improves 
model’s ability in preserving natural prosodic 
features that enhance recognition accuracy.  

This paper is organised as follows: Section 2 
involves literature survey and Section 3 provides 
proposed methodology.  Section 4 analyses 
experimental results, and conclusion is given in 
Section 5.  

2. LITERATURE SURVEY 

Usama Irshad et al. [16] introduced a UTrans 
encoder-decoder model to analyze Mel-
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spectrograms and classify speech as dysarthric or 
healthy. The introduced approach utilized a 
transformer encoder based on a hybrid model that 
contains Vision Transformer (ViT) encoders and 
Feature Enhancement Block (FEB). This integration 
extracted local and global pixel information based on 
localization effectively through optimizing Mel-
spectrograms. The consecutive residual connections 
were included in the system, which minimises 
feature loss when enhancing spatial data retrieval. 
However, UTrans face challenges in capturing subtle 
articulatory distortions due to self-attention does not 
effectively differentiate between dysarthric and 
healthy speech patterns.  

Francis Jesmar P. Montalbo [17] presented a 
Densely Squeezed and excitation Attention-gated 
Network (DySARNet) to diagnose dysarthria and 
severity estimation. DySARNet was used by 
integrating Lean Separable Dense Block (LSDB) 
increase feature reuse by maintaining a large 
parameter increase via Separable Depthwise 
Convolution (SDWConv). To enhance awareness 
and context understanding, DySARNet utilises a 
Squeeze and Excited Lightweight Residual 
Attention-gated (SELRA) approach through 
squeezing extra parameters via SDWConv and 
depthwise convolution. Nevertheless, DySARNet 
struggled with generalising across diverse patterns 
due to attention gating overfitting to dominant 
acoustic features ignores subtle severity variations.  

Kodali Radha et al. [18] developed a variable 
Short-Time Fourier Transform (STFT) layered 
Convolutional Neural Network (CNN) to detect 
dysarthria and analyze severity assessment. STFT 
layered CNN was applied to extract significant 
features from both spectral and temporal domains 
that capture necessary patterns and variations in 
dysarthric speech. The main goal of the developed 
method was to automate the assessment of dysarthria 
and establish more accurate as well as effective 
systems for evaluating speech disorders. However, 
STFT with CNN struggled with capturing fine-
grained spectral features because of fixed-time 
frequency resolution, which loses significant 
frequency information to distinguish speech 
variations.  

Rabbia Mahum et al. [19] suggested a hybrid 
model with the combination of ensemble deep 
networks and a transformer encoder scheme to 
recognize dysarthria speech. Ensemble learning 
plays a significant role in extracting the features from 
Mel-spectrograms. Two scenarios were employed 
that contain VGG16, GoogleNet, DenseNet201, 
whereas the ensemble comprises Xecption, 

DenseNet 201, and nception ResNetV2. The 
transformer model was established using self-
attention mechanism that enables the network to 
focus on significant information with Multilayer 
Perceptron (MLP) to recognise speech accurately. 
By using this hybrid method, effective and accurate 
disease determination was attained. Nevertheless, 
the hybrid model struggled with high computational 
complexity and less inference time due to the 
requirement of processing huge volumes of speech 
data.  

Bhuvaneshwari Jolad and Rajashri Khanai [20] 
established a Fractional Competitive Crow Search 
Approach-based Speech Enhancement Generative 
Adversarial Network (FCCSA-SEGAN) to enhance 
speech signals. At first, noise from the speech signal 
was eliminated utilizing the spectral subtraction 
method. Then, the signal was passed through speech 
enhancement, where the quality of the signal was 
enhanced by SEGAN, which was trained by FCCSA. 
By the inclusion of the Competitive Crow Search 
Approach (CSSA) and Fractional Calculus (FC), 
FCCA was attained in that CSSA was a hybrid of 
CSSA and Competitive Swarm Optimizer (CSO). 
However, FCCSA-SEGAN’s reliance on fractional 
optimisation results in slower convergence and less 
efficiency in intricate speech environments.  

Shaik Mulla Shabber et al. [21] suggested a fine-
tuned DL method to detect dysarthric speech 
effectively. Pre-processing methods like 
normalization and noise reduction were used to 
increase raw speech signal quality and extracted 
appropriate features. Scalogram images were 
generated by wavelet transform which capture the 
characteristics of time-frequency effectively in 
speech signal that offers visual representation over 
time. This provide significant insights into speech 
abnormalities in dysarthria.  

Although different models are discussed in recent 
literature including UTrans encoder-decoder model 
[16], DySARNet [17], STFT-CNN [18], ensemble 
model [19], FCCSA-SEGAN [20], and Fine-tuned 
DL [21]. However, these methods struggled with 
distant limitations like difficulties in subtle 
articulatory distortions, overfitting to dominant 
features, challenges in accurately capturing 
dysarthric speech complexity especially in the 
variations, capturing fine-grained spectral features, 
and high computational resources. To address this 
issue, WNCNN-PCLF is proposed by capturing local 
spectral information that makes better modeling of 
dysarthric speech complexity. PCLF imporves 
model’s ability in retaining natural rhythm which 
address prosodic variability. This minimize 
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overfitting and enhance generalization across 
different speech patterns. 

3. PROPOSED METHODOLOGY 

In this research, the WNCNN-PCLF is proposed 
to recognise and classify dysarthric speech in the 
Kannada and English languages. Initially, UA-
Speech and Kannada datasets are considered to 
evaluate the model’s performance. The spectral 

subtraction is applied to remove the noise from the 
obtained speech. Subsequently, MFCC, LPCC, 
spectral crest, spectral flux, pitch chroma, and 
spectral centroid are the features that are extracted. 
Finally, the proposed WNCNN-PCLF is used for 
recognition and classification of dysarthria and 
healthy. Figure 1 indicates a block diagram for the 
proposed WNCNN-PCLF. 

 

 

Figure 1: Block diagram for proposed WNCNN-PCLF 

3.1 Datasets 
This research employs UA-Speech [22] and 

Kannada datasets to determine the performance of 
the proposed model in dysarthric speech recognition. 
The UA-Speech dataset provides a standardised 
benchmark for determining speech impairments, 
while the Kannada dataset ensures language-specific 
analysis. By leveraging both datasets, this research 
enhances the robustness and accuracy of dysarthric 
speech recognition systems.  

UA-Speech: It involves recordings from fifteen 
dysarthric speakers with cerebral palsy and 13 
without dysarthric. A participant had materials 
comprising 300 uncommon words, 765 isolated 
words, and certain had to repeat digits from zero to 

nine thrice. Other materials have everyday spoken 
words and radio phonetics with recording frequency 
samples of 16 KHz. The Mxx represents Male, FXX 
indicates Female, and C denotes Speakers without 
dysarthria. Table 1 indicates a detailed dataset 
description of UA-speech  

Kannada dataset: It is gathered from the All India 
Institute of Speech and Hearing (AIISH) and from 
native speakers of the Kannada language who 
articulated a subset of approximately 300 words. For 
example: ajji, angadi, aspatre, bekul, bele, bekku, 
chakra, chitte, cycle, badane, aido, amme, aspatre, 
and so on. These are the words utilised to train the 
model in Kannada. The obtained information is 
passed via a pre-processing step for removing noise.  

Table 1: Dataset description of UA-Speech 

Details of dataset Binary class 
Healthy  Dysarthria 

No.of. speakers 13 15 
Speakers IDs CF02, CF03, CF05, CF04, CM04, CM01, 

CM06, CM05, CM09, CMO8, CM12, 
CM10, CM13 

F02, F04, F03, F05, M01, M05, 
M04, M07, M08, M10, M09, M12, 

M11, M16, M14  
Gender composition 4F/11M 4F/11M 

 

3.2 Pre-processing 
After acquiring speech signals, spectral 

subtraction is applied to remove the noise, which 
improves dysarthria speech clarity. It enhances the 
signal-to-noise ratio by eliminating spectral 
components related to noise. Therefore, this method 
assists in retaining the significant features of 
dysarthria speech, which provides better 
convergence. A noise spectral speech magnitude is 

removed from a loud speech signal using spectral 
subtraction. For restoring the magnitude or power 
signal spectrum by eliminating noise, spectral 
subtraction is employed. An input speech signal is 
first buffered and divided into segments of specified 
length. Each segment is then windowed by utilizing 
appropriate windowing function which are 
transformed into spectral components. This assists in 
isolating primary speech features that make it easier 
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for recognition models to accurately interpret 
dysarthic speech. By increasing the speech signal, 
spectral subtraction contributes to more effective and 
robust speech recognition systems as well as these 
signals are passed through feature extraction stage. 

3.3 Feature Extraction 
A pre-processed output is passed as input to 

extract features, where features such as MFCC, 
spectral flux, LPCC, spectral centroid, spectral crest, 
and chroma are extracted in this stage, which are 
explained below. 

MFCC: It captures speech spectral characteristics 
effectively, making it effective to recognise 
dysarthric speech variations. It mimics human 
auditory perception that enhances recognition 
accuracy despite dysarthric speech distortions. The 
sequential processes of MFCC [23] are pre-
emphasis, hamming, framing, Fast Fourier 
Transform (FFT), and Discrete Cosine Transform 
(DCT). 

Spectral Flux: It provides spectral alternations 
among two consecutive frames. A successive short-
term window is considered, and then spectral 
magnitudes are normasized such that the difference 
among normalized magnitudes known as spectral 
flux.  

LPCC: It is used to segment the signal and retrieve 
audio effectively, which works by calculating 
coefficients of voice samples over time and captures 
the vocal tract’s resonant characteristics. This assists 
in LPCC [24] speech patterns and enhances 
recognition accuracy for dysarthric speech. 

Spectral centroid: It is calculated depending on 
spectral shape, with centroid values that are greatly 
associated with high-frequency brighter textures. 

Spectral crest: It determines to computation of 
signal tonality and differentiates wide as well as 
narrow-band signals for specifying a subband peak 
value. 

Pitch chroma: It is a significant feature in that 
chroma represents pitch location in rotary motion by 
involving pitch rotation angle with [1 × 64] size.  

Therefore, these features capture both temporal 
and spectral speech characteristics which makes the 
model more robust to variations. It ensures better 
discrimination of speech patterns that results in 
enhanced recognition and intelligibility assessment. 
Then, the extracted features are fed as input to the 
recognition and classification process. 

3.4 Recognition and Classification 

After extracting features, WNCNN-PCLF is used 
to recognise and classify the dysarthria speech. CNN 
[25] is effective in capturing local speech patterns 
and features, which makes it appropriate for 
dysarthria speech recognition where articulatory 
distortions occur. WNCNN improves this by 
modelling long-term speech dependencies by 
utilizing dilated causal convolutions, which enhance 
intelligibility in impaired speech. Using PCLF 
ensures that stress, rhythm, and intonation patterns 
are preserved and solves prosodic variations in 
dysarthric speech. Therefore, this combination 
results in more accurate recognition by refining 
feature learning and minimizing phoneme 
misclassification. Overall, the proposed WNCNN-
PCLF improves robustness and enables it well-
effective for dysarthric speech processing. A detailed 
description of WNCNN is explained as follows: 

WNCNN: It is a deep network that generates 
waveforms with flexible and large receptive fields, 
providing better parallelism while capturing long-
term dependencies in sequence. An input layer 
obtains the variables sequence X, auxiliary input A, 
and input shape as timesteps attributes. Initially, the 
input is transformed into the residual block’s output 
shape via a convolutional layer for the 
implementation residual process. The primary 
component of residual blocks is convolutional layer 
and Rectified Linear Unit (ReLU). Through these 2 
structures, data order is ensured and spatiotemporal 
nonlinear data mapping is learned. Furthermore, 
Temporal-Excitation (TE) block depending on the 
Squeeze and Excitation (SE) is applied for learning 
long-term dependencies. TE block acquired global 
temporal data through modelling relationships 
among convolution channel timesteps U . A 
transpose function is applied for swapping channel 
and temporal features’ coordinate system. An 
excitation process is employed in capturing temporal 
channel dependency and generating a modulation 
weight set for all channels. Moreover, Fully 
Connected (FC) with the ratio of dimensionality r =
2  and ReLU are utilised for parameterised 
nonlinearity among time steps. FC restores the 
coordinate system whereas sigmoid scales a weight. 
At last, 𝐹௧௥(. )  represents the coordinating system 
and multiplication process 𝐹௠௨௟(. )  indicate 
integration of outcomes into the backbone network. 
In WNCNN, the size and number of convolution 
kernels for each residual block are similar, that 
makes all residual blocks with uniform shape. In 
initial residual block, condition and forecast 
variables are based on ReLU function and 
convolution process to acquire a channel that 
contains spatial and temporal features, whereas the 
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mathematical formula is represented in Equation (1). 
TE is applied for learning global temporal 
information to recalibrate channel features, is 
denoted in Equation (2). TE output block is passed 
through backbone network via multiplying with U 
and then the input is incorporated to acquire last 
output of residual block which is indicated in 
Equations (3) and (4).  Another residual block 
obtains 𝑧௞ିଵ  and output 𝑧௞  are demonstrated in 
Equations (5) and (6) 

For the initial residual block k = 1: 

𝑢௞ = 𝛿(𝑊௙,௞. 𝑋 + 𝑏௙,௞ + ∑ 𝑉௚
௜. 𝑎௜ + 𝑏௚

௣
௜ୀଵ        (1) 

 
𝑠௞ = 𝐹௧௥(𝐹௘௫(𝐹௧௥(𝑢௞))) =

(𝜎(𝑊௞,ଶ. 𝛿(𝑊௞,ଵ. 𝑢௞
ᇱ + 𝑏௞,ଵ) + 𝑏௞,ଶ))ᇱ          (2) 

 
𝑒௞ = 𝑢௞ ⊙ 𝑠௞                             (3) 

 
𝑧௞ = 𝑒௞ + 𝑋 + ∑ 𝑎௜௣

௜ୀଵ                        (4) 
 

For other residual block k > 1: 

𝑢௞ = 𝛿(𝑊௙,௞ . 𝑧௞ିଵ + 𝑏௙,௞)                  (5) 
 

𝑧௞ = 𝑒௞ + 𝑧௞ିଵ                              (6) 
 

Where 𝑘 = 𝑟𝑎𝑛𝑔𝑒(1, 𝐾)  represents 𝑘௧௛  residual 
blocks, 𝐾  denotes number of residual block, 𝑊௙,௞ 
and 𝑏௙,௞ determines weight and bias of convolution 
filter in 𝑘௧௛  layer, 𝑉௚

௜  indicates convolutional filter 
weight of 𝑎௜  in initial layer, 𝑏௚  illustrate a 
convolutional filter’s bias in initial layer, 𝛿 
demonstrates ReLU function, 𝑢௞  represents output 
of 𝛿 in 𝑘௧௛ residual blocks. The 𝑊௞,ଵ, 𝑏௞,ଵ, 𝑊௞,ଶ, 𝑏௞,ଶ 
presents weight and bias of 1st and 2nd FC layers in 
TE block of 𝑘௧௛  residual blocks, 𝜎  determines 
sigmoid function, 𝑠௞ denotes TE block output in 𝑘௧௛ 
residual blocks, 𝑒௞ and 𝑧௞ indicates intermediate and 
last output of 𝑘௧௛ residual blocks, and ⊙ illustrates 
multiplication of associated elements. With linear 
activation, output layer represents 1 × 1  a 
convolutional layer. A final residual block’s output 
𝑧௞  performs ReLU calculation and later enters 
outcome layer using Equation (7) 

 
O = W୭. ReLU(𝑧௞) + b୭                  (7) 

 
Where z୩  represents the final residual block’s 

output, W୭ and b୭ denote output layer’s weight and 
bias, and O illustrates the output layer result.  

PCLF: It is responsible to capture prosody feature 
𝐻௒బ

௉  from predicted region 𝑌଴ when determining total 

prosody characteristics 𝐻෡௒෠
௉  represented in original 

speech. Then, Mean Square Loss (MSE) is used to 
perform the prosody consistency constraints. The 
mathematical formula for PCLF is determined using 
Equation (8) 

 
𝐿௉஼ = 𝑀𝑆𝐸(𝐻௒బ

௉ , 𝐻෡௒෠
௉)                    (8) 

The prosody extractor employs a reference 
encoder of Global Stye Token (GST) model for 
converting 𝑌଴ and 𝑌෠  into high level prosody features 
with fixed length using Equation (9) 

𝐻௒బ
௉ = 𝐺𝑆𝑇(𝑌଴), 𝐻෡௒෠

௉ = 𝐺𝑆𝑇(𝑌෠)            (9) 
 
At last, overall loss function is a sum of 

reconstruction loss and 2 new loss functions, 𝐿஺஼  and 
𝐿௉஼  over all non-contiguous masked regions, 
therefore, the mask region contains various non-
contiguous segments. Thus, the WNCNN-PCLF 
enhance robustness to speech irregularities by 
capturing fine-grained temporal dependencies, 
whereas PCLF increases prosodic feature learning 
which makes better alignment with natural speech 
patterns. Therefore, this combination results in 
enhanced intelligibility and accuracy in recognising 
dysarthric speech.  

4. EXPERIMENTAL RESULTS 

The proposed WNCNN-PCLF is simulated 
utilizing a Python 3.4 environment with Windows 10 
operating system, Intel i5 processor, and 64 GB 
RAM respectively. The selection criteria employed 
in this research is accuracy, recall, precision, and f1-
score. These performance measures are selected 
depending on relevance in speech recognition and 
classification field. Accuracy defines overall 
correctness of recognition whereas precision and 
recall determine the model’s ability to correctly 
identify speech and avoid false positive/negative. 
F1-score is the combination of recall and precision 
respectively. Computational time calculates amount 
of time takes to complete training or inference tasks 
while memory usage refers to amount of system 
required during the execution of model. The 
mathematical equation for accuracy, f1-score, recall, 
and precision are represented in equations (10) to 
(13). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
்௉ା்ே

்௉ା்ேାி௉ାிே
                (10) 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  
ଶ்௉

ଶ்௉ାி௉ାிே
                 (11) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
்௉

்௉ାிே
                          (12) 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
்௉

்௉ାி
                         (13) 

 

Where 𝑇𝑃 indicates True Positive, 𝐹𝑃 determines 
False Positive, 𝑇𝑁 illustrates True Negative, and 𝐹𝑁 
denotes False Negative.  

4.1 Performance Analysis 

Table 2: Evaluation of different DL methods 

Methods Datasets Accuracy (%) F1-score (%) Recall (%) Precision (%) 
InceptionNet-PCLF  

 
UA-Speech 

82.21 80.36 81.43 79.32 
ResNet-PCLF 85.43 83.33 83.29 83.39 
CNN-PCLF 93.21 89.21 89.39 89.04 

WNCNN-PCLF 99.92 98.70 98.76 98.65 
InceptionNet-PCLF  

Kannada 
79.01 77.88 76.40 79.43 

ResNet-PCLF 82.93 80.65 79.01 82.38 
CNN-PCLF 89.43 85.97 82.38 89.90 

WNCNN-PCLF 98.34 97.28 97.49 97.08 

Table 2 indicates evaluation of different DL 
methods. The existing methods such as 
InceptionNet-PCLF, ResNet-PCLF, and CNN-
PCLF, are compared with the proposed WNCNN-
PCLF. Compared to these methods, WNCNN-PCLF 
obtains a high accuracy of 99.92% and 98.34% on 
UA-Speech and Kannada datasets due to its effective 
capturing of both temporal and spectral speech 
features. WaveNet performs effectively in complex 
speech patterns while CNN provides robust phonetic 

representations. PCLF improves speech 
intelligibility by applying prosodic consistency, 
which minimises variability in dysarthric speech. 
Therefore, this method enhances generalisation by 
determining acoustic features with typical speech 
patterns. Moreover, the model minimises distortions 
and improves pronunciation clarity, which 
significantly enhances recognition performance for 
dysarthric speech.  

Table 3: Analysis of different loss functions  

Loss function Datasets Accuracy (%) F1-score (%) Recall (%) Precision (%) 
WNCNN-HLF  

UA-Speech  
87.59 84.28 85.30 83.29 

WNCNN-FLF 89.57 87.50 89.40 85.69 
WNCNN-BLF 92.38 90.87 92.39 89.40 

WNCNN-PCLF 99.92 98.70 98.76 98.65 
WNCNN-HLF  

Kannada 
89.03 86.81 84.29 89.49 

WNCNN-FLF 92.48 88.34 89.32 87.39 
WNCNN-BLF 95.38 89.19 86.39 92.19 

WNCNN-PCLF 98.34 97.28 97.49 97.08 

Table 3 represents the performance evaluation of 
different loss functions. The performance of 
WNCNN-Hinge LF (HLF), WNCNN-Focal LF 
(FLF), and WNCNN-Binary LF (BLF) are compared 
with WNCNN-PCLF. This approach attains a 
superior accuracy of 99.92% and 98.34% on UA-
Speech and Kannada datasets due to its efficient 
capture both temporal and spectral dependencies in 
speech signals. Unlike HLF majorly focuses on 
classification margins whereas PCLF ensures 
prosodic consistency, which is significant for 
dysarthric speech variations. While BLF treats all 
errors equally and PCLF emphasises subtle 
differences in speech patterns which enhance 
robustness. Therefore, PCLF improves feature 
representation by aligning prosodic contours, which 

minimises misclassification performance and leads 
to enhanced speech intelligibility as well as high 
recognition accuracy.  

Figure 2 illustrates a graphical representation of k-
fold validation. This analysis is used to mitigate 
certain threats to validity. K-fold validation 
minimizes the risk of underfitting and overfitting due 
to selection bias from single train and test split. This 
enable the model is tested across multiple data 
subsets by providing robust performance. Compared 
to k=3,7, and 9, the k=5 achieves an accuracy of 
99.92% and 98.34% on UA-Speech and Kannada 
datasets due to its strike a balance between variance 
and bias. The model is more sensitive to noise when 
k=3, which results in lower generalization and 
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overfitting. With k=7 and 9, the model becomes too 
smooth, which misclassifies boundary points and 
increases bias. Furthermore, k=5 shows a better 
trade-off that minimises sensitivity in outliers while 

preserving local structure. It manages an optimal 
decision boundary by using enough neighbours for 
stable performance, which enhances classification 
accuracy. 

 

 

Figure 2: Graphical representation of k-fold validation 

 

Figure 3: Graphical representation of computational time and memory consumption

 
Figure 3 shows an evaluation of memory 

consumption and computational time. A proposed 
WNCNN-PCLF achieves a less computational time 
of 79ms and 94ms because of its effective 
convolutional structure that minimises sequential 
dependencies compared to existing methods. Unlike 
traditional loss functions, PCLF concentrate on 
prosodic consistency without requiring weighting 
adjustments that assist in minimising additional 
computations. Moreover, the model can capture 
speech features effectively, which minimize the 
requirements for deep network layers and has less 
computational cost. Therefore, its optimised 
architecture and loss function increase speed while 
maintaining high accuracy.  

 

4.2 Comparative Analysis  
Table 4 demonstrates comparative analysis of 

existing methods using UA-Speech datasets. In [20] 
and [21] the values are presented in decimal form 
which are converted into percentage as per proposed 
method values. Compared to existing methods like 
[16], [17], [18], [19] [20], and [21], the proposed 
WNCNN-PCLF achieves a high accuracy of 99.92% 
due to it capture both long-term and short-term 
dependencies in speech signals, which preserves the 
prosodic structure. CNN layer captures local spectral 
features, whereas WaveNet improves sequential 
modelling to synthesise natural speech. Moreover, 
PCLF enable consistency in duration, pitch, and 
energy, which minimize distortions in synthesised 
speech. Hence, this integration enhances the model’s 

ability with better intelligibility.  
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Table 4: Comparative Analysis of existing methods using UA-Speech dataset 

Methods Datasets Accuracy 
(%) 

F1-score 
(%) 

Recall 
(%) 

Precision 
(%) 

FEB 64 UTran-DSR [16]  
 

UA-
Speech 

N/A 98.7 98.5 N/A 
DySARNeT [17] 98.77 98.67 99.04 98.35 

STFT-layered CNN [18] 99.89 N/A N/A N/A 
Hybrid transformer encoder with E1 [19] 98.98 N/A 98.33 97.35 

FCCSA-SEGAN [20] 93.0 N/A 93.3 N/A 
Fine-tuned DL [21] 96.78 96.78 96.78 96.81 

Proposed WNCNN-PCLF 99.92 98.70 98.76 98.65 
Kannada 98.34 97.28 97.49 97.08 

4.3 Discussion 
A benefit of proposed method and disadvantages 

of existing methods are presented in detail. A 
limitation of existing methods like UTrans [16] face 
challenges in capturing subtle articulatory distortions 
due to self-attention does not effectively differentiate 
between dysarthric and healthy speech patterns. 
DySARNet [17] struggled with generalizing across 
diverse patterns because attention gating overfitted 
to dominant acoustic features that ignored subtle 
variations in severity. STFT with CNN [18] 
struggled with capturing fine-grained spectral 
features because of fixed-time frequency resolution, 
which loses significant frequency information to 
distinguish speech variations. The hybrid model [19] 
struggled with high computational complexity and 
less inference time due to the requirement of 
processing huge volumes of speech data. The 
proposed WNCNN-PCLF overcomes these existing 
method limitations by capturing complex signals 
effectively. WaveNet’s deep hierarchical structure 
assists in capturing complex temporal dependencies 
in speech, which makes it efficient to recognise 
dysarthric speech. The PCLF assist in handling the 
speech pattern’s structural integrity while accounting 
for inconsistencies established by dysarthria. This 
enhances the model’s accuracy in recognizing subtle 
phonetic changes. Moreover, the combination of 
CNN with WaveNet temporal processing enables 
robust management of incomplete, noisy, or altered 
speech. Hence, this method results in more accurate 
and consistent speech recognition for individuals 
with dysarthria. 

4.4 Limitations 

This research relies on fixed handcrafted features 
like MFCC, LPCC, Spectral crest, pitch chroma, and 
so on for feature extraction. While these features are 
efficient to capture spectral speech characteristics 
but does not fully adapt to complex and diverse 
acoustic patterns determined in dysarthric 
speech.This limits model’s ability to learn tasks 

specific representation and affects model 
performance. 

5. CONCLUSION 

In this research, the WNCNN-PCLF is proposed 
to recognise and classify dysarthric speech 
accurately. This method integrates the benefits of 
WaveNet’s ability to model intricate speech patterns 
with CNN results in enhanced robustness and 
recognition accuracy in dysarthric speech. The 
inclusion of PLCF improves the model’s capability 
in preserving natural prosodic features like 
intonation and rhythm that are distorted in dysarthric 
speech. The novelty lies in the integration of these 
components to simultaneously address prosodic and 
articulatory distortions in dysarthric speech. 
Compared to existing methods, proposed WNCNN-
PCLF ensures better preservation of speech rhythm 
which significantly enhance recognition accuracy. 
By considering both temporal and spectral speech 
features, WNCNN-PCLF makes better speech 
variation discrimination by enhancing classification 
and intelligibility. The proposed method’s 
performance is determined via comparison with 
existing methods, which provides superior outcomes 
in precision, accuracy, F1-score, and recall, 
respectively. This method shows significant 
contributions to improving communication for 
individuals with speech impairments, which offers 
an effective solution for dysarthric speech 
recognition across diverse patterns. The practical 
implications like the proposed WNCNN-PCLF 
contributes to improved classification accuracy and 
robustness in dysarthric speech recognition tasks 
particularly in prosodic and speaker variability. 
When compared to existing methods like 
DySARNeT, the proposed WNCNN-PCLF achieves 
a better accuracy of 99.92% using the UA-Speech 
dataset. In the future, the advanced end-to-end DL 
method will be used which allows to automatically 
extract features in dysarthric speech. This enhance 
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robustness across speakers and minimize 
dependence on manual feature engineering. 
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