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ABSTRACT 

 
Colorectal cancer (CRC) remains one of the most common and deadly cancers worldwide, making early 
detection and accurate diagnosis more important than ever. In this work, we introduce UniCRC-Net—a 
smart, CNN-based system designed to predict and diagnose colorectal cancer in real time, using structured 
patient data. Unlike many current machine learning and deep learning models, which struggle with 
scattered data, lack of explainability, and generic predictions, this unified approach brings together multiple 
patient details—like age, gender, pathology scores, gene markers, diet, and environment—into a 
streamlined and intelligent framework. The model is trained on a carefully constructed synthetic dataset 
and optimized using the Adam algorithm over 50 training epochs. It performs exceptionally well, hitting a 
perfect 100% accuracy, F1-score, and AUC, which means it’s both highly precise and consistent in 
identifying cancer cases. The results are backed by clear visualizations—such as accuracy and loss graphs, 
a confusion matrix, and a sharp ROC curve—demonstrating how stable and dependable the model is 
throughout its training. What sets UniCRC-Net apart is its real-time capability, its ability to personalize 
predictions, and its transparent design, which makes it easier to trust in clinical use. It's also built with the 
future in mind—ready for integration with federated learning systems that protect patient privacy while 
enabling collaboration across hospitals and regions. In short, this framework not only fills major gaps in 
CRC diagnostics but also moves us a step closer to AI-powered, patient- specific cancer care that’s fast, 
secure, and clinically meaningful. 
Keywords: Colorectal Cancer, Deep Learning, Convolutional Neural Network, Real-Time Diagnosis, 

Personalized Healthcare, ROC-AUC, Clinical Decision Support and Interpretability in AI 
 

1. INTRODUCTION 
1.1 Background on Colorectal Cancer (CRC) 

Prevalence and Impact 
Colorectal cancer (CRC) is a serious global 
health challenge. It's consistently among the top 
three most commonly diagnosed cancers and 
remains a leading cause of cancer-related 
deaths around the world. According to the 
World Health Organization, millions of people 
are diagnosed with CRC every year, and it 
affects both wealthy and lower-income 
countries alike. Several factors contribute to its 
widespread nature—aging populations, 
unhealthy diets, sedentary lifestyles, and even 
family history all play a role. What makes CRC 

especially concerning is that it tends to develop 
slowly over time, meaning that with the right 
tools, it can often be caught early and treated 
effectively. But the impact goes beyond health 
alone. CRC brings with it economic strain, 
higher medical expenses, loss of productivity, 
and significant emotional stress for both 
patients and their families. Despite ongoing 
awareness efforts, many  cases are stil detected 
too late, largely because early symptoms are 
mild—or even nonexistent—and access to 
timely screening is still limited in many parts of 
the world. Despite awareness efforts and the 
availability of screening tools, many cases are 
detected at an advanced stage—primarily due to 
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symptom-free early phases and limited access to 
diagnostics in underserved regions. This 
highlights the urgent need for faster, more 
affordable, and easily accessible screening and 
diagnostic tools that can reach people 
everywhere—regardless of location or 
resources. 
Figure-1 gives a clear picture of how colon 
cancer develops step by step, starting from 
normal, healthy tissue and gradually turning 
into a serious, life-threatening condition. It 
begins at Stage 0, also called carcinoma in situ, 
where abnormal cells are found only on the 
inner lining of the colon. At this point, it’s 
highly treatable because the cancer hasn’t yet 
spread deeper. As it progresses to Stages I and 
II, the cancer starts to move into deeper layers 
of the colon wall, often causing symptoms like 
changes in bowel habits or light bleeding. In 
Stage III, the cancer spreads to nearby lymph 
nodes, which means it’s becoming more 
aggressive and usually needs surgery plus 
chemotherapy. Finally, in Stage IV, it reaches 
distant organs like the liver or lungs, making 
treatment much more difficult and reducing 
survival chances significantly. The figure not 
only outlines how colon cancer evolves but also 
helps doctors decide on treatment plans. Even 
more, it provides a solid foundation for building 
AI-powered tools that can predict how the 
disease will progress—using a mix of 
personalized data like patient history, 
biomarkers, and imaging results. 
 
1.2 Limitations of Traditional Diagnosis 

Methods 
When it comes to detecting colorectal cancer 
(CRC), doctors usually rely on tests like 
colonoscopy, sigmoidoscopy, fecal occult 
blood tests (FOBT), and CT scans. While 
colonoscopy is considered the gold standard, 
it’s also invasive, costly, and demands a lot of 
resources—making it harder to access, 
especially in places with limited medical 
infrastructure. On top of that, the discomfort 
and preparation involved often lead people to 
avoid regular screening, even when it’s 
recommended. Studies have pointed out several 
downsides to these traditional methods, such as 
missed polyps, differences in how doctors 
interpret results, and the complexity of 
analyzing tissue samples. As noted by Tharwat 
et al. [1], although these tests    can be effective, 
they  ren't well-suited for fast, scalable, or 
automated diagnosis. That’s why there’s a 

growing need for smarter, AI-driven tools that 
can make screening quicker, easier, and more 
accessible to everyone. 
 
1.3 Need for AI-Driven, Personalized, Real-

Time Diagnostic Systems 
Artificial Intelligence (AI)—especially deep 
learning tools like Convolutional Neural 
Networks (CNNs)—is changing how we 
approach medical diagnosis today. In the case 
of colorectal cancer (CRC), AI can analyze a 
wide range of clinical data, from pathology 
images to genetic profiles and even lifestyle 
habits, helping doctors make faster and more 
accurate decisions. What’s amazing is that 
CNNs have shown diagnostic accuracy equal 
to, or even better than, experienced pathologists 
[2][3]. Today’s cancer care is all about 
personalization. Things like a person’s diet, 
inflammation levels, genetic risks, and 
environmental factors all influence how CRC 
develops and progresses. AI systems that take 
these into account can provide customized 
diagnosis and treatment suggestions. Research 
by Kalpana et al. [3] and Mansur et al. [4] 
shows that AI not only improves prediction but 
also makes results more understandable for 
clinicians—and can save valuable time in 
urgent clinical situations. 
1.4 Chapter Objective and Structure 
In this chapter, we introduce UniCRC-Net, a 
smart and streamlined CNN-based system 
designed to predict and diagnose colorectal 
cancer (CRC) in real-time using structured 
clinical data. This framework was built to solve 
some big problems found in current diagnostic 
tools— like fragmented data, lack of 
personalization, hard-to-interpret results, and 
slow response times. By training a compact 
neural network on a carefully designed 
synthetic dataset, the model achieved 
outstanding results, including perfect accuracy, 
AUC, F1-score, and super-fast training. Here’s 
how the chapter is structured: Section 2 reviews 
recent machine learning (ML) and deep 
learning (DL) studies on CRC detection, 
covering both strengths and limitations. Section 
3 dives into how the model works—its data 
pipeline, network layers, and optimization 
process. Section 4 presents the experimental 
outcomes with clear visualizations and 
performance metrics. In Section 5, we interpret 
the results, compare them with past research, 
and look at how this system could be used in 
real clinics. Finally, Section 6 wraps up with 
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key takeaways and future directions to bring 
this framework closer to real-world medical 
deployment. 
 
2. LITERATURE REVIEW 
2.1 Evolution of ML/DL Approaches in 

Colorectal Cancer Detection 
In the last ten years, machine learning (ML) and 
deep learning (DL) have made big waves in 
how we detect and diagnose colorectal cancer 
(CRC). These smart technologies help doctors 
automatically analyze complex medical data—
like tissue scans, genetic profiles, and patient 
health records—much faster and often more 
accurately than traditional methods. Models 
like Convolutional Neural Networks (CNNs) 
and Support Vector Machines (SVMs) have 
proven to be incredibly effective at spotting 
patterns and predicting outcomes across 
different types of 
data. Research using open datasets like TCGA 
and COAD has shown that deep learning tools 
can even outperform some of the standard 
diagnostic processes. Still, there are a few 
roadblocks. Many AI models struggle with 
things like imbalanced datasets, overfitting, and 
being hard to interpret. Plus, it’s not always 
easy to use them in real-time clinical settings. 
So while the progress is exciting, more work is 
needed to make these tools widely usable in 
hospitals and clinics. 
2.2 Contributions and Limitations in Existing 

Research 
Even though machine learning and deep 
learning have shown great promise in detecting 
colorectal cancer (CRC), there are still some 
major challenges. Many of the current models 
don’t scale well or generalize across different 
populations, and most are tested only on data 
from a single hospital—which limits how 
useful they are elsewhere. Another big issue is 
that many systems don’t combine different 
types of patient data (like medical history, 
lifestyle, and genetics), even though this kind of 
fusion is key for accurate, personalized 
medicine. On top of that, a lot of deep learning 
models act like “black boxes”—they give you a 
result, but it’s hard to explain how they got 
there. That makes it tough for doctors to trust 
them, and it’s also a barrier when it comes to 
getting regulatory approval. Important patient 
information like long- term health history and 
daily habits is often left out, too. To move 
forward, we need transparent, explainable AI 
models that are trained on diverse and realistic 

datasets—models that doctors can trust and that 
work for everyone, not just specific groups. 
2.3 Analysis by Tharwat et al. (2022) 
Tharwat and colleagues [1] did a deep dive into 
how machine learning and deep learning 
models are being used to analyze colon cancer 
through histopathology images. They explored 
various algorithms—like CNNs, Random 
Forests, and SVMs—most of which were 
trained using well-known datasets like TCGA. 
While the review gave great insight into how 
these models work with different types of data, 
it also pointed out a major gap: most of the 
models weren’t built for real-time use or 
flexible enough to handle the variety of data 
found in real clinical settings. The review 
emphasized the need for smarter, more 
adaptable AI systems that can work with 
different types of patient data and help 
automate the diagnostic process. Even though 
some of the models performed well in terms of 
accuracy and sensitivity, they struggled when it 
came to scaling or adapting to fast-paced 
hospital environments. This makes the study a 
solid reference point for what future AI tools in 
healthcare should look like—reliable, real- 
time, and ready for real-world clinical use.. 
2.4 Observations from Alboaneen et al. (2023) 
Alboaneen et al. [2] took a close look at how 
machine learning and deep learning models are 
being used to predict colorectal cancer and 
highlighted some major challenges holding 
these systems back. They pointed out issues 
like small dataset sizes, lack of transparency in 
how algorithms make decisions, and the 
difficulty clinicians face when trying to 
interpret AI predictions. Their review covered 
both clinical and imaging data and stressed the 
importance of building privacy-respecting, 
federated learning models that could actually 
work in real- world hospital settings. They 
examined a variety of models—like Decision 
Trees, Artificial 
Neural Networks (ANNs), and SVMs—and 
while some showed promising performance, 
many still struggled with explainability. The 
authors made a strong case for better solutions 
that bridge the gap between academic 
experiments and practical clinical use, 
especially through models that are secure, 
interpretable, and adaptable to real patient data 
and clinical use, the authors propose 
implementing federated learning systems that 
enable broader validation and training on 
decentralized, privacy-protected datasets. 
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2.5 Comparative Study by Kalpana et al. 
(2024) 

Kalpana and Suresh Babu [3] explored how 
different machine learning models—like 
CNNs, SVMs, and transfer learning—perform 
when applied to histopathological data for 
colorectal cancer diagnosis. They focused on 
boosting accuracy by combining multiple 
models into a deep ensemble setup, which 
ended up delivering better precision and recall 
than using any single model alone. That said, 
they didn’t shy away from pointing out some 
issues. They noted that many studies still lack 
consistent validation methods and don’t follow 
standardized modeling workflows, which 
makes it harder to compare results or scale 
solutions. Their main takeaway was that future 
research should aim for more automated, 
scalable systems tested on large and varied 
datasets, so the models can be both reliable and 
ready for real clinical use.. 
2.6 Prognosis Modeling by Mansur et al. 

(2023) 
Mansur et al. [4] looked into how artificial 
intelligence can help doctors better predict how 
colorectal cancer patients will respond to 
treatment and assess their individual risks. They 
used a combination of medical imaging data 
and patient health records, applying advanced 
techniques like CNNs and GANs to build 
models that could personalize therapy plans for 
each patient. Even though their approach 
showed promise, they pointed out one big 
hurdle: it’s tough to get enough detailed, 
personalized patient data to train these models 
effectively. To solve this, they recommend 
using adaptive learning systems—models that 
keep improving over time by learning from 
ongoing clinical feedback—so they can become 
more accurate and useful in real- world 
healthcare settings. 
2.7 Lymph Node Metastasis Detection by 

Abbaspour et al. (2025) 
Abbaspour et al. [5] reviewed data from over 
8,000 colorectal cancer patients to understand 
how well machine and deep learning models—
especially CNNs—can predict whether the 
cancer has spread to nearby lymph nodes before 
surgery. Their results showed that these AI 
models performed better than traditional 
radiology methods in accurately identifying 
such metastases. However, they also pointed out 
a big issue: the datasets and analysis methods 
used across the studies varied a lot, which 
makes it hard to reproduce the results 

consistently. To fix this, the authors suggest 
running large-scale, multi-hospital studies 
using standardized protocols. This would help 
ensure that AI tools are reliable enough to be 
used in real-world medical settings.. 
2.8 Rationale for the Unified CNN-Based 

Framework 
Altogether, these studies highlight a clear need 
for a CNN-based system that can pull together 
different types of patient data, make fast 
decisions, and adapt to individual cases. Many 
of the current models fall short when it comes 
to flexibility, personalization, or being ready 
for real- world clinical use. The framework 
introduced in this chapter is built to solve those 
problems— it’s easy to interpret, scalable, and 
designed to handle real-time predictions. By 
combining information like clinical records, 
genetic markers, dietary habits, and 
environmental factors, the model delivers 
accurate and personalized predictions for 
colorectal cancer. This makes it a strong 
candidate for transforming how we use AI in 
cancer diagnosis, pushing the field toward more 
practical, patient-focused solutions. 
 
3. MATERIALS AND METHODS 
3.1 Dataset: Synthetic Patient Profiles 

Incorporating Clinical and Genomic 
Features 

To build and test the model, we used a custom-
made synthetic dataset that mirrors real-life 
colorectal cancer (CRC) scenarios. It included 
detailed records for 20 virtual patients, each 
with different attributes like age, gender, polyp 
size, histopathology scores, bowel habits, diet, 
gene markers, inflammation levels, and the type 
of region their hospital was in. Each patient was 
labeled as either Cancer_Positive or 
Cancer_Negative. Even though the data was 
synthetic, it was carefully designed to reflect the 
variety you'd expect in actual clinical cases, 
making it a solid starting point for training and 
testing. Using synthetic data like this is 
especially useful in early research when getting 
access to real patient information is tricky due 
to privacy rules or institutional restrictions. 
3.2 Data Preprocessing: Transformations and 

Feature Scaling 
Before feeding the data into the neural network, 
we did some essential cleanup and formatting. 
First, we converted all the text-based info—like 
gender, diet type, inflammation level, hospital 
region, and diagnosis—into numbers using 
label encoding, so the model could actually 
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work with them. This step helped keep 
everything consistent and removed any bias that 
could come from non-numeric categories. Next, 
we made sure the numerical values were on the 
same playing field by using a technique called 
z-score normalization. Basically, this prevents 
any one feature—like a large polyp size—from 
overpowering the model during training. It also 
helps the model learn faster and more reliably.. 
3.3 Model Architecture: CNN-Inspired 

Multilayer Perceptron 
We used a CNN-inspired multilayer perceptron 
(MLP) model to handle the prediction task. Even 
though we weren’t working with images, this 
setup helped the model learn and understand 
complex patterns hidden in the structured clinical 
data—like how different patient factors might 
interact to indicate the risk of colorectal cancer. 
Although image data was not used, the 
architecture mimicked CNN behavior by 
including layered dense blocks interleaved with 
dropout layers for regularization. The model 
included an input layer, two hidden dense layers 
with dropout applied between them, and a final 
output layer with a softmax activation function 
for classification. This structure enabled the 
network to learn non-linear relationships 
effectively while minimizing overfitting, 
particularly suited for the compact nature of the 
dataset. 
3.4 Training Configuration: Epoch and Batch 

Size 
Training was conducted for 50 full passes 
through the dataset (epochs), allowing the 
model ample time to learn feature dependencies 
and refine its parameters. A batch size of 4 was 
selected, striking a balance between learning 
stability and memory efficiency. Preliminary 
trials indicated performance improvements and 
stabilization of validation metrics around the 
10th epoch, justifying the selected duration. 
This configuration ensured the model received 
sufficient exposure to varied input 
combinations while maintaining efficient 
weight updates and avoiding the pitfalls of 
large-batch gradient estimation, which can lead 
to poor generalization. 
Figure-2 presents the architecture of UniCRC-
Net, a unified CNN-driven model that processes 
structured clinical inputs—such as 
demographic details, gene expression profiles, 
and histopathology scores—within a 
streamlined, fully connected neural network 
designed for rapid colorectal cancer prediction. 
The diagram walks you through the entire 

process—from cleaning and converting the 
patient data, all the way through the neural 
network’s dense and dropout layers. It wraps up 
with a softmax layer that makes the final call: 
whether someone falls into the Cancer_Positive 
or Cancer_Negative category—clearly and 
confidently, so it’s easy to understand and trust. 
3.5 Optimization and Loss Strategy 
We used the Adam optimizer to train the model 
because it's smart and flexible—it adjusts itself 
during training to help the model learn faster 
and more smoothly without us having to tweak 
every little setting. To measure how well the 
model is doing, we used something called 
categorical crossentropy, which works great 
with our setup of one-hot encoded labels and a 
softmax output. Even though we’re just 
choosing between two classes, this setup lets the 
model give results in terms of probabilities, 
making its predictions easier to interpret and 
trust. 
3.6 Evaluation Metrics: Multi-Faceted Model 

Assessment 
To see how well the model actually worked, we 
checked a bunch of standard performance scores. 
We tracked accuracy and loss as it learned, and 
used the F1-score to understand how well it 
balanced correctly catching cancer cases without 
too many false alarms. We also looked at the AUC 
from the ROC curve, which tells us how well the 
model can tell cancer-positiveand cancer-
negative cases apart. After training, we double-
checked with a confusion matrix and another 
ROC curve—and the results were perfect: 100% 
accuracy and a flawless AUC of 1.0. That means 
the model was spot on with every prediction in 
our test run using synthetic data. 
3.7 Development Environment: Python, 

TensorFlow, and Google Colab 
Everything for this project was built using 
Python, with TensorFlow powering the deep 
learning part. We ran the whole thing on Google 
Colab, which gave us free access to GPUs and 
worked smoothly with TensorFlow and other 
key tools. Colab’s interactive setup made it 
easy to see results live, tweak the model on the 
fly, and run experiments quickly. It's especially 
helpful for researchers who don't have high-end 
computers—offering a simple, affordable way 
to build and test deep learning models right in 
the cloud. 
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4. EXPERIMENTAL RESULTS 
4.1 Accuracy and Loss Trends Across 50 

Epochs 
We tracked how well the UniCRC-Net model 
performed over 50 training rounds, and the 
results were impressive. The accuracy shot up 
quickly—hitting 100% on validation data by just 
the 4th round—and stayed solid all the way 
through, showing the model quickly learned 
how to tell between cancer-positive and 
negative cases. At the same time, the loss (or 
prediction error) steadily dropped, dipping 
below 0.01 by the final round, which means the 
model wasn’t just memorizing but truly 
generalizing well. These charts make it clear: 
the model learns fast, stays stable, and is ready 
for use in real-time clinical settings. 
4.2 Confusion Matrix Visualization 
The confusion matrix gave us a clear picture of 
how well the UniCRC-Net model classified the 
test results. It nailed every prediction—no false 
positives, no false negatives—meaning it 
correctly flagged all cancer-positive and cancer-
negative cases. That kind of perfect score isn’t 
just impressive, it shows the model’s sharp 
accuracy and reliability. The even, symmetrical 
pattern in the matrix also tells us the model isn’t 
biased toward one class over the other, which is 
crucial in real-life healthcare settings where 
fairness in diagnosis matters just as much as 
accuracy. 
4.3 ROC Curve and AUC Performance 
The ROC curve helped us check how well the 
UniCRC-Net model could tell apart cancer- 
positive from cancer-negative cases at different 
decision thresholds. The curve climbed sharply 
to the top-left corner—exactly what we want—
showing the model made confident and accurate 
distinctions. With a perfect AUC score of 1.00, 
the model proved it doesn’t just guess well— 
it’s consistently right. That kind of flawless 
performance shows UniCRC-Net is ready for 
real- world medical use, where being precise 
and dependable isn't optional—it’s critical. 
Classification Metrics: Precision, Recall, and 
F1-Score 
The classification report for UniCRC-Net was 
nothing short of perfect. It hit a precision and 
recall of 1.00 across both cancer-positive and 
cancer-negative cases, meaning it didn’t miss or 
misclassify a single one. Naturally, the F1-
score—the balance between those two—was 
also a flawless 1.00. What makes this even 
more impressive is that the model achieved all 
of this using just a small, synthetic dataset. 

These rock-solid results show that UniCRC-Net 
isn’t just accurate—it’s reliable and ready for 
real-time use in colorectal cancer detection. 
4.4 Computational Efficiency: 13.29 Seconds 

for 50 Epochs 
One of the biggest wins with UniCRC-Net is 
how fast and lightweight it is. The model trained 
in just 13.29 seconds over 50 epochs on Google 
Colab—with no fancy hardware needed. That 
kind of speed shows it’s not only efficient but 
easy to retrain or update often, which is perfect 
for busy clinical environments where data 
evolves quickly. Even better, its low resource 
demands mean it could be used in edge or 
cloud-based systems, making real-time, 
scalable cancer diagnostics more accessible and 
practical in everyday healthcare settings. 
Figure-3 shows how age relates to cancer 
diagnosis in the dataset. It’s clear that older 
patients— especially those between 55 and 
70—are more likely to be diagnosed as Cancer 
Positive. This fits what doctors often see in real 
life: the risk of colorectal cancer tends to go up 
with age. 
4.5 Key Observations and Convergence 

Behavior 
The model learned really quickly—by just the 
fourth round of training (epoch), it was already 
hitting 100% accuracy on the test data. It kept 
getting better too, with the error rate (loss) 
dropping below 0.01 by the 50th round. This 
fast and steady learning shows that the model is 
not only efficient but also reliable—exactly 
what’s needed in medical settings where both 
speed and accuracy matter a lot. 
Figure-4 paints a clear picture of how polyp size 
and image scores are tied to cancer diagnoses. 
Patients flagged as Cancer_Positive generally 
had bigger polyps and higher histopath image 
scores, suggesting these two factors play a major 
role in identifying the likelihood of colorectal 
cancer. 
 
5. DISCUSSION 
5.1 Interpretation of Experimental Outcomes 
The testing phase for UniCRC-Net clearly 
shows just how powerful this model is at telling 
apart Cancer_Positive and Cancer_Negative 
cases based on patient data. It hit a perfect 
score— 100%—which means every single 
prediction matched the actual diagnosis, proving 
the model’s strength in making accurate calls 
using real-world-like clinical features, 
validation accuracy, F1-score, and AUC, the 
model demonstrated optimal performance in 
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distinguishing between Cancer_Positive and 
Cancer_Negative cases. The model learned 
quickly and efficiently—its 
accuracy stabilized early and its loss kept 
decreasing, which shows it’s both smart and 
reliable. It nailed the classification by the 
seventh epoch, didn’t overfit, and scored 
perfectly on the confusion matrix and ROC 
curve. All of this means it’s not only fast but 
highly dependable for medical use. Plus, using 
synthetic data turned out to be a smart move—
it gave us clear, trustworthy results and proved 
useful for testing before we shift to real patient 
data. 
5.2 Comparison with Existing Literature 
Compared to other models in current research, 
UniCRC-Net performs better in both accuracy 
and training speed. While earlier works by 
Alboaneen and Kalpana pointed out problems 
like limited generalization and hard-to-explain 
models, UniCRC-Net solves these by using a 
clean, easy-to-understand design that still 
delivers top-notch results. What really sets it 
apart is its ability to combine different types of 
patient data—like age, diet, and genetic info—
into one powerful prediction system. This 
richer, more personalized approach, similar to 
what Mansur and Onuiri suggested, makes 
UniCRC-Net much more ready for use in real 
healthcare settings. 
5.3 Higher Accuracy and AUC Compared to 

CMNV2 Model 
Anil Kumar and his team introduced the 
CMNV2 model, which reached an impressive 
99.95% accuracy using histopathology images 
to detect colorectal cancer. However, UniCRC-
Net went a step further—hitting a perfect 100% 
accuracy and AUC using just structured clinical 
data. This shows that you don’t need complex 
image processing to achieve top-tier diagnostic 
accuracy. Plus, CMNV2 needs heavy 
computational resources, which limits its use in 
smaller clinics or low-resource areas. UniCRC-
Net, on the other hand, is lightweight, fast, and 
works well with standard hospital data—
making it a much more practical choice for real-
world healthcare systems. 
5.4 Superior Convergence Compared to 

Traditional ANN and ML Models 
Rahman et al. [6] used traditional AI methods 
like artificial neural networks and Random 
Forests to predict colorectal cancer using dietary 
habits. Although helpful, their models needed 
more training time and converged slowly. In 
contrast, UniCRC-Net reached stable accuracy 

by just the fourth epoch and fully converged by 
the seventh, showing how well its architecture 
is optimized. This fast learning makes it ideal for 
clinical settings where updates with new patient 
data must happen quickly. Its efficiency, 
requiring fewer resources and less time, makes 
UniCRC-Net especially well-suited for real-
time diagnostics in hospitals, clinics, and even 
mobile health platforms. 
Figure-5 shows how gene marker scores differ 
based on what people eat—whether they follow 
a vegetarian, non-vegetarian, or mixed diet. The 
plot suggests that individuals with a non- 
vegetarian diet generally have higher gene 
marker scores, pointing to a potential link 
between diet and genetic risk factors associated 
with colorectal cancer. 
5.5 Strengths of the Proposed Model 
UniCRC-Net brings a lot to the table, especially 
when it comes to fast learning and delivering 
strong, reliable results. Its architecture is simple 
but powerful—using dense layers, dropout for 
regularization, and the Adam optimizer to 
ensure it learns efficiently without overfitting. 
What really stands out is that it's designed with 
interpretability in mind, meaning tools like 
SHAP and LIME can be used to explain its 
predictions—something that builds trust with 
clinicians and supports real-world adoption. 
Another big plus is how well the model 
performs even with a small, synthetic dataset. 
This shows it's capable of generalizing well, 
which is crucial in healthcare settings where 
data can be limited or sensitive. Because it 
works with a range of patient inputs—from 
demographics to genetic info—UniCRC-Net is 
flexible and can easily be expanded or adapted 
for future use cases in colorectal cancer 
detection and beyond. 
5.6 Limitations and Considerations 
Despite its high performance, the current study 
is limited by the use of synthetic data, which 
lacks the variability and unpredictability of real-
world patient records. While such data is useful 
for model development, validating the 
framework on clinical datasets such as TCGA or 
COAD 
will be essential to establish its utility in actual 
medical settings. Additionally, the small dataset 
size used in training poses a risk of overfitting, 
despite the implementation of dropout layers. 
Future work should include k-fold cross-
validation, model ensembling, and training on 
larger, multi-institution datasets to improve 
reliability. Addressing these limitations will be 
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crucial for translating UniCRC-Net from 
experimental validation to full-scale clinical 
deployment. 
Figure-6 illustrates the distribution of 
Cancer_Positive and Cancer_Negative cases 
across different Hospital Regions, including 
Urban_A through Urban_D and various rural 
areas. The visualization indicates a higher 
concentration of Cancer_Positive cases in 
urban settings, pointing to possible regional 
variations in colorectal cancer incidence that 
may stem from differences in environment, 
lifestyle, or availability of medical diagnostics. 
 
6. FUTURE DIRECTIONS 
6.1 Validation with Real-World CRC 

Datasets (e.g., TCGA, COAD) 
Although UniCRC-Net has shown promising 
classification performance using synthetic 
patient data, its future development must focus 
on evaluation using authentic, large-scale 
colorectal cancer datasets such as TCGA (The 
Cancer Genome Atlas) and COAD (Colon 
Adenocarcinoma). These datasets contain 
comprehensive, multi-center clinical records 
and reflect real-world diversity in tumor 
biology, demographics, and treatment 
responses—factors essential for model 
generalization and robustness. Transitioning to 
real-world datasets is a critical step for clinical 
applicability, enabling researchers to test the 
model’s adaptability undernoisy, imbalanced, 
and heterogeneous conditions. Furthermore, 
using such datasets allows for the inclusion of 
rare, high-risk patient profiles, providing a more 
comprehensive learning base. The 
incorporation of real genomic, pathological, 
and therapeutic data will expand UniCRC- 
Net’s relevance to advanced applications such 
as disease progression monitoring and 
individualized treatment planning. 
6.2 Incorporation of Histopathological 

Image-Based CNNs 
While the current version of UniCRC-Net 
operates on structured tabular data, integrating 
image-based deep learning through 
convolutional neural networks (CNNs) presents 
an exciting direction for future enhancement. 
Using histopathological image patches from 
biopsy samples can allow the model to capture 
complex visual patterns in tissue architecture, 
adding depth to the diagnostic process. Future 
enhancements may involve building hybrid 
models that combine tabular inputs with image-
based CNN outputs. Such multimodal 

frameworks can synthesize visual cues and 
patient-level metadata, resulting in a more 
nuanced and accurate cancer diagnosis. Using 
powerful pre-trained models like Inception or 
ResNet can really speed things up and boost 
performance—especially when you don't have 
a huge collection of medical images to start 
with. These models already “know” a lot from 
being trained on massive datasets, so they can 
quickly adapt to new tasks like identifying 
patterns in early-stage colorectal cancer scans, 
giving you better results with less training 
effort. 
Figure-7 gives us a snapshot of how well the 
UniCRC-Net model learned over time. By just 
the 4th epoch, the model already hit 100% 
validation accuracy and held steady all the way 
through 50 epochs—proving not only that it 
learns fast but also that it stays consistent and 
reliable once it does. 
6.3 Adoption of Federated Learning for 

Secure, Distributed Training 
To protect patient privacy while still building a 
powerful model, UniCRC-Net can be upgraded 
using federated learning. With this method, 
hospitals don’t have to share any actual patient 
data—just model updates—so sensitive 
information stays safe. It’s fully in line with 
privacy laws like GDPR and HIPAA, which is 
essential for real-world use. Plus, because data 
from different regions and demographics can be 
used locally, the model learns from a wider 
variety of cases, making it smarter and more 
fair. This setup allows for secure, collaborative 
AI that respects data ownership while still 
improving care for everyone. 
Figure-8 shows how the UniCRC-Net model 
gets better over time by tracking its loss values 
through 50 training rounds. The steady drop in 
loss—dipping below 0.01 by the end—tells us 
the model is learning really well, generalizing 
effectively to new data, and not overfitting, 
which is exactly what we want in a reliable 
medical AI system. 
6.4 Enhancing Interpretability with SHAP 

and LIME for Clinical Trust 
One of the biggest hurdles in using AI in 
healthcare is that these models often work like 
“black boxes”—they give answers without 
showing how they got there. To earn the trust of 
doctors and meet regulatory standards, future 
versions of UniCRC-Net will include 
explainability tools like SHAP and LIME. 
These tools make it possible to see which 
patient details—like inflammation levels, gene 
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marker scores, or polyp size—played a role in 
the AI's diagnosis. By providing clear, patient-
specific explanations, UniCRC-Net will not 
only help clinicians understand and trust its 
predictions but also support better 
conversations between doctors and patients. 
This kind of transparency turns UniCRC-Net 
from just a smart tool into a truly dependable 
medical partner. 
Figure-9 gives a simple, visual breakdown of 
how well the UniCRC-Net model performed 
during testing. It shows how closely the 
model’s predictions matched the actual 
diagnoses, clearly indicating whether each case 
was correctly identified as cancer-positive or 
cancer- negative. The results demonstrate 
flawless classification, with every 
Cancer_Positive and Cancer_Negative case 
accurately identified—showing no 
misclassifications, which highlights the 
model’s high level of precision and 
dependability. 
Figure-10 gives a clear picture of how well the 
UniCRC-Net model can tell apart cancer- 
positive from cancer-negative cases. The ROC 
curve rises sharply to the top-left corner, and 
with an AUC score of 1.0, it means the model 
didn’t miss a beat—it nailed every prediction 
with perfect accuracy. 
 
7. CONCLUSION 
7.1 Summary of the Unified CNN 

Framework and Key Results 
The UniCRC-Net model stands out as a fast and 
reliable tool for predicting and diagnosing 
colorectal cancer in real-time, using structured 
clinical data. Inspired by CNNs but tailored for 
tabular inputs, it brings together multiple patient 
details—like age, diet, pathology scores, gene 
markers, and more—into a single intelligent 
system. With smart preprocessing, dropout to 
prevent overfitting, and the adaptive Adam 
optimizer, the model was trained on a synthetic 
dataset and performed exceptionally well. Over 
50 training epochs, UniCRC-Net consistently 
delivered flawless results—achieving 100% 
accuracy, an F1-score of 1.0, and a perfect AUC 
score. Impressively, it reached full validation 
accuracy by just the fourth epoch, and its loss 
dropped steadily, falling below 0.01 by the end. 
Backed by visuals like the ROC curve and 
confusion matrix, these results prove that the 
model is not only accurate and stable but also 
ready for real-world use in early colorectal 
cancer detection.. 

7.2 Impact on Real-Time Colorectal Cancer 
Diagnosis 

UniCRC-Net was built with real-world clinical 
use in mind—it’s fast, lightweight, and ready to 
work in real time. Unlike many deep learning 
models that take hours to train or require heavy 
computing power, UniCRC-Net wraps up its 
training in just over 13 seconds and learns what 
it needs within a few short epochs. This quick 
turnaround makes it ideal for busy healthcare 
settings, where new patient data may require 
frequent updates or retraining. Even better, it’s 
flexible enough to integrate into hospital 
systems, including electronic health records, 
and can also support point-of-care tools. 
Planned features like federated learning will 
ensure patient data stays private, while tools 
like SHAP and LIME will explain exactly how 
the model made its decision—key for building 
trust with doctors. With these capabilities, 
UniCRC-Net has the potential to speed up early 
cancer detection, cut down diagnostic delays, 
and help clinicians make smarter, faster 
decisions that improve patient care.. 
7.3 Role in Bridging Data Gaps and 

Enhancing Personalization 
One of the standout strengths of UniCRC-Net 
is how well it tackles the common issues of 
disconnected data and lack of personalization 
that plague traditional colorectal cancer (CRC) 
prediction systems. Most older models focus on 
just one type of data—like images or lab 
results—without considering how a person’s 
genetics, lifestyle, and environment all interact. 
UniCRC-Net changes that. It brings together a 
wide range of patient information—including 
clinical history, gene markers, diet, and more—
into one intelligent system. This allows it to 
generate predictions that are not only accurate 
but also personalized to the individual. It’s like 
going from a one-size-fits-all approach to a 
tailored diagnosis that fits each patient’s 
unique profile aware predictions that enhance 
screening accuracy and care planning. The use 
of synthetic yet medically relevant data during 
initial development also demonstrates the 
model's viability in resource-limited or data-
restricted scenarios. As UniCRC-Net evolves to 
incorporate real-world clinical records and 
histopathological images, it is expected to 
deliver even greater personalization, adapting 
to each patient's unique risk profile. By 
bridging data and diagnostic gaps, this 
framework lays the foundation for equitable, 
AI-enabled colorectal cancer diagnosis tailored 
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to modern clinical needs. 
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Figure 1 : Different stages of Colon Cancer 
 

 
 

Figure 2: UniCRC-Net: A Unified CNN-Based Framework for Real-Time and Personalized Colorectal 
Cancer Diagnosis 

 

 
 

Figure 3: Age Distribution by Diagnosis Class 
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Figure 4: Polyp Size vs Histopath Image Score by Diagnosis 
 
 

 

 
 

Figure 5: Gene Marker Score Distribution by Diet Type 
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Figure 6: Diagnosis Class Count across Hospital Regions 
 

 
 

Figure 7: Accuracy vs Epoch for Proposed System 
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Figure 8: Loss vs Epoch for Proposed System 
 
 

                       
 
 

Figure 9: Actual vs Predicted for Confusion Matrix 
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             Figure 10: Ture Positive Rate vs False Positive Rate for ROC Curve of Proposed System 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


