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ABSTRACT

Colorectal cancer (CRC) remains one of the most common and deadly cancers worldwide, making early
detection and accurate diagnosis more important than ever. In this work, we introduce UniCRC-Net—a
smart, CNN-based system designed to predict and diagnose colorectal cancer in real time, using structured
patient data. Unlike many current machine learning and deep learning models, which struggle with
scattered data, lack of explainability, and generic predictions, this unified approach brings together multiple
patient details—like age, gender, pathology scores, gene markers, diet, and environment—into a
streamlined and intelligent framework. The model is trained on a carefully constructed synthetic dataset
and optimized using the Adam algorithm over 50 training epochs. It performs exceptionally well, hitting a
perfect 100% accuracy, Fl-score, and AUC, which means it’s both highly precise and consistent in
identifying cancer cases. The results are backed by clear visualizations—such as accuracy and loss graphs,
a confusion matrix, and a sharp ROC curve—demonstrating how stable and dependable the model is
throughout its training. What sets UniCRC-Net apart is its real-time capability, its ability to personalize
predictions, and its transparent design, which makes it easier to trust in clinical use. It's also built with the
future in mind—ready for integration with federated learning systems that protect patient privacy while
enabling collaboration across hospitals and regions. In short, this framework not only fills major gaps in
CRC diagnostics but also moves us a step closer to Al-powered, patient- specific cancer care that’s fast,
secure, and clinically meaningful.
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1. INTRODUCTION especially concerning is that it tends to develop
1.1 Background on Colorectal Cancer (CRC) slowly over time, meaning that with the right

Prevalence and Impact tools, it can often be caught early and treated
Colorectal cancer (CRC) is a serious global effectively. But the impact goes beyond health
health challenge. It's consistently among the top alone. CRC brings with it economic strain,
three most commonly diagnosed cancers and higher medical expenses, loss of productivity,
remains a leading cause of cancer-related and significant emotional stress for both
deaths around the world. According to the patients and their families. Despite ongoing
World Health Organization, millions of people awareness efforts, many cases are stil detected
are diagnosed with CRC every year, and it too late, largely because early symptoms are
affects both wealthy and lower-income mild—or even nonexistent—and access to
countries alike. Several factors contribute to its timely screening is still limited in many parts of
widespread nature—aging populations, the world. Despite awareness efforts and the
unhealthy diets, sedentary lifestyles, and even availability of screening tools, many cases are
family history all play a role. What makes CRC detected at an advanced stage—primarily due to
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symptom-free early phases and limited access to
diagnostics in underserved regions. This
highlights the urgent need for faster, more
affordable, and easily accessible screening and

diagnostic tools that can reach people
everywhere—regardless of  location or
resources.

Figure-1 gives a clear picture of how colon
cancer develops step by step, starting from
normal, healthy tissue and gradually turning
into a serious, life-threatening condition. It
begins at Stage 0, also called carcinoma in situ,
where abnormal cells are found only on the
inner lining of the colon. At this point, it’s
highly treatable because the cancer hasn’t yet
spread deeper. As it progresses to Stages I and
11, the cancer starts to move into deeper layers
of the colon wall, often causing symptoms like
changes in bowel habits or light bleeding. In
Stage III, the cancer spreads to nearby lymph
nodes, which means it’s becoming more
aggressive and usually needs surgery plus
chemotherapy. Finally, in Stage IV, it reaches
distant organs like the liver or lungs, making
treatment much more difficult and reducing
survival chances significantly. The figure not
only outlines how colon cancer evolves but also
helps doctors decide on treatment plans. Even
more, it provides a solid foundation for building
Al-powered tools that can predict how the
disease will progress—using a mix of

personalized data like patient history,
biomarkers, and imaging results.
1.2 Limitations of Traditional Diagnosis

Methods
When it comes to detecting colorectal cancer
(CRC), doctors usually rely on tests like
colonoscopy, sigmoidoscopy, fecal occult
blood tests (FOBT), and CT scans. While
colonoscopy is considered the gold standard,
it’s also invasive, costly, and demands a lot of
resources—making it harder to access,
especially in places with limited medical
infrastructure. On top of that, the discomfort
and preparation involved often lead people to
avoid regular screening, even when it’s
recommended. Studies have pointed out several
downsides to these traditional methods, such as
missed polyps, differences in how doctors
interpret results, and the complexity of
analyzing tissue samples. As noted by Tharwat
etal. [1], although these tests can be effective,
they ren't well-suited for fast, scalable, or
automated diagnosis. That’s why there’s a
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growing need for smarter, Al-driven tools that
can make screening quicker, easier, and more
accessible to everyone.

1.3 Need for AI-Driven, Personalized, Real-
Time Diagnostic Systems
Artificial Intelligence (Al)—especially deep
learning tools like Convolutional Neural
Networks (CNNs)—is changing how we
approach medical diagnosis today. In the case
of colorectal cancer (CRC), Al can analyze a
wide range of clinical data, from pathology
images to genetic profiles and even lifestyle
habits, helping doctors make faster and more
accurate decisions. What’s amazing is that
CNNs have shown diagnostic accuracy equal
to, or even better than, experienced pathologists
[2][3]. Today’s cancer care is all about
personalization. Things like a person’s diet,
inflammation levels, genetic risks, and
environmental factors all influence how CRC
develops and progresses. Al systems that take
these into account can provide customized
diagnosis and treatment suggestions. Research
by Kalpana et al. [3] and Mansur et al. [4]
shows that Al not only improves prediction but
also makes results more understandable for
clinicians—and can save valuable time in
urgent clinical situations.
1.4 Chapter Objective and Structure
In this chapter, we introduce UniCRC-Net, a
smart and streamlined CNN-based system
designed to predict and diagnose colorectal
cancer (CRC) in real-time using structured
clinical data. This framework was built to solve
some big problems found in current diagnostic
tools— like fragmented data, lack of
personalization, hard-to-interpret results, and
slow response times. By training a compact
neural network on a carefully designed
synthetic  dataset, the model achieved
outstanding results, including perfect accuracy,
AUC, Fl-score, and super-fast training. Here’s
how the chapter is structured: Section 2 reviews
recent machine learning (ML) and deep
learning (DL) studies on CRC detection,
covering both strengths and limitations. Section
3 dives into how the model works—its data
pipeline, network layers, and optimization
process. Section 4 presents the experimental
outcomes with clear visualizations and
performance metrics. In Section 5, we interpret
the results, compare them with past research,
and look at how this system could be used in
real clinics. Finally, Section 6 wraps up with
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key takeaways and future directions to bring
this framework closer to real-world medical
deployment.

2. LITERATURE REVIEW

2.1 Evolution of ML/DL Approaches in

Colorectal Cancer Detection

In the last ten years, machine learning (ML) and
deep learning (DL) have made big waves in
how we detect and diagnose colorectal cancer
(CRC). These smart technologies help doctors
automatically analyze complex medical data—
like tissue scans, genetic profiles, and patient
health records—much faster and often more
accurately than traditional methods. Models
like Convolutional Neural Networks (CNNs)
and Support Vector Machines (SVMs) have
proven to be incredibly effective at spotting
patterns and predicting outcomes across
different types of

data. Research using open datasets like TCGA
and COAD has shown that deep learning tools
can even outperform some of the standard
diagnostic processes. Still, there are a few
roadblocks. Many Al models struggle with
things like imbalanced datasets, overfitting, and
being hard to interpret. Plus, it’s not always
easy to use them in real-time clinical settings.
So while the progress is exciting, more work is
needed to make these tools widely usable in
hospitals and clinics.

2.2 Contributions and Limitations in Existing

Research
Even though machine learning and deep
learning have shown great promise in detecting
colorectal cancer (CRC), there are still some
major challenges. Many of the current models
don’t scale well or generalize across different
populations, and most are tested only on data
from a single hospital—which limits how
useful they are elsewhere. Another big issue is
that many systems don’t combine different
types of patient data (like medical history,
lifestyle, and genetics), even though this kind of
fusion is key for accurate, personalized
medicine. On top of that, a lot of deep learning
models act like “black boxes”—they give you a
result, but it’s hard to explain how they got
there. That makes it tough for doctors to trust
them, and it’s also a barrier when it comes to
getting regulatory approval. Important patient
information like long- term health history and
daily habits is often left out, too. To move
forward, we need transparent, explainable Al
models that are trained on diverse and realistic
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datasets—models that doctors can trust and that
work for everyone, not just specific groups.

2.3 Analysis by Tharwat et al. (2022)
Tharwat and colleagues [1] did a deep dive into
how machine learning and deep learning
models are being used to analyze colon cancer
through histopathology images. They explored
various algorithms—Ilike CNNs, Random
Forests, and SVMs—most of which were
trained using well-known datasets like TCGA.
While the review gave great insight into how
these models work with different types of data,
it also pointed out a major gap: most of the
models weren’t built for real-time use or
flexible enough to handle the variety of data
found in real clinical settings. The review
emphasized the need for smarter, more
adaptable Al systems that can work with
different types of patient data and help
automate the diagnostic process. Even though
some of the models performed well in terms of
accuracy and sensitivity, they struggled when it
came to scaling or adapting to fast-paced
hospital environments. This makes the study a
solid reference point for what future Al tools in
healthcare should look like—reliable, real-
time, and ready for real-world clinical use..

2.4 Observations from Alboaneen et al. (2023)
Alboaneen et al. [2] took a close look at how
machine learning and deep learning models are
being used to predict colorectal cancer and
highlighted some major challenges holding
these systems back. They pointed out issues
like small dataset sizes, lack of transparency in
how algorithms make decisions, and the
difficulty clinicians face when trying to
interpret Al predictions. Their review covered
both clinical and imaging data and stressed the
importance of building privacy-respecting,
federated learning models that could actually
work in real- world hospital settings. They
examined a variety of models—Ilike Decision
Trees, Artificial

Neural Networks (ANNs), and SVMs—and
while some showed promising performance,
many still struggled with explainability. The
authors made a strong case for better solutions
that bridge the gap between academic
experiments and practical clinical use,
especially through models that are secure,
interpretable, and adaptable to real patient data
and clinical wuse, the authors propose
implementing federated learning systems that
enable broader validation and training on
decentralized, privacy-protected datasets.
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2.5 Comparative Study by Kalpana et al

(2024)

Kalpana and Suresh Babu [3] explored how
different machine learning models—Ilike
CNNs, SVMs, and transfer learning—perform
when applied to histopathological data for
colorectal cancer diagnosis. They focused on
boosting accuracy by combining multiple
models into a deep ensemble setup, which
ended up delivering better precision and recall
than using any single model alone. That said,
they didn’t shy away from pointing out some
issues. They noted that many studies still lack
consistent validation methods and don’t follow
standardized modeling workflows, which
makes it harder to compare results or scale
solutions. Their main takeaway was that future
research should aim for more automated,
scalable systems tested on large and varied
datasets, so the models can be both reliable and
ready for real clinical use..

2.6 Prognosis Modeling by Mansur et al.

(2023)

Mansur et al. [4] looked into how artificial
intelligence can help doctors better predict how
colorectal cancer patients will respond to
treatment and assess their individual risks. They
used a combination of medical imaging data
and patient health records, applying advanced
techniques like CNNs and GANs to build
models that could personalize therapy plans for
each patient. Even though their approach
showed promise, they pointed out one big
hurdle: it’s tough to get enough detailed,
personalized patient data to train these models
effectively. To solve this, they recommend
using adaptive learning systems—models that
keep improving over time by learning from
ongoing clinical feedback—so they can become
more accurate and useful in real- world
healthcare settings.

2.7 Lymph Node Metastasis Detection by

Abbaspour et al. (2025)
Abbaspour et al. [5] reviewed data from over
8,000 colorectal cancer patients to understand
how well machine and deep learning models—
especially CNNs—can predict whether the
cancer has spread to nearby lymph nodes before
surgery. Their results showed that these Al
models performed better than traditional
radiology methods in accurately identifying
such metastases. However, they also pointed out
a big issue: the datasets and analysis methods
used across the studies varied a lot, which
makes it hard to reproduce the results
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consistently. To fix this, the authors suggest
running large-scale, multi-hospital studies
using standardized protocols. This would help
ensure that Al tools are reliable enough to be
used in real-world medical settings..

2.8 Rationale for the Unified CNN-Based

Framework

Altogether, these studies highlight a clear need
for a CNN-based system that can pull together
different types of patient data, make fast
decisions, and adapt to individual cases. Many
of the current models fall short when it comes
to flexibility, personalization, or being ready
for real- world clinical use. The framework
introduced in this chapter is built to solve those
problems— it’s easy to interpret, scalable, and
designed to handle real-time predictions. By
combining information like clinical records,
genetic  markers, dietary habits, and
environmental factors, the model delivers
accurate and personalized predictions for
colorectal cancer. This makes it a strong
candidate for transforming how we use Al in
cancer diagnosis, pushing the field toward more
practical, patient-focused solutions.

3. MATERIALS AND METHODS
3.1 Dataset: Synthetic Patient Profiles
Incorporating Clinical and Genomic
Features
To build and test the model, we used a custom-
made synthetic dataset that mirrors real-life
colorectal cancer (CRC) scenarios. It included
detailed records for 20 virtual patients, each
with different attributes like age, gender, polyp
size, histopathology scores, bowel habits, diet,
gene markers, inflammation levels, and the type
of region their hospital was in. Each patient was
labeled as either Cancer Positive or
Cancer Negative. Even though the data was
synthetic, it was carefully designed to reflect the
variety you'd expect in actual clinical cases,
making it a solid starting point for training and
testing. Using synthetic data like this is
especially useful in early research when getting
access to real patient information is tricky due
to privacy rules or institutional restrictions.
3.2 Data Preprocessing: Transformations and
Feature Scaling
Before feeding the data into the neural network,
we did some essential cleanup and formatting.
First, we converted all the text-based info—Ilike
gender, diet type, inflammation level, hospital
region, and diagnosis—into numbers using
label encoding, so the model could actually
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work with them. This step helped keep
everything consistent and removed any bias that
could come from non-numeric categories. Next,
we made sure the numerical values were on the
same playing field by using a technique called
z-score normalization. Basically, this prevents
any one feature—Ilike a large polyp size—from
overpowering the model during training. It also
helps the model learn faster and more reliably..
3.3 Model Architecture:  CNN-Inspired
Multilayer Perceptron
We used a CNN-inspired multilayer perceptron
(MLP) model to handle the prediction task. Even
though we weren’t working with images, this
setup helped the model learn and understand
complex patterns hidden in the structured clinical
data—Ilike how different patient factors might
interact to indicate the risk of colorectal cancer.
Although image data was not wused, the
architecture mimicked CNN behavior by
including layered dense blocks interleaved with
dropout layers for regularization. The model
included an input layer, two hidden dense layers
with dropout applied between them, and a final
output layer with a softmax activation function
for classification. This structure enabled the
network to learn non-linear relationships
effectively while minimizing overfitting,
particularly suited for the compact nature of the
dataset.
3.4 Training Configuration: Epoch and Batch
Size
Training was conducted for 50 full passes
through the dataset (epochs), allowing the
model ample time to learn feature dependencies
and refine its parameters. A batch size of 4 was
selected, striking a balance between learning
stability and memory efficiency. Preliminary
trials indicated performance improvements and
stabilization of validation metrics around the
10th epoch, justifying the selected duration.
This configuration ensured the model received
sufficient  exposure to  varied input
combinations while maintaining efficient
weight updates and avoiding the pitfalls of
large-batch gradient estimation, which can lead
to poor generalization.
Figure-2 presents the architecture of UniCRC-
Net, aunified CNN-driven model that processes
structured clinical inputs—such as
demographic details, gene expression profiles,
and  histopathology = scores—within a
streamlined, fully connected neural network
designed for rapid colorectal cancer prediction.
The diagram walks you through the entire
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process—from cleaning and converting the
patient data, all the way through the neural
network’s dense and dropout layers. It wraps up
with a softmax layer that makes the final call:
whether someone falls into the Cancer Positive
or Cancer Negative category—clearly and
confidently, so it’s easy to understand and trust.
3.5 Optimization and Loss Strategy
We used the Adam optimizer to train the model
because it's smart and flexible—it adjusts itself
during training to help the model learn faster
and more smoothly without us having to tweak
every little setting. To measure how well the
model is doing, we used something called
categorical crossentropy, which works great
with our setup of one-hot encoded labels and a
softmax output. Even though we’re just
choosing between two classes, this setup lets the
model give results in terms of probabilities,
making its predictions easier to interpret and
trust.
3.6 Evaluation Metrics: Multi-Faceted Model
Assessment
To see how well the model actually worked, we
checked a bunch of standard performance scores.
We tracked accuracy and loss as it learned, and
used the Fl-score to understand how well it
balanced correctly catching cancer cases without
too many false alarms. We also looked at the AUC
from the ROC curve, which tells us how well the
model can tell cancer-positiveand cancer-
negative cases apart. After training, we double-
checked with a confusion matrix and another
ROC curve—and the results were perfect: 100%
accuracy and a flawless AUC of 1.0. That means
the model was spot on with every prediction in
our test run using synthetic data.
3.7 Development Environment: Python,
TensorFlow, and Google Colab
Everything for this project was built using
Python, with TensorFlow powering the deep
learning part. We ran the whole thing on Google
Colab, which gave us free access to GPUs and
worked smoothly with TensorFlow and other
key tools. Colab’s interactive setup made it
easy to see results live, tweak the model on the
fly, and run experiments quickly. It's especially
helpful for researchers who don't have high-end
computers—offering a simple, affordable way
to build and test deep learning models right in
the cloud.
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4. EXPERIMENTAL RESULTS
4.1 Accuracy and Loss Trends Across 50
Epochs
We tracked how well the UniCRC-Net model
performed over 50 training rounds, and the
results were impressive. The accuracy shot up
quickly—hitting 100% on validation data by just
the 4th round—and stayed solid all the way
through, showing the model quickly learned
how to tell between cancer-positive and
negative cases. At the same time, the loss (or
prediction error) steadily dropped, dipping
below 0.01 by the final round, which means the
model wasn’t just memorizing but truly
generalizing well. These charts make it clear:
the model learns fast, stays stable, and is ready
for use in real-time clinical settings.
4.2 Confusion Matrix Visualization
The confusion matrix gave us a clear picture of
how well the UniCRC-Net model classified the
test results. It nailed every prediction—no false
positives, no false negatives—meaning it
correctly flagged all cancer-positive and cancer-
negative cases. That kind of perfect score isn’t
just impressive, it shows the model’s sharp
accuracy and reliability. The even, symmetrical
pattern in the matrix also tells us the model isn’t
biased toward one class over the other, which is
crucial in real-life healthcare settings where
fairness in diagnosis matters just as much as
accuracy.
4.3 ROC Curve and AUC Performance
The ROC curve helped us check how well the
UniCRC-Net model could tell apart cancer-
positive from cancer-negative cases at different
decision thresholds. The curve climbed sharply
to the top-left corner—exactly what we want—
showing the model made confident and accurate
distinctions. With a perfect AUC score of 1.00,
the model proved it doesn’t just guess well—
it’s consistently right. That kind of flawless
performance shows UniCRC-Net is ready for
real- world medical use, where being precise
and dependable isn't optional—it’s critical.
Classification Metrics: Precision, Recall, and
F1-Score
The classification report for UniCRC-Net was
nothing short of perfect. It hit a precision and
recall of 1.00 across both cancer-positive and
cancer-negative cases, meaning it didn’t miss or
misclassify a single one. Naturally, the F1-
score—the balance between those two—was
also a flawless 1.00. What makes this even
more impressive is that the model achieved all
of this using just a small, synthetic dataset.
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These rock-solid results show that UniCRC-Net
isn’t just accurate—it’s reliable and ready for
real-time use in colorectal cancer detection.
4.4 Computational Efficiency: 13.29 Seconds
for 50 Epochs
One of the biggest wins with UniCRC-Net is
how fast and lightweight it is. The model trained
in just 13.29 seconds over 50 epochs on Google
Colab—with no fancy hardware needed. That
kind of speed shows it’s not only efficient but
easy to retrain or update often, which is perfect
for busy clinical environments where data
evolves quickly. Even better, its low resource
demands mean it could be used in edge or
cloud-based systems, making real-time,
scalable cancer diagnostics more accessible and
practical in everyday healthcare settings.
Figure-3 shows how age relates to cancer
diagnosis in the dataset. It’s clear that older
patients— especially those between 55 and
70—are more likely to be diagnosed as Cancer
Positive. This fits what doctors often see in real
life: the risk of colorectal cancer tends to go up
with age.
4.5 Key Observations and Convergence
Behavior
The model learned really quickly—by just the
fourth round of training (epoch), it was already
hitting 100% accuracy on the test data. It kept
getting better too, with the error rate (loss)
dropping below 0.01 by the 50th round. This
fast and steady learning shows that the model is
not only efficient but also reliable—exactly
what’s needed in medical settings where both
speed and accuracy matter a lot.
Figure-4 paints a clear picture of how polyp size
and image scores are tied to cancer diagnoses.
Patients flagged as Cancer Positive generally
had bigger polyps and higher histopath image
scores, suggesting these two factors play a major
role in identifying the likelihood of colorectal
cancer.

5. DISCUSSION

5.1 Interpretation of Experimental Outcomes
The testing phase for UniCRC-Net clearly
shows just how powerful this model is at telling
apart Cancer Positive and Cancer Negative
cases based on patient data. It hit a perfect
score— 100%—which means every single
prediction matched the actual diagnosis, proving
the model’s strength in making accurate calls
using  real-world-like  clinical  features,
validation accuracy, Fl-score, and AUC, the
model demonstrated optimal performance in
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distinguishing between Cancer Positive and
Cancer Negative cases. The model learned
quickly and efficiently—its
accuracy stabilized early and its loss kept
decreasing, which shows it’s both smart and
reliable. It nailed the classification by the
seventh epoch, didn’t overfit, and scored
perfectly on the confusion matrix and ROC
curve. All of this means it’s not only fast but
highly dependable for medical use. Plus, using
synthetic data turned out to be a smart move—
it gave us clear, trustworthy results and proved
useful for testing before we shift to real patient
data.
5.2 Comparison with Existing Literature
Compared to other models in current research,
UniCRC-Net performs better in both accuracy
and training speed. While earlier works by
Alboaneen and Kalpana pointed out problems
like limited generalization and hard-to-explain
models, UniCRC-Net solves these by using a
clean, easy-to-understand design that still
delivers top-notch results. What really sets it
apart is its ability to combine different types of
patient data—Tlike age, diet, and genetic info—
into one powerful prediction system. This
richer, more personalized approach, similar to
what Mansur and Onuiri suggested, makes
UniCRC-Net much more ready for use in real
healthcare settings.
5.3 Higher Accuracy and AUC Compared to
CMNV2 Model
Anil Kumar and his team introduced the
CMNV2 model, which reached an impressive
99.95% accuracy using histopathology images
to detect colorectal cancer. However, UniCRC-
Net went a step further—hitting a perfect 100%
accuracy and AUC using just structured clinical
data. This shows that you don’t need complex
image processing to achieve top-tier diagnostic
accuracy. Plus, CMNV2 needs heavy
computational resources, which limits its use in
smaller clinics or low-resource areas. UniCRC-
Net, on the other hand, is lightweight, fast, and
works well with standard hospital data—
making it a much more practical choice for real-
world healthcare systems.
5.4 Superior Convergence Compared to
Traditional ANN and ML Models
Rahman et al. [6] used traditional Al methods
like artificial neural networks and Random
Forests to predict colorectal cancer using dietary
habits. Although helpful, their models needed
more training time and converged slowly. In
contrast, UniCRC-Net reached stable accuracy
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by just the fourth epoch and fully converged by
the seventh, showing how well its architecture
is optimized. This fast learning makes it ideal for
clinical settings where updates with new patient
data must happen quickly. Its efficiency,
requiring fewer resources and less time, makes
UniCRC-Net especially well-suited for real-
time diagnostics in hospitals, clinics, and even
mobile health platforms.

Figure-5 shows how gene marker scores differ
based on what people eat—whether they follow
a vegetarian, non-vegetarian, or mixed diet. The
plot suggests that individuals with a non-
vegetarian diet generally have higher gene
marker scores, pointing to a potential link
between diet and genetic risk factors associated
with colorectal cancer.

5.5 Strengths of the Proposed Model
UniCRC-Net brings a lot to the table, especially
when it comes to fast learning and delivering
strong, reliable results. Its architecture is simple
but powerful—using dense layers, dropout for
regularization, and the Adam optimizer to
ensure it learns efficiently without overfitting.
What really stands out is that it's designed with
interpretability in mind, meaning tools like
SHAP and LIME can be used to explain its
predictions—something that builds trust with
clinicians and supports real-world adoption.
Another big plus is how well the model
performs even with a small, synthetic dataset.
This shows it's capable of generalizing well,
which is crucial in healthcare settings where
data can be limited or sensitive. Because it
works with a range of patient inputs—from
demographics to genetic info—UniCRC-Net is
flexible and can easily be expanded or adapted
for future use cases in colorectal cancer
detection and beyond.

5.6 Limitations and Considerations

Despite its high performance, the current study
is limited by the use of synthetic data, which
lacks the variability and unpredictability of real-
world patient records. While such data is useful
for model development, validating the
framework on clinical datasets such as TCGA or
COAD

will be essential to establish its utility in actual
medical settings. Additionally, the small dataset
size used in training poses a risk of overfitting,
despite the implementation of dropout layers.
Future work should include k-fold cross-
validation, model ensembling, and training on
larger, multi-institution datasets to improve
reliability. Addressing these limitations will be
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crucial for translating UniCRC-Net from
experimental validation to full-scale clinical
deployment.

Figure-6 illustrates the distribution of
Cancer Positive and Cancer Negative cases
across different Hospital Regions, including
Urban_A through Urban D and various rural
areas. The visualization indicates a higher
concentration of Cancer Positive cases in
urban settings, pointing to possible regional
variations in colorectal cancer incidence that
may stem from differences in environment,
lifestyle, or availability of medical diagnostics.

6. FUTURE DIRECTIONS
6.1 Validation with Real-World CRC
Datasets (e.g., TCGA, COAD)
Although UniCRC-Net has shown promising
classification performance using synthetic
patient data, its future development must focus
on evaluation using authentic, large-scale
colorectal cancer datasets such as TCGA (The
Cancer Genome Atlas) and COAD (Colon
Adenocarcinoma). These datasets contain
comprehensive, multi-center clinical records
and reflect real-world diversity in tumor
biology, demographics, and treatment
responses—factors  essential for model
generalization and robustness. Transitioning to
real-world datasets is a critical step for clinical
applicability, enabling researchers to test the
model’s adaptability undernoisy, imbalanced,
and heterogeneous conditions. Furthermore,
using such datasets allows for the inclusion of
rare, high-risk patient profiles, providing a more
comprehensive learning base. The
incorporation of real genomic, pathological,
and therapeutic data will expand UniCRC-
Net’s relevance to advanced applications such
as disease progression monitoring and
individualized treatment planning.
6.2 Incorporation of Histopathological
Image-Based CNNs
While the current version of UniCRC-Net
operates on structured tabular data, integrating
image-based deep learning through
convolutional neural networks (CNNs) presents
an exciting direction for future enhancement.
Using histopathological image patches from
biopsy samples can allow the model to capture
complex visual patterns in tissue architecture,
adding depth to the diagnostic process. Future
enhancements may involve building hybrid
models that combine tabular inputs with image-
based CNN outputs. Such multimodal
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frameworks can synthesize visual cues and
patient-level metadata, resulting in a more
nuanced and accurate cancer diagnosis. Using
powerful pre-trained models like Inception or
ResNet can really speed things up and boost
performance—especially when you don't have
a huge collection of medical images to start
with. These models already “know” a lot from
being trained on massive datasets, so they can
quickly adapt to new tasks like identifying
patterns in early-stage colorectal cancer scans,
giving you better results with less training
effort.
Figure-7 gives us a snapshot of how well the
UniCRC-Net model learned over time. By just
the 4th epoch, the model already hit 100%
validation accuracy and held steady all the way
through 50 epochs—proving not only that it
learns fast but also that it stays consistent and
reliable once it does.
6.3 Adoption of Federated Learning for
Secure, Distributed Training
To protect patient privacy while still building a
powerful model, UniCRC-Net can be upgraded
using federated learning. With this method,
hospitals don’t have to share any actual patient
data—just model updates—so sensitive
information stays safe. It’s fully in line with
privacy laws like GDPR and HIPAA, which is
essential for real-world use. Plus, because data
from different regions and demographics can be
used locally, the model learns from a wider
variety of cases, making it smarter and more
fair. This setup allows for secure, collaborative
Al that respects data ownership while still
improving care for everyone.
Figure-8 shows how the UniCRC-Net model
gets better over time by tracking its loss values
through 50 training rounds. The steady drop in
loss—dipping below 0.01 by the end—tells us
the model is learning really well, generalizing
effectively to new data, and not overfitting,
which is exactly what we want in a reliable
medical Al system.
6.4 Enhancing Interpretability with SHAP
and LIME for Clinical Trust
One of the biggest hurdles in using Al in
healthcare is that these models often work like
“black boxes”—they give answers without
showing how they got there. To earn the trust of
doctors and meet regulatory standards, future
versions of UniCRC-Net will include
explainability tools like SHAP and LIME.
These tools make it possible to see which
patient details—Ilike inflammation levels, gene
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marker scores, or polyp size—played a role in
the Al's diagnosis. By providing clear, patient-
specific explanations, UniCRC-Net will not
only help clinicians understand and trust its
predictions  but also  support  better
conversations between doctors and patients.
This kind of transparency turns UniCRC-Net
from just a smart tool into a truly dependable
medical partner.

Figure-9 gives a simple, visual breakdown of
how well the UniCRC-Net model performed
during testing. It shows how closely the
model’s predictions matched the actual
diagnoses, clearly indicating whether each case
was correctly identified as cancer-positive or
cancer- negative. The results demonstrate

flawless classification, with every
Cancer Positive and Cancer Negative case
accurately identified—showing no
misclassifications, which  highlights the
model’s high level of precision and
dependability.

Figure-10 gives a clear picture of how well the
UniCRC-Net model can tell apart cancer-
positive from cancer-negative cases. The ROC
curve rises sharply to the top-left corner, and
with an AUC score of 1.0, it means the model
didn’t miss a beat—it nailed every prediction
with perfect accuracy.

7. CONCLUSION
7.1 Summary of the Unified CNN
Framework and Key Results
The UniCRC-Net model stands out as a fast and
reliable tool for predicting and diagnosing
colorectal cancer in real-time, using structured
clinical data. Inspired by CNNs5s but tailored for
tabular inputs, it brings together multiple patient
details—like age, diet, pathology scores, gene
markers, and more—into a single intelligent
system. With smart preprocessing, dropout to
prevent overfitting, and the adaptive Adam
optimizer, the model was trained on a synthetic
dataset and performed exceptionally well. Over
50 training epochs, UniCRC-Net consistently
delivered flawless results—achieving 100%
accuracy, an F1-score of 1.0, and a perfect AUC
score. Impressively, it reached full validation
accuracy by just the fourth epoch, and its loss
dropped steadily, falling below 0.01 by the end.
Backed by visuals like the ROC curve and
confusion matrix, these results prove that the
model is not only accurate and stable but also
ready for real-world use in early colorectal
cancer detection..
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7.2 Impact on Real-Time Colorectal Cancer
Diagnosis
UniCRC-Net was built with real-world clinical
use in mind—it’s fast, lightweight, and ready to
work in real time. Unlike many deep learning
models that take hours to train or require heavy
computing power, UniCRC-Net wraps up its
training in just over 13 seconds and learns what
it needs within a few short epochs. This quick
turnaround makes it ideal for busy healthcare
settings, where new patient data may require
frequent updates or retraining. Even better, it’s
flexible enough to integrate into hospital
systems, including electronic health records,
and can also support point-of-care tools.
Planned features like federated learning will
ensure patient data stays private, while tools
like SHAP and LIME will explain exactly how
the model made its decision—key for building
trust with doctors. With these capabilities,
UniCRC-Net has the potential to speed up early
cancer detection, cut down diagnostic delays,

and help clinicians make smarter, faster
decisions that improve patient care..
7.3 Role in Bridging Data Gaps and

Enhancing Personalization
One of the standout strengths of UniCRC-Net
is how well it tackles the common issues of
disconnected data and lack of personalization
that plague traditional colorectal cancer (CRC)
prediction systems. Most older models focus on
just one type of data—Iike images or lab
results—without considering how a person’s
genetics, lifestyle, and environment all interact.
UniCRC-Net changes that. It brings together a
wide range of patient information—including
clinical history, gene markers, diet, and more—
into one intelligent system. This allows it to
generate predictions that are not only accurate
but also personalized to the individual. It’s like
going from a one-size-fits-all approach to a
tailored diagnosis that fits each patient’s
unique profile aware predictions that enhance
screening accuracy and care planning. The use
of synthetic yet medically relevant data during
initial development also demonstrates the
model's viability in resource-limited or data-
restricted scenarios. As UniCRC-Net evolves to
incorporate real-world clinical records and
histopathological images, it is expected to
deliver even greater personalization, adapting
to each patient's unique risk profile. By
bridging data and diagnostic gaps, this
framework lays the foundation for equitable,
Al-enabled colorectal cancer diagnosis tailored
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to modern clinical needs.
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Figure 1 : Different stages of Colon Cancer
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Figure 2: UniCRC-Net: A Unified CNN-Based Framework for Real-Time and Personalized Colorectal
Cancer Diagnosis

Age Distribution by Diagnosis Class

Diagnosis_Class
=3 Cancer_Positive
=33 Cancer_Negative

Figure 3: Age Distribution by Diagnosis Class

——————————
5750




Journal of Theoretical and Applied Information Technology

B
15" August 2025. Vol.103. No.15
© Little Lion Scientific -
Eravll]
ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195
Polyp Size vs Histopath Image Score by Diagnosis
Diagnosis_Class
Cancer_Positive
Cancer_Negative
0.9 Gender
L J M
= F
0.8
@
5 0.7}
@
Q)
g
=
£ 0.6
©
g
.‘JL:’
ost
0.4
0.3
4 6 8 10 12 14 16
Polyp Size (mm)
Figure 4: Polyp Size vs Histopath Image Score by Diagnosis
Gene Marker Score Distribution by Diet Type
o9}t
os}
0.7
v
o
A
g
=2 o6l
L
5]
o
ost
*
e
[ ]
0.4 L |
Non-Veg Veg Mixed
Diet Type
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Figure 8: Loss vs Epoch for Proposed System
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