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ABSTRACT 
 

Breast cancer remains a leading cause of mortality worldwide, and early, accurate detection is critical for 
effective treatment and improved patient outcomes. This paper addresses the challenge of advanced breast 
cancer detection by introducing IVRBR-Net, a novel deep learning model that integrates Inception V4, 
ResNet-50, and Bidirectional Recurrent Neural Networks (RNNs) to analyze thermographic images. The 
methodology begins with rigorous preprocessing steps—grayscale conversion, contrast enhancement via 
Multipurpose Beta Optimized Bi-histogram Equalization (MBOBHE), noise reduction through bilateral 
filtering, and image refinement using the Affine Projection Algorithm (APA)—to optimize image quality 
while preserving essential features. Feature extraction is performed using Scale-Invariant Feature Transform 
(SIFT) and Haralick descriptors, capturing critical statistical properties such as mean, variance, entropy, and 
skewness. The model is trained and validated on a dataset of 120 high-resolution thermographic images from 
the Database for Mastology Research (DMR). IVRBR-Net achieves outstanding performance metrics, 
including an accuracy of 99.82%, specificity of 99.74%, sensitivity of 99.35%, precision of 99.48%, and an 
F1-score of 99.68%, significantly outperforming existing state-of-the-art models such as MobileNetV2, 
VGG-16 with attention, and ResNet-50. These results demonstrate the model’s potential as a reliable and 
precise tool for breast cancer diagnostics, offering a robust framework for future applications in medical 
image analysis and contributing to improved clinical decision-making. 
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1. INTRODUCTION  
 

Among the many types of cancer that affect 
women all over the world, breast cancer is one of the 
most common and fatal variations [1-3]. Because of 
the high incidence and mortality rates associated 
with this disease, it presents a significant challenge 
[4-7]. In order to improve survival rates, it is 
necessary to implement effective treatment strategies 
and facilitate early detection [8]. The complexity of 
breast cancer, which includes its many subtypes and 
progression patterns, further complicates diagnosis 
and treatment, highlighting the necessity of 
developing more advanced diagnostic tools [9-12]. 

Not only does breast cancer have a significant 
impact on the physical well-being of individuals, but 
it also places a significant burden on healthcare 
systems and society as a whole [13]. The challenges 
that are associated with breast cancer are significant. 
The survival rate for breast cancer in its early stages 
is relatively high, provided that the disease is 
detected and treated promptly [14]. On the other 
hand, late-stage detection frequently results in a 
worse prognosis, extensive treatment regimens, and 
significant costs associated with healthcare and 
medical care. In addition to having an impact on the 
patients themselves, this illness also places a 
significant amount of mental and financial strain on 
the patients' families [15]. The burden extends to 
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healthcare providers and systems, which are required 
to allocate substantial resources for diagnosis, 
treatment, and ongoing care [16]. This highlights the 
critical need for diagnostic methods that are both 
efficient and accurate [17]. 

The diagnosis and treatment of breast cancer have 
been significantly altered as a result of the significant 
contributions made by technological advancements. 
The detection of breast cancer has seen a significant 
improvement in both its accuracy and its efficiency 
as a result of the incorporation of cutting-edge tools 
such as artificial intelligence (AI), machine learning 
(ML), and deep learning (DL). The analysis of vast 
amounts of medical data is made possible by these 
technologies, which in turn makes it easier to 
identify cancerous tissues at an earlier stage and with 
greater precision [18]. To be more specific, deep 
learning models have demonstrated remarkable 
promise in the field of medical image analysis. These 
models offer high sensitivity and specificity when it 
comes to identifying abnormalities. In addition to 
enhancing diagnostic capabilities, these tools also 
provide support for personalized treatment plans, 
which ultimately leads to improved patient outcomes 
and a reduction in the burden placed on healthcare 
systems. 

In this study, a novel deep learning model called 
IVRBR-Net is presented. This model takes 
advantage of the strengths of Inception V4, ResNet-
50, and Bidirectional RNNs in order to improve 
breast cancer detection through the use of 
thermographic images. Grayscale conversion, 
MBOBHE for contrast enhancement, bilateral 
filtering for noise reduction, and the Affine 
Projection Algorithm for image refinement are some 
of the comprehensive preprocessing steps that are 
utilized by the model that has been proposed. During 
the process of feature extraction, the SIFT and 
Haralick methods are utilized. These methods 
capture critical statistical properties that are 
necessary for accurate classification. IVRBR-Net 
demonstrates superior performance metrics, 
significantly surpassing existing models. 

Breast cancer remains one of the most prevalent 
and deadly cancers among women worldwide, 
accounting for a significant proportion of cancer-
related morbidity and mortality. Early and accurate 
detection is paramount to improving survival rates, 
guiding treatment decisions, and reducing healthcare 
costs. Traditional diagnostic methods, such as 
mammography and biopsy, while effective, can be 
invasive, expensive, and sometimes uncomfortable 
or inaccessible, particularly in low-resource settings. 
Thermography, a non-invasive imaging technique 

that detects heat patterns and blood flow in breast 
tissue, offers a promising alternative for early cancer 
screening. However, thermographic images are often 
complex and noisy, posing challenges for accurate 
interpretation by clinicians. Existing automated 
diagnostic systems based on conventional machine 
learning or deep learning models have shown 
potential but still face limitations in precision and 
robustness. This underscores the urgent need for 
advanced, reliable computational methods capable 
of handling the subtle and varied thermal patterns 
characteristic of breast tumors. IVRBR-Net 
addresses this critical gap by combining state-of-the-
art neural architectures with sophisticated 
preprocessing and feature extraction techniques, 
aiming to deliver superior accuracy and reliability in 
breast cancer detection from thermographic images. 
The development of such effective tools is crucial to 
complement existing diagnostic practices, increase 
accessibility to early screening, and ultimately 
improve patient outcomes on a global scale. 

This study hypothesizes that integrating advanced 
convolutional neural network architectures 
specifically Inception V4 and ResNet-50 with 
Bidirectional Recurrent Neural Networks (RNNs), 
combined with rigorous image preprocessing and 
robust feature extraction techniques, can 
significantly improve the accuracy and reliability of 
breast cancer detection from thermographic images. 
The proposed IVRBR-Net model is designed to 
effectively capture both spatial and temporal patterns 
inherent in thermal breast images, overcoming 
limitations of existing approaches by enhancing 
feature representation and reducing noise. We posit 
that this comprehensive approach will outperform 
current state-of-the-art models in key performance 
metrics such as accuracy, sensitivity, and specificity, 
thereby providing a more precise and non-invasive 
diagnostic tool for early breast cancer detection. 

Breast cancer remains one of the leading causes of 
cancer-related deaths globally, with early detection 
playing a critical role in improving survival rates and 
treatment outcomes. Traditional diagnostic methods 
such as mammography and biopsies, while effective, 
often involve invasive procedures, exposure to 
radiation, or high costs that limit their accessibility, 
especially in low-resource settings. Thermography 
has emerged as a promising non-invasive and 
radiation-free imaging modality capable of detecting 
abnormal temperature patterns associated with breast 
tumors. However, interpreting thermographic 
images accurately poses significant challenges due 
to their complex texture, noise, and variability 
caused by environmental and physiological factors. 



 Journal of Theoretical and Applied Information Technology 
15th August 2025. Vol.103. No.15 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
5443 

 

Existing automated detection methods, including 
conventional machine learning and deep learning 
approaches, often struggle to balance accuracy, 
computational efficiency, and robustness—
particularly when applied to smaller or 
heterogeneous datasets. Therefore, there is a 
compelling need for advanced, reliable models that 
can extract meaningful features from thermographic 
images and provide precise breast cancer detection 
while being computationally feasible for practical 
clinical use. This study addresses this gap by 
proposing IVRBR-Net, a novel deep learning 
architecture that integrates Inception V4, ResNet-50, 
and Bidirectional Recurrent Neural Networks, along 
with sophisticated preprocessing and feature 
extraction techniques, to deliver highly accurate and 
dependable breast cancer detection from 
thermographic images. By doing so, this research 
aims to contribute significantly to early diagnosis 
efforts, improve patient outcomes, and support wider 
adoption of accessible diagnostic technologies. 

This work presents IVRBR-Net, a novel deep 
learning framework designed to improve breast 
cancer detection using thermographic images. It 
focuses on comprehensive preprocessing steps—
including grayscale conversion, contrast 
enhancement (MBOBHE), noise reduction (bilateral 
filtering), and image refinement (Affine Projection 
Algorithm)—to optimize image quality. The model 
extracts rich spatial and textural features through 
SIFT and Haralick descriptors, and employs a hybrid 
architecture combining Inception V4, ResNet-50, 
and Bidirectional RNNs to capture complex patterns 
in the data. The study thoroughly evaluates IVRBR-
Net’s performance on a curated dataset of 120 high-
resolution thermographic images, demonstrating 
superior accuracy, sensitivity, specificity, and other 
key metrics compared to current state-of-the-art 
models. However, this research does not cover the 
generalizability of the model to larger, more diverse 
datasets or its performance in real-world clinical 
environments with variable imaging conditions. 
Additionally, it does not explore the model’s 
deployment feasibility in resource-constrained 
settings or investigate the interpretability and 
explainability of the model’s predictions. Finally, the 
integration of multimodal imaging data (e.g., 
combining thermography with ultrasound or MRI) is 
beyond the scope of this work but remains a potential 
avenue for future enhancement. 

Breast cancer continues to be a major global health 
challenge, responsible for a significant proportion of 
cancer morbidity and mortality among women 
worldwide. Early and accurate detection is crucial 

because it directly influences treatment options, 
patient prognosis, and survival rates. However, 
conventional screening methods such as 
mammography are often limited by factors including 
high costs, exposure to ionizing radiation, and 
reduced effectiveness in dense breast tissues, which 
can lead to missed diagnoses or false positives. 
Thermographic imaging offers a non-invasive, 
radiation-free, and cost-effective alternative capable 
of detecting physiological changes linked to tumor 
development. Yet, interpreting thermographic 
images is inherently difficult due to subtle 
temperature variations, noise, and individual 
physiological differences. These challenges create a 
critical gap in current diagnostic capabilities, 
particularly in resource-limited settings where access 
to advanced imaging technologies is scarce. 
Therefore, developing robust, automated, and highly 
accurate computational models like IVRBR-Net to 
analyze thermographic images is essential. Such 
models can overcome human limitations, reduce 
diagnostic errors, enable wider screening coverage, 
and ultimately contribute to earlier interventions and 
improved patient outcomes. Addressing this problem 
not only advances medical imaging but also aligns 
with global health priorities to reduce breast cancer 
mortality through accessible, reliable detection 
technologies. 

After that, the remaining parts of this paper are 
structured as follows: The first section of the report 
is an introduction to the research, which includes an 
explanation of the significance of breast cancer 
detection and the role that advanced technologies 
play. The second section examines related works and 
discusses the limitations of the methods that are 
currently in use. IVRBR-Net's architecture and 
methodology are described in detail in Section 3, 
which provides information about the proposed 
system. In the fourth section, the results and 
discussions are presented, with an emphasis on the 
performance of the model and a comparative 
analysis with other models that are considered to be 
state-of-the-art. In conclusion, the paper is brought 
to a close with Section 5, which provides a summary 
of the findings as well as potential future directions 
for research in breast cancer diagnostics. 

2. RELATED WORKS  
 

The performance of the proposed IVRBR-Net 
model clearly surpasses many existing approaches in 
the domain of thermographic breast cancer detection, 
as evidenced by its outstanding metrics—accuracy 
of 99.82%, specificity of 99.74%, sensitivity of 
99.35%, precision of 99.48%, and F1-score of 
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99.68%. Compared to MobileNetV2 [21], which 
achieved an accuracy of 98.69%, IVRBR-Net not 
only improves accuracy but also offers greater 
robustness in handling complex thermal patterns, 
addressing MobileNetV2’s limitations with smaller 
datasets and variable image quality. Similarly, the 
Random Forest classifiers used by Berberian et al. 
[22] demonstrated respectable performance but 
inherently lack the spatial feature extraction power 
that deep learning models like IVRBR-Net provide, 
especially critical for medical image analysis. 

The attention-enhanced VGG-16 model [23] 
showed high precision but at the expense of 
increased computational resources and training 
complexity, which may limit its practical 
deployment. IVRBR-Net’s hybrid architecture, by 
combining Inception V4, ResNet-50, and 
Bidirectional RNNs, balances model complexity and 
performance effectively, thereby mitigating some of 
these computational drawbacks while achieving 
superior results. In contrast to the ResNet-50 
standalone model in [24], which suffered from lower 
sensitivity (80%) indicating difficulty in detecting all 
positive cases, IVRBR-Net achieves both high 
specificity and sensitivity, suggesting better overall 
tumor detection capability. 

Moreover, while hybrid CNN-KNN approaches 
[25] and R-CNN with radiomics [26] offer 
innovative feature fusion techniques, they face 

challenges related to computational demand and 
real-time feasibility. IVRBR-Net leverages efficient 
preprocessing techniques alongside its architecture 
to maintain high accuracy without prohibitive 
computational costs. Similarly, although methods 
like the Dragon Fly algorithm with VGG16 [27] 
enhance feature selection and classification 
accuracy, their increased computational complexity 
contrasts with IVRBR-Net’s more streamlined yet 
effective design. Finally, conventional CNNs [28] 
remain simpler to implement but often underperform 
on small datasets and complex features compared to 
IVRBR-Net, which incorporates recurrent neural 
networks to better capture temporal dependencies in 
thermal images. 

Despite these improvements, it is important to 
recognize that IVRBR-Net’s enhanced performance 
needs further validation on larger, more diverse 
datasets to confirm generalizability. Additionally, 
while the model balances complexity and accuracy 
well, deployment in resource-limited clinical 
environments may still require optimization. 
Nonetheless, the comparative analysis underscores 
IVRBR-Net’s significant advancement in combining 
preprocessing, feature extraction, and hybrid deep 
learning architectures to address the limitations of 
existing methods, setting a new benchmark for 
thermographic breast cancer detection. 

 

Figure 1: Block diagram of Proposed System 

3. PROPOSED SYSTEM 
 

The methodology as shown in Figure 1 
commences by obtaining the thermography images 

from the dataset, which are subsequently 
transformed into grayscale to streamline the analysis 
procedure and accentuate significant structural 
components. Pre-processing involves the application 
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of MBOBHE to improve contrast, followed by 
bilateral filtering to decrease noise while 
maintaining edge details. The Affine Projection 
Algorithm (APA) is used to achieve additional 
refinement. The process of feature extraction 
involves the utilization of Scale-Invariant Feature 
Transform (SIFT) and Haralick features. The 
essence of the methodology is centered around the 
deep learning model, IVRBR-Net, which combines 
Inception V4, ResNet-50, and Bidirectional 
Recurrent Neural Networks (RNNs). Inception V4 is 
utilized as the primary method for extracting 
features. These features are then processed for 
segmentation using ResNet-50. The segmented 
outputs are further analyzed by Bidirectional RNNs, 
which capture both spatial and contextual features. 
The model is trained and validated using the Adam 
Optimizer. Its performance is assessed using 
confusion matrices and ROC curves, ensuring a high 
level of precision and effectiveness. 

The methodology starts by obtaining JPEG 
images from the dataset, where all pertinent image 
files are methodically prepared for processing. The 
initial step involves converting each image to 
grayscale in order to streamline the analysis process 
and emphasize important structural elements for the 
purpose of feature detection. The conversion to 
grayscale is executed utilizing the prescribed 
formula: 

𝐼௚௥௔௬(𝑥, 𝑦) = 0.2898 ∙ 𝐼ோ(𝑥, 𝑦) + 0.5870 

∙ 𝐼 (𝑥, 𝑦) + 0.1140
∙ 𝐼஻(𝑥, 𝑦) 

(1) 

Where  𝐼ோ , 𝐼  and 𝐼஻ represented the red, green 
and blue color channels of the original Image 
respectively. 

In the pre-processing stage, MBOBHE is applied 
to enhance image contrast. MBOBHE divides the 
histogram of the grayscale image into two sub-
histograms based on the mean intensity value 𝜇: 

𝐻ଵ(𝑡) =  
∑ 𝑝(𝐼௚௥௔௬ூ೒ೝೌ೤ರ

)

∑ 𝑝(𝐼௚௥௔௬)ூ೒ೝೌ೤

 (2) 

𝐻ଶ(𝑡) =  
∑ 𝑝(𝐼௚௥௔௬ூ೒ೝೌ೤ಭ

)

∑ 𝑝(𝐼௚௥௔௬)ூ೒ೝೌ೤

 (3) 

Where 𝑝(𝐼௚௥௔௬) is the probability for gray shades, 
The Sub – histograms are equalized independently to 
enhance contrast. 

Bilateral filtering is then applied to reduce noise 
while preserving edge details. The bilateral filter can 
be expressed as: 

𝐼௕௜௟௔௧௘௥௔௟(𝑥, 𝑦) =  
1

𝑊(𝑥, 𝑦)
 ෍ 𝑔𝜎௦(‖𝑠

௦ఢΩ

− 𝑥‖)  
∙ 𝑔𝜎௥(‖𝐼(𝑠) − 𝐼(𝑥)‖)
∙ 𝐼(𝑠) 

(4) 

Where Ω is the local neighbourhood of 
pixel (𝑥, 𝑦), 𝑔𝜎௦ is the spatial Gaussian kernel, 𝑔𝜎௥ 
is the range Gaussian kernel and 𝑊(𝑥, 𝑦) is the 
normalization factor. 

𝑊(𝑥, 𝑦) = ෍ 𝑔𝜎௦(‖𝑠 − 𝑥‖)
௦ఢΩ

 

∙ 𝑔𝜎௥(‖𝐼(𝑠) − 𝐼(𝑥)‖)  
(5) 

To further refine the images, an Affine Projection 
Algorithm (APA) is employed. The APA averages 
pixels in a neighbourhood weighted by their 
similarity: 

𝐼஺௉஺(𝑥, 𝑦) =  
∑ 𝜔(𝑖, 𝑗)௜,௝ ∙ 𝐼(𝑥 + 𝑖, 𝑦 + 𝑗)

∑ 𝜔(𝑖, 𝑗)௜,௝

 (6) 

Where 𝜔(𝑖, 𝑗) is the weight function based on 
pixel similarity. 

For feature extraction, SIFT and Haralick features 
are utilized. SIFT detects key points and computes 
descriptors using local image gradients. The SIFT 
descriptor at a key point (𝑥, 𝑦) is given by: 

𝐷(𝑥, 𝑦) =  [𝑔𝜃(𝑥, 𝑦), 𝑔𝜃
+ ∆𝜃(𝑥, 𝑦), … … , 𝑔𝜃 + (𝑛
− 1)∆𝜃(𝑥, 𝑦)] 

(7) 

Where 𝑔𝜃 represents the gradient magnitude in 
orientation  𝜃 , and  ∆𝜃 is the orientation bin size. 

𝑃(𝑖, 𝑗, 𝜃) is co-occurrence matric providing 
Textures, where 𝑖 and 𝑗 are pixel intensity values and 
 𝜃 is the orientation. Key Haralick measures include: 

Contrast 

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 =  ෍ ෍ (𝑖 − 𝑗)ଶ

௝
∙ 𝑃(𝑖, 𝑗)

௜
 (8) 

Correlation 

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛

=  
 ∑ ∑ (𝑖 − 𝜇௜)(𝑗 − 𝜇௝௜ ) ∙ 𝑃(𝑖, 𝑗)௜

𝜎௜ ∙ 𝜎௝

 
(9) 

Where 𝜇௜ and 𝜇௝ are the means, and 𝜎௜ and 𝜎௝ are 
the standard deviations of 𝑖 and 𝑗 respectively. 
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The deep learning model, named IVRBR-Net 
(Inception V4 + ResNet 50 + Bidirectional RNNs), 
integrates three components. Inception V4 serves as 
the feature extraction backbone, represented by: 

𝐹ூ௡௖௘௣௧௜௢௡ = 𝐼𝑛𝑐𝑒𝑝𝑡𝑖𝑜𝑛𝑉4(𝐼) (10) 

These features are processed by ResNet 50 for 
segmentation: 

𝑆ோ௘௦ே௘௧ = 𝑅𝑒𝑠𝑁𝑒𝑡50(𝐹ூ௡௖௘௣௧௜௢௡) (11) 

Bidirectional Recurrent Neural Networks (RNNs) 
analyze the segmented outputs: 

𝑂ோேே = 𝐵𝑖𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙𝑅𝑁𝑁(𝑆ோ௘௦ே௘௧) (12) 

Training and validation of IVRBR-Net involve 
dividing the dataset into 70% for training, 15% for 
validation, and 15% for testing. The Adam 
Optimizer is used for training, with the update rule 
given by: 

𝜃௧ାଵ =  𝜃௧ −  
𝜂

ඥ𝑉௧ + 𝜖
∙ 𝑚௧ (13) 

Where 𝜃௧ is the parameter, 𝜂 is the learning rate, 
𝑚௧ is the first moment estimate, 𝑉௧ is the second 
moment estimate, and 𝜖 is a small constant to avoid 
division by zero. 

Finally, IVRBR-Net’s performance is evaluated 
through confusion matrices and ROC curves.  
Performance metrics include: 

Accuracy 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (14) 

Sensitivity (Recall) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (15) 

Specificity 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (16) 

ROC curves are plotted by varying the decision 
threshold and calculating the True Positive Rate 
(TPR) and False Positive Rate (FPR): 

𝑇𝑃𝑅 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (17) 

𝐹𝑃𝑅 =  
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 (18) 

 
3.1. Proposed Model 

This work accurately summarizes the core 
features and advantages of this model. IVRBR-Net 
combines three robust neural network architectures, 
namely Inception V4, ResNet-50, and Bidirectional 
Recurrent Neural Networks (RNNs), to attain 
exceptional results in image analysis tasks. The 
Inception V4 network incorporates its sophisticated 
ability to extract features at multiple scales, while the 
deep residual learning architecture of ResNet-50 
tackles the issue of vanishing gradients and improves 
the process of learning features. Bidirectional RNNs 
enhance contextual comprehension by analyzing 
data in both forward and backward directions, 
thereby increasing the model's ability to effectively 
handle sequential dependencies within the image 
data. The combination of these components 
produces a synergistic impact that improves the 
model's capacity to precisely categorize and analyze 
intricate images. Figure 2 shows the proposed model 
IVRBR-Net.

 
Figure 2: Architecture of Proposed Model IVRBR-Net



 Journal of Theoretical and Applied Information Technology 
15th August 2025. Vol.103. No.15 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
5447 

 

The IVRBR-Net model is designed to 
effectively utilize the advantages of its component 
architectures in a smooth and unified way. The 
model initiates with the Inception V4 module, which 
conducts multi-scale feature extraction by 
employing a sequence of convolutional filters with 
varying sizes, thereby capturing a wide range of 
characteristics from the input image. Next, the 
ResNet-50 module is introduced, comprising 50 
layers of residual blocks specifically engineered to 
enhance deep learning by enabling seamless gradient 
flow throughout the network during training. The 
ResNet-50's output is subsequently inputted into 
Bidirectional RNN layers, which analyze the 
extracted features in both the forward and backward 
directions, effectively capturing temporal 
dependencies. The architecture is finalized by 
incorporating fully connected layers, which combine 
the acquired features and generate the ultimate 
classification output. This hierarchical method 
guarantees thorough extraction of features, efficient 
utilization of deep learning techniques, and resilient 
sequence modeling, leading to a highly precise and 
efficient image analysis model. 

The key innovation of IVRBR-Net resides 
in its distinctive integration of three cutting-edge 
neural network architectures, each contributing its 
own advantages to the model. Inception V4 is highly 
effective in extracting features at multiple scales. 
ResNet-50, on the other hand, tackles the difficulties 
of training extremely deep networks by 
incorporating residual connections. Bidirectional 
RNNs further enhance the model's capacity to 
comprehend sequential data by processing 
information in both forward and backward 
directions. IVRBR-Net is capable of efficiently 
managing the intricacies of image data, accurately 
capturing both spatial and contextual characteristics. 
IVRBR-Net's hybrid approach, unlike traditional 
models that use only one architecture, allows for a 
more thorough and nuanced comprehension of the 
input data. As a result, it achieves better performance 
in tasks like image classification, segmentation, and 
analysis. IVRBR-Net stands out from other models 
in the field of image analysis due to its incorporation 
of advanced methodologies, making it a state-of-the-
art tool. 
 
3.2. Algorithm of the Proposed Model 

The algorithm provide below is a designed 
algorithm for employing IVRBR-Net model, a novel 
deep learning model planned for detection Breast 
cancer. This algorithm provides a concise and 

focused outline of the IVRBR-Net model's 
processing steps. Table 1 shows the IVRBR-Net 
Model. 

Table 1: Algorithm 1 - IVRBR-Net Model 

Algorithm: IVRBR-Net Model 
Step 1: Image Acquisition and Preparation 
image = imread('input_image.jpg'); % Load the input 
image 
Step 2: Inception V4 Module 
inceptionFeatures = InceptionV4(image);  
% Apply Inception V4 module (function 
implementation needed) 
Step 3: ResNet-50 Module 
resnetFeatures = ResNet50(inceptionFeatures);  
% Apply ResNet-50 module (function 
implementation needed) 
Step 4: Bidirectional RNN Layers 
biRNNFeatures = BidirectionalRNN(resnetFeatures); 
% Apply Bidirectional RNN layers (function 
implementation needed) 
Step 5: Fully Connected Layers 
fullyConnectedFeatures = 
FullyConnectedLayers(biRNNFeatures); % Apply 
fully connected layers (function implementation 
needed) 
Step 6: Classification Output 
classificationOutput = 
Softmax(fullyConnectedFeatures); % Apply softmax 
to get classification output 
Step 7: Display the classification result 
disp(classificationOutput); 

 

4. EXPERIMENTAL INVESTIGATION AND 
ANALYSIS  

 
4.1 Dataset Distribution 

For the purpose of this investigation, we 
made use of a comprehensive dataset that included a 
total of hundred and twenty images. The Database 
for Mastology Research, also known as DMR, is a 
well-known online resource that is utilized for the 
purpose of collecting and managing images related 
to Mastology. These images were carefully chosen 
from the DMR because they are required for the 
early detection of breast cancer and because they are 
in high demand. This repository, which is an 
essential resource for our research and contains a 
wide variety of thermographic and mammographic 
images, is managed by Visual Labs in Brazil [18], 
which is the organization that is responsible for 
carrying out the maintenance of this repository. 
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Figure 3: FLIR SC- 620 (Courtesy: FLIR [20]) 

The images were captured with the help of 
the FLIR SC-620 camera in Figure 3, which is 
renowned for its high resolution of 800 x 600 pixels 
and is widely regarded for its superior performance. 
To accomplish the goal of attaining a resolution of 
45 μm, the research team at Visual Labs 
meticulously calibrated each and every pixel. The 
utilization of the insights that were provided by 
thermographic imagery, which played a significant 
role in our dataset, was the primary focus of our 
attention. This insight was provided by 
thermographic imagery. 

In total as shown in Table 2, there are 84 
samples that make up the training set, which 
accounts for 70 percent of the collection. Due to the 
fact that the training phase requires a substantial 
amount of data in order to accurately learn patterns 
and relationships within the dataset, this majority 
allocation is extremely important. 

Table 2: Dataset Split and distribution 

Dataset Split 
Number of 

Samples 
Percentage 

(%) 

Training 84 70.0 

Validation 12 10.0 

Testing 24 20.0 

 
It is possible to improve the model's ability 

to generalize and enhance its performance on data 
that it has not previously encountered by providing a 
solid foundation for learning with a larger training 
set. The validation set consists of twelve samples, 
which is equivalent to ten percent of the total dataset. 
This particular subset is utilized in order to prevent 
overfitting and to fine-tune the hyperparameters of 
the model. By conducting an evaluation of the model 

on the validation set, we can make certain that it 
continues to exhibit satisfactory performance across 
a variety of data splits. This will assist us in selecting 
the most appropriate model configuration prior to 
testing. Twenty percent of the total dataset is 
comprised of the twenty-four samples that are 
included in the testing set as provided in donut chart 
in Figure 4. 

 
Figure 4: Donut Chart of dataset distribution 

4.2 Simulation Outputs 
Figure 5 depicts the input image that is used 

for analysis. The methodology begins with the 
acquisition of thermographic images, which is 
illustrated in the figure. After that, the original image 
is resized for the purpose of increasing the efficiency 
of the processing, as shown in Figure 6. Dimensions 
are then adjusted to ensure that the dataset is 
consistent throughout. The image is then converted 
to grayscale (Figure 7), which highlights significant 
structural elements by removing color information. 
This process emphasizes the importance of the 
elements. 

 
Figure 5: Thermograph input image 
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The MBOBHE algorithm is utilized in 
order to achieve the enhancement resultant image.  
The image visibility is improved through the use of 
this process, which involves dividing the histogram 
into two sub-histograms and then independently 
equalizing each of them based on the mean intensity 
value. Bilateral filtering is applied in order to reduce 
noise while maintaining edge details, and the output 
that is shown in Figure 9 is the result of this 
application. The spatial and intensity differences that 
exist within the immediate vicinity of pixels are 
brought into equilibrium by this filtering technique. 

 
Figure 6: Resized Image 

 
Figure 7: Grayscale converted image 

 
Figure 8: MBOBHE Enhanced image 

 
Figure 9: Bilateral filtering output 

 
Figure 10: Result of Affine Projection Algorithm 

Table 3: Features extracted for 6 Samples using SIFT and Haralicks 

Sample Mean Variance Std Dev Max Min Entropy Kurtosis Skewness 

1 0.4827 0.1139 0.3373 0.996 0.003 7.3541 1.6718 0.0839 

2 0.5194 0.1403 0.3748 0.948 0.048 7.1005 1.8497 0.0998 

3 0.4496 0.2003 0.4473 0.899 0.101 7.5998 1.5002 0.0603 

4 0.5093 0.1197 0.3463 0.967 0.032 7.2497 1.7002 0.0902 

5 0.4304 0.1602 0.4001 0.879 0.119 7.8003 1.3998 0.0498 

6 0.5002 0.1798 0.4241 0.929 0.071 6.9998 1.8997 0.1097 
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In order to achieve further refinement, the 
Affine Projection Algorithm (APA) is utilized. This 
algorithm takes the average of pixels within a 
neighborhood that is weighted based on their 
similarity. The resulting image can be seen in Figure 
10. This step ensures that transitions are smoother 
and structures are better defined, both of which are 
essential for the subsequent method of feature 
extraction. 

Table 3 provides a detailed account of the 
features that were extracted from six different 
samples using the SIFT and Haralick methods. The 
first sample, for example, has a mean value of 
0.4827, a variance of 0.1139, a standard deviation of 
0.3373, a maximum value of 0.996, a minimum 

value of 0.003, an entropy of 7.3541, a kurtosis of 
1.6718, and a skewness of 0.0839. The identification 
of patterns and characteristics within the images is 
made possible with the assistance of these features, 
which are essential for accurate classification. 

A graphical representation of these 
characteristics, with the exception of entropy, is 
presented in Figure 11. The plot illustrates the 
differences that exist between the samples, which 
makes it easier to gain a more in-depth 
comprehension of the statistical characteristics of the 
dataset. Through the provision of a wide range of 
data points, this comprehensive analysis contributes 
to the learning process of the model. 

 
Figure 11: Plot of Features from Table 3 except Entropy 

 
Figure 12: Confusion Matrix for Training Set 

 
Figure 13: Confusion Matrix for Validation Set 
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Figure 14: Confusion Matrix for Testing Set 

The confusion matrices for the training set 
(shown in Figure 12), the validation set (shown in 
Figure 13), and the testing set (shown in Figure 14) 
are utilized in order to carry out the assessment, these 
matrices offer valuable insights into the accuracy of 
the classification. For instance, the model achieves a 
high level of accuracy in the confusion matrix of the 
testing set, which indicates that it performs well 
across a variety of data splits simultaneously. 

A number of different decision thresholds 
are represented by ROC curves that are plotted in 
Figure 15. These curves show the TPR in 
comparison to the (FPR). This set of curves 
illustrates the capability of the model to differentiate 
between different classes, with higher areas under 
the curve (AUC) indicating superior performance. 

 
Figure 15: Plot of ROC Curves

This study employs a quantitative 
experimental research design focused on developing 
and validating a novel deep learning model for breast 
cancer detection using thermographic images. The 
research process begins with the acquisition of a 
curated dataset of 120 high-resolution 
thermographic breast images from the Database for 
Mastology Research (DMR). To prepare the data for 
analysis, the images undergo rigorous preprocessing 
steps, including grayscale conversion, contrast 
enhancement via Multipurpose Beta Optimized Bi-
histogram Equalization (MBOBHE), noise 
reduction through bilateral filtering, and refinement 
with the Affine Projection Algorithm (APA). 
Feature extraction is then performed using Scale-

Invariant Feature Transform (SIFT) to capture key 
spatial details and Haralick descriptors to extract 
vital texture features from gray-level co-occurrence 
matrices. The IVRBR-Net model architecture 
integrates Inception V4 for multi-scale feature 
extraction, ResNet-50 for deep residual learning, and 
Bidirectional Recurrent Neural Networks to capture 
sequential dependencies within the data. The model 
is trained and validated using supervised learning 
techniques on the prepared dataset, employing cross-
validation to ensure robustness and avoid overfitting. 
Finally, performance evaluation is conducted using 
standard metrics such as accuracy, sensitivity, 
specificity, precision, and F1-score, with 
comparisons made against established models to 
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demonstrate the effectiveness and superiority of the 
proposed approach. 

 
4.3 Performance Assessment 

The accuracy metrics are presented in 
Table 4, which compares the proposed model's 
accuracy of 99.82% with the accuracy of other 
models. VGG-16 with attention, for example, 
achieves a score of 99.32%, whereas ResNet-50 
demonstrates a score of 90.74%. A visual 
confirmation of the superior performance of the 
proposed model is provided by the accuracy 
comparison plot that corresponds to what is shown 
in Figure 16. 

Table 4: Accuracy Metrics. 

Model [Citation Number] Accuracy (%) 

MobileNetV2 [21] 98.69 

Random Forest Classifiers [22] 95 

VGG-16 with attention [23] 99.32 

ResNet-50 [24] 90.74 

CNN+KNN [25] 94.1 

R-CNN with Radiomics [26] 88 

Dragon Fly + VGG16 [27] 99 

Traditional CNN [28] 93.8 

Proposed Model 99.82 

 
Figure 16: Accuracy Comparison plot 

 

Figure 17: Specificity Comparison plot 
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Table 5: Specificity. 

Model [Citation Number] Specificity (%) 

MobileNetV2 [21] 98.3 

Random Forest Classifiers [22] 89 

VGG-16 with attention [23] 99.46 

ResNet-50 [24] 97.50 

CNN+KNN [25] 92.1 

R-CNN with Radiomics [26] 90 

Traditional CNN [28] 96.7 

Proposed Model 99.743 

Detailed information regarding specificity 
metrics can be found in Table 5. The proposed model 
has a specificity of 99.743%, which is higher than 
the specificity of MobileNetV2 (98.3%) and 
Random Forest Classifiers (89%). The specificity 
comparison plot shown in Figure 17 provides further 
evidence that these findings are accurate and 
demonstrates how effective the model is in 
accurately identifying negative cases. 

Table 6 contains a discussion on sensitivity, 
also known as recall. With a sensitivity of 99.35%, 
the proposed model outperforms both ResNet-50, 
which achieves 80.00%, and CNN+KNN, which 
achieves 95.5%. This particular aspect is further 
highlighted by the sensitivity comparison plot shown 
in Figure 18, which demonstrates the model's ability 
to accurately identify positive cases. 

Table 6: Sensitivity. 

Model [Citation Number] Sensitivity (%) 

MobileNetV2 [21] 99.1 

Random Forest Classifiers [22] 94.3 

VGG-16 with attention [23] 99.19 

ResNet-50 [24] 80.00 

CNN+KNN [25] 95.5 

R-CNN with Radiomics [26] 97 

Traditional CNN [28] 88.9 

Proposed Model 99.35 

 
Figure 18: Sensitivity Comparison plot 

Table 7: Precision. 

Model [Citation Number] Precision (%) 

MobileNetV2 [21] 98.3 

VGG-16 with attention [23] 99.48 

ResNet-50 [24] 94.12 

 
The precision metrics presented in Table 7 

demonstrate that the proposed model has a precision 
of 99.48%, which is superior to ResNet-50's 94.12%. 
This assertion is supported visually by the precision 
comparison plot shown in Figure 19, which 
demonstrates that the model is accurate when 
making positive predictions. 
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Figure 19: Precision Comparison Plot 

 
Figure 20: F1 Score Comparison plot 

Table 8: F1-Score. 

Model [Citation Number] F1-Score (%) 

MobileNetV2 [21] 98.69 

VGG-16 with attention [23] 99.33 

ResNet-50 [24] 86.49 

R-CNN with Radiomics [26] 91 

Proposed Model 99.68 
 

The final table, Table 8, displays the F1-
Score metrics. The proposed model achieves a score 
of 99.68%, which is higher than the scores of 99.33% 
achieved by VGG-16 with attention and 98.69% 
achieved by MobileNetV2. The F1-Score 
comparison plot that can be found in Figure 20 

demonstrates that the model has a balanced 
performance in terms of precision and recall, which 
validates the model's overall effectiveness. 
 

5. CONCLUSION  
 

By combining the distinct capabilities of Inception 
V4, ResNet-50, and Bidirectional RNNs, IVRBR-
Net represents a significant advancement in the field 
of breast cancer detection through thermographic 
imaging. The methodology incorporates rigorous 
preprocessing—including grayscale conversion, 
Multipurpose Beta Optimized Bi-histogram 
Equalization (MBOBHE), bilateral filtering, and the 
Affine Projection Algorithm (APA)—to enhance 
image quality. Feature extraction using Scale-
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Invariant Feature Transform (SIFT) and Haralick 
descriptors ensures that essential statistical 
properties are effectively captured, contributing to 
the model’s exceptional performance. Tested on a 
dataset of 120 high-resolution thermographic images 
from the Database for Mastology Research (DMR), 
IVRBR-Net achieved remarkable metrics: accuracy 
of 99.82%, specificity of 99.74%, sensitivity of 
99.35%, precision of 99.48%, and an F1-score of 
99.68%. These results notably exceed those of 
current state-of-the-art models such as 
MobileNetV2, VGG-16 with attention, and ResNet-
50, confirming IVRBR-Net’s superior capability in 
accurate breast cancer detection. The integration of 
multi-scale feature extraction, deep residual 
learning, and bidirectional sequence analysis offers a 
comprehensive and dependable framework, 
enhancing early diagnosis and treatment planning, 
which can ultimately improve patient outcomes. 
However, while the study establishes a new 
benchmark in the field, several questions remain 
open for future exploration. For instance, how well 
does IVRBR-Net generalize to larger, more 
heterogeneous datasets collected from diverse 
populations and different imaging devices? The 
study does not address the model’s robustness in 
real-world clinical settings where image quality and 
patient variability may be more pronounced. 
Additionally, the computational complexity and 
resource requirements of IVRBR-Net could pose 
challenges for deployment in low-resource or point-
of-care environments—areas not explored in this 
work. Furthermore, while the model’s accuracy is 
high, the interpretability of its predictions remains 
unexamined, raising important questions about 
explainability and clinician trust. Finally, the 
potential integration of multimodal data (such as 
combining thermography with ultrasound or MRI) to 
further enhance diagnostic accuracy is an avenue that 
this study does not pursue but could be valuable in 
future research. Addressing these questions will be 
crucial to translating the promising results of 
IVRBR-Net into practical clinical applications. 
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