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ABSTRACT

Breast cancer remains a leading cause of mortality worldwide, and early, accurate detection is critical for
effective treatment and improved patient outcomes. This paper addresses the challenge of advanced breast
cancer detection by introducing IVRBR-Net, a novel deep learning model that integrates Inception V4,
ResNet-50, and Bidirectional Recurrent Neural Networks (RNNs) to analyze thermographic images. The
methodology begins with rigorous preprocessing steps—grayscale conversion, contrast enhancement via
Multipurpose Beta Optimized Bi-histogram Equalization (MBOBHE), noise reduction through bilateral
filtering, and image refinement using the Affine Projection Algorithm (APA)—to optimize image quality
while preserving essential features. Feature extraction is performed using Scale-Invariant Feature Transform
(SIFT) and Haralick descriptors, capturing critical statistical properties such as mean, variance, entropy, and
skewness. The model is trained and validated on a dataset of 120 high-resolution thermographic images from
the Database for Mastology Research (DMR). IVRBR-Net achieves outstanding performance metrics,
including an accuracy of 99.82%, specificity of 99.74%, sensitivity of 99.35%, precision of 99.48%, and an
Fl-score of 99.68%, significantly outperforming existing state-of-the-art models such as MobileNetV2,
VGG-16 with attention, and ResNet-50. These results demonstrate the model’s potential as a reliable and
precise tool for breast cancer diagnostics, offering a robust framework for future applications in medical
image analysis and contributing to improved clinical decision-making.
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1. INTRODUCTION Not only does breast cancer have a significant

impact on the physical well-being of individuals, but

Among the many types of cancer that affect
women all over the world, breast cancer is one of the
most common and fatal variations [1-3]. Because of
the high incidence and mortality rates associated
with this disease, it presents a significant challenge
[4-7]. In order to improve survival rates, it is
necessary to implement effective treatment strategies
and facilitate early detection [8]. The complexity of
breast cancer, which includes its many subtypes and
progression patterns, further complicates diagnosis
and treatment, highlighting the necessity of
developing more advanced diagnostic tools [9-12].

it also places a significant burden on healthcare
systems and society as a whole [13]. The challenges
that are associated with breast cancer are significant.
The survival rate for breast cancer in its early stages
is relatively high, provided that the disease is
detected and treated promptly [14]. On the other
hand, late-stage detection frequently results in a
worse prognosis, extensive treatment regimens, and
significant costs associated with healthcare and
medical care. In addition to having an impact on the
patients themselves, this illness also places a
significant amount of mental and financial strain on
the patients' families [15]. The burden extends to
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healthcare providers and systems, which are required
to allocate substantial resources for diagnosis,
treatment, and ongoing care [16]. This highlights the
critical need for diagnostic methods that are both
efficient and accurate [17].

The diagnosis and treatment of breast cancer have
been significantly altered as a result of the significant
contributions made by technological advancements.
The detection of breast cancer has seen a significant
improvement in both its accuracy and its efficiency
as a result of the incorporation of cutting-edge tools
such as artificial intelligence (Al), machine learning
(ML), and deep learning (DL). The analysis of vast
amounts of medical data is made possible by these
technologies, which in turn makes it easier to
identify cancerous tissues at an earlier stage and with
greater precision [18]. To be more specific, deep
learning models have demonstrated remarkable
promise in the field of medical image analysis. These
models offer high sensitivity and specificity when it
comes to identifying abnormalities. In addition to
enhancing diagnostic capabilities, these tools also
provide support for personalized treatment plans,
which ultimately leads to improved patient outcomes
and a reduction in the burden placed on healthcare
systems.

In this study, a novel deep learning model called
IVRBR-Net is presented. This model takes
advantage of the strengths of Inception V4, ResNet-
50, and Bidirectional RNNs in order to improve
breast cancer detection through the use of
thermographic images. Grayscale conversion,
MBOBHE for contrast enhancement, bilateral
filtering for noise reduction, and the Affine
Projection Algorithm for image refinement are some
of the comprehensive preprocessing steps that are
utilized by the model that has been proposed. During
the process of feature extraction, the SIFT and
Haralick methods are utilized. These methods
capture critical statistical properties that are
necessary for accurate classification. IVRBR-Net
demonstrates  superior performance metrics,
significantly surpassing existing models.

Breast cancer remains one of the most prevalent
and deadly cancers among women worldwide,
accounting for a significant proportion of cancer-
related morbidity and mortality. Early and accurate
detection is paramount to improving survival rates,
guiding treatment decisions, and reducing healthcare
costs. Traditional diagnostic methods, such as
mammography and biopsy, while effective, can be
invasive, expensive, and sometimes uncomfortable
or inaccessible, particularly in low-resource settings.
Thermography, a non-invasive imaging technique

that detects heat patterns and blood flow in breast
tissue, offers a promising alternative for early cancer
screening. However, thermographic images are often
complex and noisy, posing challenges for accurate
interpretation by clinicians. Existing automated
diagnostic systems based on conventional machine
learning or deep learning models have shown
potential but still face limitations in precision and
robustness. This underscores the urgent need for
advanced, reliable computational methods capable
of handling the subtle and varied thermal patterns
characteristic of breast tumors. IVRBR-Net
addresses this critical gap by combining state-of-the-
art neural architectures with  sophisticated
preprocessing and feature extraction techniques,
aiming to deliver superior accuracy and reliability in
breast cancer detection from thermographic images.
The development of such effective tools is crucial to
complement existing diagnostic practices, increase
accessibility to early screening, and ultimately
improve patient outcomes on a global scale.

This study hypothesizes that integrating advanced
convolutional  neural network  architectures
specifically Inception V4 and ResNet-50 with
Bidirectional Recurrent Neural Networks (RNNs),
combined with rigorous image preprocessing and
robust feature extraction techniques, can
significantly improve the accuracy and reliability of
breast cancer detection from thermographic images.
The proposed IVRBR-Net model is designed to
effectively capture both spatial and temporal patterns
inherent in thermal breast images, overcoming
limitations of existing approaches by enhancing
feature representation and reducing noise. We posit
that this comprehensive approach will outperform
current state-of-the-art models in key performance
metrics such as accuracy, sensitivity, and specificity,
thereby providing a more precise and non-invasive
diagnostic tool for early breast cancer detection.

Breast cancer remains one of the leading causes of
cancer-related deaths globally, with early detection
playing a critical role in improving survival rates and
treatment outcomes. Traditional diagnostic methods
such as mammography and biopsies, while effective,
often involve invasive procedures, exposure to
radiation, or high costs that limit their accessibility,
especially in low-resource settings. Thermography
has emerged as a promising non-invasive and
radiation-free imaging modality capable of detecting
abnormal temperature patterns associated with breast
tumors. However, interpreting thermographic
images accurately poses significant challenges due
to their complex texture, noise, and variability
caused by environmental and physiological factors.
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Existing automated detection methods, including
conventional machine learning and deep learning
approaches, often struggle to balance accuracy,

computational  efficiency, and robustness—
particularly when applied to smaller or
heterogeneous datasets. Therefore, there is a

compelling need for advanced, reliable models that
can extract meaningful features from thermographic
images and provide precise breast cancer detection
while being computationally feasible for practical
clinical use. This study addresses this gap by
proposing IVRBR-Net, a novel deep learning
architecture that integrates Inception V4, ResNet-50,
and Bidirectional Recurrent Neural Networks, along
with sophisticated preprocessing and feature
extraction techniques, to deliver highly accurate and
dependable  breast cancer detection from
thermographic images. By doing so, this research
aims to contribute significantly to early diagnosis
efforts, improve patient outcomes, and support wider
adoption of accessible diagnostic technologies.

This work presents IVRBR-Net, a novel deep
learning framework designed to improve breast
cancer detection using thermographic images. It
focuses on comprehensive preprocessing steps—
including grayscale conversion, contrast
enhancement (MBOBHE), noise reduction (bilateral
filtering), and image refinement (Affine Projection
Algorithm)—to optimize image quality. The model
extracts rich spatial and textural features through
SIFT and Haralick descriptors, and employs a hybrid
architecture combining Inception V4, ResNet-50,
and Bidirectional RNNs to capture complex patterns
in the data. The study thoroughly evaluates [VRBR-
Net’s performance on a curated dataset of 120 high-
resolution thermographic images, demonstrating
superior accuracy, sensitivity, specificity, and other
key metrics compared to current state-of-the-art
models. However, this research does not cover the
generalizability of the model to larger, more diverse
datasets or its performance in real-world clinical
environments with variable imaging conditions.
Additionally, it does not explore the model’s
deployment feasibility in resource-constrained
settings or investigate the interpretability and
explainability of the model’s predictions. Finally, the
integration of multimodal imaging data (e.g.,
combining thermography with ultrasound or MRI) is
beyond the scope of this work but remains a potential
avenue for future enhancement.

Breast cancer continues to be a major global health
challenge, responsible for a significant proportion of
cancer morbidity and mortality among women
worldwide. Early and accurate detection is crucial

because it directly influences treatment options,
patient prognosis, and survival rates. However,
conventional  screening methods such as
mammography are often limited by factors including
high costs, exposure to ionizing radiation, and
reduced effectiveness in dense breast tissues, which
can lead to missed diagnoses or false positives.
Thermographic imaging offers a non-invasive,
radiation-free, and cost-effective alternative capable
of detecting physiological changes linked to tumor

development. Yet, interpreting thermographic
images is inherently difficult due to subtle
temperature variations, noise, and individual

physiological differences. These challenges create a
critical gap in current diagnostic capabilities,
particularly in resource-limited settings where access
to advanced imaging technologies is scarce.
Therefore, developing robust, automated, and highly
accurate computational models like IVRBR-Net to
analyze thermographic images is essential. Such
models can overcome human limitations, reduce
diagnostic errors, enable wider screening coverage,
and ultimately contribute to earlier interventions and
improved patient outcomes. Addressing this problem
not only advances medical imaging but also aligns
with global health priorities to reduce breast cancer
mortality through accessible, reliable detection
technologies.

After that, the remaining parts of this paper are
structured as follows: The first section of the report
is an introduction to the research, which includes an
explanation of the significance of breast cancer
detection and the role that advanced technologies
play. The second section examines related works and
discusses the limitations of the methods that are
currently in use. IVRBR-Net's architecture and
methodology are described in detail in Section 3,
which provides information about the proposed
system. In the fourth section, the results and
discussions are presented, with an emphasis on the
performance of the model and a comparative
analysis with other models that are considered to be
state-of-the-art. In conclusion, the paper is brought
to a close with Section 5, which provides a summary
of the findings as well as potential future directions
for research in breast cancer diagnostics.

2. RELATED WORKS

The performance of the proposed IVRBR-Net
model clearly surpasses many existing approaches in
the domain of thermographic breast cancer detection,
as evidenced by its outstanding metrics—accuracy
of 99.82%, specificity of 99.74%, sensitivity of
99.35%, precision of 99.48%, and Fl-score of
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99.68%. Compared to MobileNetV2 [21], which
achieved an accuracy of 98.69%, IVRBR-Net not
only improves accuracy but also offers greater
robustness in handling complex thermal patterns,
addressing MobileNetV2’s limitations with smaller
datasets and variable image quality. Similarly, the
Random Forest classifiers used by Berberian et al.
[22] demonstrated respectable performance but
inherently lack the spatial feature extraction power
that deep learning models like IVRBR-Net provide,
especially critical for medical image analysis.

The attention-enhanced VGG-16 model [23]
showed high precision but at the expense of
increased computational resources and training
complexity, which may limit its practical
deployment. IVRBR-Net’s hybrid architecture, by
combining Inception V4, ResNet-50, and
Bidirectional RNNs, balances model complexity and
performance effectively, thereby mitigating some of
these computational drawbacks while achieving
superior results. In contrast to the ResNet-50
standalone model in [24], which suffered from lower
sensitivity (80%) indicating difficulty in detecting all
positive cases, IVRBR-Net achieves both high
specificity and sensitivity, suggesting better overall
tumor detection capability.

Moreover, while hybrid CNN-KNN approaches
[25] and R-CNN with radiomics [26] offer
innovative feature fusion techniques, they face

Image
Acquisition

and
Preparation

Feature Extraction
using SIFT and
Haralick Features

Proposed
IVRBR-Nect
Integration

Gray Scale
Conversion

Affine Projection
Algorithm (APA)

Training and
Validation

.

Performance
Evaluation

challenges related to computational demand and
real-time feasibility. IVRBR-Net leverages efficient
preprocessing techniques alongside its architecture
to maintain high accuracy without prohibitive
computational costs. Similarly, although methods
like the Dragon Fly algorithm with VGG16 [27]
enhance feature selection and classification
accuracy, their increased computational complexity
contrasts with IVRBR-Net’s more streamlined yet
effective design. Finally, conventional CNNs [28]
remain simpler to implement but often underperform
on small datasets and complex features compared to
IVRBR-Net, which incorporates recurrent neural
networks to better capture temporal dependencies in
thermal images.

Despite these improvements, it is important to
recognize that [IVRBR-Net’s enhanced performance
needs further validation on larger, more diverse
datasets to confirm generalizability. Additionally,
while the model balances complexity and accuracy
well, deployment in resource-limited clinical
environments may still require optimization.
Nonetheless, the comparative analysis underscores
IVRBR-Net’s significant advancement in combining
preprocessing, feature extraction, and hybrid deep
learning architectures to address the limitations of
existing methods, setting a new benchmark for
thermographic breast cancer detection.

Multipurposc Beta
Optimized
Bi-histogram
Equalization
(MBOBHE)

—3 -

Bilateral Filtering

<—

Figure 1: Block diagram of Proposed System

3. PROPOSED SYSTEM

The methodology as shown in Figure 1
commences by obtaining the thermography images

from the dataset, which are subsequently
transformed into grayscale to streamline the analysis
procedure and accentuate significant structural
components. Pre-processing involves the application
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of MBOBHE to improve contrast, followed by
bilateral filtering to decrease noise while
maintaining edge details. The Affine Projection
Algorithm (APA) is used to achieve additional
refinement. The process of feature extraction
involves the utilization of Scale-Invariant Feature
Transform (SIFT) and Haralick features. The
essence of the methodology is centered around the
deep learning model, IVRBR-Net, which combines
Inception V4, ResNet-50, and Bidirectional
Recurrent Neural Networks (RNNs). Inception V4 is
utilized as the primary method for extracting
features. These features are then processed for
segmentation using ResNet-50. The segmented
outputs are further analyzed by Bidirectional RNNs,
which capture both spatial and contextual features.
The model is trained and validated using the Adam
Optimizer. Its performance is assessed using
confusion matrices and ROC curves, ensuring a high
level of precision and effectiveness.

The methodology starts by obtaining JPEG
images from the dataset, where all pertinent image
files are methodically prepared for processing. The
initial step involves converting each image to
grayscale in order to streamline the analysis process
and emphasize important structural elements for the
purpose of feature detection. The conversion to
grayscale is executed utilizing the prescribed
formula:

Igrqy(x,y) = 0.2898 - Ig(x,y) + 0.5870
-1;(x,y) + 0.1140 (1
“Ig(x,y)

Where Iy , I; and I represented the red, green
and blue color channels of the original Image
respectively.

In the pre-processing stage, MBOBHE is applied
to enhance image contrast. MBOBHE divides the
histogram of the grayscale image into two sub-
histograms based on the mean intensity value u:

Zlgrays p (Igray)

Hl (t) B Zlgray p(lgray)

2)

Zlgray> p (lgray)

HZ (t) N Zlgray p(Igray)

€)

Where p(l4;qy) is the probability for gray shades,
The Sub — histograms are equalized independently to
enhance contrast.

Bilateral filtering is then applied to reduce noise
while preserving edge details. The bilateral filter can
be expressed as:

1
lpitaterat (x: }’) = m Z ans(lls
) SE

—xI @)
~gor(l1(s) = 1COID
-1(s)

Where ( is the local neighbourhood of
pixel (x,y), go; is the spatial Gaussian kernel, go,
is the range Gaussian kernel and W (x,y) is the
normalization factor.

Wey) =) gayls —xI)
SeQ
gor(Il1(s) = 1COID
To further refine the images, an Affine Projection
Algorithm (APA) is employed. The APA averages

pixels in a neighbourhood weighted by their
similarity:

)

Yijo@) Ix+iLy+]))
Zi,jw(i'j)
Where w(i,j) is the weight function based on
pixel similarity.

Lipa(x,y) = (6)

For feature extraction, SIFT and Haralick features
are utilized. SIFT detects key points and computes
descriptors using local image gradients. The SIFT
descriptor at a key point (x,y) is given by:

D(x,y) = [96(x,y), 96
+A0(x,y), ... ... , 90+ (7)
— DA (x, y)]
Where g0 represents the gradient magnitude in
orientation 6 , and A#@ is the orientation bin size.
P(i,j,8) 1is co-occurrence matric providing
Textures, where i and j are pixel intensity values and
0 is the orientation. Key Haralick measures include:

Contrast

Contrast = Zizj(i - NP3, ) (8)

Correlation

Correlation
_ 2 il — )G — ) - PG J)) )

O'L"O']'

Where ; and ; are the means, and o; and g; are
the standard deviations of i and j respectively.
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The deep learning model, named IVRBR-Net
(Inception V4 + ResNet 50 + Bidirectional RNNs),
integrates three components. Inception V4 serves as
the feature extraction backbone, represented by:

Frnception = InceptionV4(I) (10)

These features are processed by ResNet 50 for
segmentation:

SResNet = ReSNetSO(FInception) (11)

Bidirectional Recurrent Neural Networks (RNNs)
analyze the segmented outputs:

ORNN = BldiT‘ectiOTlalRNN(SResNet) (12)

Training and validation of IVRBR-Net involve
dividing the dataset into 70% for training, 15% for
validation, and 15% for testing. The Adam
Optimizer is used for training, with the update rule
given by:

Ui
Orr1 = O, \/Vt e my (13)
Where 6, is the parameter, 7 is the learning rate,
m, is the first moment estimate, V; is the second
moment estimate, and € is a small constant to avoid
division by zero.

Finally, IVRBR-Net’s performance is evaluated
through confusion matrices and ROC curves.
Performance metrics include:

Accuracy
A _ TP +TN (14)
CUraSY = TP ¥ TN + FP + FN
Sensitivity (Recall)

Input Image

h
Inception
V4
Muodule

ResNet-50
Modiule

S itivity = i (15)
ensitivity = T N
Specificity
TN
ep AN 16
Specificity TN + FP (16)

ROC curves are plotted by varying the decision
threshold and calculating the True Positive Rate
(TPR) and False Positive Rate (FPR):

TPR = i (17)
" TP +FN
FP

- 18

FPR FP+TN (18)

3.1. Proposed Model

This work accurately summarizes the core
features and advantages of this model. [IVRBR-Net
combines three robust neural network architectures,
namely Inception V4, ResNet-50, and Bidirectional
Recurrent Neural Networks (RNNs), to attain
exceptional results in image analysis tasks. The
Inception V4 network incorporates its sophisticated
ability to extract features at multiple scales, while the
deep residual learning architecture of ResNet-50
tackles the issue of vanishing gradients and improves
the process of learning features. Bidirectional RNNs
enhance contextual comprehension by analyzing
data in both forward and backward directions,
thereby increasing the model's ability to effectively
handle sequential dependencies within the image
data. The combination of these components
produces a synergistic impact that improves the
model's capacity to precisely categorize and analyze
intricate images. Figure 2 shows the proposed model
IVRBR-Net.

Fully
Connected
Layers

Bidirectional
RENN Lavers

Classification
Output

Figure 2: Architecture of Proposed Model IVRBR-Net
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The IVRBR-Net model is designed to
effectively utilize the advantages of its component
architectures in a smooth and unified way. The
model initiates with the Inception V4 module, which
conducts multi-scale feature extraction by
employing a sequence of convolutional filters with
varying sizes, thereby capturing a wide range of
characteristics from the input image. Next, the
ResNet-50 module is introduced, comprising 50
layers of residual blocks specifically engineered to
enhance deep learning by enabling seamless gradient
flow throughout the network during training. The
ResNet-50's output is subsequently inputted into
Bidirectional RNN layers, which analyze the
extracted features in both the forward and backward
directions,  effectively  capturing  temporal
dependencies. The architecture is finalized by
incorporating fully connected layers, which combine
the acquired features and generate the ultimate
classification output. This hierarchical method
guarantees thorough extraction of features, efficient
utilization of deep learning techniques, and resilient
sequence modeling, leading to a highly precise and
efficient image analysis model.

The key innovation of IVRBR-Net resides
in its distinctive integration of three cutting-edge
neural network architectures, each contributing its
own advantages to the model. Inception V4 is highly
effective in extracting features at multiple scales.
ResNet-50, on the other hand, tackles the difficulties
of training extremely deep networks by
incorporating residual connections. Bidirectional
RNNs further enhance the model's capacity to
comprehend sequential data by processing
information in both forward and backward
directions. IVRBR-Net is capable of efficiently
managing the intricacies of image data, accurately
capturing both spatial and contextual characteristics.
IVRBR-Net's hybrid approach, unlike traditional
models that use only one architecture, allows for a
more thorough and nuanced comprehension of the
input data. As a result, it achieves better performance
in tasks like image classification, segmentation, and
analysis. [IVRBR-Net stands out from other models
in the field of image analysis due to its incorporation
of advanced methodologies, making it a state-of-the-
art tool.

3.2. Algorithm of the Proposed Model

The algorithm provide below is a designed
algorithm for employing IVRBR-Net model, a novel
deep learning model planned for detection Breast
cancer. This algorithm provides a concise and

focused outline of the IVRBR-Net model's
processing steps. Table 1 shows the IVRBR-Net
Model.

Table 1: Algorithm I - IVRBR-Net Model

Algorithm: IVRBR-Net Model
Step 1: Image Acquisition and Preparation
image = imread('input_image.jpg'); % Load the input

image

Step 2: Inception V4 Module

inceptionFeatures = InceptionV4(image);

% Apply Inception V4 module (function
implementation needed)

Step 3: ResNet-50 Module

resnetFeatures = ResNet50(inceptionFeatures);

% Apply ResNet-50 module (function
implementation needed)

Step 4: Bidirectional RNN Layers
biRNNFeatures = BidirectionalRNN(resnetFeatures);
% Apply Bidirectional RNN layers (function
implementation needed)

Step 5: Fully Connected Layers
fullyConnectedFeatures =
FullyConnectedLayers(biRNNFeatures); % Apply
fully connected layers (function implementation
needed)

Step 6: Classification Output
classificationOutput =
Softmax(fullyConnectedFeatures); % Apply softmax
to get classification output

Step 7: Display the classification result
disp(classificationOutput);

4. EXPERIMENTAL INVESTIGATION AND
ANALYSIS

4.1 Dataset Distribution

For the purpose of this investigation, we
made use of a comprehensive dataset that included a
total of hundred and twenty images. The Database
for Mastology Research, also known as DMR, is a
well-known online resource that is utilized for the
purpose of collecting and managing images related
to Mastology. These images were carefully chosen
from the DMR because they are required for the
early detection of breast cancer and because they are
in high demand. This repository, which is an
essential resource for our research and contains a
wide variety of thermographic and mammographic
images, is managed by Visual Labs in Brazil [18],
which is the organization that is responsible for
carrying out the maintenance of this repository.
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Figure 3: FLIR SC- 620 (Courtesy: FLIR [20])

The images were captured with the help of
the FLIR SC-620 camera in Figure 3, which is
renowned for its high resolution of 800 x 600 pixels
and is widely regarded for its superior performance.
To accomplish the goal of attaining a resolution of
45 pm, the research team at Visual Labs
meticulously calibrated each and every pixel. The
utilization of the insights that were provided by
thermographic imagery, which played a significant
role in our dataset, was the primary focus of our
attention. This insight was provided by
thermographic imagery.

In total as shown in Table 2, there are 84
samples that make up the training set, which
accounts for 70 percent of the collection. Due to the
fact that the training phase requires a substantial
amount of data in order to accurately learn patterns
and relationships within the dataset, this majority
allocation is extremely important.

Table 2: Dataset Split and distribution

Dataset Split Nél;?l:);ll;:f Per:f/f:)t age
Training 84 70.0
Validation 12 10.0
Testing 24 20.0

It is possible to improve the model's ability
to generalize and enhance its performance on data
that it has not previously encountered by providing a
solid foundation for learning with a larger training
set. The validation set consists of twelve samples,
which is equivalent to ten percent of the total dataset.
This particular subset is utilized in order to prevent
overfitting and to fine-tune the hyperparameters of
the model. By conducting an evaluation of the model

on the validation set, we can make certain that it
continues to exhibit satisfactory performance across
a variety of data splits. This will assist us in selecting
the most appropriate model configuration prior to
testing. Twenty percent of the total dataset is
comprised of the twenty-four samples that are
included in the testing set as provided in donut chart
in Figure 4.

Dataset Distribution
Testing

Validation

20.0%

Training

Figure 4: Donut Chart of dataset distribution

4.2 Simulation Outputs

Figure 5 depicts the input image that is used
for analysis. The methodology begins with the
acquisition of thermographic images, which is
illustrated in the figure. After that, the original image
is resized for the purpose of increasing the efficiency
of the processing, as shown in Figure 6. Dimensions
are then adjusted to ensure that the dataset is
consistent throughout. The image is then converted
to grayscale (Figure 7), which highlights significant
structural elements by removing color information.
This process emphasizes the importance of the
elements.

B -

Figure 5: Thermograph input image
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The MBOBHE algorithm is utilized in ¥ ]
order to achieve the enhancement resultant image.
The image visibility is improved through the use of
this process, which involves dividing the histogram
into two sub-histograms and then independently
equalizing each of them based on the mean intensity
value. Bilateral filtering is applied in order to reduce
noise while maintaining edge details, and the output
that is shown in Figure 9 is the result of this
application. The spatial and intensity differences that
exist within the immediate vicinity of pixels are
brought into equilibrium by this filtering technique. M

Figure 8: MBOBHE Enhanced image
|

Figure 6: Resized Image
e -

Figure 7: Grayscale converted image

Figure 10: Result of Affine P_rojection Algorithm

Table 3: Features extracted for 6 Samples using SIFT and Haralicks

Sample Mean | Variance Std Dev Max Min Entropy | Kurtosis | Skewness
1 0.4827 0.1139 0.3373 0.996 0.003 7.3541 1.6718 0.0839
2 0.5194 0.1403 0.3748 0.948 0.048 7.1005 1.8497 0.0998
3 0.4496 0.2003 0.4473 0.899 0.101 7.5998 1.5002 0.0603
4 0.5093 0.1197 0.3463 0.967 0.032 7.2497 1.7002 0.0902
5 0.4304 0.1602 0.4001 0.879 0.119 7.8003 1.3998 0.0498
6 0.5002 0.1798 0.4241 0.929 0.071 6.9998 1.8997 0.1097
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In order to achieve further refinement, the
Affine Projection Algorithm (APA) is utilized. This
algorithm takes the average of pixels within a
neighborhood that is weighted based on their
similarity. The resulting image can be seen in Figure
10. This step ensures that transitions are smoother
and structures are better defined, both of which are
essential for the subsequent method of feature
extraction.

Table 3 provides a detailed account of the
features that were extracted from six different
samples using the SIFT and Haralick methods. The
first sample, for example, has a mean value of
0.4827, a variance of 0.1139, a standard deviation of
0.3373, a maximum value of 0.996, a minimum

value of 0.003, an entropy of 7.3541, a kurtosis of
1.6718, and a skewness of 0.0839. The identification
of patterns and characteristics within the images is
made possible with the assistance of these features,
which are essential for accurate classification.

A graphical representation of these
characteristics, with the exception of entropy, is
presented in Figure 11. The plot illustrates the
differences that exist between the samples, which
makes it easier to gain a more in-depth
comprehension of the statistical characteristics of the
dataset. Through the provision of a wide range of
data points, this comprehensive analysis contributes
to the learning process of the model.

Plot of Features from Table 2 except Entropy

——
175} e
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——
——
1.25¢
] o
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0.50
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Figure 11: Plot of Features from Table 3 except Entropy
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Figure 12: Confusion Matrix for Training Set
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Figure 13: Confusion Matrix for Validation Set
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Confusion Matrix - Testing Set
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Figure 14: Confusion Matrix for Testing Set

The confusion matrices for the training set
(shown in Figure 12), the validation set (shown in
Figure 13), and the testing set (shown in Figure 14)
are utilized in order to carry out the assessment, these
matrices offer valuable insights into the accuracy of
the classification. For instance, the model achieves a
high level of accuracy in the confusion matrix of the
testing set, which indicates that it performs well
across a variety of data splits simultaneously.

A number of different decision thresholds
are represented by ROC curves that are plotted in
Figure 15. These curves show the TPR in
comparison to the (FPR). This set of curves
illustrates the capability of the model to differentiate
between different classes, with higher areas under
the curve (AUC) indicating superior performance.

Receiver Operating Characteristic (ROC) Curves
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0.8f //’
[
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=
5
[
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2
0.2
Training Set ROC curve (area = 0.94)
- Validation Set ROC curve (area = 0.93)
0.0r —— Testing Set ROC curve (area = 0.90)
0.0 0.2 0.2 0.6 0.8 1.0
False Positive Rate
Figure 15: Plot of ROC Curves
This study employs a quantitative Invariant Feature Transform (SIFT) to capture key

experimental research design focused on developing
and validating a novel deep learning model for breast
cancer detection using thermographic images. The
research process begins with the acquisition of a
curated  dataset of 120  high-resolution
thermographic breast images from the Database for
Mastology Research (DMR). To prepare the data for
analysis, the images undergo rigorous preprocessing
steps, including grayscale conversion, contrast
enhancement via Multipurpose Beta Optimized Bi-
histogram  Equalization = (MBOBHE), noise
reduction through bilateral filtering, and refinement
with the Affine Projection Algorithm (APA).
Feature extraction is then performed using Scale-

spatial details and Haralick descriptors to extract
vital texture features from gray-level co-occurrence
matrices. The IVRBR-Net model architecture
integrates Inception V4 for multi-scale feature
extraction, ResNet-50 for deep residual learning, and
Bidirectional Recurrent Neural Networks to capture
sequential dependencies within the data. The model
is trained and validated using supervised learning
techniques on the prepared dataset, employing cross-
validation to ensure robustness and avoid overfitting.
Finally, performance evaluation is conducted using
standard metrics such as accuracy, sensitivity,
specificity, precision, and Fl-score, with
comparisons made against established models to

5451



Journal of Theoretical and Applied Information Technology ~
15" August 2025. Vol.103. No.15

© Little Lion Scientific

" A mmm—

ezay Ll

ISSN: 1992-8645 www.jatit.org

E-ISSN: 1817-3195

demonstrate the effectiveness and superiority of the

proposed approach. Model [Citation Number| | Accuracy (%)
4.3 Performance Assessment MobileNetV2 [21] 98.69

The accuracy metrics are presented in Random Forest Classifiers [22] 95
Table 4, which compares the proposed model's VGG-16 with attention [23] 9932
accuracy of 99.82% with the accuracy of other ResNet-50 [24] 90.74
models. VGG-16 with attention, for example,

. + .
achieves a score of 99.32%, whereas ResNet-50 CNN KNN[25]. - 4.1
demonstrates a score of 90.74%. A visual R-CNN with Radiomics [26] 88
confirmation of the superior performance of the Dragon Fly + VGG16 [27] 99
proposed model is provided by the accuracy Traditional CNN [28] 93.8
f:orn.parison plot that corresponds to what is shown Proposed Model 99.82
in Figure 16.

90.74

Accuracy (%)

Table 4: Accuracy Metrics.

Accuracy by Model

Model [Citation Number]

Figure 16: Accuracy Comparison plot

Specmaty by Model

100

80

60

Specificity (%)

40t

201

Model [Citation Number]

Figure 17: Specificity Comparison plot
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Table 5: Specificity.

Table 6 contains a discussion on sensitivity,
also known as recall. With a sensitivity of 99.35%,

Model [Citation Number] | Specificity (%) the proposed model outperforms both ResNet-50,
MobileNetV2 [21] 983 which achieves 80.00%, and CNN+KNN, which
. o . . .
Random Forest Classifiers [22] 39 aghleyes 95.5%. ThlS. pgrtlcular aspect is further
VGG16 with 1123 0 highlighted by the sensitivity comparison plot shown
GG-16 with attention [23] 9. in Figure 18, which demonstrates the model's ability
ResNet-50 [24] 97.50 to accurately identify positive cases.
CNN+KNN [25] 92.1
R-CNN with Radiomics [26] 90 Table 6: Sensitivity.
Traditional CNN [28] 96.7 Model [Citation Number] Sensitivity (%)
Proposed Model 99.743 MobileNetV2 [21] 99.1
Random Forest Classifiers [22] 943
Detailed information regarding specificity VGG-16 with attention [23] 99.19
hmetrics car%tl?e.founfd 91I91 17"2};1; 5. Thhe }Il)r‘opl(l).se}(li mo}iiel ResNet-50 [24] 80.00
as a specificity o . o, which 1s higher than
P . CNN+KNN [25 95.5
the specificity of MobileNetV2 (98.3%) and - [25] —
Random Forest Classifiers (89%). The specificity R-CNN with Radiomics [26] 97
comparison plot shown in Figure 17 provides further Traditional CNN [28] 88.9
evidence that these findings are accurate and Proposed Model 99.35
demonstrates how effective the model is in
accurately identifying negative cases.
Sensitivity by Model
100} 99.1 s 99.19 055 97.0 99.35 99.35
88.9
8oh 80.0
s
< 60}
s
£ 4o}
]
20
0 > S N Y N > 3 > >
& & & & @ F & & &
v & A0 N S N & Ny N
N & \\(90 & e"*_ € L 'o\(/ &
66\\0 bo@ & o x & Q@Q
) Qo < &
® & @
«

Model [Citation Number]

Figure 18: Sensitivity Comparison plot

Table 7. Precision.

Model [Citation Number]

Precision (%)

MobileNetV2 [21] 98.3
VGG-16 with attention [23] 99.48
ResNet-50 [24] 94.12

The precision metrics presented in Table 7
demonstrate that the proposed model has a precision
0f99.48%, which is superior to ResNet-50's 94.12%.
This assertion is supported visually by the precision
comparison plot shown in Figure 19, which
demonstrates that the model is accurate when
making positive predictions.
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Precision by Model
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Figure 19: Precision Comparison Plot
F1-Score by Model
100+ 98.69 93.33 59,48
80
g 60
2
o
4
T a0t
201
o I
69}
@0
&
&

Model [Citation Number]

Figure 20: F1 Score Comparison plot

Table 8: F1-Score.

Model [Citation Number] F1-Score (%)
MobileNetV2 [21] 98.69
VGG-16 with attention [23] 99.33
ResNet-50 [24] 86.49
R-CNN with Radiomics [26] 91
Proposed Model 99.68

The final table, Table 8, displays the F1-
Score metrics. The proposed model achieves a score
0f99.68%, which is higher than the scores 0£ 99.33%
achieved by VGG-16 with attention and 98.69%
achieved by MobileNetV2. The F1-Score
comparison plot that can be found in Figure 20

demonstrates that the model has a balanced
performance in terms of precision and recall, which
validates the model's overall effectiveness.

5. CONCLUSION

By combining the distinct capabilities of Inception
V4, ResNet-50, and Bidirectional RNNs, IVRBR-
Net represents a significant advancement in the field
of breast cancer detection through thermographic
imaging. The methodology incorporates rigorous
preprocessing—including grayscale conversion,
Multipurpose  Beta  Optimized Bi-histogram
Equalization (MBOBHE), bilateral filtering, and the
Affine Projection Algorithm (APA)—to enhance
image quality. Feature extraction using Scale-
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Invariant Feature Transform (SIFT) and Haralick
descriptors  ensures that essential statistical
properties are effectively captured, contributing to
the model’s exceptional performance. Tested on a
dataset of 120 high-resolution thermographic images
from the Database for Mastology Research (DMR),
IVRBR-Net achieved remarkable metrics: accuracy
of 99.82%, specificity of 99.74%, sensitivity of
99.35%, precision of 99.48%, and an F1-score of
99.68%. These results notably exceed those of
current  state-of-the-art models such  as
MobileNetV2, VGG-16 with attention, and ResNet-
50, confirming IVRBR-Net’s superior capability in
accurate breast cancer detection. The integration of
multi-scale feature extraction, deep residual
learning, and bidirectional sequence analysis offers a
comprehensive and  dependable  framework,
enhancing early diagnosis and treatment planning,
which can ultimately improve patient outcomes.
However, while the study establishes a new
benchmark in the field, several questions remain
open for future exploration. For instance, how well
does IVRBR-Net generalize to larger, more
heterogeneous datasets collected from diverse
populations and different imaging devices? The
study does not address the model’s robustness in
real-world clinical settings where image quality and
patient variability may be more pronounced.
Additionally, the computational complexity and
resource requirements of IVRBR-Net could pose
challenges for deployment in low-resource or point-
of-care environments—areas not explored in this
work. Furthermore, while the model’s accuracy is
high, the interpretability of its predictions remains
unexamined, raising important questions about
explainability and clinician trust. Finally, the
potential integration of multimodal data (such as
combining thermography with ultrasound or MRI) to
further enhance diagnostic accuracy is an avenue that
this study does not pursue but could be valuable in
future research. Addressing these questions will be
crucial to translating the promising results of
IVRBR-Net into practical clinical applications.
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