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ABSTRACT

Dysarthric speech recognition concentrates on understanding speech impairments caused by neurological
disorders. Speech recognition increases communication by enhancing adaptability and clarity for individuals.
However, dysarthric speech recognition struggles to transcribe speech accurately due to variations in pitch,
articulation, and rhythm that significantly differ from typical speech and processing dysarthric across
different speakers. In this research, the WaveNet Convolutional Neural Network with Prosody Consistency
Loss Function (WNCNN-PCLF) is proposed to recognise and classify dysarthric speech accurately. In CNN,
WaveNet is incorporated for capturing local speech features that enhance the model’s ability to determine
intricate variations and patterns in distorted speech. The PCLF assist in preserving natural speech patterns,
which makes for more accurate rhythm and tone representation. Therefore, this integration enables better
adaptation to dysarthric speech, which addresses both prosody and articulation issues effectively. Hence, the
proposed WNCNN-PCLF achieves a high accuracy of 99.92% and 98.34% using UA-Speech and Kannada
datasets compared to existing methods like Densely Squeezed and excitation Attention-gated Network
(DySARNet).

Keywords: Dysarthric Speech Recognition, Local Speech, Prosody Consistency Loss Function, Speakers,
Wavenet Convolutional Neural Network.

1. INTRODUCTION
Dysarthria is a neuro-motor disorder resulting

communicate efficiently [5]. The alterations in
dysarthric speaker’s speech are caused by

from neurological damage to the motor element of
speech production. It is primarily produced by an
acquired or congenital neurological problem like
brain tumor, cerebral palsy, stroke, brain injury, or
neurodegenerative diseases like Huntington disease,
amyotrophic lateral sclerosis, or Parkinson’s disease
[1] [2]. Dysarthric speech is primarily characterised
by abnormalities in resonatory, phonatory, prosodic,
and articulatory features of speech production, which
influence speech intelligibility. Speech-language
pathologists perform in clinical settings by utilizing
standard intelligibility tests to enhance speech
quality and intelligibility [3]. This process involves
detaching speech signals and eliminating distortions
from noisy speech [4]. It involves numerous origins
and a multitude of probable speech patterns from

slight modifications to complete
incomprehensibility. Individuals with dysarthria
have difficulties associated with voice and

pronunciation that obstruct their capability to

neurological muscle impairments that affect speech
production, which leads to neurological disorders or
cognitive disabilities. Such disorders disrupt fluency,
pronunciation, minimise human intelligibility and
affect the verbal expression of emotions, resulting in
social isolation [6]. In the speech subsystem, muscles
and muscle groups are effectively coordinated with
space and time for speech production, which renders
dysarthric speech normally unintelligible. Higher the
dysarthria severity, intelligibility of dysarthria
speech is lower [7] [8].

The neurological damage affects the function of
the speech-motor that impacts physical activities
related to motor neurons as well. Human interface
with devices and gadgets comprises typing into a
keyboard by utilizing hand movement, which is
slowed down by a factor of 150 to 300 in dysarthria
severe cases in comparison with regular users [9]
[10]. Moreover, dysarthric speech is slow by 10 to
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17 factors compared to regular speech, around fifteen
words per minute in most severe cases. Additionally,
it is determined that dysarthric speakers show better
prosodic control, which helps to increase
communication effectiveness [11]. Over the past
decade, researchers have made important strides in
severity assessments and dysarthric classification. It
determined numerous speech features like pitch
variation, speech rate, phonation quality, and
articulation precision that help in differentiating
various kinds and dysarthria’s severity levels.
Though, despite these advancements, there are still
gaps in understanding which features are most
significant for accurately classifying and
characterising the severity of dysarthria [12].
However, Deep Learning (DL) provide a promising
solution for bridging these communication gaps to
determine intricate patterns in speech data [13]. This
makes it better to manage speech variations,
including background noise and accents. Compared
with conventional methods, DL-based methods

present significant enhancements in speech
performance [14] [15].

1.1 Problem Statement

Despite advancements in dysarthric speech
recognition, existing methods struggles with

accurately capturing dysarthric speech complexity
especially in the variations of articulation, prosody,
and rhythm. Dysarthric speech significantly deviates
from typical speech patterns which enable challenges
for traditional methods to generalize across distant
speakers and severity levels. Furthermore, most of
the existing methods focus on spectral features
without preserving natural prosodic features which
are crucial for emotion perception. Therefore, there
is a critical need for a more robust and
comprehensive model which is effectively process
and recognize prosodic features effectively across
numerous speakers and languages.

1.2 Objective

The main objective of this research is to enhance
recognition accuracy of dysarthric speech which is
often impaired because of variations in prosody,
articulation, and rhythm. To solve this issue, the
research proposes novel DL method as WaveNet
Convolutional Neural Network with Prosody
Consistency Loss Function (WNCNN-PCLF) for
recognising and classifying dysarthric speech
accurately by leveraging WaveNet CNN’s structure
in capturing intricate temporal dependencies in
dysarthric speech. The PCLF ensures stability in
articulation, pitch, and rhythm variations across
various speakers. This improves the model’s ability

in learning speaker-independent speech patterns
while conserving phonetic integrity.

1.3 Scope and Contributions

This research concentrates on development of DL
based methods for dysarthric speech recognition by
utilizing a combination of WaveNet and CNN
models with PCLF. The scope is limited to binary
classification using two datasets like UA-Speech and
Kannada by considering prosodic and articulatory
distortions.

The primary contributions are discussed below in
detail:

e In CNN, WaveNet is integrated in modelling
long-range dependencies, which enables it to
understand intricate speech patterns over
time, which is essential for dysarthric speech
recognition.

e PCLF is applied to preserve natural speech
patterns like rhythm, stress, and intonation
which results in better alignment with
dysarthric speech variations that enhance
intelligibility.

e The Mel-Frequency Cepstral Coefficient
(MFCC), Linear prediction  cepstral
coefficient, spectral flux, spectral centroid,
spectral crest, and pitch chroma are used to
extract features by capturing both spectral and
temporal characteristics of the speech signal.
This enhances the model’s ability to
differentiate between dysarthric and healthy
speech variations.

e Compared to existing methods like Densely
Squeezed and excitation Attention-gated
Network (DySARNet), proposed WNCNN-
PCLF achieves a superior accuracy of 99.92%
and 98.34% on UA-Speech and Kannada
datasets. This improvement is because of
integration of WaveNet with CNN that
effectively captures spectral features in
dysarthric speech. Moreover, PCLF improves
model’s ability in preserving natural prosodic
features that enhance recognition accuracy.

This paper is organised as follows: Section 2
involves literature survey and Section 3 provides
proposed methodology. Section 4 analyses
experimental results, and conclusion is given in
Section 5.

2. LITERATURE SURVEY

Usama Irshad et al. [16] introduced a UTrans
encoder-decoder model to analyze Mel-
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spectrograms and classify speech as dysarthric or
healthy. The introduced approach utilized a
transformer encoder based on a hybrid model that
contains Vision Transformer (ViT) encoders and
Feature Enhancement Block (FEB). This integration
extracted local and global pixel information based on
localization effectively through optimizing Mel-
spectrograms. The consecutive residual connections
were included in the system, which minimises
feature loss when enhancing spatial data retrieval.
However, UTrans face challenges in capturing subtle
articulatory distortions due to self-attention does not
effectively differentiate between dysarthric and
healthy speech patterns.

Francis Jesmar P. Montalbo [17] presented a
Densely Squeezed and excitation Attention-gated
Network (DySARNet) to diagnose dysarthria and
severity estimation. DySARNet was used by
integrating Lean Separable Dense Block (LSDB)
increase feature reuse by maintaining a large
parameter increase via Separable Depthwise
Convolution (SDWConv). To enhance awareness
and context understanding, DySARNet utilises a
Squeeze and Excited Lightweight Residual
Attention-gated  (SELRA) approach through
squeezing extra parameters via SDWConv and
depthwise convolution. Nevertheless, DySARNet
struggled with generalising across diverse patterns
due to attention gating overfitting to dominant
acoustic features ignores subtle severity variations.

Kodali Radha et al. [18] developed a variable
Short-Time Fourier Transform (STFT) Ilayered
Convolutional Neural Network (CNN) to detect
dysarthria and analyze severity assessment. STFT
layered CNN was applied to extract significant
features from both spectral and temporal domains
that capture necessary patterns and variations in
dysarthric speech. The main goal of the developed
method was to automate the assessment of dysarthria
and establish more accurate as well as effective
systems for evaluating speech disorders. However,
STFT with CNN struggled with capturing fine-
grained spectral features because of fixed-time

frequency resolution, which loses significant
frequency information to distinguish speech
variations.

Rabbia Mahum et al. [19] suggested a hybrid
model with the combination of ensemble deep
networks and a transformer encoder scheme to
recognize dysarthria speech. Ensemble learning
plays a significant role in extracting the features from
Mel-spectrograms. Two scenarios were employed
that contain VGGI16, GoogleNet, DenseNet201,
whereas the ensemble comprises Xecption,

DenseNet 201, and nception ResNetV2. The
transformer model was established using self-
attention mechanism that enables the network to
focus on significant information with Multilayer
Perceptron (MLP) to recognise speech accurately.
By using this hybrid method, effective and accurate
disease determination was attained. Nevertheless,
the hybrid model struggled with high computational
complexity and less inference time due to the
requirement of processing huge volumes of speech
data.

Bhuvaneshwari Jolad and Rajashri Khanai [20]
established a Fractional Competitive Crow Search
Approach-based Speech Enhancement Generative
Adversarial Network (FCCSA-SEGAN) to enhance
speech signals. At first, noise from the speech signal
was eliminated utilizing the spectral subtraction
method. Then, the signal was passed through speech
enhancement, where the quality of the signal was
enhanced by SEGAN, which was trained by FCCSA.
By the inclusion of the Competitive Crow Search
Approach (CSSA) and Fractional Calculus (FC),
FCCA was attained in that CSSA was a hybrid of
CSSA and Competitive Swarm Optimizer (CSO).
However, FCCSA-SEGAN’s reliance on fractional
optimisation results in slower convergence and less
efficiency in intricate speech environments.

Shaik Mulla Shabber et al. [21] suggested a fine-
tuned DL method to detect dysarthric speech
effectively. Pre-processing methods like
normalization and noise reduction were used to
increase raw speech signal quality and extracted
appropriate  features. Scalogram images were
generated by wavelet transform which capture the
characteristics of time-frequency effectively in
speech signal that offers visual representation over
time. This provide significant insights into speech
abnormalities in dysarthria.

Although different models are discussed in recent
literature including UTrans encoder-decoder model
[16], DySARNet [17], STFT-CNN [18], ensemble
model [19], FCCSA-SEGAN [20], and Fine-tuned
DL [21]. However, these methods struggled with
distant limitations like difficulties in subtle
articulatory distortions, overfitting to dominant
features, challenges in accurately capturing
dysarthric speech complexity especially in the
variations, capturing fine-grained spectral features,
and high computational resources. To address this
issue, WNCNN-PCLF is proposed by capturing local
spectral information that makes better modeling of

dysarthric speech complexity. PCLF imporves
model’s ability in retaining natural rhythm which
address prosodic variability. This minimize

5481



Journal of Theoretical and Applied Information Technology
15" August 2025. Vol.103. No.15

d

N

© Little Lion Scientific

SATIT

ISSN: 1992-8645

www jatit.org

E-ISSN: 1817-3195

overfitting and enhance generalization across
different speech patterns.

3. PROPOSED METHODOLOGY

In this research, the WNCNN-PCLF is proposed
to recognise and classify dysarthric speech in the
Kannada and English languages. Initially, UA-
Speech and Kannada datasets are considered to
evaluate the model’s performance. The spectral

Feature Extraction

: Dataset : MECC

T rerocassizs |
: UA Speech : | Pre-processing :
i Spectral |———J| Spectral flux
| | | subtraction | |
: Kannada : e 1 |
— | : Spectral

|

crest

subtraction is applied to remove the noise from the
obtained speech. Subsequently, MFCC, LPCC,
spectral crest, spectral flux, pitch chroma, and
spectral centroid are the features that are extracted.
Finally, the proposed WNCNN-PCLF is used for
recognition and classification of dysarthria and
healthy. Figure 1 indicates a block diagram for the
proposed WNCNN-PCLF.

LPCC (= P
| { Recogl'ntlon_ and | : Dysarthric |

Specis | | classification | | ——————
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Figure 1: Block diagram for proposed WNCNN-PCLF

3.1 Datasets

This research employs UA-Speech [22] and
Kannada datasets to determine the performance of
the proposed model in dysarthric speech recognition.
The UA-Speech dataset provides a standardised
benchmark for determining speech impairments,
while the Kannada dataset ensures language-specific
analysis. By leveraging both datasets, this research
enhances the robustness and accuracy of dysarthric
speech recognition systems.

UA-Speech: It involves recordings from fifteen
dysarthric speakers with cerebral palsy and 13
without dysarthric. A participant had materials
comprising 300 uncommon words, 765 isolated
words, and certain had to repeat digits from zero to

nine thrice. Other materials have everyday spoken
words and radio phonetics with recording frequency
samples of 16 KHz. The Mxx represents Male, FXX
indicates Female, and C denotes Speakers without
dysarthria. Table 1 indicates a detailed dataset
description of UA-speech

Kannada dataset: It is gathered from the All India
Institute of Speech and Hearing (AIISH) and from
native speakers of the Kannada language who
articulated a subset of approximately 300 words. For
example: ajji, angadi, aspatre, bekul, bele, bekku,
chakra, chitte, cycle, badane, aido, amme, aspatre,
and so on. These are the words utilised to train the
model in Kannada. The obtained information is
passed via a pre-processing step for removing noise.

Table 1: Dataset description of UA-Speech

Details of dataset

Binary class

Healthy

Dysarthria

No.of. speakers 13

15

Speakers IDs CF02, CF03, CF05, CF04, CM04, CMO01, F02, F04, F03, FO5, M01, MO0S5,
CMO06, CM05, CM09, CMOS, CM12, M04, M07, M08, M10, M09, M12,
CM10, CM13 Ml11, Ml16, M14
Gender composition 4F/11M 4F/11M
3.2 Pre-processing removed from a loud speech signal using spectral
After acquiring speech signals, spectral subtraction. For restoring the magnitude or power

subtraction is applied to remove the noise, which
improves dysarthria speech clarity. It enhances the
signal-to-noise ratio by eliminating spectral
components related to noise. Therefore, this method
assists in retaining the significant features of
dysarthria  speech, which  provides better
convergence. A noise spectral speech magnitude is

signal spectrum by eliminating noise, spectral
subtraction is employed. An input speech signal is
first buffered and divided into segments of specified
length. Each segment is then windowed by utilizing
appropriate windowing function which are
transformed into spectral components. This assists in
isolating primary speech features that make it easier
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for recognition models to accurately interpret
dysarthic speech. By increasing the speech signal,
spectral subtraction contributes to more effective and
robust speech recognition systems as well as these
signals are passed through feature extraction stage.

3.3 Feature Extraction

A pre-processed output is passed as input to
extract features, where features such as MFCC,
spectral flux, LPCC, spectral centroid, spectral crest,
and chroma are extracted in this stage, which are
explained below.

MFCC: It captures speech spectral characteristics
effectively, making it effective to recognise
dysarthric speech variations. It mimics human
auditory perception that enhances recognition
accuracy despite dysarthric speech distortions. The
sequential processes of MFCC [23] are pre-
emphasis, hamming, framing, Fast Fourier
Transform (FFT), and Discrete Cosine Transform
(DCT).

Spectral Flux: It provides spectral alternations
among two consecutive frames. A successive short-
term window is considered, and then spectral
magnitudes are normasized such that the difference
among normalized magnitudes known as spectral
flux.

LPCC: It is used to segment the signal and retrieve
audio effectively, which works by calculating
coefficients of voice samples over time and captures
the vocal tract’s resonant characteristics. This assists
in LPCC [24] speech patterns and enhances
recognition accuracy for dysarthric speech.

Spectral centroid: It is calculated depending on
spectral shape, with centroid values that are greatly
associated with high-frequency brighter textures.

Spectral crest: It determines to computation of
signal tonality and differentiates wide as well as
narrow-band signals for specifying a subband peak
value.

Pitch chroma: It is a significant feature in that
chroma represents pitch location in rotary motion by
involving pitch rotation angle with [1 X 64] size.

Therefore, these features capture both temporal
and spectral speech characteristics which makes the
model more robust to variations. It ensures better
discrimination of speech patterns that results in
enhanced recognition and intelligibility assessment.
Then, the extracted features are fed as input to the
recognition and classification process.

3.4 Recognition and Classification

After extracting features, WNCNN-PCLF is used
to recognise and classify the dysarthria speech. CNN
[25] is effective in capturing local speech patterns
and features, which makes it appropriate for
dysarthria speech recognition where articulatory
distortions occur. WNCNN improves this by
modelling long-term speech dependencies by
utilizing dilated causal convolutions, which enhance
intelligibility in impaired speech. Using PCLF
ensures that stress, rhythm, and intonation patterns
are preserved and solves prosodic variations in
dysarthric speech. Therefore, this combination
results in more accurate recognition by refining
feature learning and minimizing phoneme
misclassification. Overall, the proposed WNCNN-
PCLF improves robustness and enables it well-
effective for dysarthric speech processing. A detailed
description of WNCNN is explained as follows:

WNCNN: It is a deep network that generates
waveforms with flexible and large receptive fields,
providing better parallelism while capturing long-
term dependencies in sequence. An input layer
obtains the variables sequence X, auxiliary input A,
and input shape as timesteps attributes. Initially, the
input is transformed into the residual block’s output
shape via a convolutional layer for the
implementation residual process. The primary
component of residual blocks is convolutional layer
and Rectified Linear Unit (ReLU). Through these 2
structures, data order is ensured and spatiotemporal
nonlinear data mapping is learned. Furthermore,
Temporal-Excitation (TE) block depending on the
Squeeze and Excitation (SE) is applied for learning
long-term dependencies. TE block acquired global
temporal data through modelling relationships
among convolution channel timesteps U . A
transpose function is applied for swapping channel
and temporal features’ coordinate system. An
excitation process is employed in capturing temporal
channel dependency and generating a modulation
weight set for all channels. Moreover, Fully
Connected (FC) with the ratio of dimensionality r =
2 and ReLU are utilised for parameterised
nonlinearity among time steps. FC restores the
coordinate system whereas sigmoid scales a weight.
At last, F;,.(.) represents the coordinating system
and multiplication process F,,;(.) indicate
integration of outcomes into the backbone network.
In WNCNN, the size and number of convolution
kernels for each residual block are similar, that
makes all residual blocks with uniform shape. In
initial residual block, condition and forecast
variables are based on ReLU function and
convolution process to acquire a channel that
contains spatial and temporal features, whereas the
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mathematical formula is represented in Equation (1).
TE is applied for learning global temporal
information to recalibrate channel features, is
denoted in Equation (2). TE output block is passed
through backbone network via multiplying with U
and then the input is incorporated to acquire last
output of residual block which is indicated in
Equations (3) and (4). Another residual block
obtains z,_; and output z; are demonstrated in
Equations (5) and (6)

For the initial residual block k = 1:
e =6(Wrp X +bsj + X0, Via +b, (1)

Sk = Fp (Fex (Fir (W) =

(Wi 2- (Wi 1w + by 1) + by ) 2
e = U O i 3
Zr=e,+X+X d 4)

For other residual block k > 1:
U = 8(Wy k. 21 + by ) Q)

Zy = €y + Zg_1 (6)

Where k = range(1,K) represents k" residual
blocks, K denotes number of residual block, Wy
and by, determines weight and bias of convolution
filter in k" layer, I{qi indicates convolutional filter
weight of a' in initial layer, by illustrate a
convolutional filter’s bias in initial layer, &
demonstrates ReLU function, u, represents output
of § in k™" residual blocks. The W, 1, by 1, Wy 2, by 2
presents weight and bias of 1st and 2nd FC layers in
TE block of k" residual blocks, o determines
sigmoid function, s, denotes TE block output in k"
residual blocks, e, and z;, indicates intermediate and
last output of k" residual blocks, and @ illustrates
multiplication of associated elements. With linear
activation, output layer represents 1X1 a
convolutional layer. A final residual block’s output
z;, performs ReLU calculation and later enters
outcome layer using Equation (7)

0 = W,.ReLU(z,) + b, (7)

Where zj represents the final residual block’s
output, W, and b, denote output layer’s weight and
bias, and O illustrates the output layer result.

PCLF: It is responsible to capture prosody feature
Hf,:) from predicted region ¥, when determining total

prosody characteristics I:I\}’; represented in original
speech. Then, Mean Square Loss (MSE) is used to
perform the prosody consistency constraints. The
mathematical formula for PCLF is determined using
Equation (8)

Lpc = MSE(Hy, , Hy) (8)

The prosody extractor employs a reference

encoder of Global Stye Token (GST) model for

converting Y, and Y into high level prosody features
with fixed length using Equation (9)

Hy, = GST(Yy), Hy = GST(Y) 9)

At last, overall loss function is a sum of
reconstruction loss and 2 new loss functions, L, and
Lpc over all non-contiguous masked regions,
therefore, the mask region contains various non-
contiguous segments. Thus, the WNCNN-PCLF
enhance robustness to speech irregularities by
capturing fine-grained temporal dependencies,
whereas PCLF increases prosodic feature learning
which makes better alignment with natural speech
patterns. Therefore, this combination results in
enhanced intelligibility and accuracy in recognising
dysarthric speech.

4. EXPERIMENTAL RESULTS

The proposed WNCNN-PCLF is simulated
utilizing a Python 3.4 environment with Windows 10
operating system, Intel i5 processor, and 64 GB
RAM respectively. The selection criteria employed
in this research is accuracy, recall, precision, and f1-
score. These performance measures are selected
depending on relevance in speech recognition and
classification field. Accuracy defines overall
correctness of recognition whereas precision and
recall determine the model’s ability to correctly
identify speech and avoid false positive/negative.
F1-score is the combination of recall and precision
respectively. Computational time calculates amount
of time takes to complete training or inference tasks
while memory usage refers to amount of system
required during the execution of model. The
mathematical equation for accuracy, fl-score, recall,
and precision are represented in equations (10) to
(13).

TP+TN

Accuracy = m (10)
F1-— Score = —2f (11)
2TP+FP+FN
Recall = —= (12)

TP+FN
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Where TP indicates True Positive, FP determines
False Positive, TN illustrates True Negative, and FN

Precision = (13) ;
TP+F denotes False Negative.
4.1 Performance Analysis
Table 2: Evaluation of different DL methods
Methods Datasets Accuracy (%) | Fl-score (%) Recall (%) | Precision (%)

InceptionNet-PCLF 82.21 80.36 81.43 79.32
ResNet-PCLF 85.43 83.33 83.29 83.39
CNN-PCLF UA-Speech 93.21 89.21 89.39 89.04
WNCNN-PCLF 99.92 98.70 98.76 98.65
InceptionNet-PCLF 79.01 77.88 76.40 79.43
ResNet-PCLF Kannada 82.93 80.65 79.01 82.38
CNN-PCLF 89.43 85.97 82.38 89.90
WNCNN-PCLF 98.34 97.28 97.49 97.08

Table 2 indicates evaluation of different DL  representations. PCLF improves speech

methods. The existing methods such as
InceptionNet-PCLF, ResNet-PCLF, and CNN-
PCLF, are compared with the proposed WNCNN-
PCLF. Compared to these methods, WNCNN-PCLF
obtains a high accuracy of 99.92% and 98.34% on
UA-Speech and Kannada datasets due to its effective
capturing of both temporal and spectral speech
features. WaveNet performs effectively in complex
speech patterns while CNN provides robust phonetic

intelligibility by applying prosodic consistency,
which minimises variability in dysarthric speech.
Therefore, this method enhances generalisation by
determining acoustic features with typical speech
patterns. Moreover, the model minimises distortions
and improves pronunciation clarity, which
significantly enhances recognition performance for
dysarthric speech.

Table 3: Analysis of different loss functions

Loss function Datasets Accuracy (%) F1-score (%) Recall (%) Precision (%)
WNCNN-HLF 87.59 84.28 85.30 83.29
WNCNN-FLF UA-Speech 89.57 87.50 89.40 85.69
WNCNN-BLF 92.38 90.87 92.39 89.40
WNCNN-PCLF 99.92 98.70 98.76 98.65
WNCNN-HLF 89.03 86.81 84.29 89.49
WNCNN-FLF Kannada 92.48 88.34 89.32 87.39
WNCNN-BLF 95.38 89.19 86.39 92.19
WNCNN-PCLF 98.34 97.28 97.49 97.08

Table 3 represents the performance evaluation of
different loss functions. The performance of
WNCNN-Hinge LF (HLF), WNCNN-Focal LF
(FLF), and WNCNN-Binary LF (BLF) are compared
with  WNCNN-PCLF. This approach attains a
superior accuracy of 99.92% and 98.34% on UA-
Speech and Kannada datasets due to its efficient
capture both temporal and spectral dependencies in
speech signals. Unlike HLF majorly focuses on
classification margins whereas PCLF ensures
prosodic consistency, which is significant for
dysarthric speech variations. While BLF treats all
errors equally and PCLF emphasises subtle
differences in speech patterns which enhance
robustness. Therefore, PCLF improves feature
representation by aligning prosodic contours, which

minimises misclassification performance and leads
to enhanced speech intelligibility as well as high
recognition accuracy.

Figure 2 illustrates a graphical representation of k-
fold validation. This analysis is used to mitigate
certain threats to validity. K-fold validation
minimizes the risk of underfitting and overfitting due
to selection bias from single train and test split. This
enable the model is tested across multiple data
subsets by providing robust performance. Compared
to k=3,7, and 9, the k=5 achieves an accuracy of
99.92% and 98.34% on UA-Speech and Kannada
datasets due to its strike a balance between variance
and bias. The model is more sensitive to noise when
k=3, which results in lower generalization and

5485



Journal of Theoretical and Applied Information Technology
15" August 2025. Vol.103. No.15

S

R

© Little Lion Scientific

-ll'\lll

ISSN: 1992-8645

www.jatit.org

E-ISSN: 1817-3195

overfitting. With k=7 and 9, the model becomes too
smooth, which misclassifies boundary points and
increases bias. Furthermore, k=5 shows a better
trade-off that minimises sensitivity in outliers while

preserving local structure. It manages an optimal
decision boundary by using enough neighbours for
stable performance, which enhances classification
accuracy.

100 :
95
2 90
= 85 |
~ 80 ;;
75
70
k=3 k=5 k=7 =9 k=3 =5 k=7
UA-Speech Kannada
Datasets
mAccuracy ®=Fl-score = Recall = Precision
Figure 2: Graphical representation of k-fold validation
200
g 15
Sl a1l
75 I
| | 0
: % % 5 fg 2 2
: ¢ S ¢ % ¢z ¢ %
= z = Z
UA-Speech Kannada
Datasets

= Computational time (ms)

= Memory consumption (KB)

Figure 3: Graphical representation of computational time and memory consumption

Figure 3 shows an evaluation of memory
consumption and computational time. A proposed
WNCNN-PCLF achieves a less computational time
of 79ms and 94ms because of its effective
convolutional structure that minimises sequential
dependencies compared to existing methods. Unlike
traditional loss functions, PCLF concentrate on
prosodic consistency without requiring weighting
adjustments that assist in minimising additional
computations. Moreover, the model can capture
speech features effectively, which minimize the
requirements for deep network layers and has less
computational cost. Therefore, its optimised
architecture and loss function increase speed while
maintaining high accuracy.

4.2 Comparative Analysis

Table 4 demonstrates comparative analysis of
existing methods using UA-Speech datasets. In [20]
and [21] the values are presented in decimal form
which are converted into percentage as per proposed
method values. Compared to existing methods like
[16], [17], [18], [19] [20], and [21], the proposed
WNCNN-PCLF achieves a high accuracy of 99.92%
due to it capture both long-term and short-term
dependencies in speech signals, which preserves the
prosodic structure. CNN layer captures local spectral
features, whereas WaveNet improves sequential
modelling to synthesise natural speech. Moreover,
PCLF enable consistency in duration, pitch, and
energy, which minimize distortions in synthesised
speech. Hence, this integration enhances the model’s

ability with better intelligibility.
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Table 4: Comparative Analysis of existing methods using UA-Speech dataset

Methods Datasets Accuracy | Fl-score | Recall | Precision

(%) (%0) (%) (%)

FEB 64 UTran-DSR [16] N/A 98.7 98.5 N/A

DySARNeT [17] 98.77 98.67 99.04 98.35

STFT-layered CNN [18] UA- 99.89 N/A N/A N/A

Hybrid transformer encoder with E1 [19] | Speech 98.98 N/A 98.33 97.35

FCCSA-SEGAN [20] 93.0 N/A 93.3 N/A

Fine-tuned DL [21] 96.78 96.78 96.78 96.81

Proposed WNCNN-PCLF 99.92 98.70 98.76 98.65

Kannada 98.34 97.28 97.49 97.08

4.3 Discussion specific  representation and affects model

A benefit of proposed method and disadvantages ~ performance.

of existing methods are presented in detail. A
limitation of existing methods like UTrans [16] face
challenges in capturing subtle articulatory distortions
due to self-attention does not effectively differentiate
between dysarthric and healthy speech patterns.
DySARNet [17] struggled with generalizing across
diverse patterns because attention gating overfitted
to dominant acoustic features that ignored subtle
variations in severity. STFT with CNN [18]
struggled with capturing fine-grained spectral
features because of fixed-time frequency resolution,
which loses significant frequency information to
distinguish speech variations. The hybrid model [19]
struggled with high computational complexity and
less inference time due to the requirement of
processing huge volumes of speech data. The
proposed WNCNN-PCLF overcomes these existing
method limitations by capturing complex signals
effectively. WaveNet’s deep hierarchical structure
assists in capturing complex temporal dependencies
in speech, which makes it efficient to recognise
dysarthric speech. The PCLF assist in handling the
speech pattern’s structural integrity while accounting
for inconsistencies established by dysarthria. This
enhances the model’s accuracy in recognizing subtle
phonetic changes. Moreover, the combination of
CNN with WaveNet temporal processing enables
robust management of incomplete, noisy, or altered
speech. Hence, this method results in more accurate
and consistent speech recognition for individuals
with dysarthria.

4.4 Limitations

This research relies on fixed handcrafted features
like MFCC, LPCC, Spectral crest, pitch chroma, and
so on for feature extraction. While these features are
efficient to capture spectral speech characteristics
but does not fully adapt to complex and diverse
acoustic  patterns determined in  dysarthric
speech.This limits model’s ability to learn tasks

5. CONCLUSION

In this research, the WNCNN-PCLF is proposed
to recognise and classify dysarthric speech
accurately. This method integrates the benefits of
WaveNet’s ability to model intricate speech patterns
with CNN results in enhanced robustness and
recognition accuracy in dysarthric speech. The
inclusion of PLCF improves the model’s capability
in preserving natural prosodic features like
intonation and rhythm that are distorted in dysarthric
speech. The novelty lies in the integration of these
components to simultaneously address prosodic and
articulatory distortions in dysarthric speech.
Compared to existing methods, proposed WNCNN-
PCLF ensures better preservation of speech rhythm
which significantly enhance recognition accuracy.
By considering both temporal and spectral speech
features, WNCNN-PCLF makes better speech
variation discrimination by enhancing classification
and intelligibility. The proposed method’s
performance is determined via comparison with
existing methods, which provides superior outcomes
in precision, accuracy, Fl-score, and recall,
respectively. This method shows significant
contributions to improving communication for
individuals with speech impairments, which offers
an effective solution for dysarthric speech
recognition across diverse patterns. The practical
implications like the proposed WNCNN-PCLF
contributes to improved classification accuracy and
robustness in dysarthric speech recognition tasks
particularly in prosodic and speaker variability.
When compared to existing methods like
DySARNeT, the proposed WNCNN-PCLF achieves
a better accuracy of 99.92% using the UA-Speech
dataset. In the future, the advanced end-to-end DL
method will be used which allows to automatically
extract features in dysarthric speech. This enhance
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robustness across speakers and minimize
dependence on manual feature engineering.
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