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ABSTRACT

An adaptive learning system aims to enhance the effectiveness of the educational process by tailoring it to
individual students. A key aspect of this adaptation involves identifying the most suitable learning approach,
based on Visual, Auditory, and Kinesthetic (VAK) learning styles. However, accurately classifying learning
styles remains a challenge due to the presence of concept drift, which affects the network’s ability to
generalize across different learners. To address this, the Model Agnostic Meta Learning — Long Short-Term
Memory (MAML-LSTM) model is proposed in this research study for effective learning style classification.
MAML is incorporated into the LSTM network to identify shifts in classification patterns and adapt to new
learners quickly. Rather than retraining the network from the beginning, the model dynamically fine-tunes
the LSTM in response to concept drift, thereby improving its generalization capability. The MAML-LSTM
integration enables rapid adaptation to concept drift by fine-tuning on limited new data, eliminating the need
for complete retraining. This enhances the model’s ability to maintain high classification accuracy across
dynamic learner behaviors. Additionally, Local Interpretable Model-agnostic Explanations (LIME) are
employed after classification to highlight key features, ensuring greater transparency and interpretability. The
proposed MAML-LSTM achieves 97.77% accuracy, 97.72% precision, 97.72% recall, 97.72% F1-score,
97.72% specificity, and 99.81% AUC on the VAK learning style dataset, outperforming existing algorithms.

Keywords: Auditory, Kinesthetic, Learning style, Long Short-Term Memory, Model Agnostic Meta Learning

and Visual.

1. INTRODUCTION [7]. Students recognize their preferred learning
Recent advancements in the education system, methods based on familiarity with specific

driven by Information Technology (IT) and the
internet, have enabled predictive models to improve
the data services provided by educational institutions
[1]. E-learning, an educational technique that
incorporates technical tools, is facilitated through
Learning Management Systems (LMSs) [2].
Through LMSs, students can access lecture
materials, discussion boards, chat rooms, and
retrieve assignments provided by instructors [3].
Student activities and engagement in online learning
environments are monitored through platforms like
Moodle, with data recorded in Moodle logs [4].
Despite its advantages, e-learning presents several
challenges, as undergraduates often show low
engagement and frequently leave virtual classrooms.
Therefore, understanding students’ learning
preferences by considering their learning styles in
different situations is crucial [5,6]. Students
experience various phases of knowledge acquisition
throughout the learning process. The concept of
learning style refers to the approach a student adopts
to effectively analyze and comprehend information

techniques. However, Moodle cannot automatically
identify students’ learning preferences [8]. Student
behavior is analyzed based on the number of times
they access specific e-learning modules in Moodle.
Completing a learning style questionnaire is
necessary to determine the most suitable learning
style for each student [9].

Students access video lectures and educational
sources on Massive Open Online Course (MOOC)
platforms. Additionally, upon successful completion
of a course, students receive a certificate [10]. The
content on MOOC platforms is typically free from
punctuation, grammar and spelling errors. Although
MOOC platforms are widespread, they suffer from
high dropout rates and poor performance metrics,
often leading to student frustration. As a result, key
contributing factors include a lack of interest in the
course, low participation, and difficulty in tracking
activities and resources for assessments [11]. Hence,
in an online education system, student participation
is a crucial component of a course’s success. While
a virtual learning environment with certificate
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completion is referred to as a MOOC, online learning
platforms are generally considered more hybrid [12].
Student satisfaction and quality of educational
experience are primarily linked to student
participation. To minimise dropout rates, it is crucial
to understand how students engage and sustain their
interest in professional education [13]. An improved
learning environment supports and promotes self-
control and motivation, enabling students to stay
focused and perform well. Understanding how
students learn and interact within online learning
platforms is fundamental to developing effective
learning environments [14]. Optimal learning
techniques and customization of learning
environments are necessary, particularly when
guided by high student participation. Recently,
learning analytics has been applied to predict student
performance through advancements in educational
data analysis. Compared with MOOC platforms,
Virtual Learning Environments (VLEs) provide
more structured instruction and facilitate monitoring
of student activities and assessments, aimed to
transform passive learners into active participants
[15]. Long Short-Term Memory (LSTM) networks
are employed to model sequential dependencies on
learning behavior data, effectively extracting long-
term patterns. However, concept drift, referring to
changes in user behavior over time, reduces the
generalization ability of the model. To address this,
Model Agnostic Meta Learning (MAML) is
integrated with LSTM, enabling the model to quickly
adapt to new learners through fine-tuning on limited
data, rather than retraining from scratch. This
approach enhances classification accuracy by
accommodating shifts in data distribution. Meta-
learning dynamically adjusts hyperparameters and
thresholds in response to behavioral changes,
thereby improving adaptability and robustness.

1.1 Objective

The main objective of the study is to developed a
hybrid MAML-LSTM model to adaptively classify
the learning styles as visual, auditory and kinesthetic,
while efficiently addressing the challenges of
concept drift. The performance of this model is
evaluated in terms of the measures of accuracy,
precision, recall, f1-score, specificity and AUC using
the VAK Ilearning style dataset. To ensure
interpretability, the study includes LIME to highlight
the much significant features of model predictions.

Contributions

The primary contributions of this research
are described as follows:

e Term Frequency — Inverse Document
Frequency (TF-IDF) and GloVe embeddings
are employed during the feature extraction
phase to capture meaningful features that
differentiate between the classes of different
learning styles.

e A Model Agnostic — Meta Learning
(MAML) - Long Short-Term Memory
(LSTM) model 1is developed during

classification to efficiently manage concept
drift and enhance generalization ability.

e  The integration of the MAML-LSTM model
is developed to dynamically fine-tune the
LSTM parameters using meta-learning,
enabling fast adaptation to shifting learner
behavior with less data and without complete
retraining, thereby enhancing robustness and
generalization.

e Finally, Local Interpretable Model-agnostic
Explanations (LIME) are applied after the
classification process to highlight the key
features for ensuring greater model
transparency and interpretability.

This research paper is further organized as
follows: Section 2 analyzes the existing algorithms
along with their advantages and limitations. Section
3 presents the details of the proposed algorithm for
learning style classification. Section 4 provides the
results and discussion of the proposed algorithm, and
Section 5 concludes the research.

2. LITERATURE REVIEW

Sayed et al. [16] presented an integrated method
for classifying learners based on their learning
activity clicks by integrating Machine Learning
(ML) techniques such as K-Nearest Neighbor
(KNN), Random Forest (RF), Support Vector
Machine (SVM), and Logistic Regression (LR) with
semantic integration, which was used to map
learning activities to the VAK learning styles. This
process ensured the classification of learners and
identified their preferred learning techniques.
Learning styles provided a reliable basis for
validation methods and strategies.

Kanchon et al. [17] explored diverse endeavours
for formulating an efficient technique to determine a
learner’s chosen learning styles and adapt a learning
content to align with the chosen style. The analysis
revealed that web tracking of learners for activity
classification and individual responses for feedback
classification were highly effective in detecting
learning styles such as visual, auditory, and
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kinesthetic. Additionally, Decision Tree, RF, SVM,
LR, and Convolutional Neural Network (CNN), each
with optimized hyperparameters and the Synthetic
Minority Oversampling Technique (SMOTE), were
employed to classify learner behaviors.

Villegas-Ch et al. [18] developed a personalized
learning method using ML techniques by adapting
educational content to classify various learning
styles. Focusing on a cohort of students,
classification techniques and neural networks were
implemented to diagnose learning styles and
personalize educational resources. The outcomes
showed that students’ average grades experienced a
significant  increase. ~ Moreover, engagement
improved through substantial interaction with
educational materials, aligning with individual
learning preferences.

Sayed et al. [19] introduced a technique for
analyzing the student engagement trends in Virtual
Learning Environments (VLE), and defined student
prevalent preferences and learning styles to
formulate recommendations for effective learning
evaluation approaches. This hybridization method
was linked to different activities within the VAK
learning model, and therefore, with different learning
preferences driven by the patterns and behaviours
throughout the learning process.

Muhammad et al. [20] implemented a learning
style detection method named Graph Representation
Learning — Learning Style (GRL-LS), based on
graph representation learning. This model used a
bipartite graph representing interactions among
various groups of learners and learning sources.
Then, a graph embedding method was introduced to
understand the latent representation of learners and
resources. Then, learned representation was planned
to Felder-Silverman Learning Style Model (FSLSM)
for detecting and grouping learners by K-means
algorithms. The implemented model was employed
under various education settings and customized to
different learning methods. The primary factors
requiring this adaptation included identifying an
ideal learning approach for students, based on the
VAK learning styles. However, classifying learning
styles remains challenging due to the difficulty in
handling concept drift, which reduced the network’s
generalization ability.

In order to address the aforementioned challenges,
this study proposes the MAML-LSTM model for
effective classification of learning styles. MAML is

incorporated into the LSTM network to identify
changes in classification patterns and enable rapid
adaptation to new learners.

To ensure strong alignment between the reviewed
literature and the present study, it is highlighted that
the VAK learning style dataset exhibits non-
stationary behavior due to varying learner
preferences over time. While previous studies
employ static classifiers or ensemble models, they do
not address the dynamic shifts in user behavior. The
proposed MAML-LSTM framework offers a meta-
learning algorithm that fine-tunes the model to
accommodate such shifts. This connection between
the drawbacks identified in previous work and the
nature of the collected data provides a clear
methodological direction. By leveraging MAML’s
capability to rapidly adapt to new tasks, the MAML-
LSTM model dynamically adjusts to changes in
learner behavior over time, efficiently addressing the
non-stationarity inherent in the VAK dataset.

Additionally, rather than retraining the network
from the beginning, the model fine-tunes the LSTM
dynamically as concept drift occurs, thereby
improving the generalization ability of the network.
Finally, LIME is applied after the classification
process to highlight key features, ensuring greater
transparency and interpretability.

3. PROPOSED METHOD

The proposed MAML-LSTM method is presented
for the precise classification of learning styles. The
VAK learning style dataset is used and pre-processed
through stopword removal, lemmatization, and label
encoding to enhance data quality. TF-IDF and GloVe
embedding are employed in the feature extraction
phase to capture meaningful features that
differentiate the classes of learning styles. In the
classification phase, MAML-LSTM is used to
accurately classify the learning styles. Finally, LIME
is applied to highlight key features and ensure model
interpretability.

Study design

The study follows a structured experimental
design to classify learning styles using the VAK
dataset. Initially, raw data is pre-processed through
stopword removal, lemmatization, and label
encoding to standardize the inputs. Feature
extraction is performed using TF-IDF and GloVe
embeddings to capture both statistical and semantic
features.
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Figure 1: Process of learning style classification

The primary model combines LSTM with MAML
to address concept drift and enhance adaptability.
LIME is employed after classification to improve
model interpretability. Figure 1 illustrates the
process of learning style classification.

3.1 Dataset

The VAK learning style dataset is employed in
this study for data collection [21]. The dataset
includes three classes with 5527 visual samples,
4572 kinesthetic samples and 4496 auditory samples.
Figure 2 represents the dataset distribution.

3.2 Pre-processing
Pre-processing involves the following steps:

e Stopword removal — Stopwords are words
that frequently appear in a document but
carry minimal meaningful information.
Examples include common English words
such as an, as, are, and, and. Removing
stopwords reduces vector space and
enhances performance through improving
computation speed, calculation efficiency,
and overall accuracy [22]. Therefore,
eliminating stopwords removes low-
information content, without negatively
impacting the training process.

e Lemmatization — Lemmatization is defined
as the vocabulary and morphological
analysis of words to eliminate inflectional
endings and return a base form, called the
lemma. This process replaces a word with its
root form, standardizing variations that may
convey similar meanings based on context.
Lemmatization improves text processing by
unifying word forms, thereby enhancing
accuracy.

e Label encoding — Label encoding converts
categorical labels in the dataset, such as
visual, auditory, and kinesthetic, into
numerical values, facilitating the training
process of the model.

5527
5000
4496
4000
-
£ 3000 |
o
8]
2000
1000 -
o 4
Visual Kinesthetic Auditory
Type

Figure 2: Dataset distribution

3.3 Feature extraction

The pre-processed data is given as input for
feature extraction to capture meaningful features
from the text. In this phase, TF-IDF and GloVe
embedding techniques are employed to extract
features and differentiate them across the dataset
classes.

3.3.1 TF-IDF

Term Frequency (TF) and Inverse Document
Frequency (IDF) are two widely used elements in
text classification, collectively referred to as TF-
IDF. TF-IDF is a statistical measure that evaluates
the significance of a word in a document relative to
a set of documents [23]. This is achieved by
multiplying the inverse document frequency of a
word across the documents. The TF-IDF value is
calculated by multiplying the TF and IDF values of
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a word, and its mathematical expression is given in
Equation (1).

TF — IDF =TF X IDF (1)
3.3.2 GloVe Embeddings
The GloVe method is an efficient technique that
utilizes global corpus statistics and optimizes a
learning process based on a context window. The
primary objective is to vectorize words and generate
word vectors from the input corpus. The
implementation of the algorithm proceeds as
follows: first, a word co-occurrence matrix is
constructed based on the entire corpus. Then, word
vector learning is performed using the co-occurrence
matrix in conjunction with the GloVe method. The
mathematical expression for the GloVe method is
presented in Equation (2).

2
J =28 £ () (V0 + b+ b = In(Xy)) @)
In the above Equation (2), X represents a

cooccurrence matrix and the number of times a word

occurs in single window is denoted as X;;. The size
of a window is generally 5 to 10, and V; and V; are
word vectors of i and j words, b; and b; represent
deviation terms, N represents the dimension of
cooccurrence matrix and f represents weight
function, where f contains the below characteristics.

e  When a count of cooccurrence of words is 0,
the weight is also 0.

e  When the co-occurrence count is high, the
weight does not decrease, that is f(x)
maintains  continuity and is  non-
decrementing.

e  When words exist with high frequently, there
is null weight, and f(x) is employed for
smaller values. The weight function f(x)
and its mathematical expression is given as

Equation (3).

— (x/xmax)a' x < xmax
r@={, oo ©)
The experimental results show optimal

performance when x,,,, = 100 and a = 0.75, as
expressed in Equation (3). The GloVe directly
utilizes the corpus word vectors for measurement,
offering high manoeuvrability and flexibility.

3.4 Classification

In the classification phase, LSTM is integrated
with MAML to address the challenge of concept drift
and to enhance the generalization capability of
LSTM. A detailed explanation of LSTM and MAML
is provided below.

341 LSTM

LSTM is a prominent variant of the Recurrent
Neural Network (RNN) that has achieved significant
success in recent years. In LSTM, the memory cell is
the central component and includes a gating
mechanism. Each LSTM cell typically contains three
main gates: input, forget, and output gates. To
recognize long-term dependencies, LSTM uses
individual cells that update based on the current input
value. The parameters of the LSTM used in this
research include 20 epochs, categorical cross-
entropy as the loss function, a batch size of 64, the
Adam optimizer, and the softmax activation
function. The mathematical expressions for the three
gates are given in Equation (4) to Equation (6).

i(g) = olw;* (Yr_1, h)] + by) “)
flg) = U[Wf : (yr—l'hr)] + by) Q)
o(g) = o[w, * ¥r—1, hy)] + b,) (6)

In the above equations, i(g),f(g) and o(g)
represent input gate, forget gate and output gate, and
o represents the sigmoid activation function. The
b;, by and b, represent the bias functions, and w;, we
and w, represent the weight functions. The y,_;
represents the hidden state and h, is the input state.
Additionally, mathematical expressions for hidden
and cell states are given in Equations (7)-(9).

¢ = tanh[wc ' (y‘r—lr hr)] + bc @)
ch =f(@ocr +i(g)eg 3
yr = 0(g)  tanh(c;) )

In the above equations, the hyperbolic activation
function, weight and bias function in terms of cell
state are denoted as tanh, w, and b, respectively.

3.4.2  Meta learning - LSTM

Meta-learning is a learning method that learns
from past, similar tasks and predicts unseen, relevant
tasks. Specifically, it aids in selecting optimal
hyperparameters to active learning tasks in
streaming data, thereby enhancing the model’s
ability to recommend optimal scores. Meta-learning
using hyperparameter tuning is successfully
employed in various domains, including image
processing.

By employing stream-dependent active learning
with uncertainty sampling for query labeling, the
stream classifier is trained to reduce labeling costs.
However, this process involves hyperparameters that
require tuning for each task. The Z value, or
ambiguity threshold, defines the level of uncertainty
used in the active learning method to determine the
value of a sample for labeling.

The method aims at dynamically tuning the Z
value by layering a meta-learning approach on top of
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the active learning method. This approach, derived
from a meta-learning mechanism, is responsible for
selecting an appropriate Z for each stream chunk.
Since the data stream modifies its behavior due to
concept drift, the meta-method continuously
determines the Z value. The method assigns triggers
based on a change detector, which identifies
potential behavioral modifications representing
concept drift. When a probable drift point is detected,
data samples limited by the change detector are used
to extract meta-features. These samples are then
passed to the meta-method to determine a new Z
value for uncertainty sampling. The implementation
of the meta-learning method involves five phases:

Meta Feature Extraction — This phase represents
the characteristics of the event stream based on
lightweight temporal time series attributes.

Meta-Target Definition — This phase detects an
appropriate Z value which offers an appropriate
trade-off among accuracy and low label querying.
This is essential for exploring suitable Z values
capable of covering the probability search space
defined by the trade-off moulds.

Meta-database — In this phase, meta-features and
meta-targets are combined to develop meta-samples,
which are then used to train the meta-method.

Meta Learner — This phase involves the induction
of the meta-method using the acquired meta-
instances. The meta-method serves as the final step,
capable of recommending a suitable Z.

Meta Recommending — When a change is
identified, its samples have their features extracted to
predict a new Z through meta-methods. The output
of the meta-method serves as input for uncertainty
sampling, which chooses labeling instances for the
stream classifier. LSTM is used to model the
sequential dependencies in learning behavior data,
effectively extracting long-term patterns. However,
concept drift, referring to changes in user behavior
over time, reduces the model’s generalization
capability. To address this, MAML is integrated with
LSTM, enabling the method to quickly adapt to new
learners by fine-tuning on limited data rather than
retraining from scratch. This process enhances
classification accuracy by accommodating shifts in
data distribution. Meta-learning dynamically adjusts
hyperparameters and thresholds in response to
behavioral changes, thereby improving adaptability
and robustness.

343 MAML with LSTM
In the proposed model, MAML is integrated with
LSTM to enable adaptive learning style

classification in the presence of concept drift. While
LSTM efficiently captures long-term dependencies
in sequential learning behavior data, it struggles to
generalize when learner behavior patterns shift over
time. MAML addresses this by incorporating a meta-
learner that fine-tunes the parameters of LSTM on a
small amount of new data, allowing rapid adaptation
without complete retraining. When a drift in
behavior is identified, MAML uses prior learning
experience to quickly optimize LSTM for the new
task distribution, preserving classification accuracy
and robustness. This integration allows the model to
dynamically adapt to evolving learning patterns
while maintaining effective performance across
different learner profiles.

Algorithm for best Z selection

Input — R, the classification outcomes for candidate
Z values, containing both accuracy and query
quantities for choosing margin to top values.

Output — Optimal Z value with lesser query rate
within the top chosen interval.

Rgcc < Z with high accuracy in R

T

«— {R; € RIACC(Ry.) —s < ACC(R;) < ACC(Ruce)ls

Riop < argming (QRY(T));
Return Ry,p;

Algorithm for Meta-Recommending

Input: S data stream, «,, drift detector, 3, classifier,
0, meta-learning method, pg number of samples
utilized for pre-train classifier.

Z « 0.5;

Pre-trained on initial samples of S;

for S; € {Spb’+1' ...,Sn} do

E; « run AC Tzﬁ on S; and return the error
from prediction;
Update a, with E;;
if @ change detected then
F « features produced from
{Slastfdrift' ey Si}
Z « prediction from 6, with
input F:
end
end

3.5 Local Interpretable
Explanations (LIME)
LIME (Local Interpretable Model-Agnostic
Explanations) is an algorithm designed to locally
approximate complex classifiers using interpretable
models to provide precise explanations of its
predictions. It focuses on two key features:
interpretable  representation, which offers a

Model-Agnostic
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qualitative understanding of the model's decisions,
and local fidelity, which measures the
trustworthiness of the explanation near the predicted
samples. The term model-agnostic means that LIME
can explain any classification model by treating it as
a black box. LIME is particularly useful for text-
based models and enhances the interpretability of
complex datasets, making it a valuable tool for
understanding and explaining predictions in machine
learning.

Algorithm for LIME explanations
Input — Classifier f — Black box method to explained

Instance x — Data sample to explained, N —
Number of instances, m, — distance measure, the
function which calculates distance among samples.
The Q(g) complexity measure is, a measure of
complexity for interpretability.
Output - (x) Produced explanation for method’s
prediction on sample x
Z « {} Initialize an empty set for storing perturbed
instances. Select samples for interpretation and
perturbing.
fori €{1,2,3,..,N}do

Z < non zero instances (x,m,) process
search for non-zero samples

z' « perturbed sample (z) Perturb the
non-zero elements

Z < Z + z' Add perturbed instance to set Z
end for
Fix weights for instances

weights « fix_weights (Z) Fix weights
for perturbed instances depended on 7,
Learn interpretable method and develop the
explanations:

g < learn,,,q0:(Z, weights) Develop a
learning method with weights

untruthiness «

measure untruthiness (f, g, s, m,) Measure
untruthiness by weighted instances
Return £ «

optimize_explanation (untruthiness, () optimi
ze for explanations by reducing L(f, g, m,) + Q(g)

The term G represents the class of interpretable
methods, with g € G representing a specific method
represented through visual or text artifacts. The
domain of g, represented as {0,1}¢ indicates the
presence or absence of interpretable elements. For
each g € G that is interpretable, 2(g) is used to
calculate the complexity. In the case of a function
f:RY > R which requires interpretability, f(x)
denotes the probability that x belongs to a specific
category. To define the locality around x, the

function 7,(z) is used to calculate the distance
between the instances z and x. Finally, L(f, g, m,)
quantifies the degree of untruthiness when
explaining f within the local region defined by m,.
The mathematical expression for LIME is given in
Equation (10).

€(x) = argmingecL(f,9,m) + Q(g)  (10)
In the above Equation (10), L(f, g, ) and Q(g)
respectively denote the interpretability and local
fidelity. The empty set Z is initialized for storing the
non-zero samples selected from the linear method.
This denotes that N data samples around x' are
randomly disturbed. The disturbed instances are
described as z' € {0,1} d’ and includes certain non-
zero components of x'. The actual representation of
instance is redetermined as z € R%. In classification,
f(x) represents the possibility that z belongs to a
specific class. The perturbed instances are assigned
to set Z and given to the black box method. The f (x)
is utilized for obtaining classification labels. The
further phase is to fix the weights for selecting the
instances. The main aim of LIME is to develop a
better local approximation by m, where instances
with greater weight are present close to x', and those
with lesser weights are farther from x’. Hence, for
learning the interpretable method, LIME fixes the
weights for perturbed instances by its proximity to
x'. Instances near to x' are provided more weight and
instances far from x' are provided lesser weights.
The method with perturbed data instances Z are
utilized for developing the learning method by
applying weights in the form g(z") = wg X z'. The
mathematical expression for a new function is given
in Equation (11).

L 9.1 = YepermD(F() - g())" (D)
In the above Equation (11), the weight m,(z) =
—D(x,z 2
e f,z : is defined using the distance function D,
with ¢ controlling the width of the locality. Given
dataset Z of perturbed and weighted instances with
integrated labels is optimized for explanation £(x).
By default, LIME uses a linear interpretable model
with sparse attributes, which is trained on these
weighted instances and provides meaningful
explanations for the prediction. The transformed
instance x' represents the interpretability of the
original input, and the learned linear weights indicate
the importance of each feature in driving the model’s
prediction.

4. EXPERIMENTAL EVALUATION

The performance of the proposed MAML-LSTM
algorithm is simulated in python 3.7 environment
with system configurations being i5 processor, 8 GB
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RAM and Windows 10 (64 bit) operating system.
The performance of MAML-LSTM is evaluated
based on the metrics of precision, specificity, recall,
fl-score and accuracy. The mathematical
expressions for these metrics are given in Equations

(12) - (16).

Accuracy = i L — (12)
Total no.of classes
Recall = —~ (13)
TN+ P
Specificity = TEiF (14)
Precision = (15)
2Xpregiit7f1€<recall
F1—score =————— (16)
preaston+rec

Table 1 displays the performance outcomes
evaluated across individual classes of the dataset
with visual, kinesthetic and auditory learning styles
based on the metrics of recall, precision and f1-score.

The proposed method demonstrates an average
precision of 97.72%, an average recall of 97.72%
and an average fl-score of 97.72%. Table 2 presents
a comprehensive comparison of the proposed
MAML-LSTM model against several existing
classification algorithms, including RNN, LSTM,
RNN-LSTM, and CNN-LSTM, evaluated on both
the VAK Learning dataset and the Student
Performance & Learning Style dataset based on the
same performance metrics. On the VAK dataset,
MAML-LSTM  significantly  outperforms all
baseline models, achieving 97.77% accuracy,
97.72% across precision, recall, Fl-score, and
specificity, and a notably high AUC of 99.81%.
Similarly, on the Student Performance & Learning
Style dataset, the proposed method achieves superior
results with 98.90% accuracy, 98.93% precision,
98.88% recall, 98.89% F1-score, 99.92% specificity,
and an AUC of 99.25%.

Table 1: Performance of individual classes

Classes Precision (%) Recall (%) F1-score (%)

Visual 97.64 97.53 97.59

Kinesthetic 97.21 97.32 97.26

Auditory 98.32 98.32 98.32

Average 97.72 97.72 97.72

Table 2: Performance of proposed classifier with different classifiers
Methods Accuracy Precision Recall F1-score Specificity AUC
(%) (%) (%) (%) (%) (%)
VAK Learning
RNN 87.26 87.42 87.30 87.16 87.20 91.55
LSTM 91.67 90.45 90.10 90.27 92.30 93.82
RNN-LSTM 93.12 92.80 92.35 92.57 94.05 95.45
CNN-LSTM 95.60 95.35 95.10 95.22 96.00 97.02
MAML- 97.77 97.72 97.72 97.72 97.72 99.81
LSTM
Student Performance & Learning Style Dataset
RNN 93.21 92.83 92.74 92.68 94.13 95.27
LSTM 95.14 94.87 94.72 94.69 95.61 96.33
RNN-LSTM 96.24 96.12 95.97 96.18 96.93 97.43
CNN-LSTM 97.33 97.18 97.04 97.26 98.02 98.29
MAML- 98.90 98.93 98.88 98.89 99.92 99.25
LSTM

Table 3 represents the performance analysis of
meta learning with different performance metrics.
The various existing algorithms like periodic
retraining, ensemble learning, transfer learning and
drift detection are considered to evaluate the
performance of meta learning. While existing
algorithms require retraining the network from the
beginning, meta-learning identifies changes in VAK

patterns and quickly adapts to new learners.
Furthermore, instead of retraining, it fine-tunes the
network dynamically when concept drift occurs. The
developed meta learning obtains 97.77% accuracy,
97.72% precision, 97.72% recall, 97.72% flscore,
97.72% specificity, 99.81% AUC-ROC at a training
time of 14.62s, and 210MB computational time.
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Table 4 represents the performance of a proposed
algorithm with k-fold validation.

Table 3: Performance of meta learning with traditional algorithms

Methods | Accuracy | Precision | Recall | F1- | Specificity | AUC- | Training | Computational
(%) (%) (%) score (%) ROC time time (MB)
(%0) (%0)
Periodic 85.32 84.90 85.10 | 84.95 86.00 88.20 78.35 512
Retraining
Ensemble 91.45 91.10 91.30 | 91.20 92.50 94.30 20.58 1024
learning
Transfer 93.82 93.50 93.70 | 93.60 94.10 96.00 35.21 356
learning
Drift 95.30 95.10 95.20 | 95.15 96.00 97.50 48.90 425
detection
Meta- 97.77 97.72 97.72 | 97.72 97.72 99.81 14.62 210
learning
Table 4: K-fold validation
K-Value Accuracy (%) Precision (%) Recall (%) F1-score (%)
2 95.73+£0.22 96.07 £ 0.31 96.05 + 0.28 96.05 + 0.26
3 96.83 +0.19 96.95+0.24 96.93 +0.27 96.93 + 0.23
5 97.77+0.17 97.72£0.22 97.72 £ 0.20 97.72+£0.21
6 90.65 + 0.25 97.27+0.28 97.25+0.30 97.25+0.29
7 96.58 £ 0.21 96.42 +0.26 96.71 £ 0.24 96.54 + (.22
1.00 // 0.61 —— Training Loss
0.95 0.5 1 Validation Loss
& 0.90 " 0.4
5 80.31
Y 0.85 -
< 0.21
040 —— Training Accuracy 0.1 \
0.75 Validation Accuracy 0.01
0.0 25 5.0 7.5 10.012.515.017.5 0.0 25 5.0 7.5 10.012.515.017.5
Epoch Epoch

Figure 3: Accuracy vs Epochs Figure 4: Loss vs Epochs

Figure 3 represents the accuracy vs epochs graph
for the proposed algorithm, while Figure 4 represents
the loss vs epochs graph for the proposed algorithm.
Figure 5 represents ROC curve for proposed
algorithm, and Figure 6 represents the confusion
matrix for proposed algorithm. Figure 7 represents
explainability of auditory learning. Auditory
learning is integrated with spoken language,
discussion and verbal processes. The word “speak”
is a strong indicator of auditory learning, which
explains why the method classifies the text as
auditory. The kinesthetic and visual classes have a
0% probability, as there are no significant terms
relevant to kinesthetic or visual representation.

True Labels

o 1 2
Predicted Labels
Figure 5: Confusion matrix
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Figure 8: Explainability of kinesthetic learning

Figure 8 represents the explainability of
kinesthetic learning. Kinesthetic learning is linked
with emotions, sensations, and physical experiences.
The word “feeling” is a high indicator of emotional
or physical experience, aligning with the kinesthetic
learning style. There are no auditory or visual
relevant words, resulting in 0% probabilities for the
auditory and visual classes.

4.1 Comparative analysis

Table 5 presents a comparative analysis of the
developed algorithm based on the metrics of
accuracy, fl-score, precision and recall. The existing
algorithms like RF [16], Blending [17] and RF [18]

with VAK learning style dataset are considered for
comparison. The proposed MAML-LSTM obtains
97.77% accuracy, 97.72% precision, 97.72% recall,
97.72% fl-score, 97.72% specificity and 99.81%
AUC when compared to existing algorithms. Figure
9 represents the explainability of visual learning.
Visual learning is associated with seeing, images,
and spatial representation. The words “picture” and
“image” are directly linked to visual perception,
which explains why the method classifies the text as
100% visual. There are no auditory or kinesthetic-
related terms present, which justifies the 0%
probability assigned to the auditory and kinesthetic
classes.
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Table 5: Comparative analysis of MAML-LSTM with existing algorithms

Methods Accuracy Precision Recall F1-score Specificity | AUC
(%) (%) (%) (%) (%)
RF [16] 98 97 99 99 NA NA
Blending [17] 97.56 96.94 96.59 96.76 96.41 0.96
RF [18] 98 97 99 98 NA NA
Proposed MAML- 97.77 97.72 97.72 97.72 97.72 99.81
LSTM
Prediction probabilities Auditory nesthett fisua
oed = = =4
visual [N 1.00 framel i o
Z‘;m)mue ﬁe]rlsf:tke Tfﬁelds
bud‘d’ ‘ = frame bux!d
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Figure 9: Explainability of visual learning

4.2 Discussion

The proposed MAML-LSTM model demonstrates
improved performance compared to recent studies
such as RF [16], Blending [17], and RF [18] using
the VAK learning style dataset for learning style
classification. ~While these models showed

phase to capture meaningful features for class
differentiation. Finally, the classes are accurately
classified using the developed MAML-LSTM
model, which demonstrates high generalization
capability. Subsequently, LIME is applied after the
MAML-LSTM classification to highlight key

promising results, they lacked adaptability to features, ensuring greater transparency and
concept drift. Our proposed meta-learning-based interpretability. The proposed MAML-LSTM
algorithm provides rapid adaptation to changes in  achieves 97.77% accuracy, 97.72% precision,

learner behavior, resulting in consistently high
accuracy and AUC scores. However, this study is
limited by its reliance on a single dataset, which may
not generalize across different educational
platforms. Moreover, although LIME improves
interpretability, it focuses on local explanations and
does not fully capture the global model behavior.

5. CONCLUSION

The classification of learning styles is challenging
due to the difficulty in handling concept drift, which
reduces the generalization ability of the network. In
this manuscript, LSTM is incorporated with a meta-
learning method to address concept drift and enhance
the generalization ability of the network. Initially,
the VAK learning style dataset is used, which
includes three classes: visual, auditory, and
kinesthetic. Unwanted words are removed using
stopword removal, root words are identified through
lemmatization, and categorical features are
converted into numerical values using label
encoding. Next, the TF-IDF and GloVe embedding
techniques are employed in the feature extraction

97.72% recall, 97.72% F1-score, 97.72% specificity,
and 99.81% AUC on the VAK learning style dataset.
Future work will focus on developing different deep
learning-based algorithms to further enhance model
performance.

Notation table

Notations Descriptions
X Cooccurrence Matrix
Xij Count of Times Words that
Existed in Single Window
Vi and V; Word Vector of i and j Words
b; and b; Deviation Term
N Dimension of Cooccurrence
Matrix
f Weight Function
i(9), f(g) Input, Forget and Output Gate
and o(g)
o Sigmoid Activation Function
b;, bf and b, Bias Function
w;, Wy and w, Weight Function
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Vr_1 Hidden State
h, Input State
L(f,g,my) Interpretability And Local
and Q(g) Fidelity
1, (2) Certain Distance Function
—D(x,2)?
=e o2
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