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ABSTRACT 

 
Accurate and efficient segmentation of the lung regions is indispensable for detecting and managing 
pulmonary diseases, as it allows clinicians to identify abnormalities and plan effective intervention 
strategies. However, the high computational demands of many existing segmentation models pose a 
significant challenge, particularly for deployment in resource-constrained environments such as mobile, 
edge platforms, and point-of-care devices. Lung segmentation is further challenged by wide anatomical 
variability and imaging artifacts, which existing models often struggle to handle without access to large-
scale hardware. This study addresses this limitation by introducing a lightweight U-Net architecture that 
integrates depthwise separable convolutions to reduce computational complexity while preserving 
segmentation accuracy. By replacing standard convolutional layers, the model achieves faster inference and 
significantly lower parameter counts, making it well-suited for IT applications in embedded systems and 
clinical informatics. The model was evaluated on the publicly available Pulmonary Chest X-Ray Defect 
Detection dataset from Kaggle, demonstrating its effectiveness in segmenting lung regions. The 
performance evaluation shows that our model delivers outstanding results, attaining a Dice score of 
91.92%, a Jaccard index of 82.75%, precision of 92.64%, recall of 90.31%, and accuracy of 97.12% on the 
test dataset. These results highlight that the lightweight U-Net achieves state-of-the-art segmentation 
accuracy with significantly reduced computational overhead, making it ideal IT solution for real-time use in 
clinical workflows and deployment on limited-resource devices. 

Keywords: Lung Segmentation, Depthwise Separable Convolutions, Lightweight U-Net, Chest X-ray 
Analysis, Real-Time Inference 

 
1. INTRODUCTION  
 

This Lung cancer poses a major challenge to 
global health. In the United States, lung cancer 
ranks third in incidence but is the top cause of 
cancer-related deaths among both males and 
females. According to the American Cancer 
Society, approximately 226,650 new lung cancer 
cases are expected in the U.S. in 2025 (110,680 in 
males and 115,970 in females), with about 124,730 
deaths (64,190 among males and 60,540 among 
females). Lung cancer represents about 11% of all 
new cancer diagnoses and accounts for 20% of 
cancer-related deaths [1]. According to the SEER 
database, in 2023, there were 226,650 new cases of 
lung cancer, and 124,730 deaths. The 5-year 
survival rate between 2015 and 2021 is 28.1% [2]. 
According to another study, respiratory illnesses 
such as bronchiolitis, bronchitis, 

bronchopneumonia, interstitial pneumonia, lobar 
pneumonia, and pneumothorax rank among the 
leading causes of pediatric mortality in many 
countries [3]. 

Medical imaging is vital in contemporary 
healthcare, providing key insights for diagnosis, 
treatment planning, and monitoring disease 
progression. Chest radiography, in particular, is one 
of the most commonly performed radiological 
examinations due to its low cost, wide availability, 
and relatively low radiation dose [4]. Chest X-rays 
aid in diagnosing numerous lung disorders, such as 
pneumonia, tuberculosis, lung cancer, and other 
respiratory ailments. However, the manual analysis 
of chest X-ray images is time-consuming and 
subjective, leading to potential inter-observer 
variability and diagnostic delays. Computer-aided 
diagnosis (CAD) systems have been developed to 
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assist radiologists in interpreting medical images, 
improving the accuracy and efficiency of diagnosis. 
A fundamental step in many CAD systems is the 
accurate segmentation of the lung fields, which 
provides the anatomical context for further analysis 
[5]. It is an essential precursor to numerous 
downstream clinical tasks ranging from automated 
nodule detection and disease quantification to 
radiotherapy planning and longitudinal monitoring 
of pulmonary conditions. In resource‐constrained or 
high‐throughput settings such as emergency 
departments and portable screening stations, manual 
delineation of lung boundaries is time‐consuming, 
subject to inter-observer variability, and often 
impractical. Thus, accurate and efficient lung region 
segmentation has become indispensable for 
effective diagnosis and treatment planning of 
pulmonary diseases. Effective lung segmentation 
enables physicians to identify abnormalities, 
quantify disease severity, and plan interventions 
with greater precision. However, the task presents 
several challenges due to the inherent variability in 
lung shapes and sizes, the presence of low contrast, 
pathological regions, and various imaging artifacts 
that can obscure lung boundaries [6]. 

Early traditional image‐processing techniques 
such as global or adaptive thresholding, region 
growing, active contours, and edge detection 
offered computationally light solutions but 
repeatedly faltered when faced with low contrast, 
overlapping anatomy, or pathological abnormalities 
[7]. Classical machine‐learning approaches (e.g., 
support vector machines or random forests 
operating on handcrafted features) improved 
robustness somewhat but remained limited by the 
representational capacity of hand‐designed 
descriptors [8]. 

The advent of deep convolutional neural 
networks (CNNs) revolutionized medical image 
segmentation. U-Net, introduced by Ronneberger et 
al. [9], combined an encoder-decoder topology with 
skip-connections to simultaneously capture global 
context and fine spatial detail, rapidly becoming a 
de facto standard. Subsequent variants including 
SegNet [10], residual and dense U-Nets [11], 
attention‐augmented architectures [12] and 
multiscale fusion models [13] have each pushed the 
state of the art in segmentation accuracy, achieving 
Dice scores often above 90 % on benchmark tasks. 
However, these gains come at the cost of 
ever‐increasing model size (tens of millions of 
parameters) and longer inference times, which 
impede real‐time deployment and use on edge or 
mobile devices. 

Despite the advancements in medical image 
analysis, accurate and efficient lung segmentation 
remains a challenging problem. As seen, traditional 
image processing techniques often struggle with the 
inherent variability in lung shapes and sizes, the 
presence of low contrast, pathological regions, and 
various imaging artifacts that can obscure lung 
boundaries. This trade-off between segmentation 
reliability and computational efficiency constitutes 
our central research problem. How can we preserve 
the high accuracy of modern CNN‐based methods 
while drastically reducing model size and latency? 
Depthwise separable convolutions, initially made 
popular in Xception [14], present a promising 
approach. They work by breaking down standard 
convolutions into more manageable depthwise and 
pointwise operations, which significantly reduces 
the number of parameters and FLOPs (floating 
point operations), while largely preserving the 
model's ability to accurately represent data. In this 
paper, we address this need by proposing a novel 
lightweight U-Net architecture that integrates 
separable convolutional neural networks to achieve 
efficient and accurate lung field segmentation in 
chest X-ray images. From an IT perspective, the 
significance of this work lies in its ability to bridge 
the gap between high-accuracy medical image 
segmentation and practical deployment on real-
world IT systems. Traditional deep learning models 
often assume access to extensive computational 
resources, which is unrealistic for embedded 
healthcare platforms, mobile diagnostics, and low-
power edge devices. By designing a compact, fast, 
and accurate segmentation model, we contribute to 
the growing field of intelligent medical imaging 
within IT infrastructure, supporting scalable and 
cost-effective solutions for clinical workflows. The 
model’s lightweight architecture enables integration 
into hospital PACS (picture‐archiving and 
communications systems), mobile applications, and 
AI-enabled radiology tools, advancing the 
application of IT in digital health ecosystems. 

In summary, this research endeavors to address 
key questions surrounding the potential of a 
lightweight U-Net architecture, specifically 
investigating whether it can match or exceed the 
segmentation accuracy of a standard U-Net on a 
large chest X-ray dataset, while also evaluating its 
computational and memory footprint, including the 
feasibility of achieving sub-20 millisecond 
inference on a high-end GPU. The study further 
aims to compare the model's performance against 
classical, CNN-based, and GAN-based 
segmentation baselines, and to explore the potential 
clinical applications of accurate and efficient lung 
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segmentation in enhancing patient care and 
outcomes. The key contributions of this research are 
summarized as follows:  

a) We introduce a 2D U-Net variant employing 
depth-wise separable convolutions in every layer, 
reducing parameter count and FLOPs by over an 
order of magnitude without sacrificing 
segmentation quality,  

b) We demonstrate sub-20 millisecond inference 
on a Tesla P100 GPU for 512×512 chest X-rays 
enabling practical integration into time-sensitive 
clinical workflows and resource-limited devices,  

c) We provide a comprehensive evaluation of the 
model's performance, including accuracy, Dice 
coefficient, Jaccard index, precision, and recall, 
highlighting its superior segmentation performance 
with reduced computational overhead,  

d) We conduct a comprehensive quantitative and 
qualitative analysis on a benchmark dataset [15], 
comparing against both classical and deep-learning 
baselines, and provide ablation studies to isolate the 
impact of separable convolutions,  

e) We discuss the potential for deployment on 
edge hardware and integration into downstream 
tasks illustrating the model’s utility in real-world 
settings. 

The rest of this paper is structured as follows. 
Section 2 surveys existing methods for lung 
segmentation. Section 3 details the proposed 
lightweight U-Net architecture and the experimental 
setup. Section 4 presents experimental results and 
comparative analysis. Section 5 discusses the 
conclusions and future work. 

2. LITERATURE REVIEW 

Conventional lung segmentation approaches 
initially made extensive use of image-processing 
methods such as thresholding, edge detection, 
region growing, and active contours [7]. While 
these methods are computationally efficient, they 
often struggle with anatomical variability, low 
contrast, pathological regions, and imaging 
artifacts. To overcome these limitations, machine 
learning techniques, including support vector 
machines and random forests, were introduced, 
offering modest improvements through handcrafted 
features [8]. Lately, deep learning, particularly 
convolutional neural networks (CNNs), has showed 
amazing success in segmenting medical images, 
often surpassing traditional methods in terms of 
accuracy and robustness.  

Classical methods for lung segmentation in 
medical images, particularly Computed 
Tomography (CT) and X-ray, often rely on image 
processing techniques based on intensity, shape, 
and anatomical knowledge. These methods 
typically involve a pipeline of steps, including 
preprocessing, segmentation, and postprocessing. 
While effective in many cases, they can struggle 
with pathological lungs, low contrast images, and 
variations in lung shape and size [7].  

Segmenting lungs with Juxta-Pleural nodules is a 
complex task where traditional methods like 
thresholding, region-growing, and active contours 
often fail. To address this, a fully automated method 
is proposed in [16] with two stages: lung field 
extraction and boundary analysis for accurate 
segmentation of lungs including Juxta-Pleural 
nodules. The proposed method outperforms 
traditional thresholding techniques. Moreover, 
traditional machine learning methods for lung 
segmentation often involve manual feature 
extraction based on grayscale, geometric shapes, or 
anatomical knowledge. These methods are 
generally less effective in handling complex 
variations and pathologies in lung images [17]. 
Additionally, traditional approaches are typically 
more time-consuming and less adaptable to new 
data compared to deep learning methods, which can 
automatically learn and adapt to new patterns [18]. 

In recent years, deep learning, especially 
Convolutional Neural Networks (CNNs), has 
revolutionized medical image segmentation, 
including lung segmentation. These methods learn 
intricate features directly from the image data, 
leading to more robust and accurate segmentation, 
particularly in challenging cases. The U-Net model, 
first presented by Ronneberger et al. [9], has 
evolved into a key framework for segmenting 
medical images. The encoder–decoder design of U-
Net, augmented by skip connections, facilitates 
accurate localization and allows effective training 
even on small datasets. Numerous studies have 
adapted and improved the U-Net for lung 
segmentation. For instance, Badrinarayanan et al. 
[10] introduced SegNet, a deep encoder-decoder 
architecture with max-pooling indices used in 
upsampling, achieving robust results in semantic 
segmentation tasks including lung CTs. 
Hofmanninger et al. [4] applied a U-Net variant to 
segment lungs from chest CTs, demonstrating high 
performance across multiple datasets and 
emphasizing the importance of data diversity. 
Similarly, Hwang et al. [19] used U-Net for lung 
field segmentation on chest X-rays and addressed 
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challenges such as overlapping clavicles and heart 
regions. To better capture spatial context and reduce 
false positives, multiscale architectures have been 
explored. Tang et al. [20] proposed a multiscale 
feature fusion U-Net for segmenting infected 
regions in COVID-19 CT images, effectively 
capturing both coarse and fine structures. The 
integration of residual connections and dense blocks 
has also improved feature propagation and gradient 
flow. Jin et al. [21] presented a residual attention U-
Net to segment lung tumors from CT volumes, 
achieving superior boundary delineation. 

Gite et al. [22] discussed the implementation of 
U-Net++ for lung segmentation using X-ray 
images. The model achieves over 98% 
segmentation accuracy and a mean intersection over 
union of 0.95, demonstrating its efficacy in 
diagnosing pulmonary diseases. However, the lack 
of practical application can raise questions about 
how well the models would perform in actual 
clinical settings. The TVAC (Total Variation-based 
Active Contour) algorithm is proposed in [6] for 
accurate lung segmentation in chest X-rays, 
particularly in critically ill patients. This method is 
particularly effective in handling the complexities 
of lung segmentation in the presence of medical 
equipment and varying patient conditions. It shows 
moderate performance, achieving a Dice coefficient 
of 0.86 for adults and 0.85 for children. Khomduean 
et al. [23] developed a model combining 3D-UNet 
with DenseNet169 and ResNet to segment lung 
lobes and lesions, achieving Dice similarity 
coefficients of 91.52% and 76.89%, respectively. 
Delfan et al. [24] introduced CT-LungNet, a fully 
automatic method for segmenting lung tissue in 3D 
CT images. The model employs a 2.5D image 
representation and a U-Net architecture with pre-
trained InceptionV3 blocks, aiming to reduce the 
number of learnable parameters while maintaining 
high segmentation accuracy. Evaluated on public 
datasets LUNA16, VESSEL12, and CRPF, CT-
LungNet achieved Dice coefficients of 99.7%, 
99.1%, and 98.8%, respectively. While CT-
LungNet demonstrated high performance on public 
datasets, its generalizability to diverse clinical 
settings with varying imaging conditions remains to 
be validated. Also, the dependency on pre-trained 
architectures may limit their effectiveness in 
specific application areas. In a subsequent study, 
Wu et al. [25] characterizes a considerable 
advancement in lung nodule semantic segmentation, 
addressing challenges such as under and over 
segmentation in CT images. This model enhances 
the traditional U-Net architecture by integrating a 
ResNet encoder, atrous spatial pyramid pooling, 

and a cross-fusion feature module with attention 
mechanisms, leading to improved segmentation 
accuracy. The model achieved a mean Intersection 
over Union (mIoU) of 87.76% and an F1-score of 
93.56% on the LIDC dataset, outperforming 
existing models like SegNet and U-Net. The 
model's effectiveness in diverse clinical scenarios 
and its integration into existing diagnostic 
workflows need further exploration.  

While RAD-UNet shows promising results, other 
models like improved V-Net [12] and context-
aware attention U-Net [5] also demonstrate 
competitive performance, suggesting a diverse 
landscape of effective segmentation techniques in 
lung nodule detection. The V-Net model combines 
pixel threshold segmentation with an attention 
mechanism, aiming to enhance the segmentation 
process for lung nodules. It achieves high Dice 
similarity coefficients and sensitivity on public 
datasets LUNA16 and LNDb. On the other hand, 
the complementary context-aware (CCA) attention 
module in [5] focuses on a coarse-to-fine 3D 
segmentation framework for lung nodule 
segmentation in CT images. Designed to enhance 
segmentation accuracy, the CCA module effectively 
captures 3D spatial dependencies and complex 
contextual information. A recent study by 
Kongkham et al. [26] compares deep learning 
methods with traditional techniques using two 
widely used datasets, likely LIDC-IDRI and 
LUNA16. The main evaluation metric is the 
Sorensen-Dice Coefficient (DSC), which measures 
how well the segmentation matches the ground 
truth. Results show that deep learning significantly 
outperforms traditional methods achieving a DSC 
of 0.853 vs. 0.761 on the first dataset, and 0.763 vs. 
0.704 on the second. These findings highlight deep 
learning's strength in handling the complexity of 
lung nodule segmentation. 

Din et al. [27] introduced CXR-Seg, a deep 
learning model designed for precise lung 
segmentation in chest X-ray images. The 
architecture integrates a pre-trained 
EfficientNetV2S encoder with a spatial 
enhancement module (SEM), transformer attention 
module (TAM), and multi-scale feature fusion 
block (MS-FFB) to enhance feature representation 
and capture contextual information. Evaluated on 
four public datasets such as Montgomery, 
Shenzhen, Darwin COVID-19, and TCIA, the 
model achieved high performance metrics, 
including a Dice coefficient of up to 97.76%. While 
CXR-Seg demonstrated strong performance on 
public datasets, its generalizability to diverse 
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clinical settings with varying imaging conditions 
remains to be validated. Additionally, the 
computational complexity introduced by the 
integrated modules may pose challenges for 
deployment in resource-constrained environments. 
In another effort, In [11], Alam et al. presented 
AMRU++, a UNet++ variant with multi-residual 
blocks and an attention mechanism, optimized for 
segmenting lungs in chest radiographs especially 
those showing advanced conditions such as 
pneumoconiosis, COVID-19, and tuberculosis. The 
model incorporates attention modules and multi-
residual blocks to capture relevant spatial 
information and rich contextual features. To address 
the scarcity of annotated pathological data, a novel 
data augmentation technique was introduced, 
simulating disease-specific features to enhance 
model robustness. With a Dice score of 0.9363, 
AMRU++ outperformed several state-of-the-art 
architecture. Despite its high performance, 
AMRU++'s reliance on complex architectural 
components and extensive data augmentation may 
increase computational demands. Moreover, the 
effectiveness of the augmentation technique in 
representing the full spectrum of pathological 
variations requires further investigation. 

Cai et al. [28] proposed a novel lung 
segmentation approach using generative adversarial 
networks (GANs), specifically leveraging the 
Pix2Pix framework for image-to-image translation 
tasks. In their method, the original CT lung images 
are treated as “blurred” inputs and the ground truth 
segmentation maps as “clear” outputs. The GAN 
learns to translate the input images into accurate 
segmentation masks by minimizing both pixel-wise 
loss and adversarial loss. Despite its promising 
results, the study is limited by its reliance on a 
relatively small dataset, which may affect 
generalizability. Additionally, the method focuses 
on 2D slice-based segmentation and does not yet 
address the full 3D volumetric nature of CT scans, 
leaving room for future improvements in clinical 
applications. Multimodal fusion techniques 
proposed in [29] involve combining features from 
CT and PET images at different stages of the U-Net 
architecture. In particular, the model incorporates 
various fusion strategies, including hyper-dense 
fusion and hyper-dense VGG16 U-Net, to integrate 
anatomical and functional data. Some other studies 
[30-34] also developed multi-modal lung tumor 
segmentation network combining CT and PET 
images. In a recent study, Goswami et al. [35] 
presented a lung segmentation method designed to 
work effectively even with limited medical imaging 
data, a common issue due to legal and privacy 

constraints. Unlike traditional U-Net models that 
need large datasets and long training times, the 
proposed method combines a U-Net-style generator 
with a generative adversarial network (GAN). The 
generator creates synthetic images to help balance 
the dataset and better represent rare cases, focusing 
specifically on lung regions. It uses an encoder-
decoder structure with skip connections to retain 
important features, while the discriminator helps the 
generator improve by distinguishing real from fake 
images. The model achieved an accuracy of 
84.39%, showing strong performance even with 
restricted training data. Zafaranchi et al. [36] 
proposed a deep learning-based framework for lung 
nodule detection and segmentation using the 
LUNA-16 dataset. The method follows a two-phase 
pipeline: lung segmentation using the LungQuant 
algorithm, followed by nodule segmentation via a 
fine-tuned Attention Res-UNet. The system 
achieved an average Dice Similarity Coefficient 
(DSC) of 90% for lung segmentation and 81% for 
nodule segmentation, indicating high accuracy. To 
enhance model interpretability, Grad-CAM was 
applied, supporting its clinical relevance. However, 
the model’s evaluation was limited to a single 
dataset, which may restrict its generalizability; 
further testing on diverse datasets and in real-world 
clinical settings is needed to confirm its robustness. 

While advancements in deep learning have led to 
highly accurate lung segmentation models, many 
existing architectures, particularly standard U-Net 
and its variants, remain computationally intensive 
and dependent on large, annotated datasets and 
prolonged training. These limitations hinder their 
adoption in real-time and resource-constrained 
clinical settings. To address this, our study 
introduces a streamlined U-Net model 
incorporating depth-wise separable convolutions, 
which significantly reduces the number of 
parameters and training time while maintaining 
high segmentation accuracy and enabling faster 
inference. This approach bridges the gap between 
state-of-the-art performance and practical usability, 
making it well-suited for real-world deployment in 
diverse healthcare environments. 
 
3. MATERIALS AND METHODS 

This section outlines the workflow depicted in 
Figure 1 for performing accurate and efficient lung 
segmentation on chest X-rays, optimized for real-
time execution. Our approach centers around a 
lightweight yet powerful 2D U-Net architecture, 
specifically designed to minimize computational 
overhead while preserving crucial segmentation 
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capabilities for this modality. To enhance the 
network's efficiency, we employ depth-wise 
separable convolutions throughout the architecture, 
significantly reducing the number of parameters 
and computations suitable for potentially resource-
constrained environments. The complete workflow 
involves preprocessing the input chest X-ray 
images, feeding them into our lightweight 2D U-
Net built with separable convolutions, and finally, 
postprocessing the resulting segmentation masks to 
refine the output. More specifically, the 
preprocessed images pass through the encoder path, 
which captures contextual information and extracts 

 
Figure 1. Workflow of the proposed lightweight U-
Net with separable convolutions for real-time lung 
segmentation on mobile, edge, and point-of-care 

platforms. 
 
hierarchical features using depth-wise separable 
convolutions. The subsequent bottleneck layer 
represents the network’s deepest stage and provides 
the connection between encoder and decoder. The 
decoder path then progressively upsamples the 
feature maps to reconstruct spatial dimensions. The 
last convolutional layer then reduces the channel 
depth to match the number of target classes, 
producing the final segmentation map. Finally, the 
postprocessing step refines the raw segmentation 
output to produce the final lung mask using binary 
thresholding which converts the probabilistic map 
into a binary mask by applying a threshold. The 
final output of the workflow is a binary mask 
accurately delineating the lung regions in the input 
image. The model is trained using the binary cross-
entropy loss function to optimize performance, and 
the best-performing version is selected for 
predicting the segmentation masks of the test 
images. The workflow illustrates an efficient and 
structured approach for segmenting lung regions 
from chest radiographs with the proposed 
lightweight U-Net. The subsequent subsections will 
elaborate on each component of this workflow, 
including the network architecture tailored for 2D 
X-ray data, the implementation details of the 

separable convolutions within the U-Net, and the 
experimental setup using chest X-ray datasets. The 
complete step-by-step segmentation process is also 
outlined in Algorithm 1. 

3.1 Data Acquisition and Preprocessing 
In this study, we employed the Chest X-ray 

Masks and Labels dataset [33], publicly available 
on Kaggle, to train, validate, and evaluate the 
proposed lung segmentation model. The dataset 
consists of paired grayscale chest radiographs 
typically captured in posterior-anterior (PA) or  

Algorithm 1: Lightweight U-Net with depthwise 
separable convolutions for fast and accurate lung 
segmentation 

Input: Chest radiographs and their associated 
ground truth segmentation labels 
Preprocess the input images by resizing to 256 × 
256 pixels and scaling their intensities in the range 
[0, 1] 
Divide the data into training and test subsets 
Construct a lightweight 2D U-Net architecture 
using depth-wise separable convolutions in both 
encoder and decoder paths 
Train the network with the Adam optimizer and 
binary cross-entropy as the loss metric 
Predict segmentation masks for the test set using 
the trained model 
Postprocess the predicted masks using binary 
thresholding to convert the probabilistic output into 
a binary lung mask 
Output: Final binary masks accurately delineating 
lung regions in CXR images 
 
anterior-posterior (AP) views and their 
corresponding binary segmentation masks that 
delineate the left and right lung regions. Each mask 
highlights the lung areas using a distinct pixel 
intensity (255) against a black background (0), 
making them well-suited for binary segmentation 
tasks. Figure 2 depicts sample chest radiographs 
and their corresponding ground truth masks used 
for lung segmentation. 
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Figure 2. Example chest X-ray images with 

corresponding lung masks 
This dataset is specifically curated for supervised 

learning in medical image segmentation and serves 
as a widely accepted benchmark for developing and 
assessing automated lung segmentation algorithms. 
It plays a crucial role in enabling models to learn 
accurate lung localization, which is often the first 
step in computer-aided diagnosis and quantitative 
pulmonary assessment from chest X-rays. Although 
the dataset includes a large number of image-mask 
pairs, some samples may be missing or misaligned, 
necessitating manual verification and filtering to 
ensure data integrity. The dataset initially includes 
800 chest X-ray images and 703 corresponding 
binary masks. Since 97 masks were missing, only 
the 703 CXR images with valid masks were used to 
maintain consistency and ensure reliable supervised 
training. The images and masks are provided in 
standard .png format, allowing seamless integration 
with deep learning pipelines. Although the dataset 
aggregates samples from open-access medical 
repositories and research datasets, it provides a 
substantial volume and diversity to support training 
of robust and generalizable deep learning models 
for lung segmentation. Manual verification and 
filtering were applied during preprocessing to 
ensure data integrity and alignment between image-
mask pairs. 

In this study, the chosen CXR dataset underwent 
a series of preprocessing steps to ensure optimal 
model training and evaluation. Initially, the dataset 
was partitioned into training and testing subsets, 
with 80% of the images allocated for training the 
model and the remaining 20% reserved for 
evaluating its performance on unseen data. This 
split allows for an unbiased assessment of the 
model's generalization capability. 

Subsequently, each chest X-ray image was 
resized to a uniform spatial dimension of 512 x 512 
pixels. This resizing operation serves multiple 
crucial purposes. Firstly, it standardizes the input 
size for the neural network, ensuring that all images 
have consistent dimensions regardless of their 

original acquisition parameters. This uniformity is 
essential for efficient batch processing and stable 
gradient calculations during training. Secondly, 
resizing can help to reduce computational 
complexity, especially if the original images have 
very high resolutions, without significantly 
sacrificing the essential anatomical information 
required for lung segmentation. 

Following resizing, the pixel intensity values of 
all images were rescaled to the range of 0 to 1. 
Medical images often have pixel intensities 
spanning a wide range. Normalizing these values to 
a smaller, consistent range like [0, 1] offers several 
benefits for deep learning models. It helps to 
prevent large intensity values from dominating the 
learning process, leading to more stable and faster 
convergence during training. Furthermore, it 
ensures that all input features are within a similar 
scale, which is generally beneficial for the 
performance of gradient-based optimization 
algorithms. 

Finally, the training dataset was shuffled 
randomly before being fed into the model during 
each epoch. Shuffling is a standard practice in 
machine learning that helps to break any potential 
order-related biases within the dataset. By 
presenting the model with a different order of 
training samples in each epoch, we aim to improve 
the model's ability to learn generalizable features 
from the entire training distribution and prevent it 
from memorizing the order of the data, thus 
contributing to a more robust and less overfit 
model. 

 
3.2 Proposed Model Architecture 

Our proposed efficient lung segmentation 
framework leverages a 2D U-Net architecture [9] as 
its foundational backbone. The U-Net has 
demonstrated remarkable efficacy in various 
biomedical image segmentation tasks due to its 
characteristic encoder-decoder structure coupled 
with skip connections. This architecture is 
specifically well-suited for tasks where precise 
localization and contextual understanding are 
crucial. In our implementation, we aim for real-time 
performance by significantly reducing the model's 
computational footprint through the strategic 
replacement of standard convolutional layers with 
depth-wise separable convolutions. 
3.2.1 Enhanced U-Net Variant 

The modified U-Net architecture as shown in 
Figure 3 comprises two main paths: a contracting 
path (encoder) and an expansive path (decoder).  

Contracting Path (Encoder): The encoder path 
follows a convolutional neural network structure. It 
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consists of a series of repeated blocks, where each 
block contains a pair of 3×3 depth-wise separable 
convolution layers, with each layer immediately 
followed by batch normalization and a ReLU 
activation. The number in the parenthesis after the 
kernel size indicates the number of output channels 
for that block. After each block, a 2x2 max-pooling 
operation with a stride of 2 is applied for 
downsampling the feature maps, effectively 
doubling the number of feature channels while 
halving the spatial dimensions. This process 
progressively extracts hierarchical features from the 
input image, capturing both local details and global 
context. 

Mathematically, let  be the 
input to the i-th encoder block. The block performs 
two convolutional operations, denoted by Conv1 

and Conv2, followed by BN and ReLU activation 
(σ): 

            Fi,1 = σ(BN(Conv1 (Xi)))                        (1) 
                Fi,2 = σ(BN(Conv2(Fi,1)))                       (2) 

    The output of the i-th encoder block, Ei = Fi,2, is 
then passed to a max-pooling layer MaxPool for 
downsampling: 

                Xi+1 = MaxPool(Ei)                            (3) 

This downsampling continues until the bottleneck 
layer is reached, where the feature maps have the 
smallest spatial dimensions and the largest number 
of channels, representing the most abstract features 
of the input image.  

 

 
Figure 3. Block diagram of the proposed lightweight U-Net architecture with separable convolutions. 

 
Expansive Path (Decoder): The decoder path 

mirrors the encoder path in reverse, gradually 
reconstructing the spatial resolution of the input 
image to produce a segmentation map. It consists of 
a sequence of upsampling operations, typically 
implemented using transposed convolutions 
(deconvolutions), each of which doubles the spatial 
dimensions of the feature map. After each 
upsampling step, the resulting feature map is 
concatenated channel-wise with the corresponding 
feature map from the encoder via skip connections. 

This fusion provides high-resolution spatial details 
from the encoder, enabling the decoder to better 
localize and refine segmented regions. 

Following the concatenation, the combined 
feature maps are passed through two consecutive 
DSC layers, each followed by BN and ReLU 
activation. These DSC layers integrate information 
from both the upsampled decoder features and the 
encoder's high-resolution features while reducing 
the number of parameters and computational cost. 
The number of output channels after concatenation 
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is the sum of the channels from both sources; the 
DSC layers then reduce and refine these channels to 
prepare for the next decoding stage. This process is 
repeated until the final output feature map matches 
the input image’s spatial resolution, with the 
number of output channels corresponding to the 
number of segmentation classes (lung and 
background).  

Mathematically, let  be the 
input to the j-th decoder block. First, it undergoes a 
transposed convolution (ConvT) for upsampling: 
                     Uj = ConvT (Dj)                               (4) 

This upsampled feature map Uj is then 
concatenated (Concat) with the corresponding 
feature map En - j from the encoder (where n is the 
total number of downsampling steps): 

               Mj = Concat(Uj,En-j)                         (5) 
    Subsequently, two convolutional operations, each 
followed by BN and ReLU, are applied: 

                F'
j,1 = σ(BN(Conv1(Mj)))                (6) 

                F'
j,2 = σ(BN(Conv2(F'

j,1)))               (7) 
    The output of the j-th decoder block is 

 This upsampling and convolution 
process continues until the final layer.         

Skip Connections: The skip connections are a 
crucial aspect of the U-Net architecture. They 
directly connect the feature maps from the encoder 
path to the decoder path at the corresponding 
resolution levels. This allows the decoder to recover 
fine-grained details lost during the downsampling 
process in the encoder, leading to more accurate and 
spatially precise segmentations. 

 
Figure 4. Illustration of the depthwise separable 

convolution (DSC) operation 
 

3.2.2 Depthwise Separable Convolutions 
To achieve a lightweight and efficient model 

suitable for real-time lung segmentation, we replace 
all standard convolutional layers within the U-Net 
architecture with depthwise separable convolutions 
as shown in Figure 4. This factorization of the 
standard convolution operation significantly 

achieves a substantial reduction in both parameter 
count and computational workload. 

A standard 2D convolution operates on all 
channels of the input feature map simultaneously to 
produce each channel of the output feature map. In 
contrast, a depthwise separable convolution breaks 
this process into two distinct steps: depthwise 
convolution and pointwise convolution. 

Depthwise Convolution: The depthwise 
convolution applies a single convolutional filter to 
each input channel independently. Given an input 
feature map a set of Cin number of 
k × k depthwise kernels 

(where each kernel of size k × 
k × 1 operates on a single input channel), produces 
an intermediate feature map Z . The 
element at position (i, j, c) in the output channel c of 
the intermediate map is computed by convolving the 
c-th channel of the input feature map with the c-th 
depthwise kernel: 

 
                                                                          (8) 

The number of parameters in the depthwise 
convolution layer is k × k × Cin. 

Pointwise Convolution: The pointwise 
convolution is a standard 1×1 convolution applied 
to the output of the depthwise convolution. It 
linearly combines the channel outputs of the 
depthwise convolution to create new features. Given 
the intermediate feature map Z  and 
a set of Cout number of 1×1 pointwise kernels 

 the final output feature 

map   is calculated as: 

 
                                                              (9) 

The number of parameters in the pointwise 
convolution layer is 1 × 1 × Ci n × Cout = Cin × Cout. 

Parameter Efficiency: The total number of 
parameters in a depthwise separable convolution 
block is the sum of the parameters in the depthwise 
and pointwise stages: 

Nseparable = Nsep = (k2 × Cin) + (Cin × Cout)     (10) 
The number of parameters in a standard 

convolution with the same input and output channel 
dimensions and kernel size is: 

Nstandard = Nstd = (k2 × Cin  × Cout)                 (11) 
The ratio of parameters in a depthwise separable 

convolution to a standard convolution is: 
Nsep / Nstd = ((k2 × Cin) + (Cin × Cout)) / (k2 × Cin  × 
Cout) = 1/Cout + 1/k2                                         (12) 
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For typical CNN architectures where the number 
of output channels (Cout) and the kernel size (k) are 
significantly larger than 1, the use of depthwise 
separable convolutions leads to a substantial 
reduction in the number of trainable parameters and 
the associated computational cost, making the 
network more efficient and potentially suitable for 
real-time applications with limited computational 
resources. By replacing the standard convolutions in 
the U-Net with these efficient depthwise separable 
convolutions, our proposed model aims to achieve a 
favorable trade-off between segmentation accuracy 
and computational efficiency for lung segmentation 
in chest X-ray images. 

 
3.3 Experimental Setup and Evaluation 

This section outlines the experimental protocol 
employed to evaluate the performance of the 
proposed lightweight U-Net architecture with 
depthwise separable convolutions for lung 
segmentation in chest X-ray images. It details the 
implementation specifics, training parameters, and 
evaluation metrics. 

 
3.3.1 Implementation Details 
          The implementation and experimentation of 
the proposed lightweight U-Net architecture were 
conducted using Python version 3.8, leveraging the 
deep learning framework TensorFlow version 2.6. 
All model training and evaluation processes were 
accelerated using the computational resources 
provided by Kaggle, specifically utilizing an 
NVIDIA Tesla P100 Graphics Processing Unit 
(GPU). This GPU acceleration significantly reduced 
the training time required for the deep learning 
model, enabling efficient experimentation and 
validation within the Kaggle environment. 

Network Configuration: As part of the network 
configuration, encoder path consists of four 
sequential EncoderBlock layers with filter sizes of 
32, 64, 128, and 256, respectively. Each 
EncoderBlock utilizes two consecutive 
SeparableConv2D layers with a kernel size of 2x2, 
ReLU activation, and 'same' padding, followed by a 
Dropout layer with varying dropout rates (0.1 for 
the first two encoder blocks and 0.2 for the 
subsequent ones). Max-pooling with a default pool 
size of 2x2 is applied after each EncoderBlock to 
downsample the feature maps, except for the final 
encoding layer. The bottleneck of the U-Net 
consists of two SeparableConv2D layers with 512 
filters, a 2x2 kernel size, ReLU activation, 'same' 
padding, and a dropout rate of 0.3, without any 
subsequent pooling. The decoder path mirrors the 
encoder with four DecoderBlock layers, having 

filter sizes of 256, 128, 64, and 32. Each 
DecoderBlock upsamples the incoming feature map 
using UpSampling2D and concatenates it with the 
corresponding skip connection from the encoder 
path. This concatenated feature map is then 
processed by an EncoderBlock (without pooling) 
with the specified filter size, kernel size of 2x2, and 
dropout rate (0.2 for the first two decoder blocks 
and 0.1 for the subsequent ones). Finally, a 1x1 
Conv2D layer with a sigmoid activation function 
and 'same' padding is used to creäte the final 
segmentation output with a single channel 
representing the probability of each pixel belonging 
to the lung class. 

Loss Function and Optimization: The model 
was trained using the binary cross-entropy (BCE) 
loss function. BCE is a standard loss function for 
binary classification tasks, such as segmenting the 
lungs (positive class) from the background (negative 
class). This metric assesses the pixel-level 
discrepancy between the predicted probability 
outputs and the actual binary labels. 
Mathematically, for a single pixel i with true label 

 and predicted probability  , 
the binary cross-entropy loss LBCE is calculated as: 
LBCE (yi, pi) = - (yi log (pi) + (1- yi)log(1-pi))     (13) 

 
While the primary loss function used for 

optimization was binary cross-entropy, the Dice 
coefficient loss (dice_coef_loss) was also used as a 
metric during training. Because it’s based on the 
Dice similarity coefficient, the Dice loss directly 
reflects the overlap between predicted and actual 
segmentation masks. Minimizing the Dice loss 
effectively maximizes the Dice coefficient, 
providing a training signal that is directly aligned 
with the desired segmentation performance. 

The network was optimized with the Adam 
algorithm using its default learning rate settings in 
TensorFlow 2.6. As an adaptive optimizer, Adam 
computes separate learning rates for each model 
parameter, often leading to faster convergence and 
good performance. The model was trained with 
batches of 16 samples. The batch size specifies how 
many samples the model processes before each 
weight update. A batch size of 16 represents a trade-
off between computational efficiency and reliable 
gradient estimation. Training was conducted for 100 
epochs in total. The epoch count was determined to 
provide sufficient training iterations for the model 
to discover key patterns and converge on optimal 
weights for lung segmentation. The training 
progress was monitored using the defined loss 
function and evaluation metrics, potentially with 
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early stopping to prevent overfitting and optimize 
the training duration. 
3.3.2 Assessment Criteria 

The performance of the proposed lung 
segmentation model was quantitatively evaluated 
using a comprehensive set of metrics, including the 
dice similarity coefficient (DSC), intersection over 
union (IoU), accuracy, precision, and recall. These 
metrics were chosen to provide a comprehensive 
assessment of the model's ability to accurately 
delineate the lung regions in chest X-ray images. 
The DSC measures how much the predicted 
segmentation overlaps with the ground truth mask. 
It is especially useful in medical imaging tasks 
where class imbalance is common, as it gives more 
importance to correctly segmented regions. A 
higher dice score indicates better agreement 
between the predicted and actual lung regions. IoU 
also known as the Jaccard Index, measures the 
proportion of overlap between the predicted and 
true segmentation regions relative to their total 
combined area. It is a strict measure of 
segmentation accuracy and is useful for comparing 
performance across different models. Again, a 
higher IoU is better. Accuracy represents the 
fraction of pixels correctly labeled as either lung or 
background. While it provides an overall sense of 
model performance, it can be misleading in 
imbalanced datasets where background pixels 
dominate. Precision indicates how many of the 
predicted lung pixels actually belong to the lung 
region, while recall reflects how many of the true 
lung pixels were correctly identified by the model. 
These metrics are especially important when 
assessing the clinical reliability of the segmentation 
model, ensuring it avoids both over-segmentation 
(false positives) and under-segmentation (false 
negatives). Together, these metrics offer a robust 
and well-rounded evaluation of the model’s  

segmentation performance, supporting both 
technical assessment and potential clinical 
applicability. 
3.3.3 Evaluation Procedure 

The trained lightweight U-Net model was 
evaluated on the held-out test dataset, which 
comprised 20% of the initially split data and 
contained images the model had never seen during 
training. For each test image, the model produced a  
probability map showing how likely each pixel 
belongs to the lung region. We then binarized this 
probability map into a segmentation mask by 
applying a fixed threshold of 0.5. 

After producing binary masks for all test images, 
we computed the evaluation metrics by comparing 
these predictions to the dataset’s ground truth 

masks. These metrics were computed on a per-
image basis, and the reported results represent the 
average of these metrics across the entire test set. 
This procedure yields quantitative metrics that 
reflect the model’s generalization to new data and 
its precision in segmenting lung regions on chest X-
rays. 

 
4. RESULTS ANALYSIS 

This section presents a comprehensive analysis 
of the lung segmentation performance achieved by 
the proposed lightweight U-Net architecture with 
depthwise separable convolutions. The quantitative 
evaluation of our model was conducted using key 
metrics including the DSC, IoU, accuracy, 
precision, and recall, calculated on the held-out test 
dataset. To provide a visual understanding of the 
segmentation quality, we present qualitative 
comparisons between the predicted segmentation 
masks and the corresponding ground truth 
annotations. Furthermore, we illustrate the training 
progress of our model through a qualitative 
visualization of predicted masks on a sample test 
image at various training epochs. Furthermore, the 
proposed model’s performance was benchmarked 
against results reported in existing literature to 
assess its relative strength and generalizability. 

 
4.1 Evaluation of Lung Segmentation 

Performance  
In this section, we report the quantitative 

evaluation results of our lightweight U-Net on the 
chest X-ray dataset. We assessed the model's 
segmentation capabilities using standard 
performance metrics, across training, validation, and 
held-out test datasets. Table 1 provides a summary 
of the results for each dataset.  
 
Table 1. Quantitative performance of the proposed 

segmentation model 

 
The proposed model achieved a strong 

performance on the unseen test dataset. The 
accuracy of 97.12% indicates a high pixel-level 
classification rate, with the model correctly 
identifying the majority of pixels as either lung or 

 
Data  

Performance Metric 
Acc 
(%) 

Dice 
(%) 

IoU 
(%) 

Prec 
(%) 

Rec 
(%) 

Training 98.89 93.88 86.44 94.09 93.38 

Validation 97.78 92.70 81.64 90.79 88.38 

Test 97.12 91.92 82.75 92.64 90.31 
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background. With a Dice coefficient of 91.92%, the 
predicted lung segmentation closely matches the 
ground truth annotations, highlighting precise 
volumetric segmentation. Similarly, the IoU of 
82.75% further corroborates the significant spatial 
agreement between the predicted and actual lung 
masks. In terms of error types, the precision of 
92.64% suggests that when the model predicted a 
pixel as belonging to the lung, it was correct a high 
percentage of the time, indicating a low rate of false 
positives. On the other hand, the recall of 90.31% 
indicates that the model successfully identified a 
large proportion of the actual lung pixels, 
suggesting a low rate of false negatives.  

Overall, the performance metrics were generally 
consistent across the training, validation, and test 
datasets, suggesting good generalization of the 
model. A slightly higher performance on the 
training set is expected as the model has been 
directly optimized on this data. The validation set 
performance, which is used for hyperparameter 
tuning and early stopping, shows a minor decrease 
compared to the training set, indicating a good 
balance between learning and generalization. 
Although performance on the test set is marginally 
lower than on the validation set, it still confirms the 
proposed lightweight U-Net’s robustness and 
effectiveness for lung segmentation. These results 
confirm that the proposed lightweight U-Net model 
with depthwise separable convolutions is capable of 
achieving high segmentation accuracy while 
maintaining a strong balance between precision and 

recall across different data splits. The consistently 
high Dice and IoU scores across all datasets 
highlight the model's ability to accurately capture 
the shape and location of the lungs. 

Figure 5(a) illustrates the training loss curves for 
Binary Cross-Entropy (BCE) loss and Dice loss 
over 100 training epochs. Both loss functions show 
a consistent downward trend, indicating successful 
convergence of the model during training. During 
the initial training phase (epochs 0–20), both loss 
curves drop sharply, indicating the model’s rapid 
acquisition of basic lung region features. The BCE 
loss starts slightly lower and decreases more 
steadily compared to the Dice loss, which begins 
higher but catches up as training progresses. This 
behavior is expected since Dice loss is more 
sensitive to class imbalance and segmentation 
overlap, often taking longer to stabilize in the early 
training stages. From epoch 20 onward, both loss 
curves flatten gradually, showing continued but 
slower improvement. By epoch 60 and beyond, the 
losses reach near-convergence, with values 
stabilizing below 0.1, suggesting the model has 
learned to generalize well on the training data. The 
smooth and consistent decline in both loss curves, 
without abrupt spikes or fluctuations, also indicates 
the absence of overfitting, and confirms the stability 
of the training process. The fact that both loss 
curves converge to relatively low values indicates 
that the model has achieved a good fit to the training 
data with respect to both pixel-wise classification 
(BCE) and region overlap (Dice).
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(a)                                               (b) 

Figure 5. Training dynamics of the proposed model. (a) Convergence of the Binary Cross-Entropy and Dice 
loss. (b) Improvement and plateauing of the Dice Coefficient and IoU during training 

 
In parallel, the performance curves (Figure 5(b)) 

demonstrate a steadily improving trend for both 
Dice coefficient and IoU throughout the training 
process. After an initial adjustment period during 
the first few epochs, both metrics increase rapidly, 
with the Dice coefficient surpassing 0.8 by around 
epoch 30 and plateauing near 0.92 by the end of 
training. The IoU follows a similar pattern, reaching 
approximately 0.83 at epoch 100. The Dice 
coefficient consistently remains higher than IoU, 
which aligns with expectations, as Dice is a more 
lenient overlap metric compared to the stricter IoU 
measure. Together, these visualizations provide 
strong evidence of the model’s stable convergence, 
effective feature learning, and robust segmentation 
capability.  

In addition to the training curves, we also 
tracked model performance on the validation set to 
ensure robust generalization. Figure 5(d) presents 
the corresponding Dice loss curves where after an 
initial transient phase, both training and validation 
losses decline in near lockstep, falling below 0.10 
by epoch 80 and remaining stable thereafter. The 
minimal gap between training and validation loss 
throughout confirms that the proposed lightweight 
U-Net achieves strong, stable convergence and 
effective regularization for real-time lung 
segmentation. Likewise, as shown in Figure 5(c), 
the Dice coefficient for both training and validation 
rises steeply during the first 20 epochs when the 
model rapidly learns the coarse lung structures and 
then gradually plateaus, with both curves 
converging around 0.92 by epoch 100. The close 
alignment of the two curves, with only minor 
validation fluctuations, indicates that the model is 
not overfitting and maintains consistent boundary 
delineation on unseen data. 

 
4.2 Qualitative Visualization of Training 

Progress 
To gain deeper insight into the learning 

behavior of the proposed model, we qualitatively 
analyzed the evolution of segmentation performance 
over the course of training. A fixed input test image 
was selected, and the predicted segmentation masks 
generated by the model at different training epochs, 
specifically at epoch 20, 40, 60, and 80, were 
visually compared with the ground truth mask. 
Figure 6 presents the input chest X-ray image 
alongside the ground truth and the predicted masks 
at the specified epochs. As observed, the initial 
predictions (e.g., at epoch 20) tend to be coarse, 
with incomplete lung boundaries and occasional 
misclassifications in the background. By epoch 40, 
the model demonstrates significantly improved 
spatial awareness, capturing the general shape of the 
lungs with reduced noise. 

Further refinement is evident at epochs 60 and 
80, where the segmentation becomes more precise, 
particularly around the lung contours. By the end of 
the training, the predicted mask closely aligns with 
the ground truth, showing minimal false positives or 
false negatives, and effectively capturing the 
anatomical structure of the lungs. This progressive 
enhancement in mask quality illustrates the model’s 
incremental learning and ability to generalize 
meaningful features over time. Visualization not 
only supports the quantitative findings but also 
provides a visual confirmation of convergence and 
stability in the model’s predictions. It also 
highlights the importance of sufficient training 
duration for deep learning-based medical image 
segmentation tasks. 
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Figure 6. Visual progression of lung segmentation 
masks predicted at different training epochs on a 
fixed chest X-ray test image. Each row displays: (1) 
the original test image, (2) the corresponding 
ground truth mask, and (3) predicted segmentation 
masks. 
 
4.3 Pixel-Level Difference Analysis 

To assess segmentation quality more closely, 
we conducted a pixel-by-pixel comparison of the 
predicted lung masks against the ground truth 
annotations for three representative chest X-rays. 
Figure 7 shows the difference maps, with white 
regions indicating correctly segmented lung areas 
(true positives, TP), red regions representing non- 

 
Figure 7. Pixel-level difference maps between ground truth and predicted masks for three CXR images, 

Difference map (White = TP, Red = FP, Blue = FN). 
 

lung areas incorrectly predicted as lung (false 
positives, FP), and blue regions indicating lung 
areas missed by the model (false negatives, FN). 
The segmented lung regions were successfully 
obtained for all three cases, demonstrating the 
model’s ability to generalize across varying 
anatomical appearances. In the first case, the model 
shows excellent overlap with the ground truth, with 
minor false positives near the apex and small false 

negatives near the diaphragm, suggesting strong 
core lung structure capture. The second example 
demonstrates a slight increase in boundary 
misclassifications, where under-segmentation is 
evident along the lung bases (blue) and marginal 
over-segmentation occurs near the lung periphery 
(red). In the third case, while the central lung 
regions are well predicted, noticeable red and blue 
patterns appear along the lateral and lower edges, 
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reflecting boundary-related segmentation errors. 
These qualitative difference maps provide valuable 
insight into the model’s learning behavior and 
indicate that while the core lung regions are 
consistently well segmented, further refinement near 
anatomical boundaries could enhance performance. 
Overall, the successful segmentation across all 
examples underscores the robustness of the 
proposed lightweight U-Net model. 
 
4.4 Ablation Study 

To validate the efficiency of our proposed 
lightweight U-Net architecture with depthwise 
separable convolutions, we quantitatively evaluated 
its parameter count and inference time and 
conducted an ablation study to isolate the impact of 
separable convolutions. These metrics are critical 
for real-time medical imaging applications where 
computational resources and processing speed are 
often constrained. Our proposed architecture 
significantly reduces the computational burden 
compared to standard convolutional networks. 

The total number of trainable parameters in our 
lightweight U-Net was significantly reduced 
compared to a standard U-Net with conventional 
convolutional layers. By replacing the standard 
convolutions with depthwise separable 
convolutions, we achieved a substantial decrease in 
the number of parameters without a significant 
compromise in segmentation accuracy. Specifically, 
our model contains approximately 905K trainable 
parameters, which is substantially fewer than 
traditional U-Net and its residual variants (e.g., 
~31M for vanilla U-Net). The adoption of 
depthwise separable convolutions allows the model 
to decouple spatial and channel-wise computations, 
leading to a marked reduction in parameter count 
and memory footprint. 

The inference time of our lightweight U-Net was 
measured on a test system equipped with an 
NVIDIA Tesla P100 GPU. For a single CXR image 
of size 512x512 pixels, our model achieved an 
average inference time of approximately 15 
milliseconds. This demonstrates the potential for 
real-time or near real-time lung segmentation, 
which is crucial for clinical workflows and 
interactive analysis. In contrast, the inference time 
for a standard U-Net on the same hardware and 
input size was approximately 45 milliseconds. The 
improved inference speed is attributed to the 
reduced computational complexity of the separable 
convolutions. 

Moreover, the reduced model complexity 
translates to faster training and lower power 
consumption, making it ideal for edge computing 

and mobile healthcare applications. This balance 
between high segmentation performance and 
computational efficiency highlights the strength of 
our proposed design in real-world, resource-
constrained environments. 

 
4.5 Discussion 

Our experiments demonstrate that the proposed 
lightweight U-Net architecture, employing 
depthwise separable convolutions, achieves 
effective lung segmentation in CXR images. The 
model consistently demonstrated high segmentation 
performance across training, validation, and test 
datasets, maintaining stable Dice and IoU metrics 
throughout 100 epochs. Visualization of the 
learning curves showed effective convergence with 
minimal overfitting, confirming the robustness of 
our architecture. On the test set, the model achieved 
a DSC of 91.92%, an IoU of 82.75%, and an 
accuracy of 97.12%, demonstrating substantial 
overlap between predicted and reference lung 
regions. Additionally, qualitative analysis of 
segmentation outputs revealed close agreement 
between predicted masks and their ground truth 
counterparts. Notably, the model achieves this 
performance with a significantly reduced number of 
parameters (905K) and a faster inference time of 
approximately 15 milliseconds, outperforming 
standard U-Net architectures in both efficiency and 
speed. This confirms our hypothesis that depthwise 
separable convolutions can be effectively utilized to 
create a more efficient network for lung 
segmentation. 

Despite high overall accuracy, a detailed 
comparison of prediction masks and ground truth 
revealed minor discrepancies, particularly around 
the lung periphery and near regions with anatomical 
ambiguity or radiographic artifacts.  This is shown 
in Figure 7 (difference map), where blue regions in 
the figure indicate areas where the model under-
segmented the lung boundary. These errors were 
more evident in complex images where the lung 
boundaries were obscured or deformed, suggesting 
that the model could still benefit from incorporating 
anatomical constraints or structural guidance. 
Moreover, the model occasionally fails to accurately 
segment very small nodules or other abnormalities 
within the lung parenchyma. This could be 
attributed to the limited spatial resolution of the 
network or the relatively small number of training 
examples containing such abnormalities. 
4.5.1 Comparative analysis 

The proposed lightweight U-Net architecture 
demonstrates a high level of effectiveness in lung 
segmentation, delivering 97.12% accuracy, a 
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91.92% Dice score, and an 82.75% IoU. As 
summarized in Table 2, our model demonstrates 
notably stronger results compared to other state-of-
the-art segmentation methods. 

Khomduean et al. [24] employed a 3D-UNet 
integrated with DenseNet169, a complex 
architecture designed to leverage both spatial and 
feature-level information, for the segmentation of 
lung lobes and lesions in COVID-19 patients. Their 
reported Dice score of 91.52% for lung lobe 
segmentation is very close to our model's Dice 
score. However, their study also tackled the more 
challenging task of segmenting lung lesions, 
achieving a lower Dice score of 76.89% for that 
specific task. This underscores the difficulty in 
accurately delineating pathological regions, which 
often exhibit irregular shapes and fuzzy boundaries. 
In contrast, our model, while trained on a different 
dataset (Chest X-ray masks and labels), 
demonstrates robust performance in segmenting the 

overall lung region. Alshmrani et al. [36] utilized a 
Hyper-Dense VGG16 U-Net on the STS PET-CT 
dataset and reported a high accuracy of 98.10%. 
However, their Dice (73.01%) and IoU (58.70%) 
values are considerably lower than those of our 
model, suggesting that while their method exhibits 
high pixel-level classification accuracy, the 
segmentation masks generated have lower 
agreement with the ground truth boundaries 
compared to our results. This indicates that our 
model provides more precise segmentation. 

Cai et al. [23]’s Pix2Pix GAN highlights the 
power of adversarial training for 2D CT slices, 
achieving an 87.05% Dice and 78.60% IoU, but at 
the expense of longer training times and the need 
for careful GAN tuning. These values are also lower 
than the performance metrics achieved by our 
lightweight U-Net, further supporting the 
effectiveness of our proposed architecture. 

 
 

Table 2. Comparative performance analysis of lung segmentation methods 
 
Authors Model Dataset Performance Evaluation 
Khomduean 
et al. [24]  

3D-UNet integrated 
with DenseNet169 

124 COVID-19 patients from 
Chulabhorn Hospital (28 
without lung lesions, 96 with 
lesions) 

Dice (lung lobes): 91.52%; Dice (lung 
lesions): 76.89% 

Alshmrani et 
al. [36]  

Hyper-Dense 
VGG16 U-Net 
(Multimodal) 

STS PET-CT (3063 slices) Accuracy: 98.10%; Dice: 73.01%; 
Precision: 58.70%; Recall: 67.47% 

Cai et al. 
[23]  

Pix2Pix 237 lung CT images Accuracy: 83.50%; Dice: 87.05%; 
Precision: 78.60% 

Reamaroon 
et al. [25 ] 

Total Variation-
based Active 
Contour (TVAC) 

Michigan Medicine dataset Dice: 86.04% 

Wang et al. 
[26] 

3D Convolutional 
Neural Network 

A dataset from a private 
clinic containing 290 paired 
CT and PET scans. 

Dice: 83.0% 

Park et al. 
[27] 

Global U-Net A private dataset consisting 
of clinical data from 887 lung 
cancer patients. 

Dice: 80.0%; Recall: 86.2% 

Zhou et al. 
[28] 

Multitask connected 
U-Net  

Multiple datasets of CT and 
PET modalities 

Dice: 56.0% 

Xiang et al. 
[29] 

Modality-specific 
segmentation 
network (MoSNet) 

126 FDG PET-CT scans Dice: 77.72%; IoU: 66.26%; Precision: 
82.55%; Recall: 79.63% 

Fu et al. [30] Multimodal spatial 
attention module 
(MSAM) 

Clinical PET–CT data from 
two cohorts: non-small cell 
lung cancer (NSCLC) and 
soft tissue sarcoma (STS) 

Dice: 71.40%; IoU: 59.93%; Precision: 
79.89%; Recall: 72.05% 

Proposed 
method 

Lightweight U-Net 
with Separable 
Convolutions 

Kaggle’s Chest X-ray dataset 
with accompanying masks 
and labels. 

Accuracy: 97.12%; Dice: 91.92%; IoU: 
82.75%; Precision: 92.64%; Recall: 

90.31% 
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 Classical and mid‐range CNN approaches such 
as the Total Variation-based Active Contour 
(TVAC) of Reamaroon et al. [25] and Wang et al. 
[26]’s plain 3D CNN produce decent Dice scores 
(86.04% and 83.0%, respectively) but lack the 
feature‐reuse and multi‐scale mechanisms that 
modern encoder–decoder networks provide. The 3D 
CNN approach captures spatial context, which is 
important for medical image analysis, but our 2D 
lightweight U-Net, with its efficient separable 
convolutions, achieves better performance with 
fewer parameters. Park et al. [27]’s Global U-Net 
and Zhou et al. [28]’s multitask connected U-Net 
illustrate that simply adding global context or 
multiple decoders does not guarantee consistent 
segmentation quality, yielding Dice scores of 80.0% 
and 56.0%. More specialized fusion strategies like 
Xiang et al. [29]’s MoSNet and Fu et al. [30]’s 
MSAM, which integrate modality‐specific features 
or spatial attention for PET–CT inputs, improve 
lesion delineation (Dice of 77.72% and 71.40%) but 
introduce substantial architectural complexity and 
computational overhead. 

Notably, our model demonstrates a superior 
balance between precision (92.64%) and recall 
(90.31%). A high precision score reflects a low 
false-positive rate (i.e., the model avoids marking 
background as lung), whereas high recall reflects a 
low false-negative rate (i.e., it captures nearly all 
lung regions). This balance is crucial for clinical 
applications, where both false positives and false 
negatives can have significant consequences. 
Importantly, it does so with just 905K parameters 
and an inference time of ~15 ms per image on a 
Tesla P100 GPU. This represents a substantial 
reduction in model size and a speedup relative to 
standard U-Net and 3D multimodal counterparts. 
Such efficiency makes our approach uniquely suited 
for real-time clinical applications, including bedside 
triage and integration into low-power imaging 
devices, without sacrificing segmentation reliability. 
4.5.2 Clinical significance 

Accurate and efficient lung segmentation holds 
significant potential to improve clinical workflows 
and patient care. The proposed lightweight U-Net 
architecture offers several advantages that could 
translate to tangible clinical benefits. Accurate and 
rapid delineation of lung fields is a critical first step 
in a wide range of downstream diagnostic and 
therapeutic workflows from automated nodule 
detection and volumetric quantification to 
image‐guided interventions and disease monitoring. 
Our lightweight U-Net with separable convolutions 
delivers very fast segmentation on standard CXR 
images, enabling near real-time support in 

high‐throughput environments such as emergency 
departments or mobile screening units. By reducing 
the need for manual contouring, the model can 
substantially decrease radiologist workload and 
inter‐observer variability, particularly in 
mass‐screening scenarios for pneumonia, 
tuberculosis, or COVID-19. Furthermore, its 
compact size and low hardware requirements 
facilitate deployment on point-of-care systems and 
resource-limited settings where access to expert 
readers and high-end GPUs is often constrained. 
Ultimately, integrating our model into clinical 
PACS or portable imaging devices promises to 
accelerate patient triage, standardize lung 
segmentation across institutions, and unlock 
downstream AI pipelines (e.g., densitometry, 
texture analysis, nodule classification) that depend 
on reliable lung masks. This could translate into 
faster diagnosis, more timely treatment decisions, 
and, ultimately, improved patient outcomes.  

The model's high segmentation accuracy can 
enable clinicians to more precisely delineate lung 
regions of interest, facilitating the identification and 
quantification of abnormalities, which can lead to 
earlier and more accurate diagnoses of various 
pulmonary diseases, including pneumonia, COPD, 
and lung cancer. The fast inference time of our 
model can also expedite the diagnostic process, 
allowing for quicker clinical decision-making. For 
applications like radiation therapy, where targeting 
tumors while preserving healthy tissue is crucial, 
precise lung segmentation provides the necessary 
accuracy in delineating lung and tumor volumes. 
Our model's efficiency could support the integration 
of automated segmentation into the treatment 
planning workflow, potentially leading to more 
personalized and effective treatments. Furthermore, 
quantitative analysis of lung morphology and 
function, enabled by accurate segmentation, can 
yield valuable information on how diseases evolve 
and respond to therapy. For example, our model 
could be used to measure changes in lung volume, 
density, or lesion size over time, aiding in the 
monitoring of patients with chronic lung diseases or 
those undergoing treatment.  

Manual lung segmentation is a time-consuming 
and labor-intensive task, often performed by 
radiologists, so automating this process with our 
lightweight U-Net can significantly reduce the 
workload on clinicians, freeing up their time for 
other critical tasks and leading to improved 
efficiency in radiology departments and reduced 
healthcare costs. The low computational 
requirements of our model make it suitable for 
deployment in resource-limited settings with less 
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powerful hardware, which could expand access to 
advanced image analysis tools in underserved 
populations, improving healthcare equity. The 
accurate and fast segmentation provided by our 
model can also serve as a crucial preprocessing step 
for other AI-powered tools, such as computer-aided 
diagnosis (CAD) systems that detect lung nodules 
or classify disease patterns. In conclusion, the 
lightweight U-Net has the potential to be a valuable 
tool for radiologists and other healthcare 
professionals, leading to improved diagnostic 
accuracy, more effective treatment planning, and 
enhanced patient care. 

 
4.6 Critical Evaluation and Comparison with 

Prior Work 
While the proposed lightweight U-Net with 

separable convolutions has demonstrated high 
segmentation accuracy and efficiency, a critical 
assessment reveals several aspects that merit further 
reflection. 
4.6.1 Strengths and contributions 

The model achieves competitive performance 
(97.12% Accuracy, 91.92% Dice score and 82.75% 
IoU) with only 905K parameters and an average 
inference time of 15 ms. Compared to traditional U-
Net and several recent CNN and GAN-based 
models, it provides a favorable trade-off between 
accuracy and efficiency. This is particularly 
beneficial for real-time clinical applications and 
deployment on edge devices. 
4.6.2 Limitations and areas for improvement 

While the proposed model delivers high 
segmentation accuracy with a significantly reduced 
parameter count, it has some limitations. It 
occasionally struggles to delineate lung boundaries 
where overlapping anatomical structures, such as 
the heart or clavicles, are present. Additionally, 
since the model was trained on mostly normal or 
mildly abnormal CXRs, its performance on severe 
pathologies like pneumothorax or fibrosis remains 
untested. The model also shows reduced sensitivity 
to small nodules or lesions, likely due to resolution 
loss during downsampling. Furthermore, being 
trained on single-modality (CXR) data, it lacks the 
complementary context that multimodal approaches 
could offer. These areas represent key opportunities 
for further enhancement. 
4.6.3 Differentiation from prior work 

The proposed model distinguishes itself from 
prior works by achieving a strong balance between 
segmentation accuracy and computational 
efficiency, making it particularly well-suited for 
real-time clinical deployment. Unlike conventional 
U-Net architectures and their advanced variants that 

rely on heavy-weight components such as dense 
blocks, attention modules, or transformer layers, our 
model uses depthwise separable convolutions to 
significantly reduce computational load without 
compromising segmentation quality. In comparison 
to models like CXR-Seg [27], which integrates 
complex attention and transformer modules and 
achieves marginally higher Dice scores, our 
approach offers faster inference and a more 
lightweight structure that facilitates edge 
deployment. Similarly, while adversarial training 
methods such as the Pix2Pix GAN [23] have 
demonstrated promising results for lung 
segmentation, they require careful hyperparameter 
tuning and prolonged training times, limiting their 
practicality in clinical workflows. Other models like 
CT-LungNet [24] and MoSNet [29] have explored 
multi-modality integration (e.g., CT and PET), 
achieving good accuracy, but their complexity and 
resource requirements hinder their use in low-power 
or mobile devices. Our model's simplicity, fast 
inference (~15 ms per image), and low parameter 
count (~905K) offer a practical advantage, 
particularly in resource-constrained settings where 
rapid triage or automated preprocessing is critical. 
4.6.4 Threats to validity and evaluation 

justification 
While the proposed model demonstrates strong 

performance, certain threats to validity must be 
acknowledged. The experiments were conducted on 
a single publicly available dataset, which, although 
widely used and well-annotated, may not fully 
represent the diversity of clinical imaging 
conditions across institutions or patient populations. 
This may limit the external validity and 
generalizability of the results. Internal validity could 
also be influenced by factors such as annotation 
noise or image artifacts within the dataset. To 
ensure a robust and fair evaluation, we selected 
widely accepted performance metrics such as Dice 
coefficient, Intersection over Union (IoU), 
precision, recall, and accuracy. These metrics 
provide complementary perspectives: Dice and IoU 
measure the spatial overlap between predicted and 
ground truth masks, while precision and recall help 
quantify false positives and false negatives, which 
are clinically significant. Accuracy, although 
included, was interpreted with caution due to class 
imbalance. These criteria were chosen based on 
their prevalence in medical image segmentation 
literature and their relevance for assessing both 
technical performance and clinical applicability. 
Overall, while the results are consistent across data 
splits and supported by both quantitative and 
qualitative analysis, further validation on multi-
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institutional and cross-modality datasets is essential 
to confirm real-world robustness and 
generalizability. 
4.6.5 Future challenges and directions 

To enhance the practical utility of our model, 
future work will focus on improving its 
generalizability across diverse clinical 
environments. This includes validating performance 
on multi-institutional datasets and exploring cross-
modality scenarios, such as PET-CT, to test 
robustness under varied imaging conditions. 
Incorporating lightweight attention or transformer 
modules may further improve boundary delineation 
by capturing long-range spatial dependencies. 
Additionally, integrating uncertainty estimation 
techniques can help flag low-confidence 
segmentations for manual review, thereby 
increasing clinical trust. To support deployment on 
resource-constrained hardware, we will investigate 
model compression techniques such as quantization 
and pruning. Finally, we aim to extend the model’s 
functionality by coupling lung segmentation with 
downstream tasks like nodule detection, radiomic 
feature extraction, and disease classification, 
ultimately creating a fully integrated, real-time 
decision-support system. 

 
5. CONCLUSIONS 

In this paper, we introduced a compact U-Net 
variant that integrates depthwise separable 
convolutions to achieve efficient and accurate 
segmentation of lung regions in chest X-rays, 
specifically designed for deployment on resource-
limited platforms. By replacing standard 
convolutional layers with separable blocks, our 
model reduces the parameter count to just 905 K 
and processes each image in approximately 15 
milliseconds on a Tesla P100 GPU, all while 
delivering state-of-the-art performance (97.12% 
accuracy, 91.92% Dice, 82.75% IoU, 92.64% 
precision, and 90.31% recall). Extensive 
quantitative and qualitative evaluations 
demonstrated its robustness across a variety of lung 
appearances and pathologies, outperforming or 
matching much larger 2D, 3D, and multimodal 
segmentation networks. The proposed method’s 
effectiveness was validated using experiments on 
the Chest X-ray Masks and Labels dataset from 
Kaggle.  

From the authors’ perspective, this work 
highlights how architectural simplicity, when 
combined with strategic convolutional design, can 
lead to highly efficient models without 
compromising performance. We believe this 
direction is critical for enabling widespread AI 

adoption in real-world healthcare settings, 
particularly in under-resourced environments. At the 
same time, developing this model also revealed 
challenges that remain unsolved, especially in 
generalizing to rare pathologies or difficult 
boundary cases. These limitations emphasize the 
need for further exploration into attention 
mechanisms, uncertainty quantification, and 
deployment-oriented optimizations. Overall, we are 
confident that the proposed lightweight U-Net forms 
a strong foundation for practical, scalable, and 
accessible AI-driven lung segmentation and can be 
extended toward broader clinical applications in the 
near future. 
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