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ABSTRACT

Accurate and efficient segmentation of the lung regions is indispensable for detecting and managing
pulmonary diseases, as it allows clinicians to identify abnormalities and plan effective intervention
strategies. However, the high computational demands of many existing segmentation models pose a
significant challenge, particularly for deployment in resource-constrained environments such as mobile,
edge platforms, and point-of-care devices. Lung segmentation is further challenged by wide anatomical
variability and imaging artifacts, which existing models often struggle to handle without access to large-
scale hardware. This study addresses this limitation by introducing a lightweight U-Net architecture that
integrates depthwise separable convolutions to reduce computational complexity while preserving
segmentation accuracy. By replacing standard convolutional layers, the model achieves faster inference and
significantly lower parameter counts, making it well-suited for IT applications in embedded systems and
clinical informatics. The model was evaluated on the publicly available Pulmonary Chest X-Ray Defect
Detection dataset from Kaggle, demonstrating its effectiveness in segmenting lung regions. The
performance evaluation shows that our model delivers outstanding results, attaining a Dice score of
91.92%, a Jaccard index of 82.75%, precision of 92.64%, recall of 90.31%, and accuracy of 97.12% on the
test dataset. These results highlight that the lightweight U-Net achieves state-of-the-art segmentation
accuracy with significantly reduced computational overhead, making it ideal IT solution for real-time use in
clinical workflows and deployment on limited-resource devices.

Keywords: Lung Segmentation, Depthwise Separable Convolutions, Lightweight U-Net, Chest X-ray
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1. INTRODUCTION bronchopneumonia, interstitial pneumonia, lobar
pneumonia, and pneumothorax rank among the

This Lung cancer poses a major challenge to
global health. In the United States, lung cancer
ranks third in incidence but is the top cause of
cancer-related deaths among both males and
females. According to the American Cancer
Society, approximately 226,650 new lung cancer
cases are expected in the U.S. in 2025 (110,680 in
males and 115,970 in females), with about 124,730
deaths (64,190 among males and 60,540 among
females). Lung cancer represents about 11% of all
new cancer diagnoses and accounts for 20% of
cancer-related deaths [1]. According to the SEER
database, in 2023, there were 226,650 new cases of
lung cancer, and 124,730 deaths. The S5-year
survival rate between 2015 and 2021 is 28.1% [2].
According to another study, respiratory illnesses
such as bronchiolitis, bronchitis,

leading causes of pediatric mortality in many
countries [3].

Medical imaging is vital in contemporary
healthcare, providing key insights for diagnosis,
treatment planning, and monitoring disease
progression. Chest radiography, in particular, is one
of the most commonly performed radiological
examinations due to its low cost, wide availability,
and relatively low radiation dose [4]. Chest X-rays
aid in diagnosing numerous lung disorders, such as
pneumonia, tuberculosis, lung cancer, and other
respiratory ailments. However, the manual analysis
of chest X-ray images is time-consuming and
subjective, leading to potential inter-observer
variability and diagnostic delays. Computer-aided
diagnosis (CAD) systems have been developed to
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assist radiologists in interpreting medical images,
improving the accuracy and efficiency of diagnosis.
A fundamental step in many CAD systems is the
accurate segmentation of the lung fields, which
provides the anatomical context for further analysis
[5]. Tt is an essential precursor to numerous
downstream clinical tasks ranging from automated
nodule detection and disease quantification to
radiotherapy planning and longitudinal monitoring
of pulmonary conditions. In resource-constrained or
high-throughput settings such as emergency
departments and portable screening stations, manual
delineation of lung boundaries is time-consuming,
subject to inter-observer variability, and often
impractical. Thus, accurate and efficient lung region
segmentation has become indispensable for
effective diagnosis and treatment planning of
pulmonary diseases. Effective lung segmentation
enables physicians to identify abnormalities,
quantify disease severity, and plan interventions
with greater precision. However, the task presents
several challenges due to the inherent variability in
lung shapes and sizes, the presence of low contrast,
pathological regions, and various imaging artifacts
that can obscure lung boundaries [6].

Early traditional image-processing techniques
such as global or adaptive thresholding, region
growing, active contours, and edge detection
offered computationally light solutions but
repeatedly faltered when faced with low contrast,
overlapping anatomy, or pathological abnormalities
[7]. Classical machine-learning approaches (e.g.,
support vector machines or random forests
operating on handcrafted features) improved
robustness somewhat but remained limited by the
representational ~ capacity of  hand-designed
descriptors [8].

The advent of deep convolutional neural
networks (CNNs) revolutionized medical image
segmentation. U-Net, introduced by Ronneberger et
al. [9], combined an encoder-decoder topology with
skip-connections to simultaneously capture global
context and fine spatial detail, rapidly becoming a
de facto standard. Subsequent variants including
SegNet [10], residual and dense U-Nets [11],
attention-augmented  architectures  [12] and
multiscale fusion models [13] have each pushed the
state of the art in segmentation accuracy, achieving
Dice scores often above 90 % on benchmark tasks.
However, these gains come at the cost of
ever-increasing model size (tens of millions of
parameters) and longer inference times, which
impede real-time deployment and use on edge or
mobile devices.

Despite the advancements in medical image
analysis, accurate and efficient lung segmentation
remains a challenging problem. As seen, traditional
image processing techniques often struggle with the
inherent variability in lung shapes and sizes, the
presence of low contrast, pathological regions, and
various imaging artifacts that can obscure lung
boundaries. This trade-off between segmentation
reliability and computational efficiency constitutes
our central research problem. How can we preserve
the high accuracy of modern CNN-based methods
while drastically reducing model size and latency?
Depthwise separable convolutions, initially made
popular in Xception [14], present a promising
approach. They work by breaking down standard
convolutions into more manageable depthwise and
pointwise operations, which significantly reduces
the number of parameters and FLOPs (floating
point operations), while largely preserving the
model's ability to accurately represent data. In this
paper, we address this need by proposing a novel
lightweight U-Net architecture that integrates
separable convolutional neural networks to achieve
efficient and accurate lung field segmentation in
chest X-ray images. From an IT perspective, the
significance of this work lies in its ability to bridge
the gap between high-accuracy medical image
segmentation and practical deployment on real-
world IT systems. Traditional deep learning models
often assume access to extensive computational
resources, which is wunrealistic for embedded
healthcare platforms, mobile diagnostics, and low-
power edge devices. By designing a compact, fast,
and accurate segmentation model, we contribute to
the growing field of intelligent medical imaging
within IT infrastructure, supporting scalable and
cost-effective solutions for clinical workflows. The
model’s lightweight architecture enables integration
into  hospital PACS (picture-archiving and
communications systems), mobile applications, and
Al-enabled radiology tools, advancing the
application of IT in digital health ecosystems.

In summary, this research endeavors to address
key questions surrounding the potential of a
lightweight U-Net architecture, specifically
investigating whether it can match or exceed the
segmentation accuracy of a standard U-Net on a
large chest X-ray dataset, while also evaluating its
computational and memory footprint, including the
feasibility of achieving sub-20 millisecond
inference on a high-end GPU. The study further
aims to compare the model's performance against
classical, CNN-based, and GAN-based
segmentation baselines, and to explore the potential
clinical applications of accurate and efficient lung
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segmentation in enhancing patient care and
outcomes. The key contributions of this research are
summarized as follows:

a) We introduce a 2D U-Net variant employing
depth-wise separable convolutions in every layer,
reducing parameter count and FLOPs by over an
order of magnitude without sacrificing
segmentation quality,

b) We demonstrate sub-20 millisecond inference
on a Tesla P100 GPU for 512x512 chest X-rays
enabling practical integration into time-sensitive
clinical workflows and resource-limited devices,

¢) We provide a comprehensive evaluation of the
model's performance, including accuracy, Dice
coefficient, Jaccard index, precision, and recall,
highlighting its superior segmentation performance
with reduced computational overhead,

d) We conduct a comprehensive quantitative and
qualitative analysis on a benchmark dataset [15],
comparing against both classical and deep-learning
baselines, and provide ablation studies to isolate the
impact of separable convolutions,

e) We discuss the potential for deployment on
edge hardware and integration into downstream
tasks illustrating the model’s utility in real-world
settings.

The rest of this paper is structured as follows.
Section 2 surveys existing methods for lung
segmentation. Section 3 details the proposed
lightweight U-Net architecture and the experimental
setup. Section 4 presents experimental results and
comparative analysis. Section 5 discusses the
conclusions and future work.

2. LITERATURE REVIEW

Conventional lung segmentation approaches
initially made extensive use of image-processing
methods such as thresholding, edge detection,
region growing, and active contours [7]. While
these methods are computationally efficient, they
often struggle with anatomical variability, low

contrast, pathological regions, and imaging
artifacts. To overcome these limitations, machine
learning techniques, including support vector

machines and random forests, were introduced,
offering modest improvements through handcrafted
features [8]. Lately, deep learning, particularly
convolutional neural networks (CNNs), has showed
amazing success in segmenting medical images,
often surpassing traditional methods in terms of
accuracy and robustness.

Classical methods for lung segmentation in
medical images, particularly Computed
Tomography (CT) and X-ray, often rely on image
processing techniques based on intensity, shape,
and anatomical knowledge. These methods
typically involve a pipeline of steps, including
preprocessing, segmentation, and postprocessing.
While effective in many cases, they can struggle
with pathological lungs, low contrast images, and
variations in lung shape and size [7].

Segmenting lungs with Juxta-Pleural nodules is a
complex task where traditional methods like
thresholding, region-growing, and active contours
often fail. To address this, a fully automated method
is proposed in [16] with two stages: lung field
extraction and boundary analysis for accurate
segmentation of lungs including Juxta-Pleural
nodules. The proposed method outperforms
traditional thresholding techniques. Moreover,
traditional machine learning methods for lung
segmentation often involve manual feature
extraction based on grayscale, geometric shapes, or
anatomical knowledge. These methods are
generally less effective in handling complex
variations and pathologies in lung images [17].
Additionally, traditional approaches are typically
more time-consuming and less adaptable to new
data compared to deep learning methods, which can
automatically learn and adapt to new patterns [18].

In recent years, deep learning, especially
Convolutional Neural Networks (CNNs), has
revolutionized medical image segmentation,

including lung segmentation. These methods learn
intricate features directly from the image data,
leading to more robust and accurate segmentation,
particularly in challenging cases. The U-Net model,
first presented by Ronneberger et al. [9], has
evolved into a key framework for segmenting
medical images. The encoder—decoder design of U-
Net, augmented by skip connections, facilitates
accurate localization and allows effective training
even on small datasets. Numerous studies have
adapted and improved the U-Net for lung
segmentation. For instance, Badrinarayanan et al.
[10] introduced SegNet, a deep encoder-decoder
architecture with max-pooling indices used in
upsampling, achieving robust results in semantic
segmentation  tasks  including lung  CTs.
Hofmanninger et al. [4] applied a U-Net variant to
segment lungs from chest CTs, demonstrating high
performance across multiple datasets and
emphasizing the importance of data diversity.
Similarly, Hwang et al. [19] used U-Net for lung
field segmentation on chest X-rays and addressed
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challenges such as overlapping clavicles and heart
regions. To better capture spatial context and reduce
false positives, multiscale architectures have been
explored. Tang et al. [20] proposed a multiscale
feature fusion U-Net for segmenting infected
regions in COVID-19 CT images, effectively
capturing both coarse and fine structures. The
integration of residual connections and dense blocks
has also improved feature propagation and gradient
flow. Jin et al. [21] presented a residual attention U-
Net to segment lung tumors from CT volumes,
achieving superior boundary delineation.

Gite et al. [22] discussed the implementation of
U-Net++ for lung segmentation using X-ray
images. The model achieves over 98%
segmentation accuracy and a mean intersection over
union of 0.95, demonstrating its efficacy in
diagnosing pulmonary diseases. However, the lack
of practical application can raise questions about
how well the models would perform in actual
clinical settings. The TVAC (Total Variation-based
Active Contour) algorithm is proposed in [6] for
accurate lung segmentation in chest X-rays,
particularly in critically ill patients. This method is
particularly effective in handling the complexities
of lung segmentation in the presence of medical
equipment and varying patient conditions. It shows
moderate performance, achieving a Dice coefficient
of 0.86 for adults and 0.85 for children. Khomduean
et al. [23] developed a model combining 3D-UNet
with DenseNet169 and ResNet to segment lung
lobes and lesions, achieving Dice similarity
coefficients of 91.52% and 76.89%, respectively.
Delfan et al. [24] introduced CT-LungNet, a fully
automatic method for segmenting lung tissue in 3D
CT images. The model employs a 2.5D image
representation and a U-Net architecture with pre-
trained InceptionV3 blocks, aiming to reduce the
number of learnable parameters while maintaining
high segmentation accuracy. Evaluated on public
datasets LUNA16, VESSEL12, and CRPF, CT-
LungNet achieved Dice coefficients of 99.7%,
99.1%, and 98.8%, respectively. While CT-
LungNet demonstrated high performance on public
datasets, its generalizability to diverse clinical
settings with varying imaging conditions remains to
be validated. Also, the dependency on pre-trained
architectures may limit their effectiveness in
specific application areas. In a subsequent study,
Wu et al. [25] characterizes a considerable
advancement in lung nodule semantic segmentation,
addressing challenges such as under and over
segmentation in CT images. This model enhances
the traditional U-Net architecture by integrating a
ResNet encoder, atrous spatial pyramid pooling,

and a cross-fusion feature module with attention
mechanisms, leading to improved segmentation
accuracy. The model achieved a mean Intersection
over Union (mloU) of 87.76% and an F1-score of
93.56% on the LIDC dataset, outperforming
existing models like SegNet and U-Net. The
model's effectiveness in diverse clinical scenarios
and its integration into existing diagnostic
workflows need further exploration.

While RAD-UNet shows promising results, other
models like improved V-Net [12] and context-
aware attention U-Net [5] also demonstrate
competitive performance, suggesting a diverse
landscape of effective segmentation techniques in
lung nodule detection. The V-Net model combines
pixel threshold segmentation with an attention
mechanism, aiming to enhance the segmentation
process for lung nodules. It achieves high Dice
similarity coefficients and sensitivity on public
datasets LUNA16 and LNDb. On the other hand,
the complementary context-aware (CCA) attention
module in [5] focuses on a coarse-to-fine 3D
segmentation  framework for Ilung nodule
segmentation in CT images. Designed to enhance
segmentation accuracy, the CCA module effectively
captures 3D spatial dependencies and complex
contextual information. A recent study by
Kongkham et al. [26] compares deep learning
methods with traditional techniques using two
widely used datasets, likely LIDC-IDRI and
LUNA16. The main evaluation metric is the
Sorensen-Dice Coefficient (DSC), which measures
how well the segmentation matches the ground
truth. Results show that deep learning significantly
outperforms traditional methods achieving a DSC
0of 0.853 vs. 0.761 on the first dataset, and 0.763 vs.
0.704 on the second. These findings highlight deep
learning's strength in handling the complexity of
lung nodule segmentation.

Din et al. [27] introduced CXR-Seg, a deep

learning model designed for precise lung
segmentation in chest X-ray images. The
architecture integrates a pre-trained
EfficientNetV2S  encoder with a  spatial

enhancement module (SEM), transformer attention
module (TAM), and multi-scale feature fusion
block (MS-FFB) to enhance feature representation
and capture contextual information. Evaluated on
four public datasets such as Montgomery,
Shenzhen, Darwin COVID-19, and TCIA, the
model achieved high performance metrics,
including a Dice coefficient of up to 97.76%. While
CXR-Seg demonstrated strong performance on
public datasets, its generalizability to diverse
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clinical settings with varying imaging conditions
remains to be validated. Additionally, the
computational complexity introduced by the
integrated modules may pose challenges for
deployment in resource-constrained environments.
In another effort, In [11], Alam et al. presented
AMRU++, a UNet++ variant with multi-residual
blocks and an attention mechanism, optimized for
segmenting lungs in chest radiographs especially
those showing advanced conditions such as
pneumoconiosis, COVID-19, and tuberculosis. The
model incorporates attention modules and multi-
residual blocks to capture relevant spatial
information and rich contextual features. To address
the scarcity of annotated pathological data, a novel
data augmentation technique was introduced,
simulating disease-specific features to enhance
model robustness. With a Dice score of 0.9363,
AMRU++ outperformed several state-of-the-art
architecture. Despite its high performance,
AMRU++'s reliance on complex architectural
components and extensive data augmentation may
increase computational demands. Moreover, the
effectiveness of the augmentation technique in
representing the full spectrum of pathological
variations requires further investigation.

Cai et al. [28] proposed a novel Ilung
segmentation approach using generative adversarial
networks (GANSs), specifically leveraging the
Pix2Pix framework for image-to-image translation
tasks. In their method, the original CT lung images
are treated as “blurred” inputs and the ground truth
segmentation maps as “clear” outputs. The GAN
learns to translate the input images into accurate
segmentation masks by minimizing both pixel-wise
loss and adversarial loss. Despite its promising
results, the study is limited by its reliance on a
relatively small dataset, which may affect
generalizability. Additionally, the method focuses
on 2D slice-based segmentation and does not yet
address the full 3D volumetric nature of CT scans,
leaving room for future improvements in clinical
applications. ~ Multimodal ~ fusion  techniques
proposed in [29] involve combining features from
CT and PET images at different stages of the U-Net
architecture. In particular, the model incorporates
various fusion strategies, including hyper-dense
fusion and hyper-dense VGG16 U-Net, to integrate
anatomical and functional data. Some other studies
[30-34] also developed multi-modal lung tumor
segmentation network combining CT and PET
images. In a recent study, Goswami et al. [35]
presented a lung segmentation method designed to
work effectively even with limited medical imaging
data, a common issue due to legal and privacy

constraints. Unlike traditional U-Net models that
need large datasets and long training times, the
proposed method combines a U-Net-style generator
with a generative adversarial network (GAN). The
generator creates synthetic images to help balance
the dataset and better represent rare cases, focusing
specifically on lung regions. It uses an encoder-
decoder structure with skip connections to retain
important features, while the discriminator helps the
generator improve by distinguishing real from fake
images. The model achieved an accuracy of
84.39%, showing strong performance even with
restricted training data. Zafaranchi et al. [36]
proposed a deep learning-based framework for lung
nodule detection and segmentation using the
LUNA-16 dataset. The method follows a two-phase
pipeline: lung segmentation using the LungQuant
algorithm, followed by nodule segmentation via a
fine-tuned Attention Res-UNet. The system
achieved an average Dice Similarity Coefficient
(DSC) of 90% for lung segmentation and 81% for
nodule segmentation, indicating high accuracy. To
enhance model interpretability, Grad-CAM was
applied, supporting its clinical relevance. However,
the model’s evaluation was limited to a single
dataset, which may restrict its generalizability;
further testing on diverse datasets and in real-world
clinical settings is needed to confirm its robustness.

While advancements in deep learning have led to
highly accurate lung segmentation models, many
existing architectures, particularly standard U-Net
and its variants, remain computationally intensive
and dependent on large, annotated datasets and
prolonged training. These limitations hinder their
adoption in real-time and resource-constrained
clinical settings. To address this, our study
introduces a  streamlined U-Net  model
incorporating depth-wise separable convolutions,
which significantly reduces the number of
parameters and training time while maintaining
high segmentation accuracy and enabling faster
inference. This approach bridges the gap between
state-of-the-art performance and practical usability,
making it well-suited for real-world deployment in
diverse healthcare environments.

3. MATERIALS AND METHODS

This section outlines the workflow depicted in
Figure 1 for performing accurate and efficient lung
segmentation on chest X-rays, optimized for real-
time execution. Our approach centers around a
lightweight yet powerful 2D U-Net architecture,
specifically designed to minimize computational
overhead while preserving crucial segmentation
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capabilities for this modality. To enhance the
network's efficiency, we employ depth-wise
separable convolutions throughout the architecture,
significantly reducing the number of parameters
and computations suitable for potentially resource-
constrained environments. The complete workflow
involves preprocessing the input chest X-ray
images, feeding them into our lightweight 2D U-
Net built with separable convolutions, and finally,
postprocessing the resulting segmentation masks to
refine the output. More specifically, the
preprocessed images pass through the encoder path,
which captures contextual information and extracts
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Figure 1. Workflow of the proposed lightweight U-
Net with separable convolutions for real-time lung
segmentation on mobile, edge, and point-of-care
platforms.

hierarchical features using depth-wise separable
convolutions. The subsequent bottleneck layer
represents the network’s deepest stage and provides
the connection between encoder and decoder. The
decoder path then progressively upsamples the
feature maps to reconstruct spatial dimensions. The
last convolutional layer then reduces the channel
depth to match the number of target classes,
producing the final segmentation map. Finally, the
postprocessing step refines the raw segmentation
output to produce the final lung mask using binary
thresholding which converts the probabilistic map
into a binary mask by applying a threshold. The
final output of the workflow is a binary mask
accurately delineating the lung regions in the input
image. The model is trained using the binary cross-
entropy loss function to optimize performance, and
the best-performing version is selected for
predicting the segmentation masks of the test
images. The workflow illustrates an efficient and
structured approach for segmenting lung regions
from chest radiographs with the proposed
lightweight U-Net. The subsequent subsections will
elaborate on each component of this workflow,
including the network architecture tailored for 2D
X-ray data, the implementation details of the

separable convolutions within the U-Net, and the
experimental setup using chest X-ray datasets. The
complete step-by-step segmentation process is also
outlined in Algorithm 1.

3.1 Data Acquisition and Preprocessing

In this study, we employed the Chest X-ray
Masks and Labels dataset [33], publicly available
on Kaggle, to train, validate, and evaluate the
proposed lung segmentation model. The dataset
consists of paired grayscale chest radiographs
typically captured in posterior-anterior (PA) or

Algorithm 1: Lightweight U-Net with depthwise
separable convolutions for fast and accurate lung
segmentation

Input: Chest radiographs and their associated
ground truth segmentation labels

Preprocess the input images by resizing to 256 x
256 pixels and scaling their intensities in the range
[0, 1]

Divide the data into training and test subsets
Construct a lightweight 2D U-Net architecture
using depth-wise separable convolutions in both
encoder and decoder paths

Train the network with the Adam optimizer and
binary cross-entropy as the loss metric

Predict segmentation masks for the test set using
the trained model

Postprocess the predicted masks using binary
thresholding to convert the probabilistic output into
a binary lung mask

Output: Final binary masks accurately delineating
lung regions in CXR images

anterior-posterior  (AP)  views and  their
corresponding binary segmentation masks that
delineate the left and right lung regions. Each mask
highlights the lung areas using a distinct pixel
intensity (255) against a black background (0),
making them well-suited for binary segmentation
tasks. Figure 2 depicts sample chest radiographs
and their corresponding ground truth masks used
for lung segmentation.
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Figure 2. Example chest X-ray images with
corresponding lung masks

This dataset is specifically curated for supervised
learning in medical image segmentation and serves
as a widely accepted benchmark for developing and
assessing automated lung segmentation algorithms.
It plays a crucial role in enabling models to learn
accurate lung localization, which is often the first
step in computer-aided diagnosis and quantitative
pulmonary assessment from chest X-rays. Although
the dataset includes a large number of image-mask
pairs, some samples may be missing or misaligned,
necessitating manual verification and filtering to
ensure data integrity. The dataset initially includes
800 chest X-ray images and 703 corresponding
binary masks. Since 97 masks were missing, only
the 703 CXR images with valid masks were used to
maintain consistency and ensure reliable supervised
training. The images and masks are provided in
standard .png format, allowing seamless integration
with deep learning pipelines. Although the dataset
aggregates samples from open-access medical
repositories and research datasets, it provides a
substantial volume and diversity to support training
of robust and generalizable deep learning models
for lung segmentation. Manual verification and
filtering were applied during preprocessing to
ensure data integrity and alignment between image-
mask pairs.

In this study, the chosen CXR dataset underwent
a series of preprocessing steps to ensure optimal
model training and evaluation. Initially, the dataset
was partitioned into training and testing subsets,
with 80% of the images allocated for training the
model and the remaining 20% reserved for
evaluating its performance on unseen data. This
split allows for an unbiased assessment of the
model's generalization capability.

Subsequently, each chest X-ray image was
resized to a uniform spatial dimension of 512 x 512
pixels. This resizing operation serves multiple
crucial purposes. Firstly, it standardizes the input
size for the neural network, ensuring that all images
have consistent dimensions regardless of their

original acquisition parameters. This uniformity is
essential for efficient batch processing and stable
gradient calculations during training. Secondly,
resizing can help to reduce computational
complexity, especially if the original images have
very high resolutions, without significantly
sacrificing the essential anatomical information
required for lung segmentation.

Following resizing, the pixel intensity values of
all images were rescaled to the range of 0 to 1.
Medical images often have pixel intensities
spanning a wide range. Normalizing these values to
a smaller, consistent range like [0, 1] offers several
benefits for deep learning models. It helps to
prevent large intensity values from dominating the
learning process, leading to more stable and faster
convergence during training. Furthermore, it
ensures that all input features are within a similar
scale, which is generally beneficial for the
performance of gradient-based optimization
algorithms.

Finally, the training dataset was shuffled
randomly before being fed into the model during
each epoch. Shuffling is a standard practice in
machine learning that helps to break any potential
order-related biases within the dataset. By
presenting the model with a different order of
training samples in each epoch, we aim to improve
the model's ability to learn generalizable features
from the entire training distribution and prevent it
from memorizing the order of the data, thus
contributing to a more robust and less overfit
model.

3.2 Proposed Model Architecture

Our proposed efficient lung segmentation
framework leverages a 2D U-Net architecture [9] as
its foundational backbone. The U-Net has
demonstrated remarkable efficacy in various
biomedical image segmentation tasks due to its
characteristic encoder-decoder structure coupled
with skip connections. This architecture is
specifically well-suited for tasks where precise
localization and contextual understanding are
crucial. In our implementation, we aim for real-time
performance by significantly reducing the model's
computational footprint through the strategic
replacement of standard convolutional layers with
depth-wise separable convolutions.
3.2.1 Enhanced U-Net Variant

The modified U-Net architecture as shown in
Figure 3 comprises two main paths: a contracting
path (encoder) and an expansive path (decoder).

Contracting Path (Encoder): The encoder path
follows a convolutional neural network structure. It
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consists of a series of repeated blocks, where each
block contains a pair of 3x3 depth-wise separable
convolution layers, with each layer immediately
followed by batch normalization and a ReLU
activation. The number in the parenthesis after the
kernel size indicates the number of output channels
for that block. After each block, a 2x2 max-pooling
operation with a stride of 2 is applied for
downsampling the feature maps, effectively
doubling the number of feature channels while
halving the spatial dimensions. This process
progressively extracts hierarchical features from the
input image, capturing both local details and global
context.

Mathematically, let X, € R™*Wi*% be the
input to the i-th encoder block. The block performs
two convolutional operations, denoted by Conv;

_— .
2 " Encoder Block
| [DSC(2%2,32)x2] |~"" T oTTotmormmmomsees
+ MaxPool

Input CXR Image 1

512x512x1
PRIt Encoder Block
[DSC2x2, 64) x 2]
+ MaxPool

l

Encoder Block
[DSC(2x2, 128) x 2]
+ MaxPool

Decoder Block Output Layer
""""""" [Up-Conv(32) + Concat | | Conv (1xl,2)+
+DSC(2x2, 32)x 2] Softmax

and Conv,, followed by BN and ReLU activation
(0):
Fi1 = o(BN(Conv; (X))
Fi2»=o(BN(Convs(F:1)))

(1
(@)

The output of the i-th encoder block, E; = Fj», is
then passed to a max-pooling layer MaxPool for
downsampling:

Xit1 = MaxPool(E)) 3)

This downsampling continues until the bottleneck
layer is reached, where the feature maps have the
smallest spatial dimensions and the largest number
of channels, representing the most abstract features
of the input image.

i }
Decoder Block
[Up-Conv(64) + Concat
+DSC(2x2, 64) x 2]

f

‘ Decoder Block

Predicted output

[Up-Conv(128) = Concat
+DSC(2x2, 128) x 2]

I

Encoder Block Decoder Block
[DSC(2x2, 256)x 2] [--------- [Up-Conv(256) + Concat
+ MaxPool +DSC(2x2, 256) x 2]

]

Encoder Block
[DSC(2x2, 512) x 2]
+ MaxPool

Legend

DSC(k x k, C): Two consecutive depthwise separable convolution layers with a kernel size of k x & and C output

channels for the second DSC layer.

Concat: Channel-wise concatenation with the corresponding encoder feature map.
Up-Conv(C): Transposed convolution for upsampling to C channels.

Figure 3. Block diagram of the proposed lightweight U-Net architecture with separable convolutions.

Expansive Path (Decoder): The decoder path
mirrors the encoder path in reverse, gradually
reconstructing the spatial resolution of the input
image to produce a segmentation map. It consists of
a sequence of upsampling operations, typically
implemented using transposed convolutions
(deconvolutions), each of which doubles the spatial
dimensions of the feature map. After each
upsampling step, the resulting feature map is
concatenated channel-wise with the corresponding
feature map from the encoder via skip connections.

This fusion provides high-resolution spatial details
from the encoder, enabling the decoder to better
localize and refine segmented regions.

Following the concatenation, the combined
feature maps are passed through two consecutive
DSC layers, each followed by BN and ReLU
activation. These DSC layers integrate information
from both the upsampled decoder features and the
encoder's high-resolution features while reducing
the number of parameters and computational cost.
The number of output channels after concatenation
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is the sum of the channels from both sources; the
DSC layers then reduce and refine these channels to
prepare for the next decoding stage. This process is
repeated until the final output feature map matches
the input image’s spatial resolution, with the
number of output channels corresponding to the
number of segmentation classes (lung and
background).

Mathematically, let D, e REIXWIXCI; pe the
input to the j-th decoder block. First, it undergoes a
transposed convolution (ConvT) for upsampling:

Ui = Conv" (D) 4)

This wupsampled feature map U; is then
concatenated (Concat) with the corresponding
feature map E, - ; from the encoder (where n is the
total number of downsampling steps):

M; = Concat(U;,E,.) %)

Subsequently, two convolutional operations, each
followed by BN and ReLU, are applied:

Fi1 = o(BN(Convi(M;))) (6)
Fj2 = o(BN(Conva(Fj1))) (7)

The output of the j-th decoder block is
D;,- 1= F ";,-J:. This upsampling and convolution
process continues until the final layer.

Skip Connections: The skip connections are a
crucial aspect of the U-Net architecture. They
directly connect the feature maps from the encoder
path to the decoder path at the corresponding
resolution levels. This allows the decoder to recover
fine-grained details lost during the downsampling
process in the encoder, leading to more accurate and
spatially precise segmentations.

Depthwise
Convolution
(Cin independent k = k
kernels

|

Pointwize
Convolotion
(1 * 1 Conv, Cy ler
Cout )

Input Feature Map
(HxWx*Cy)

Output Feature Map
(H' =7 =% Cxr)

Figure 4. Illustration of the depthwise separable
convolution (DSC) operation

3.2.2  Depthwise Separable Convolutions

To achieve a lightweight and efficient model
suitable for real-time lung segmentation, we replace
all standard convolutional layers within the U-Net
architecture with depthwise separable convolutions
as shown in Figure 4. This factorization of the
standard  convolution operation significantly

achieves a substantial reduction in both parameter
count and computational workload.

A standard 2D convolution operates on all
channels of the input feature map simultaneously to
produce each channel of the output feature map. In
contrast, a depthwise separable convolution breaks
this process into two distinct steps: depthwise
convolution and pointwise convolution.

Depthwise  Convolution:  The  depthwise
convolution applies a single convolutional filter to
each input channel independently. Given an input
feature map X, £ REXW=L
k X k
K., € R¥***1%Cin(where each kernel of size k x
k x 1 operates on a single input channel), produces
an intermediate feature map Z € R¥'*W'*Cin The
element at position (i, j, ¢) in the output channel ¢ of
the intermediate map is computed by convolving the
c-th channel of the input feature map with the c-th
depthwise kernel:

k-1 k-1
HIHEDID)

m=0 =0

na set of C;, number of
depthwise kernels

X{i4+mj+nclKy(mnDc)

®)
The number of parameters in the depthwise
convolution layer is k x k x Cin.

Pointwise  Convolution:  The  pointwise
convolution is a standard 1x1 convolution applied
to the output of the depthwise convolution. It
linearly combines the channel outputs of the

depthwise convolution to create new features. Given
the intermediate feature map Z € RH*"W'*Cn and
a set of C,,; number of 1x1 pointwise kernels

1X 1% Cjpy X Cppe

Kuw ER in *Lou

map ¥V € RE™W™Cour i5 calculated as:
Cin—1

by

[:iJ JT" CGHI) = L‘ Z[:f"j’ C!n}' KPW[:O’OJ CIJ‘I’CGU.E}

the final output feature

Ci:;zo
©)
The number of parameters in the pointwise
convolution layeris 1 x 1 x C;, X Cour = Ciyy X Cous.

Parameter Efficiency: The total number of
parameters in a depthwise separable convolution
block is the sum of the parameters in the depthwise
and pointwise stages:

Nvepamble = Nvep = (k2 X Cin) + (Cin X Cout) (10)

The number of parameters in a standard
convolution with the same input and output channel
dimensions and kernel size is:

Nvtandard = Nvl‘d = (k2 X Cin x Cout) (1 1)

The ratio of parameters in a depthwise separable
convolution to a standard convolution is:

Nsep/ Nstd = ((k2 X Cin) + (Cin X Caut)) / (k2 X Cin X

Cour) = 1/Cou + 1/k* (12)

e ——
5934




Journal of Theoretical and Applied Information Technology ~
15" August 2025. Vol.103. No.15 N

© Little Lion Scientific

SMminl

ISSN: 1992-8645

E-ISSN: 1817-3195

For typical CNN architectures where the number
of output channels (Cout) and the kernel size (k) are
significantly larger than 1, the use of depthwise
separable convolutions leads to a substantial
reduction in the number of trainable parameters and
the associated computational cost, making the
network more efficient and potentially suitable for
real-time applications with limited computational
resources. By replacing the standard convolutions in
the U-Net with these efficient depthwise separable
convolutions, our proposed model aims to achieve a
favorable trade-off between segmentation accuracy
and computational efficiency for lung segmentation
in chest X-ray images.

3.3 Experimental Setup and Evaluation

This section outlines the experimental protocol
employed to evaluate the performance of the
proposed lightweight U-Net architecture with
depthwise separable convolutions for lung
segmentation in chest X-ray images. It details the
implementation specifics, training parameters, and
evaluation metrics.
3.3.1 Implementation Details
The implementation and experimentation of
the proposed lightweight U-Net architecture were
conducted using Python version 3.8, leveraging the
deep learning framework TensorFlow version 2.6.
All model training and evaluation processes were
accelerated using the computational resources
provided by Kaggle, specifically utilizing an
NVIDIA Tesla P100 Graphics Processing Unit
(GPU). This GPU acceleration significantly reduced
the training time required for the deep learning
model, enabling efficient experimentation and
validation within the Kaggle environment.

Network Configuration: As part of the network
configuration, encoder path consists of four
sequential EncoderBlock layers with filter sizes of
32, 64, 128, and 256, respectively. Each
EncoderBlock utilizes two consecutive
SeparableConv2D layers with a kernel size of 2x2,
ReLU activation, and 'same' padding, followed by a
Dropout layer with varying dropout rates (0.1 for
the first two encoder blocks and 0.2 for the
subsequent ones). Max-pooling with a default pool
size of 2x2 is applied after each EncoderBlock to
downsample the feature maps, except for the final
encoding layer. The bottleneck of the U-Net
consists of two SeparableConv2D layers with 512
filters, a 2x2 kernel size, ReLU activation, 'same'
padding, and a dropout rate of 0.3, without any
subsequent pooling. The decoder path mirrors the
encoder with four DecoderBlock layers, having

filter sizes of 256, 128, 64, and 32. Each
DecoderBlock upsamples the incoming feature map
using UpSampling2D and concatenates it with the
corresponding skip connection from the encoder
path. This concatenated feature map is then
processed by an EncoderBlock (without pooling)
with the specified filter size, kernel size of 2x2, and
dropout rate (0.2 for the first two decoder blocks
and 0.1 for the subsequent ones). Finally, a 1x1
Conv2D layer with a sigmoid activation function
and 'same' padding is used to credte the final
segmentation output with a single channel
representing the probability of each pixel belonging
to the lung class.

Loss Function and Optimization: The model
was trained using the binary cross-entropy (BCE)
loss function. BCE is a standard loss function for
binary classification tasks, such as segmenting the
lungs (positive class) from the background (negative
class). This metric assesses the pixel-level
discrepancy between the predicted probability
outputs and the actual binary labels.
Mathematically, for a single pixel i with true label
¥; €{0,1} and predicted probability p; € [0,1],
the binary cross-entropy loss Lpcr is calculated as:
Lpce (vi, pi) = - (vilog (pi) + (1- y)log(1-p)) ~ (13)

While the primary loss function used for
optimization was binary cross-entropy, the Dice
coefficient loss (dice coef loss) was also used as a
metric during training. Because it’s based on the
Dice similarity coefficient, the Dice loss directly
reflects the overlap between predicted and actual
segmentation masks. Minimizing the Dice loss
effectively maximizes the Dice coefficient,
providing a training signal that is directly aligned
with the desired segmentation performance.

The network was optimized with the Adam
algorithm using its default learning rate settings in
TensorFlow 2.6. As an adaptive optimizer, Adam
computes separate learning rates for each model
parameter, often leading to faster convergence and
good performance. The model was trained with
batches of 16 samples. The batch size specifies how
many samples the model processes before each
weight update. A batch size of 16 represents a trade-
off between computational efficiency and reliable
gradient estimation. Training was conducted for 100
epochs in total. The epoch count was determined to
provide sufficient training iterations for the model
to discover key patterns and converge on optimal
weights for lung segmentation. The training
progress was monitored using the defined loss
function and evaluation metrics, potentially with
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early stopping to prevent overfitting and optimize
the training duration.
3.3.2  Assessment Criteria

The performance of the proposed Ilung
segmentation model was quantitatively evaluated
using a comprehensive set of metrics, including the
dice similarity coefficient (DSC), intersection over
union (IoU), accuracy, precision, and recall. These
metrics were chosen to provide a comprehensive
assessment of the model's ability to accurately
delineate the lung regions in chest X-ray images.
The DSC measures how much the predicted
segmentation overlaps with the ground truth mask.
It is especially useful in medical imaging tasks
where class imbalance is common, as it gives more
importance to correctly segmented regions. A
higher dice score indicates better agreement
between the predicted and actual lung regions. IoU
also known as the Jaccard Index, measures the
proportion of overlap between the predicted and
true segmentation regions relative to their total
combined area. It is a strict measure of
segmentation accuracy and is useful for comparing
performance across different models. Again, a
higher IoU is better. Accuracy represents the
fraction of pixels correctly labeled as either lung or
background. While it provides an overall sense of
model performance, it can be misleading in
imbalanced datasets where background pixels
dominate. Precision indicates how many of the
predicted lung pixels actually belong to the lung
region, while recall reflects how many of the true
lung pixels were correctly identified by the model.
These metrics are especially important when
assessing the clinical reliability of the segmentation
model, ensuring it avoids both over-segmentation
(false positives) and under-segmentation (false
negatives). Together, these metrics offer a robust
and well-rounded evaluation of the model’s

segmentation performance, supporting both

technical assessment and potential clinical
applicability.
3.3.3 Evaluation Procedure

The trained lightweight U-Net model was
evaluated on the held-out test dataset, which
comprised 20% of the initially split data and
contained images the model had never seen during
training. For each test image, the model produced a
probability map showing how likely each pixel
belongs to the lung region. We then binarized this
probability map into a segmentation mask by
applying a fixed threshold of 0.5.

After producing binary masks for all test images,
we computed the evaluation metrics by comparing
these predictions to the dataset’s ground truth

masks. These metrics were computed on a per-
image basis, and the reported results represent the
average of these metrics across the entire test set.
This procedure yields quantitative metrics that
reflect the model’s generalization to new data and
its precision in segmenting lung regions on chest X-
rays.

4. RESULTS ANALYSIS

This section presents a comprehensive analysis
of the lung segmentation performance achieved by
the proposed lightweight U-Net architecture with
depthwise separable convolutions. The quantitative
evaluation of our model was conducted using key
metrics including the DSC, IoU, accuracy,
precision, and recall, calculated on the held-out test
dataset. To provide a visual understanding of the
segmentation quality, we present qualitative
comparisons between the predicted segmentation
masks and the corresponding ground truth
annotations. Furthermore, we illustrate the training
progress of our model through a qualitative
visualization of predicted masks on a sample test
image at various training epochs. Furthermore, the
proposed model’s performance was benchmarked
against results reported in existing literature to
assess its relative strength and generalizability.

4.1 Evaluation of Lung Segmentation

Performance

In this section, we report the quantitative
evaluation results of our lightweight U-Net on the
chest X-ray dataset. We assessed the model's
segmentation capabilities using standard
performance metrics, across training, validation, and
held-out test datasets. Table 1 provides a summary
of the results for each dataset.

Table 1. Quantitative performance of the proposed
segmentation model

Performance Metric

Data Acc | Dice | IoU | Prec | Rec

(%) | (%) | () | (%) | (%)
Training 98.89 | 93.88 | 86.44 | 94.09 | 93.38
Validation | 97.78 | 92.70 | 81.64 | 90.79 | 88.38
Test 97.12 | 91.92 | 82.75 | 92.64 | 90.31
The proposed model achieved a strong
performance on the unseen test dataset. The

accuracy of 97.12% indicates a high pixel-level
classification rate, with the model correctly
identifying the majority of pixels as either lung or
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background. With a Dice coefficient of 91.92%, the
predicted lung segmentation closely matches the
ground truth annotations, highlighting precise
volumetric segmentation. Similarly, the IoU of
82.75% further corroborates the significant spatial
agreement between the predicted and actual lung
masks. In terms of error types, the precision of
92.64% suggests that when the model predicted a
pixel as belonging to the lung, it was correct a high
percentage of the time, indicating a low rate of false
positives. On the other hand, the recall of 90.31%
indicates that the model successfully identified a
large proportion of the actual lung pixels,
suggesting a low rate of false negatives.

Overall, the performance metrics were generally
consistent across the training, validation, and test
datasets, suggesting good generalization of the
model. A slightly higher performance on the
training set is expected as the model has been
directly optimized on this data. The validation set
performance, which is used for hyperparameter
tuning and early stopping, shows a minor decrease
compared to the training set, indicating a good
balance between learning and generalization.
Although performance on the test set is marginally
lower than on the validation set, it still confirms the
proposed lightweight U-Net’s robustness and
effectiveness for lung segmentation. These results
confirm that the proposed lightweight U-Net model
with depthwise separable convolutions is capable of
achieving high segmentation accuracy while

recall across different data splits. The consistently
high Dice and IoU scores across all datasets
highlight the model's ability to accurately capture
the shape and location of the lungs.

Figure 5(a) illustrates the training loss curves for
Binary Cross-Entropy (BCE) loss and Dice loss
over 100 training epochs. Both loss functions show
a consistent downward trend, indicating successful
convergence of the model during training. During
the initial training phase (epochs 0-20), both loss
curves drop sharply, indicating the model’s rapid
acquisition of basic lung region features. The BCE
loss starts slightly lower and decreases more
steadily compared to the Dice loss, which begins
higher but catches up as training progresses. This
behavior is expected since Dice loss is more
sensitive to class imbalance and segmentation
overlap, often taking longer to stabilize in the early
training stages. From epoch 20 onward, both loss
curves flatten gradually, showing continued but
slower improvement. By epoch 60 and beyond, the
losses reach near-convergence, with values
stabilizing below 0.1, suggesting the model has
learned to generalize well on the training data. The
smooth and consistent decline in both loss curves,
without abrupt spikes or fluctuations, also indicates
the absence of overfitting, and confirms the stability
of the training process. The fact that both loss
curves converge to relatively low values indicates
that the model has achieved a good fit to the training
data with respect to both pixel-wise classification

maintaining a strong balance between precision and  (BCE) and region overlap (Dice).
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Figure 5. Training dynamics of the proposed model. (a) Convergence of the Binary Cross-Entropy and Dice
loss. (b) Improvement and plateauing of the Dice Coefficient and IoU during training

In parallel, the performance curves (Figure 5(b))
demonstrate a steadily improving trend for both
Dice coefficient and ToU throughout the training
process. After an initial adjustment period during
the first few epochs, both metrics increase rapidly,
with the Dice coefficient surpassing 0.8 by around
epoch 30 and plateauing near 0.92 by the end of
training. The IoU follows a similar pattern, reaching
approximately 0.83 at epoch 100. The Dice
coefficient consistently remains higher than IoU,
which aligns with expectations, as Dice is a more
lenient overlap metric compared to the stricter loU
measure. Together, these visualizations provide
strong evidence of the model’s stable convergence,
effective feature learning, and robust segmentation
capability.

In addition to the training curves, we also
tracked model performance on the validation set to
ensure robust generalization. Figure 5(d) presents
the corresponding Dice loss curves where after an
initial transient phase, both training and validation
losses decline in near lockstep, falling below 0.10
by epoch 80 and remaining stable thereafter. The
minimal gap between training and validation loss
throughout confirms that the proposed lightweight
U-Net achieves strong, stable convergence and
effective  regularization for real-time lung
segmentation. Likewise, as shown in Figure 5(c),
the Dice coefficient for both training and validation
rises steeply during the first 20 epochs when the
model rapidly learns the coarse lung structures and
then gradually plateaus, with both curves
converging around 0.92 by epoch 100. The close
alignment of the two curves, with only minor
validation fluctuations, indicates that the model is
not overfitting and maintains consistent boundary
delineation on unseen data.

4.2 Qualitative Visualization of Training

Progress

To gain deeper insight into the learning
behavior of the proposed model, we qualitatively
analyzed the evolution of segmentation performance
over the course of training. A fixed input test image
was selected, and the predicted segmentation masks
generated by the model at different training epochs,
specifically at epoch 20, 40, 60, and 80, were
visually compared with the ground truth mask.
Figure 6 presents the input chest X-ray image
alongside the ground truth and the predicted masks
at the specified epochs. As observed, the initial
predictions (e.g., at epoch 20) tend to be coarse,
with incomplete lung boundaries and occasional
misclassifications in the background. By epoch 40,
the model demonstrates significantly improved
spatial awareness, capturing the general shape of the
lungs with reduced noise.

Further refinement is evident at epochs 60 and
80, where the segmentation becomes more precise,
particularly around the lung contours. By the end of
the training, the predicted mask closely aligns with
the ground truth, showing minimal false positives or
false negatives, and effectively capturing the
anatomical structure of the lungs. This progressive
enhancement in mask quality illustrates the model’s
incremental learning and ability to generalize
meaningful features over time. Visualization not
only supports the quantitative findings but also
provides a visual confirmation of convergence and
stability in the model’s predictions. It also
highlights the importance of sufficient training
duration for deep learning-based medical image
segmentation tasks.
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Figure 6. Visual progression of lung segmentation
masks predicted at different training epochs on a
fixed chest X-ray test image. Each row displays: (1)
the original test image, (2) the corresponding
ground truth mask, and (3) predicted segmentation
masks.

4.3 Pixel-Level Difference Analysis

To assess segmentation quality more closely,
we conducted a pixel-by-pixel comparison of the
predicted lung masks against the ground truth
annotations for three representative chest X-rays.
Figure 7 shows the difference maps, with white
regions indicating correctly segmented lung areas

(true positives, TP), red regions representing non-
Difference Map Segmented Lung

Figure 7. Pixel-level difference maps between ground truth and predicted masks for three CXR images,
Difference map (White = TP, Red = FP, Blue = FN).

lung areas incorrectly predicted as lung (false
positives, FP), and blue regions indicating lung
areas missed by the model (false negatives, FN).
The segmented lung regions were successfully
obtained for all three cases, demonstrating the
model’s ability to generalize across varying
anatomical appearances. In the first case, the model
shows excellent overlap with the ground truth, with
minor false positives near the apex and small false

negatives near the diaphragm, suggesting strong
core lung structure capture. The second example
demonstrates a slight increase in boundary
misclassifications, where under-segmentation is
evident along the lung bases (blue) and marginal
over-segmentation occurs near the lung periphery
(red). In the third case, while the central lung
regions are well predicted, noticeable red and blue
patterns appear along the lateral and lower edges,
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reflecting boundary-related segmentation errors.
These qualitative difference maps provide valuable
insight into the model’s learning behavior and
indicate that while the core lung regions are
consistently well segmented, further refinement near
anatomical boundaries could enhance performance.
Overall, the successful segmentation across all
examples underscores the robustness of the
proposed lightweight U-Net model.

4.4 Ablation Study

To validate the efficiency of our proposed
lightweight U-Net architecture with depthwise
separable convolutions, we quantitatively evaluated
its parameter count and inference time and
conducted an ablation study to isolate the impact of
separable convolutions. These metrics are critical
for real-time medical imaging applications where
computational resources and processing speed are
often constrained. Our proposed architecture
significantly reduces the computational burden
compared to standard convolutional networks.

The total number of trainable parameters in our
lightweight U-Net was significantly reduced
compared to a standard U-Net with conventional
convolutional layers. By replacing the standard
convolutions with depthwise separable
convolutions, we achieved a substantial decrease in
the number of parameters without a significant
compromise in segmentation accuracy. Specifically,
our model contains approximately 905K trainable
parameters, which is substantially fewer than
traditional U-Net and its residual variants (e.g.,
~31M for wvanilla U-Net). The adoption of
depthwise separable convolutions allows the model
to decouple spatial and channel-wise computations,
leading to a marked reduction in parameter count
and memory footprint.

The inference time of our lightweight U-Net was
measured on a test system equipped with an
NVIDIA Tesla P100 GPU. For a single CXR image
of size 512x512 pixels, our model achieved an
average inference time of approximately 15
milliseconds. This demonstrates the potential for
real-time or near real-time lung segmentation,
which is crucial for clinical workflows and
interactive analysis. In contrast, the inference time
for a standard U-Net on the same hardware and
input size was approximately 45 milliseconds. The
improved inference speed is attributed to the
reduced computational complexity of the separable
convolutions.

Moreover, the reduced model complexity
translates to faster training and lower power
consumption, making it ideal for edge computing

and mobile healthcare applications. This balance
between high segmentation performance and
computational efficiency highlights the strength of
our proposed design in real-world, resource-
constrained environments.

4.5 Discussion

Our experiments demonstrate that the proposed
lightweight ~ U-Net  architecture, employing
depthwise  separable convolutions, achieves
effective lung segmentation in CXR images. The
model consistently demonstrated high segmentation
performance across training, validation, and test
datasets, maintaining stable Dice and IoU metrics
throughout 100 epochs. Visualization of the
learning curves showed effective convergence with
minimal overfitting, confirming the robustness of
our architecture. On the test set, the model achieved
a DSC of 91.92%, an IoU of 82.75%, and an
accuracy of 97.12%, demonstrating substantial
overlap between predicted and reference lung
regions. Additionally, qualitative analysis of
segmentation outputs revealed close agreement
between predicted masks and their ground truth
counterparts. Notably, the model achieves this
performance with a significantly reduced number of
parameters (905K) and a faster inference time of
approximately 15 milliseconds, outperforming
standard U-Net architectures in both efficiency and
speed. This confirms our hypothesis that depthwise
separable convolutions can be effectively utilized to

create a more efficient network for lung
segmentation.
Despite high overall accuracy, a detailed

comparison of prediction masks and ground truth
revealed minor discrepancies, particularly around
the lung periphery and near regions with anatomical
ambiguity or radiographic artifacts. This is shown
in Figure 7 (difference map), where blue regions in
the figure indicate areas where the model under-
segmented the lung boundary. These errors were
more evident in complex images where the lung
boundaries were obscured or deformed, suggesting
that the model could still benefit from incorporating
anatomical constraints or structural guidance.
Moreover, the model occasionally fails to accurately
segment very small nodules or other abnormalities
within the lung parenchyma. This could be
attributed to the limited spatial resolution of the
network or the relatively small number of training
examples containing such abnormalities.
4.5.1 Comparative analysis

The proposed lightweight U-Net architecture
demonstrates a high level of effectiveness in lung
segmentation, delivering 97.12% accuracy, a
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91.92% Dice score, and an 82.75% IoU. As
summarized in Table 2, our model demonstrates
notably stronger results compared to other state-of-
the-art segmentation methods.

Khomduean et al. [24] employed a 3D-UNet
integrated  with  DenseNet169, a complex
architecture designed to leverage both spatial and
feature-level information, for the segmentation of
lung lobes and lesions in COVID-19 patients. Their
reported Dice score of 91.52% for lung lobe
segmentation is very close to our model's Dice
score. However, their study also tackled the more
challenging task of segmenting lung lesions,
achieving a lower Dice score of 76.89% for that
specific task. This underscores the difficulty in
accurately delineating pathological regions, which
often exhibit irregular shapes and fuzzy boundaries.
In contrast, our model, while trained on a different
dataset (Chest X-ray masks and labels),
demonstrates robust performance in segmenting the

overall lung region. Alshmrani et al. [36] utilized a
Hyper-Dense VGG16 U-Net on the STS PET-CT
dataset and reported a high accuracy of 98.10%.
However, their Dice (73.01%) and IoU (58.70%)
values are considerably lower than those of our
model, suggesting that while their method exhibits
high pixel-level classification accuracy, the
segmentation masks generated have lower
agreement with the ground truth boundaries
compared to our results. This indicates that our
model provides more precise segmentation.

Cai et al. [23]’s Pix2Pix GAN highlights the
power of adversarial training for 2D CT slices,
achieving an 87.05% Dice and 78.60% loU, but at
the expense of longer training times and the need
for careful GAN tuning. These values are also lower
than the performance metrics achieved by our
lightweight U-Net, further supporting the
effectiveness of our proposed architecture.

Table 2. Comparative performance analysis of lung segmentation methods

Authors Model Dataset Performance Evaluation
Khomduean | 3D-UNet integrated | 124 COVID-19 patients from | Dice (lung lobes): 91.52%; Dice (lung
et al. [24] with DenseNet169 Chulabhorn  Hospital (28 lesions): 76.89%

without lung lesions, 96 with
lesions)

Alshmrani et

Hyper-Dense

STS PET-CT (3063 slices)

Accuracy: 98.10%; Dice: 73.01%;

al. [36] VGGl6 U-Net Precision: 58.70%; Recall: 67.47%
(Multimodal)
Cai et al. | Pix2Pix 237 lung CT images Accuracy: 83.50%; Dice: 87.05%;
[23] Precision: 78.60%
Reamaroon Total Variation- | Michigan Medicine dataset Dice: 86.04%
etal. [25] based Active
Contour (TVAC)
Wang et al. | 3D Convolutional | A dataset from a private Dice: 83.0%
[26] Neural Network clinic containing 290 paired
CT and PET scans.
Park et al. | Global U-Net A private dataset consisting Dice: 80.0%; Recall: 86.2%
[27] of clinical data from 887 lung
cancer patients.
Zhou et al. | Multitask connected | Multiple datasets of CT and Dice: 56.0%
[28] U-Net PET modalities
Xiang et al. | Modality-specific 126 FDG PET-CT scans Dice: 77.72%; 1oU: 66.26%; Precision:
[29] segmentation 82.55%; Recall: 79.63%
network (MoSNet)

Fu et al. [30]

Multimodal spatial
attention module
(MSAM)

Clinical PET-CT data from
two cohorts: non-small cell
lung cancer (NSCLC) and
soft tissue sarcoma (STS)

Dice: 71.40%; IoU: 59.93%; Precision:
79.89%; Recall: 72.05%

Kaggle’s Chest X-ray dataset
with accompanying masks

Proposed Lightweight U-Net
method with Separable
Convolutions and labels.

Accuracy: 97.12%; Dice: 91.92%; IoU:
82.75%; Precision: 92.64%; Recall:
90.31%
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Classical and mid-range CNN approaches such
as the Total Variation-based Active Contour
(TVAC) of Reamaroon et al. [25] and Wang et al.
[26]’s plain 3D CNN produce decent Dice scores
(86.04% and 83.0%, respectively) but lack the
feature-reuse and multi-scale mechanisms that
modern encoder—decoder networks provide. The 3D
CNN approach captures spatial context, which is
important for medical image analysis, but our 2D
lightweight U-Net, with its efficient separable
convolutions, achieves better performance with
fewer parameters. Park et al. [27]’s Global U-Net
and Zhou et al. [28]’s multitask connected U-Net
illustrate that simply adding global context or
multiple decoders does not guarantee consistent
segmentation quality, yielding Dice scores of 80.0%
and 56.0%. More specialized fusion strategies like
Xiang et al. [29]’s MoSNet and Fu et al. [30]’s
MSAM, which integrate modality-specific features
or spatial attention for PET-CT inputs, improve
lesion delineation (Dice of 77.72% and 71.40%) but
introduce substantial architectural complexity and
computational overhead.

Notably, our model demonstrates a superior
balance between precision (92.64%) and recall
(90.31%). A high precision score reflects a low
false-positive rate (i.e., the model avoids marking
background as lung), whereas high recall reflects a
low false-negative rate (i.e., it captures nearly all
lung regions). This balance is crucial for clinical
applications, where both false positives and false
negatives can have significant consequences.
Importantly, it does so with just 905K parameters
and an inference time of ~15 ms per image on a
Tesla P100 GPU. This represents a substantial
reduction in model size and a speedup relative to
standard U-Net and 3D multimodal counterparts.
Such efficiency makes our approach uniquely suited
for real-time clinical applications, including bedside
triage and integration into low-power imaging
devices, without sacrificing segmentation reliability.
4.5.2  Clinical significance

Accurate and efficient lung segmentation holds
significant potential to improve clinical workflows
and patient care. The proposed lightweight U-Net
architecture offers several advantages that could
translate to tangible clinical benefits. Accurate and
rapid delineation of lung fields is a critical first step
in a wide range of downstream diagnostic and
therapeutic workflows from automated nodule
detection and volumetric quantification to
image-guided interventions and disease monitoring.
Our lightweight U-Net with separable convolutions
delivers very fast segmentation on standard CXR
images, enabling near real-time support in

high-throughput environments such as emergency
departments or mobile screening units. By reducing
the need for manual contouring, the model can
substantially decrease radiologist workload and
inter-observer variability, particularly in
mass-screening scenarios for  pneumonia,
tuberculosis, or COVID-19. Furthermore, its
compact size and low hardware requirements
facilitate deployment on point-of-care systems and
resource-limited settings where access to expert
readers and high-end GPUs is often constrained.
Ultimately, integrating our model into clinical
PACS or portable imaging devices promises to

accelerate  patient triage, standardize lung
segmentation across institutions, and unlock
downstream Al pipelines (e.g., densitometry,

texture analysis, nodule classification) that depend
on reliable lung masks. This could translate into
faster diagnosis, more timely treatment decisions,
and, ultimately, improved patient outcomes.

The model's high segmentation accuracy can
enable clinicians to more precisely delineate lung
regions of interest, facilitating the identification and
quantification of abnormalities, which can lead to
earlier and more accurate diagnoses of various
pulmonary diseases, including pneumonia, COPD,
and lung cancer. The fast inference time of our
model can also expedite the diagnostic process,
allowing for quicker clinical decision-making. For
applications like radiation therapy, where targeting
tumors while preserving healthy tissue is crucial,
precise lung segmentation provides the necessary
accuracy in delineating lung and tumor volumes.
Our model's efficiency could support the integration
of automated segmentation into the treatment
planning workflow, potentially leading to more
personalized and effective treatments. Furthermore,
quantitative analysis of lung morphology and
function, enabled by accurate segmentation, can
yield valuable information on how diseases evolve
and respond to therapy. For example, our model
could be used to measure changes in lung volume,
density, or lesion size over time, aiding in the
monitoring of patients with chronic lung diseases or
those undergoing treatment.

Manual lung segmentation is a time-consuming
and labor-intensive task, often performed by
radiologists, so automating this process with our
lightweight U-Net can significantly reduce the
workload on clinicians, freeing up their time for
other critical tasks and leading to improved
efficiency in radiology departments and reduced
healthcare costs. The low  computational
requirements of our model make it suitable for
deployment in resource-limited settings with less
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powerful hardware, which could expand access to
advanced image analysis tools in underserved
populations, improving healthcare equity. The
accurate and fast segmentation provided by our
model can also serve as a crucial preprocessing step
for other Al-powered tools, such as computer-aided
diagnosis (CAD) systems that detect lung nodules
or classify disease patterns. In conclusion, the
lightweight U-Net has the potential to be a valuable
tool for radiologists and other healthcare
professionals, leading to improved diagnostic
accuracy, more effective treatment planning, and
enhanced patient care.

4.6 Critical Evaluation and Comparison with

Prior Work

While the proposed lightweight U-Net with
separable convolutions has demonstrated high
segmentation accuracy and efficiency, a critical
assessment reveals several aspects that merit further
reflection.
4.6.1 Strengths and contributions

The model achieves competitive performance
(97.12% Accuracy, 91.92% Dice score and 82.75%
IoU) with only 905K parameters and an average
inference time of 15 ms. Compared to traditional U-
Net and several recent CNN and GAN-based
models, it provides a favorable trade-off between
accuracy and efficiency. This is particularly
beneficial for real-time clinical applications and
deployment on edge devices.
4.6.2 Limitations and areas for improvement

While the proposed model delivers high
segmentation accuracy with a significantly reduced
parameter count, it has some limitations. It
occasionally struggles to delineate lung boundaries
where overlapping anatomical structures, such as
the heart or clavicles, are present. Additionally,
since the model was trained on mostly normal or
mildly abnormal CXRs, its performance on severe
pathologies like pneumothorax or fibrosis remains
untested. The model also shows reduced sensitivity
to small nodules or lesions, likely due to resolution
loss during downsampling. Furthermore, being
trained on single-modality (CXR) data, it lacks the
complementary context that multimodal approaches
could offer. These areas represent key opportunities
for further enhancement.
4.6.3 Differentiation from prior work

The proposed model distinguishes itself from
prior works by achieving a strong balance between
segmentation  accuracy and  computational
efficiency, making it particularly well-suited for
real-time clinical deployment. Unlike conventional
U-Net architectures and their advanced variants that

rely on heavy-weight components such as dense
blocks, attention modules, or transformer layers, our
model uses depthwise separable convolutions to
significantly reduce computational load without
compromising segmentation quality. In comparison
to models like CXR-Seg [27], which integrates
complex attention and transformer modules and
achieves marginally higher Dice scores, our
approach offers faster inference and a more
lightweight  structure that facilitates edge
deployment. Similarly, while adversarial training
methods such as the Pix2Pix GAN [23] have
demonstrated  promising  results for lung
segmentation, they require careful hyperparameter
tuning and prolonged training times, limiting their
practicality in clinical workflows. Other models like
CT-LungNet [24] and MoSNet [29] have explored
multi-modality integration (e.g., CT and PET),
achieving good accuracy, but their complexity and
resource requirements hinder their use in low-power
or mobile devices. Our model's simplicity, fast
inference (~15 ms per image), and low parameter
count (~905K) offer a practical advantage,
particularly in resource-constrained settings where
rapid triage or automated preprocessing is critical.
4.6.4  Threats to validity and evaluation
justification

While the proposed model demonstrates strong
performance, certain threats to validity must be
acknowledged. The experiments were conducted on
a single publicly available dataset, which, although
widely used and well-annotated, may not fully
represent the diversity of clinical imaging
conditions across institutions or patient populations.
This may limit the external wvalidity and
generalizability of the results. Internal validity could
also be influenced by factors such as annotation
noise or image artifacts within the dataset. To
ensure a robust and fair evaluation, we selected
widely accepted performance metrics such as Dice
coefficient, Intersection over Union (IoU),
precision, recall, and accuracy. These metrics
provide complementary perspectives: Dice and IoU
measure the spatial overlap between predicted and
ground truth masks, while precision and recall help
quantify false positives and false negatives, which
are clinically significant. Accuracy, although
included, was interpreted with caution due to class
imbalance. These criteria were chosen based on
their prevalence in medical image segmentation
literature and their relevance for assessing both
technical performance and clinical applicability.
Overall, while the results are consistent across data
splits and supported by both quantitative and
qualitative analysis, further validation on multi-
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institutional and cross-modality datasets is essential
to confirm  real-world  robustness and
generalizability.
4.6.5 Future challenges and directions

To enhance the practical utility of our model,
future work will focus on improving its
generalizability across diverse clinical
environments. This includes validating performance
on multi-institutional datasets and exploring cross-
modality scenarios, such as PET-CT, to test
robustness under varied imaging conditions.
Incorporating lightweight attention or transformer
modules may further improve boundary delineation
by capturing long-range spatial dependencies.
Additionally, integrating uncertainty estimation
techniques can help flag low-confidence
segmentations for manual review, thereby
increasing clinical trust. To support deployment on
resource-constrained hardware, we will investigate
model compression techniques such as quantization
and pruning. Finally, we aim to extend the model’s
functionality by coupling lung segmentation with
downstream tasks like nodule detection, radiomic
feature extraction, and disease classification,
ultimately creating a fully integrated, real-time
decision-support system.

5. CONCLUSIONS

In this paper, we introduced a compact U-Net
variant that integrates depthwise separable
convolutions to achieve efficient and accurate
segmentation of lung regions in chest X-rays,
specifically designed for deployment on resource-
limited platforms. By replacing standard
convolutional layers with separable blocks, our
model reduces the parameter count to just 905 K
and processes each image in approximately 15
milliseconds on a Tesla P100 GPU, all while
delivering state-of-the-art performance (97.12%

accuracy, 91.92% Dice, 82.75% IoU, 92.64%
precision, and 90.31%  recall). Extensive
quantitative and qualitative evaluations

demonstrated its robustness across a variety of lung
appearances and pathologies, outperforming or
matching much larger 2D, 3D, and multimodal
segmentation networks. The proposed method’s
effectiveness was validated using experiments on
the Chest X-ray Masks and Labels dataset from

Kaggle.
From the authors’ perspective, this work
highlights how architectural simplicity, when

combined with strategic convolutional design, can
lead to highly efficient models without
compromising performance. We Dbelieve this
direction is critical for enabling widespread Al

adoption in real-world healthcare settings,
particularly in under-resourced environments. At the
same time, developing this model also revealed
challenges that remain unsolved, especially in
generalizing to rare pathologies or difficult
boundary cases. These limitations emphasize the
need for further exploration into attention
mechanisms, uncertainty quantification, and
deployment-oriented optimizations. Overall, we are
confident that the proposed lightweight U-Net forms
a strong foundation for practical, scalable, and
accessible Al-driven lung segmentation and can be
extended toward broader clinical applications in the
near future.
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