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ABSTRACT 
 

An adaptive learning system aims to enhance the effectiveness of the educational process by tailoring it to 
individual students. A key aspect of this adaptation involves identifying the most suitable learning approach, 
based on Visual, Auditory, and Kinesthetic (VAK) learning styles. However, accurately classifying learning 
styles remains a challenge due to the presence of concept drift, which affects the network’s ability to 
generalize across different learners. To address this, the Model Agnostic Meta Learning – Long Short-Term 
Memory (MAML-LSTM) model is proposed in this research study for effective learning style classification. 
MAML is incorporated into the LSTM network to identify shifts in classification patterns and adapt to new 
learners quickly. Rather than retraining the network from the beginning, the model dynamically fine-tunes 
the LSTM in response to concept drift, thereby improving its generalization capability. The MAML-LSTM 
integration enables rapid adaptation to concept drift by fine-tuning on limited new data, eliminating the need 
for complete retraining. This enhances the model’s ability to maintain high classification accuracy across 
dynamic learner behaviors. Additionally, Local Interpretable Model-agnostic Explanations (LIME) are 
employed after classification to highlight key features, ensuring greater transparency and interpretability. The 
proposed MAML-LSTM achieves 97.77% accuracy, 97.72% precision, 97.72% recall, 97.72% F1-score, 
97.72% specificity, and 99.81% AUC on the VAK learning style dataset, outperforming existing algorithms. 

Keywords: Auditory, Kinesthetic, Learning style, Long Short-Term Memory, Model Agnostic Meta Learning 
and Visual. 

 
1. INTRODUCTION  

Recent advancements in the education system, 
driven by Information Technology (IT) and the 
internet, have enabled predictive models to improve 
the data services provided by educational institutions 
[1]. E-learning, an educational technique that 
incorporates technical tools, is facilitated through 
Learning Management Systems (LMSs) [2]. 
Through LMSs, students can access lecture 
materials, discussion boards, chat rooms, and 
retrieve assignments provided by instructors [3]. 
Student activities and engagement in online learning 
environments are monitored through platforms like 
Moodle, with data recorded in Moodle logs [4]. 
Despite its advantages, e-learning presents several 
challenges, as undergraduates often show low 
engagement and frequently leave virtual classrooms. 
Therefore, understanding students’ learning 
preferences by considering their learning styles in 
different situations is crucial [5,6]. Students 
experience various phases of knowledge acquisition 
throughout the learning process. The concept of 
learning style refers to the approach a student adopts 
to effectively analyze and comprehend information 

[7]. Students recognize their preferred learning 
methods based on familiarity with specific 
techniques. However, Moodle cannot automatically 
identify students’ learning preferences [8]. Student 
behavior is analyzed based on the number of times 
they access specific e-learning modules in Moodle. 
Completing a learning style questionnaire is 
necessary to determine the most suitable learning 
style for each student [9]. 

Students access video lectures and educational 
sources on Massive Open Online Course (MOOC) 
platforms. Additionally, upon successful completion 
of a course, students receive a certificate [10]. The 
content on MOOC platforms is typically free from 
punctuation, grammar and spelling errors. Although 
MOOC platforms are widespread, they suffer from 
high dropout rates and poor performance metrics, 
often leading to student frustration. As a result, key 
contributing factors include a lack of interest in the 
course, low participation, and difficulty in tracking 
activities and resources for assessments [11]. Hence, 
in an online education system, student participation 
is a crucial component of a course’s success. While 
a virtual learning environment with certificate 
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completion is referred to as a MOOC, online learning 
platforms are generally considered more hybrid [12]. 
Student satisfaction and quality of educational 
experience are primarily linked to student 
participation. To minimise dropout rates, it is crucial 
to understand how students engage and sustain their 
interest in professional education [13]. An improved 
learning environment supports and promotes self-
control and motivation, enabling students to stay 
focused and perform well. Understanding how 
students learn and interact within online learning 
platforms is fundamental to developing effective 
learning environments [14]. Optimal learning 
techniques and customization of learning 
environments are necessary, particularly when 
guided by high student participation. Recently, 
learning analytics has been applied to predict student 
performance through advancements in educational 
data analysis. Compared with MOOC platforms, 
Virtual Learning Environments (VLEs) provide 
more structured instruction and facilitate monitoring 
of student activities and assessments, aimed to 
transform passive learners into active participants 
[15]. Long Short-Term Memory (LSTM) networks 
are employed to model sequential dependencies on 
learning behavior data, effectively extracting long-
term patterns. However, concept drift, referring to 
changes in user behavior over time, reduces the 
generalization ability of the model. To address this, 
Model Agnostic Meta Learning (MAML) is 
integrated with LSTM, enabling the model to quickly 
adapt to new learners through fine-tuning on limited 
data, rather than retraining from scratch. This 
approach enhances classification accuracy by 
accommodating shifts in data distribution. Meta-
learning dynamically adjusts hyperparameters and 
thresholds in response to behavioral changes, 
thereby improving adaptability and robustness. 

1.1 Objective 

The main objective of the study is to developed a 
hybrid MAML-LSTM model to adaptively classify 
the learning styles as visual, auditory and kinesthetic, 
while efficiently addressing the challenges of 
concept drift. The performance of this model is 
evaluated in terms of the measures of accuracy, 
precision, recall, f1-score, specificity and AUC using 
the VAK learning style dataset. To ensure 
interpretability, the study includes LIME to highlight 
the much significant features of model predictions. 

Contributions 

The primary contributions of this research 
are described as follows: 

 Term Frequency – Inverse Document 
Frequency (TF-IDF) and GloVe embeddings 
are employed during the feature extraction 
phase to capture meaningful features that 
differentiate between the classes of different 
learning styles. 

 A Model Agnostic – Meta Learning 
(MAML) - Long Short-Term Memory 
(LSTM) model is developed during 
classification to efficiently manage concept 
drift and enhance generalization ability. 

 The integration of the MAML-LSTM model 
is developed to dynamically fine-tune the 
LSTM parameters using meta-learning, 
enabling fast adaptation to shifting learner 
behavior with less data and without complete 
retraining, thereby enhancing robustness and 
generalization. 

 Finally, Local Interpretable Model-agnostic 
Explanations (LIME) are applied after the 
classification process to highlight the key 
features for ensuring greater model 
transparency and interpretability. 

This research paper is further organized as 
follows: Section 2 analyzes the existing algorithms 
along with their advantages and limitations. Section 
3 presents the details of the proposed algorithm for 
learning style classification. Section 4 provides the 
results and discussion of the proposed algorithm, and 
Section 5 concludes the research. 

2. LITERATURE REVIEW 

Sayed et al. [16] presented an integrated method 
for classifying learners based on their learning 
activity clicks by integrating Machine Learning 
(ML) techniques such as K-Nearest Neighbor 
(KNN), Random Forest (RF), Support Vector 
Machine (SVM), and Logistic Regression (LR) with 
semantic integration, which was used to map 
learning activities to the VAK learning styles. This 
process ensured the classification of learners and 
identified their preferred learning techniques. 
Learning styles provided a reliable basis for 
validation methods and strategies. 

Kanchon et al. [17] explored diverse endeavours 
for formulating an efficient technique to determine a 
learner’s chosen learning styles and adapt a learning 
content to align with the chosen style. The analysis 
revealed that web tracking of learners for activity 
classification and individual responses for feedback 
classification were highly effective in detecting 
learning styles such as visual, auditory, and 
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kinesthetic. Additionally, Decision Tree, RF, SVM, 
LR, and Convolutional Neural Network (CNN), each 
with optimized hyperparameters and the Synthetic 
Minority Oversampling Technique (SMOTE), were 
employed to classify learner behaviors. 

Villegas-Ch et al. [18] developed a personalized 
learning method using ML techniques by adapting 
educational content to classify various learning 
styles. Focusing on a cohort of students, 
classification techniques and neural networks were 
implemented to diagnose learning styles and 
personalize educational resources. The outcomes 
showed that students’ average grades experienced a 
significant increase. Moreover, engagement 
improved through substantial interaction with 
educational materials, aligning with individual 
learning preferences. 

Sayed et al. [19] introduced a technique for 
analyzing the student engagement trends in Virtual 
Learning Environments (VLE), and defined student 
prevalent preferences and learning styles to 
formulate recommendations for effective learning 
evaluation approaches. This hybridization method 
was linked to different activities within the VAK 
learning model, and therefore, with different learning 
preferences driven by the patterns and behaviours 
throughout the learning process. 

Muhammad et al. [20] implemented a learning 
style detection method named Graph Representation 
Learning – Learning Style (GRL-LS), based on 
graph representation learning. This model used a 
bipartite graph representing interactions among 
various groups of learners and learning sources. 
Then, a graph embedding method was introduced to 
understand the latent representation of learners and 
resources. Then, learned representation was planned 
to Felder-Silverman Learning Style Model (FSLSM) 
for detecting and grouping learners by K-means 
algorithms. The implemented model was employed 
under various education settings and customized to 
different learning methods. The primary factors 
requiring this adaptation included identifying an 
ideal learning approach for students, based on the 
VAK learning styles. However, classifying learning 
styles remains challenging due to the difficulty in 
handling concept drift, which reduced the network’s 
generalization ability.  

In order to address the aforementioned challenges, 
this study proposes the MAML-LSTM model for 
effective classification of learning styles. MAML is 

incorporated into the LSTM network to identify 
changes in classification patterns and enable rapid 
adaptation to new learners. 

To ensure strong alignment between the reviewed 
literature and the present study, it is highlighted that 
the VAK learning style dataset exhibits non-
stationary behavior due to varying learner 
preferences over time. While previous studies 
employ static classifiers or ensemble models, they do 
not address the dynamic shifts in user behavior. The 
proposed MAML-LSTM framework offers a meta-
learning algorithm that fine-tunes the model to 
accommodate such shifts. This connection between 
the drawbacks identified in previous work and the 
nature of the collected data provides a clear 
methodological direction. By leveraging MAML’s 
capability to rapidly adapt to new tasks, the MAML-
LSTM model dynamically adjusts to changes in 
learner behavior over time, efficiently addressing the 
non-stationarity inherent in the VAK dataset. 

Additionally, rather than retraining the network 
from the beginning, the model fine-tunes the LSTM 
dynamically as concept drift occurs, thereby 
improving the generalization ability of the network. 
Finally, LIME is applied after the classification 
process to highlight key features, ensuring greater 
transparency and interpretability. 

3. PROPOSED METHOD 

The proposed MAML-LSTM method is presented 
for the precise classification of learning styles. The 
VAK learning style dataset is used and pre-processed 
through stopword removal, lemmatization, and label 
encoding to enhance data quality. TF-IDF and GloVe 
embedding are employed in the feature extraction 
phase to capture meaningful features that 
differentiate the classes of learning styles. In the 
classification phase, MAML-LSTM is used to 
accurately classify the learning styles. Finally, LIME 
is applied to highlight key features and ensure model 
interpretability. 

Study design 

The study follows a structured experimental 
design to classify learning styles using the VAK 
dataset. Initially, raw data is pre-processed through 
stopword removal, lemmatization, and label 
encoding to standardize the inputs. Feature 
extraction is performed using TF-IDF and GloVe 
embeddings to capture both statistical and semantic 
features. 
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Figure 1: Process of learning style classification 

 
The primary model combines LSTM with MAML 

to address concept drift and enhance adaptability. 
LIME is employed after classification to improve 
model interpretability. Figure 1 illustrates the 
process of learning style classification. 

 
3.1 Dataset 

The VAK learning style dataset is employed in 
this study for data collection [21]. The dataset 
includes three classes with 5527 visual samples, 
4572 kinesthetic samples and 4496 auditory samples. 
Figure 2 represents the dataset distribution. 

 
3.2 Pre-processing 

Pre-processing involves the following steps: 

 Stopword removal – Stopwords are words 
that frequently appear in a document but 
carry minimal meaningful information. 
Examples include common English words 
such as an, as, are, and, and. Removing 
stopwords reduces vector space and 
enhances performance through improving 
computation speed, calculation efficiency, 
and overall accuracy [22]. Therefore, 
eliminating stopwords removes low-
information content, without negatively 
impacting the training process. 

 Lemmatization – Lemmatization is defined 
as the vocabulary and morphological 
analysis of words to eliminate inflectional 
endings and return a base form, called the 
lemma. This process replaces a word with its 
root form, standardizing variations that may 
convey similar meanings based on context. 
Lemmatization improves text processing by 
unifying word forms, thereby enhancing 
accuracy. 

 Label encoding – Label encoding converts 
categorical labels in the dataset, such as 
visual, auditory, and kinesthetic, into 
numerical values, facilitating the training 
process of the model. 

 

Figure 2: Dataset distribution 

3.3 Feature extraction 
The pre-processed data is given as input for 

feature extraction to capture meaningful features 
from the text. In this phase, TF-IDF and GloVe 
embedding techniques are employed to extract 
features and differentiate them across the dataset 
classes. 

3.3.1 TF-IDF 
Term Frequency (TF) and Inverse Document 

Frequency (IDF) are two widely used elements in 
text classification, collectively referred to as TF-
IDF. TF-IDF is a statistical measure that evaluates 
the significance of a word in a document relative to 
a set of documents [23]. This is achieved by 
multiplying the inverse document frequency of a 
word across the documents. The TF-IDF value is 
calculated by multiplying the TF and IDF values of 
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a word, and its mathematical expression is given in 
Equation (1). 

𝑇𝐹 − 𝐼𝐷𝐹 = 𝑇𝐹 × 𝐼𝐷𝐹                      (1) 
3.3.2 GloVe Embeddings 

The GloVe method is an efficient technique that 
utilizes global corpus statistics and optimizes a 
learning process based on a context window. The 
primary objective is to vectorize words and generate 
word vectors from the input corpus. The 
implementation of the algorithm proceeds as 
follows: first, a word co-occurrence matrix is 
constructed based on the entire corpus. Then, word 
vector learning is performed using the co-occurrence 
matrix in conjunction with the GloVe method. The 
mathematical expression for the GloVe method is 
presented in Equation (2). 

𝐽 = ∑ 𝑓൫𝑋௜௝൯ ቀ𝑉௜
்𝑉௝ + 𝑏௜ + 𝑏௝ − 𝐼𝑛൫𝑋௜௝൯ቁ

ଶ
ே
௜,௝    (2) 

In the above Equation (2), 𝑋 represents a 
cooccurrence matrix and the number of times a word 
occurs in single window is denoted as 𝑋௜௝. The size 
of a window is generally 5 to 10, and 𝑉௜ and 𝑉௝ are 
word vectors of 𝑖 and 𝑗 words, 𝑏௜ and 𝑏௝ represent 
deviation terms, 𝑁 represents the dimension of 
cooccurrence matrix and 𝑓 represents weight 
function, where 𝑓 contains the below characteristics. 

 When a count of cooccurrence of words is 0, 
the weight is also 0. 

 When the co-occurrence count is high, the 
weight does not decrease, that is 𝑓(𝑥) 
maintains continuity and is non-
decrementing. 

 When words exist with high frequently, there 
is null weight, and 𝑓(𝑥) is employed for 
smaller values. The weight function 𝑓(𝑥) 
and its mathematical expression is given as 
Equation (3). 

𝑓(𝑥) = ൜
(𝑥 𝑥௠௔௫⁄ )ఈ , 𝑥 < 𝑥௠௔௫

1,                           𝑥 ≥ 𝑥௠௔௫
                 (3) 

The experimental results show optimal 
performance when 𝑥௠௔௫ = 100 and 𝛼 = 0.75, as 
expressed in Equation (3). The GloVe directly 
utilizes the corpus word vectors for measurement, 
offering high manoeuvrability and flexibility. 

 
3.4 Classification 

In the classification phase, LSTM is integrated 
with MAML to address the challenge of concept drift 
and to enhance the generalization capability of 
LSTM. A detailed explanation of LSTM and MAML 
is provided below. 

3.4.1 LSTM 
LSTM is a prominent variant of the Recurrent 

Neural Network (RNN) that has achieved significant 
success in recent years. In LSTM, the memory cell is 
the central component and includes a gating 
mechanism. Each LSTM cell typically contains three 
main gates: input, forget, and output gates. To 
recognize long-term dependencies, LSTM uses 
individual cells that update based on the current input 
value. The parameters of the LSTM used in this 
research include 20 epochs, categorical cross-
entropy as the loss function, a batch size of 64, the 
Adam optimizer, and the softmax activation 
function. The mathematical expressions for the three 
gates are given in Equation (4) to Equation (6). 

𝑖(𝑔) = 𝜎[𝑤௜ ∙ (𝑦௥ିଵ, ℎ௥)] + 𝑏௜)            (4) 
𝑓(𝑔) = 𝜎ൣ𝑤௙ ∙ (𝑦௥ିଵ, ℎ௥)൧ + 𝑏௙)             (5) 
𝑜(𝑔) = 𝜎[𝑤௢ ∙ (𝑦௥ିଵ, ℎ௥)] + 𝑏௢)            (6) 

In the above equations, 𝑖(𝑔), 𝑓(𝑔) and o(𝑔) 
represent input gate, forget gate and output gate, and 
𝜎 represents the sigmoid activation function. The 
𝑏௜ , 𝑏௙  and 𝑏௢ represent the bias functions, and 𝑤௜ , 𝑤௙  
and 𝑤௢ represent the weight functions. The 𝑦௥ିଵ 
represents the hidden state and ℎ௥ is the input state. 
Additionally, mathematical expressions for hidden 
and cell states are given in Equations (7)-(9). 

𝑐௜ = tanh[𝑤௖ ∙ (𝑦௥ିଵ, ℎ௥)] + 𝑏௖              (7) 
𝑐௜ଵ = 𝑓(𝑔) ∘ 𝑐௥ିଵ + 𝑖(𝑔) ∘ 𝑐௜                (8) 

𝑦௥ = 𝑜(𝑔) ∘ tanh(𝑐௜)                     (9) 
In the above equations, the hyperbolic activation 

function, weight and bias function in terms of cell 
state are denoted as 𝑡𝑎𝑛ℎ, 𝑤௖ and 𝑏௖, respectively. 

3.4.2 Meta learning - LSTM 
Meta-learning is a learning method that learns 

from past, similar tasks and predicts unseen, relevant 
tasks. Specifically, it aids in selecting optimal 
hyperparameters to active learning tasks in 
streaming data, thereby enhancing the model’s 
ability to recommend optimal scores. Meta-learning 
using hyperparameter tuning is successfully 
employed in various domains, including image 
processing. 

By employing stream-dependent active learning 
with uncertainty sampling for query labeling, the 
stream classifier is trained to reduce labeling costs. 
However, this process involves hyperparameters that 
require tuning for each task. The 𝑍 value, or 
ambiguity threshold, defines the level of uncertainty 
used in the active learning method to determine the 
value of a sample for labeling. 

The method aims at dynamically tuning the 𝑍 
value by layering a meta-learning approach on top of 
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the active learning method. This approach, derived 
from a meta-learning mechanism, is responsible for 
selecting an appropriate 𝑍 for each stream chunk. 
Since the data stream modifies its behavior due to 
concept drift, the meta-method continuously 
determines the 𝑍 value. The method assigns triggers 
based on a change detector, which identifies 
potential behavioral modifications representing 
concept drift. When a probable drift point is detected, 
data samples limited by the change detector are used 
to extract meta-features. These samples are then 
passed to the meta-method to determine a new 𝑍 
value for uncertainty sampling. The implementation 
of the meta-learning method involves five phases: 

Meta Feature Extraction – This phase represents 
the characteristics of the event stream based on 
lightweight temporal time series attributes. 

Meta-Target Definition – This phase detects an 
appropriate 𝑍 value which offers an appropriate 
trade-off among accuracy and low label querying. 
This is essential for exploring suitable 𝑍 values 
capable of covering the probability search space 
defined by the trade-off moulds. 

Meta-database – In this phase, meta-features and 
meta-targets are combined to develop meta-samples, 
which are then used to train the meta-method. 

Meta Learner – This phase involves the induction 
of the meta-method using the acquired meta-
instances. The meta-method serves as the final step, 
capable of recommending a suitable 𝑍. 

Meta Recommending – When a change is 
identified, its samples have their features extracted to 
predict a new 𝑍 through meta-methods. The output 
of the meta-method serves as input for uncertainty 
sampling, which chooses labeling instances for the 
stream classifier. LSTM is used to model the 
sequential dependencies in learning behavior data, 
effectively extracting long-term patterns. However, 
concept drift, referring to changes in user behavior 
over time, reduces the model’s generalization 
capability. To address this, MAML is integrated with 
LSTM, enabling the method to quickly adapt to new 
learners by fine-tuning on limited data rather than 
retraining from scratch. This process enhances 
classification accuracy by accommodating shifts in 
data distribution. Meta-learning dynamically adjusts 
hyperparameters and thresholds in response to 
behavioral changes, thereby improving adaptability 
and robustness. 

3.4.3 MAML with LSTM 
In the proposed model, MAML is integrated with 

LSTM to enable adaptive learning style 

classification in the presence of concept drift. While 
LSTM efficiently captures long-term dependencies 
in sequential learning behavior data, it struggles to 
generalize when learner behavior patterns shift over 
time. MAML addresses this by incorporating a meta-
learner that fine-tunes the parameters of LSTM on a 
small amount of new data, allowing rapid adaptation 
without complete retraining. When a drift in 
behavior is identified, MAML uses prior learning 
experience to quickly optimize LSTM for the new 
task distribution, preserving classification accuracy 
and robustness. This integration allows the model to 
dynamically adapt to evolving learning patterns 
while maintaining effective performance across 
different learner profiles. 

 
Algorithm for best Z selection 
Input – R, the classification outcomes for candidate 
Z values, containing both accuracy and query 
quantities for choosing margin to top values. 
Output – Optimal Z value with lesser query rate 
within the top chosen interval. 
𝑅௔௖௖ ← 𝑍 with high accuracy in R 
𝑇
← {𝑅௜ ∈ 𝑅|𝐴𝐶𝐶(𝑅௔௖௖) − 𝑠 ≤ 𝐴𝐶𝐶(𝑅௜) ≤ 𝐴𝐶𝐶(𝑅௔௖௖)}; 
𝑅௧௢௣ ← 𝑎𝑟𝑔𝑚𝑖𝑛்൫𝑄𝑅𝑌(𝑇)൯; 
Return 𝑅௧௢௣; 
 
Algorithm for Meta-Recommending 
Input: 𝑆 data stream, 𝛼௫ drift detector, 𝛽௫ classifier, 
𝜃௫ meta-learning method, 𝑝ఉ number of samples 
utilized for pre-train classifier. 
𝑍 ← 0.5; 
Pre-trained on initial samples of 𝑆; 
for 𝑆௜ ∈ ൛𝑆௣ఉାଵ, … , 𝑆௡ൟ do 

 𝐸௜ ← 𝑟𝑢𝑛 𝐴𝐶𝑇௭
ఉ on 𝑆௜ and return the error 

from prediction; 
 Update 𝛼௫ with 𝐸௜; 
 if 𝛼 change detected then  
  𝐹 ← features produced from 
൛𝑆௟௔௦௧_ௗ௥௜௙௧ , … , 𝑆௜ൟ 
  𝑍 ← prediction from 𝜃௫ with 
input 𝐹: 
 end 
end  
 
3.5 Local Interpretable Model-Agnostic 

Explanations (LIME) 
LIME (Local Interpretable Model-Agnostic 

Explanations) is an algorithm designed to locally 
approximate complex classifiers using interpretable 
models to provide precise explanations of its 
predictions. It focuses on two key features: 
interpretable representation, which offers a 
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qualitative understanding of the model's decisions, 
and local fidelity, which measures the 
trustworthiness of the explanation near the predicted 
samples. The term model-agnostic means that LIME 
can explain any classification model by treating it as 
a black box. LIME is particularly useful for text-
based models and enhances the interpretability of 
complex datasets, making it a valuable tool for 
understanding and explaining predictions in machine 
learning. 

 
Algorithm for LIME explanations 
Input – Classifier 𝑓 – Black box method to explained 
 Instance 𝑥 – Data sample to explained, 𝑁 – 
Number of instances, 𝜋௫ – distance measure, the 
function which calculates distance among samples. 
The Ω(𝑔) complexity measure is, a measure of 
complexity for interpretability. 
Output - 𝜀(𝑥) Produced explanation for method’s 
prediction on sample 𝑥 
𝑍 ← {} Initialize an empty set for storing perturbed 
instances. Select samples for interpretation and 
perturbing. 
𝑓𝑜𝑟 𝑖 ∈ {1, 2, 3, … , 𝑁} do 
 𝑍 ← 𝑛𝑜𝑛 𝑧𝑒𝑟𝑜 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 (𝑥, 𝜋௫) process 
search for non-zero samples 
 𝑧ᇱ ← 𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒 (𝑧) Perturb the 
non-zero elements 
 𝑍 ← 𝑍 + 𝑧ᇱ Add perturbed instance to set 𝑍 
end for 
Fix weights for instances 
 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 ← 𝑓𝑖𝑥_𝑤𝑒𝑖𝑔ℎ𝑡𝑠 (𝑍)  Fix weights 
for perturbed instances depended on 𝜋௫ 
Learn interpretable method and develop the 
explanations: 
 𝑔 ← 𝑙𝑒𝑎𝑟𝑛௠௢ௗ௘௟(𝑍, 𝑤𝑒𝑖𝑔ℎ𝑡𝑠) Develop a 
learning method with weights 
 𝑢𝑛𝑡𝑟𝑢𝑡ℎ𝑖𝑛𝑒𝑠𝑠 ←
𝑚𝑒𝑎𝑠𝑢𝑟𝑒 𝑢𝑛𝑡𝑟𝑢𝑡ℎ𝑖𝑛𝑒𝑠𝑠 (𝑓, 𝑔, 𝑠, 𝜋௫) Measure 
untruthiness by weighted instances 
Return 𝜀 ←
𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒_𝑒𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑖𝑜𝑛 (𝑢𝑛𝑡𝑟𝑢𝑡ℎ𝑖𝑛𝑒𝑠𝑠, Ω) optimi
ze for explanations by reducing ℒ(𝑓, 𝑔, 𝜋௫) + Ω(𝑔) 
 

The term 𝐺 represents the class of interpretable 
methods, with 𝑔 ∈ 𝐺 representing a specific method 
represented through visual or text artifacts. The 
domain of 𝑔, represented as {0,1}ௗ indicates the 
presence or absence of interpretable elements. For 
each 𝑔 ∈ 𝐺 that is interpretable, 𝛺(𝑔) is used to 
calculate the complexity. In the case of a function 
𝑓: 𝑅ௗ → 𝑅 which requires interpretability, 𝑓(𝑥) 
denotes the probability that 𝑥 belongs to a specific 
category. To define the locality around 𝑥, the 

function 𝜋௫(𝑧) is used to calculate the distance 
between the instances 𝑧 and 𝑥. Finally, 𝐿(𝑓, 𝑔, 𝜋௫) 
quantifies the degree of untruthiness when 
explaining 𝑓 within the local region defined by 𝜋௫. 
The mathematical expression for LIME is given in 
Equation (10). 

𝜖(𝑥) = 𝑎𝑟𝑔𝑚𝑖𝑛௚∈ீℒ(𝑓, 𝑔, 𝜋௫) + Ω(𝑔)      (10) 
In the above Equation (10), ℒ(𝑓, 𝑔, 𝜋௫) and Ω(𝑔) 

respectively denote the interpretability and local 
fidelity. The empty set 𝑍 is initialized for storing the 
non-zero samples selected from the linear method. 
This denotes that 𝑁 data samples around 𝑥ᇱ are 
randomly disturbed. The disturbed instances are 
described as 𝑧ᇱ ∈ {0,1} 𝑑ᇱ and includes certain non-
zero components of 𝑥ᇱ. The actual representation of 
instance is redetermined as 𝑧 ∈ 𝑅ௗ. In classification, 
𝑓(𝑥) represents the possibility that 𝑧 belongs to a 
specific class. The perturbed instances are assigned 
to set 𝑍 and given to the black box method. The 𝑓(𝑥) 
is utilized for obtaining classification labels. The 
further phase is to fix the weights for selecting the 
instances. The main aim of LIME is to develop a 
better local approximation by 𝜋௫ where instances 
with greater weight are present close to 𝑥ᇱ, and those 
with lesser weights are farther from 𝑥ᇱ. Hence, for 
learning the interpretable method, LIME fixes the 
weights for perturbed instances by its proximity to 
𝑥ᇱ. Instances near to 𝑥ᇱ are provided more weight and 
instances far from 𝑥ᇱ are provided lesser weights. 
The method with perturbed data instances 𝑍 are 
utilized for developing the learning method by 
applying weights in the form 𝑔(𝑧ᇱ) = 𝑤𝑔 × 𝑧ᇱ. The 
mathematical expression for a new function is given 
in Equation (11). 

ℒ(𝑓, 𝑔, 𝜋௫) = ∑ 𝜋௫(𝑧)൫𝑓(𝑧) − 𝑔(𝑧ᇱ)൯
ଶ

௭,௭ᇲ∈௓      (11) 
In the above Equation (11), the weight 𝜋௫(𝑧) =

𝑒
షವ(ೣ,೥)మ

഑మ  is defined using the distance function 𝐷, 
with 𝜎 controlling the width of the locality. Given 
dataset 𝑍 of perturbed and weighted instances with 
integrated labels is optimized for explanation 𝜀(𝑥). 
By default, LIME uses a linear interpretable model 
with sparse attributes, which is trained on these 
weighted instances and provides meaningful 
explanations for the prediction. The transformed 
instance 𝑥′ represents the interpretability of the 
original input, and the learned linear weights indicate 
the importance of each feature in driving the model’s 
prediction. 

4. EXPERIMENTAL EVALUATION 

The performance of the proposed MAML-LSTM 
algorithm is simulated in python 3.7 environment 
with system configurations being i5 processor, 8 GB 
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RAM and Windows 10 (64 bit) operating system. 
The performance of MAML-LSTM is evaluated 
based on the metrics of precision, specificity, recall, 
f1-score and accuracy. The mathematical 
expressions for these metrics are given in Equations 
(12) – (16). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
்௉ା்ே

்௢௧௔௟ ௡௢.௢௙ ௖௟௔௦௦௘௦
                (12) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
்ே

்ேା
                         (13) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
்௉

்௉ାிே
                    (14) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
்௉

்௉ାி௉
                     (15) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
ଶ×௣௥௘௖௜௦௜௢௡×௥௘௖௔௟௟

௣௥௘௖௜௦௜௢௡ା௥௘௖
            (16) 

Table 1 displays the performance outcomes 
evaluated across individual classes of the dataset 
with visual, kinesthetic and auditory learning styles 
based on the metrics of recall, precision and f1-score. 

The proposed method demonstrates an average 
precision of 97.72%, an average recall of 97.72% 
and an average f1-score of 97.72%. Table 2 presents 
a comprehensive comparison of the proposed 
MAML-LSTM model against several existing 
classification algorithms, including RNN, LSTM, 
RNN-LSTM, and CNN-LSTM, evaluated on both 
the VAK Learning dataset and the Student 
Performance & Learning Style dataset based on the 
same performance metrics. On the VAK dataset, 
MAML-LSTM significantly outperforms all 
baseline models, achieving 97.77% accuracy, 
97.72% across precision, recall, F1-score, and 
specificity, and a notably high AUC of 99.81%. 
Similarly, on the Student Performance & Learning 
Style dataset, the proposed method achieves superior 
results with 98.90% accuracy, 98.93% precision, 
98.88% recall, 98.89% F1-score, 99.92% specificity, 
and an AUC of 99.25%. 

Table 1: Performance of individual classes 

Classes Precision (%) Recall (%) F1-score (%) 
Visual 97.64 97.53 97.59 

Kinesthetic 97.21 97.32 97.26 
Auditory 98.32 98.32 98.32 
Average 97.72 97.72 97.72 

Table 2: Performance of proposed classifier with different classifiers 

Methods Accuracy 
(%) 

Precision 
(%) 

Recall 
(%) 

F1-score 
(%) 

Specificity 
(%) 

AUC 
(%) 

VAK Learning 
RNN 87.26 87.42 87.30 87.16 87.20 91.55 

LSTM 91.67 90.45 90.10 90.27 92.30 93.82 
RNN-LSTM 93.12 92.80 92.35 92.57 94.05 95.45 
CNN-LSTM 95.60 95.35 95.10 95.22 96.00 97.02 

MAML-
LSTM 

97.77 97.72 97.72 97.72 97.72 99.81 

Student Performance & Learning Style Dataset 
RNN 93.21 92.83 92.74 92.68 94.13 95.27 

LSTM 95.14 94.87 94.72 94.69 95.61 96.33 
RNN-LSTM 96.24 96.12 95.97 96.18 96.93 97.43 
CNN-LSTM 97.33 97.18 97.04 97.26 98.02 98.29 

MAML-
LSTM 

98.90 98.93 98.88 98.89 99.92 99.25 

Table 3 represents the performance analysis of 
meta learning with different performance metrics. 
The various existing algorithms like periodic 
retraining, ensemble learning, transfer learning and 
drift detection are considered to evaluate the 
performance of meta learning. While existing 
algorithms require retraining the network from the 
beginning, meta-learning identifies changes in VAK 

patterns and quickly adapts to new learners. 
Furthermore, instead of retraining, it fine-tunes the 
network dynamically when concept drift occurs. The 
developed meta learning obtains 97.77% accuracy, 
97.72% precision, 97.72% recall, 97.72% f1score, 
97.72% specificity, 99.81% AUC-ROC at a training 
time of 14.62s, and 210MB computational time. 
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Table 4 represents the performance of a proposed 
algorithm with k-fold validation. 

Table 3: Performance of meta learning with traditional algorithms 

Methods Accuracy 
(%) 

Precision 
(%) 

Recall 
(%) 

F1-
score 
(%) 

Specificity 
(%) 

AUC-
ROC 
(%) 

Training 
time 

Computational 
time (MB) 

Periodic 
Retraining 

85.32 84.90 85.10 84.95 86.00 88.20 78.35 512 

Ensemble 
learning 

91.45 91.10 91.30 91.20 92.50 94.30 20.58 1024 

Transfer 
learning 

93.82 93.50 93.70 93.60 94.10 96.00 35.21 356 

Drift 
detection 

95.30 95.10 95.20 95.15 96.00 97.50 48.90 425 

Meta-
learning 

97.77 97.72 97.72 97.72 97.72 99.81 14.62 210 

Table 4: K-fold validation 

K-Value Accuracy (%) Precision (%) Recall (%) F1-score (%) 
2 95.73 ± 0.22 96.07 ± 0.31 96.05 ± 0.28 96.05 ± 0.26 
3 96.83 ± 0.19 96.95 ± 0.24 96.93 ± 0.27 96.93 ± 0.23 
5 97.77 ± 0.17 97.72 ± 0.22 97.72 ± 0.20 97.72 ± 0.21 
6 90.65 ± 0.25 97.27 ± 0.28 97.25 ± 0.30 97.25 ± 0.29 
7 96.58 ± 0.21 96.42 ± 0.26 96.71 ± 0.24 96.54 ± 0.22 

      
Figure 3: Accuracy vs Epochs 

Figure 3 represents the accuracy vs epochs graph 
for the proposed algorithm, while Figure 4 represents 
the loss vs epochs graph for the proposed algorithm. 
Figure 5 represents ROC curve for proposed 
algorithm, and Figure 6 represents the confusion 
matrix for proposed algorithm. Figure 7 represents 
explainability of auditory learning. Auditory 
learning is integrated with spoken language, 
discussion and verbal processes. The word “speak” 
is a strong indicator of auditory learning, which 
explains why the method classifies the text as 
auditory. The kinesthetic and visual classes have a 
0% probability, as there are no significant terms 
relevant to kinesthetic or visual representation.  

 
Figure 4: Loss vs Epochs 

        
Figure 5: Confusion matrix      
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Figure 6: ROC curve 

 

 
Figure 7: Explainability of auditory learning 

 

 
Figure 8: Explainability of kinesthetic learning 

 
Figure 8 represents the explainability of 

kinesthetic learning. Kinesthetic learning is linked 
with emotions, sensations, and physical experiences. 
The word “feeling” is a high indicator of emotional 
or physical experience, aligning with the kinesthetic 
learning style. There are no auditory or visual 
relevant words, resulting in 0% probabilities for the 
auditory and visual classes. 

4.1 Comparative analysis 
Table 5 presents a comparative analysis of the 

developed algorithm based on the metrics of 
accuracy, f1-score, precision and recall. The existing 
algorithms like RF [16], Blending [17] and RF [18] 

with VAK learning style dataset are considered for 
comparison. The proposed MAML-LSTM obtains 
97.77% accuracy, 97.72% precision, 97.72% recall, 
97.72% f1-score, 97.72% specificity and 99.81% 
AUC when compared to existing algorithms. Figure 
9 represents the explainability of visual learning. 
Visual learning is associated with seeing, images, 
and spatial representation. The words “picture” and 
“image” are directly linked to visual perception, 
which explains why the method classifies the text as 
100% visual. There are no auditory or kinesthetic-
related terms present, which justifies the 0% 
probability assigned to the auditory and kinesthetic 
classes. 
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Table 5: Comparative analysis of MAML-LSTM with existing algorithms 

Methods Accuracy 
(%) 

Precision 
(%) 

Recall 
(%) 

F1-score 
(%) 

Specificity 
(%) 

AUC 

RF [16] 98 97 99 99 NA NA 
Blending [17] 97.56 96.94 96.59 96.76 96.41 0.96 

RF [18] 98 97 99 98 NA NA 
Proposed MAML-

LSTM 
97.77 97.72 97.72 97.72 97.72 99.81 

 
Figure 9: Explainability of visual learning 

4.2 Discussion 
The proposed MAML-LSTM model demonstrates 

improved performance compared to recent studies 
such as RF [16], Blending [17], and RF [18] using 
the VAK learning style dataset for learning style 
classification. While these models showed 
promising results, they lacked adaptability to 
concept drift. Our proposed meta-learning-based 
algorithm provides rapid adaptation to changes in 
learner behavior, resulting in consistently high 
accuracy and AUC scores. However, this study is 
limited by its reliance on a single dataset, which may 
not generalize across different educational 
platforms. Moreover, although LIME improves 
interpretability, it focuses on local explanations and 
does not fully capture the global model behavior. 

5. CONCLUSION 

The classification of learning styles is challenging 
due to the difficulty in handling concept drift, which 
reduces the generalization ability of the network. In 
this manuscript, LSTM is incorporated with a meta-
learning method to address concept drift and enhance 
the generalization ability of the network. Initially, 
the VAK learning style dataset is used, which 
includes three classes: visual, auditory, and 
kinesthetic. Unwanted words are removed using 
stopword removal, root words are identified through 
lemmatization, and categorical features are 
converted into numerical values using label 
encoding. Next, the TF-IDF and GloVe embedding 
techniques are employed in the feature extraction 

phase to capture meaningful features for class 
differentiation. Finally, the classes are accurately 
classified using the developed MAML-LSTM 
model, which demonstrates high generalization 
capability. Subsequently, LIME is applied after the 
MAML-LSTM classification to highlight key 
features, ensuring greater transparency and 
interpretability. The proposed MAML-LSTM 
achieves 97.77% accuracy, 97.72% precision, 
97.72% recall, 97.72% F1-score, 97.72% specificity, 
and 99.81% AUC on the VAK learning style dataset. 
Future work will focus on developing different deep 
learning-based algorithms to further enhance model 
performance. 

Notation table 

Notations Descriptions 
𝑋 Cooccurrence Matrix 

𝑋௜௝ Count of Times Words that 
Existed in Single Window 

𝑉௜ and 𝑉௝ Word Vector of 𝑖 and 𝑗 Words 
𝑏௜ and 𝑏௝ Deviation Term 

𝑁 Dimension of Cooccurrence 
Matrix 

𝑓 Weight Function 
𝑖(𝑔), 𝑓(𝑔) 
and o(𝑔) 

Input, Forget and Output Gate 

𝜎 Sigmoid Activation Function 
𝑏௜ , 𝑏௙  and 𝑏௢ Bias Function 

𝑤௜ , 𝑤௙  and 𝑤௢ Weight Function 
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𝑦௥ିଵ Hidden State 
ℎ௥ Input State 

ℒ(𝑓, 𝑔, 𝜋௫) 
and Ω(𝑔) 

Interpretability And Local 
Fidelity 

𝜋௫(𝑧)

= 𝑒
ି஽(௫,௭)మ

ఙమ  

Certain Distance Function 
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