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ABSTRACT

Traffic congestion poses significant challenges to urban mobility and transportation infrastructure worldwide.
Accurate prediction of traffic speed and timely identification of congestion levels are crucial for effective
traffic management and planning. Owing to the widespread adoption of telecommunication technologies,
various traffic datasets have become available, such as Floating Car Data (FCD), which collect real-time
information from vehicles in transit, providing a rich and dynamic dataset for analyzing traffic speed.
However, predicting traffic speed and identifying congestion levels using FCD remains challenging due to
the complexities of traffic dynamics and the non-linear nature of traffic flow. In response, multiple solutions
have been proposed using deep learning methods. This study addresses the persistent issue of FCD data
sparsity and its limitations in providing consistent, accurate traffic speed predictions. The present work
focuses on constructing an LSTM-based method, called LSTM-C, to predict traffic speed. In the proposed
LSTM-C method, a new Contrast measure is introduced and incorporated to enhance the prediction of traffic
speed across candidate road segments. The LSTM-C model demonstrates a significant improvement in both
prediction accuracy and congestion level identification, outperforming existing models such as those by
Majumdar et al. and Gao et al. Subsequently, traffic rules are applied to the predicted speeds to determine
congestion levels for each segment. The experimental results demonstrate that the proposed model achieves
a high level of accuracy, reaching up to 96.697%, which represents an improvement of 1.6% and 1.79% in
accuracy compared to the two benchmark LSTM methods employed for speed prediction.

Keywords: Traffic Speed Prediction, Short-Term Speed Prediction, The Long Short-Term Memory (LSTM),
Deep Learning, Data-Driven Traffic Analysis

1. INTRODUCTION methods demand data for the purpose of training and
testing the prediction models [2-6]. Affiliated

Today, traffic congestion, as a modern organizations need to gather an excess of traffic data

phenomenon, has globally become a serious problem
in many urban areas, influencing people’s lives
economically, culturally, etc. Among problems
caused by traffic congestion are people's mobility,
timing, life quality as well as traffic planning
systems and management. Such an issue is even
becoming more critical owing to the growing
numbers of vehicles, causing air pollution to be a
serious problem in various corners of the world.
Different organizations and institutions including
governments and universities together with Research
and Development (R&D) sectors have dealt with this
issue, striving to alleviate the congestion problem
through using technologies for monitoring and
managing traffic [1]. Machine Learning methods
play a key role in Data-driven traffic data analysis. It
ought to be pointed out that all machine learning

from different sources for analysis [7,8]. Various
technologies such as video cameras, inductive loop
detectors and other static sensors may be fitted in at
certain fixed places on roads for detecting traffic
state (e.g., flow velocity and traffic density) [9].
Whereas such devices provide sufficient and reliable
traffic data to be used for managing traffic, these
methods fail to cover all roads due to entailing a great
amount of infrastructure deployment apart from high
maintenance costs. Yet, it is suggested to employ
Floating Car Data (FCD), which is a convenient and
cost-effective method for collecting traffic data.
There is no need to use any specific device since
FCD offers good coverage across road networks.
However, the limitation of FCD is data sparsity.
Despite growing attention to FCD-based traffic
analysis, many current models still underperform
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due to their inability to fully capture abrupt or subtle
shifts in traffic speed caused by dynamic, nonlinear
flow behavior. This gap necessitates new solutions
that enhance pattern recognition without relying on
costly hardware-based data sources. Motivated by
the significant economic and environmental
challenges posed by traffic congestion in urban
areas, and the limitations of FCD, this research
intends to enhance traffic speed prediction using an
improved LSTM-based algorithm (LSTM-C) to
better manage congestion using FCD.

This article aims to predict traffic states (in
particular traffic speed as it has direct relationship
with traffic congestion levels) of road segments
using (FCD) of taxis in Beijing, China. Time window
of 15-min is applied for the prediction horizon. It
should be noted that the traffic speed will be
predicted through using an improved LSTM (Long
Short-Term Memory) algorithm. In the proposed
method, Contrast measure formula is improved by
the author and then it is incorporated in the LSTM
(called LSTM-C) to enhance the traffic speed
prediction. Afterwards, the predicted traffic speed
will be employed for identifying traffic congestion
level. The accuracy of the proposed method can be
compared with the work of Majumdar et al., [10] and
Gao et al. [5] as our benchmarks. These
(benchmarks) models are re-run employing the same
FCD and 15-min time window, given the accuracy
0f94.906% and 95.082% respectively. The proposed
method accuracy is up to 96.697%, proving LSTM
strengths and potential in the traffic prediction field.
The prediction of the average speed of the vehicles
passing corresponding road segments could be of
help for identifying traffic congestion. We
hypothesize that incorporating an improved contrast
measure into LSTM will enhance short-term traffic
speed prediction accuracy using FCD data, and the
research question is whether this integration
significantly  improves  prediction  accuracy
compared to standard LSTM architectures.

The contributions of this research are listed as
follows:

1. Employing the deep learning model on traffic
state prediction.

2. Introducing a new Contrast measure for
capturing traffic speed changes more effectively
(Contrast measure formula is improved by the
author)

3. Construction of a new speed prediction model
called LSTM-C that concatenates Contrast measure
in LSTM.

4. Validating the proposed LSTM-C model

5. Comparing the model with a latent LSTM
model Majumdar et al. [10] and Gao et al., [5].

6. Identifying the traffic congestion level on the
basis of the predicted speed.

The remainder (of the paper) is organized as
follows: Section 2 reviews the related work on traffic
seed prediction. Section 3 describes the model
design. In Section 4, model implementation is
discussed. This is followed by experimentation
results in Section 5. Finally, Section 6 concludes the
paper, suggesting the future research direction.

2. RELATED WORK

The leading idea in the present article is to
propose an improved LSTM model called LSTM-C
for predicting the average traffic speed. This will
then be followed by identifying the level of
congestion on the basis of the traffic congestion
standard in Beijing. In accordance with research
available, three main categories are considered to
model traffic state prediction employing Artificial
Intelligence (AI) with Probabilistic Reasoning,
Shallow Machine Learning, and Deep Learning
(DL) as shown in Figure 1 [11]. As the proposed
method is built upon deep learning (DL), the existing
literature predominantly emphasizes DL-related
approaches.

Artificial intelligence

Shallow machine
learning

| Probabilistic ]

reasoning

Deep machine
learning

Figure 1: Classification of Artificial Intelligence
techniques for traffic state prediction [11].

Probabilistic reasoning are approaches that
involve the use of probability and logic to deal with
uncertainty. Several relevant algorithms are used for
predicting traffic state.

The researchers have employed Fuzzy logic
methods to predict traffic state in a number of studies
[12-14]. Hidden Markov Model (HMM) is said to be
the next algorithm category in probabilistic
reasoning. As a model, Markov chain recognizes
probabilities of sequences in state variables which is
commonly used for modelling time-series data.
HMM, applied in various studies, distinguishes
traffic patterns in congestion prediction [13, 15]. A
hybrid model composed of HMM and contrast
measure was suggested to foresee traffic states in
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roads. Whereas contrast measure may be used as a
useful statistical technique for capturing traffic state
variation, HMM’s generalization is believed not to
be sufficiently strong. Gaussian processes (GPs), as
another group of probabilistic reasoning models, are
said to be flexible non-parametric models [16].
Meanwhile, GPs may be employed to model
complex time-series. Three data sources including
trajectory data and speed data as well as traffic-
related tweets were used in a study by [17] for
predicting road traffic speed. Incorporating three
sources of data seems to be interesting, whereas the
model structure is relatively complex. The
probability of traffic state distribution was presented
in another study [18], applying EM algorithms for
choosing variance parameters and mean of Gaussian
distribution. Eventually, it is time for Bayesian
network (BN), as another category of Probabilistic
reasoning algorithms, directed graph models and
capable of presenting conditional independencies
among random variables. It should be pointed out
that Graph Theory and Probability Theory are
combined for building BN to direct key issues in
engineering and applied mathematics [11,19]. In a
study [20], BN is used to predict and detect traffic
congestion, where three sources of data (i.e., Loop
detector, incident data and weather information)
were applied in the proposed method. 40 scenarios
were presented on the basis of congestion occurrence
probabilities.

In Shallow Machine Learning (SLM)
category of algorithm, which is composed of
Traditional and basic ML algorithms, features
cannot be extracted from the input, and therefore
need to be defined beforehand. Once the feature
extracted, model training may be used. ANNSs, being
a type of model for machine learning (ML), are
relatively competitive to conventional regression
and statistical models in terms of utility [21]. Owing
to its ability for efficient forecasting and easy
implementation, ANN is employed as one of the
most frequently used algorithms in traffic state
prediction. In various researchers, ANN-based
algorithms such as Feedforward neural network
(FNN), and Backpropagation neural network
(BPNN) in traffic management were effectively
applied. A method was suggested in [22] using
BPNN for foreseeing traffic flow and obtaining the
congestion grade judgment. The data generated
based on SUMO traffic simulation data as well as the
proposed congestion evaluation algorithm based on
road occupancy (CRO) were compared considering
three other evaluation methods including congestion
evaluation based on mileage ratio of congestion

(CMRC) along with road speed (CRS) and vehicle
density (CVD). The results obtained divulged that
the congestion degree of roadways was correctly
expresses bearing less training cost with low
processing time of real-time processing. In another
study [23], a hybrid NN was proposed via bringing
together an adaptive prediction algorithm (Adaptive
RMSE) with BPNN. The data gathered in the present
paper is based on real-time GPS data, updating the
database, yet the data increment effect in the
accuracy was not elaborated. One of the merits of
applying ANN algorithms is that the data analysis is
flexible and capable of handling multidimensional
problems effectively. Each layer in the artificial
neurons may be modified on the basis of input data.
Enjoying flexible structures for capturing complex
nonlinear behaviors, ANNS are believed to be
effective in recognizing and modeling patterns for
diversity of road types. However, for ANN to be
increased in performance, large datasets are required
to add complexity. Regression, as a statistical
method used in data science and ML for different
tasks including prediction, forecasting, and time
series modeling, is employed to model the
relationship between input and output numerical
variables. Numerous types of regression including
linear regression and logistic regression are at work.
For predicting the traffic flow, such multiple
machine learning algorithms as Linear Regression,
Gradient Boosting as well as Random Forest, and
two DL models were applied [24]. Having carried
out on public dataset derived from induction loops,
the algorithms obtained similar results, where Linear
Regression had the lowest performance accuracy yet
requiring less training time compared to other
models. In spite of producing good results, the traffic
flow prediction accuracy could possibly increase
when using additional features. [25] suggested using
a framework for foreseeing traffic congestion
through exploring correlation among roadway
congestion and energy usage. In a study of traffic
speed prediction [26], the researchers integrated the
spatiotemporal  correlation, comparing linear
regression model and LSTM model. The results
revealed that the LSTM model outdid other models.
Regression techniques are believed to have yielded
favorable results in predicting time series problems
including traffic forecasting and management.
Linear time series are effective, yet normally failing
to elaborate certain data aspects. Hence, such models
do not seem to be reliable for nonlinear datasets. As
a supervised learning method, decision tree is
applied for prediction and classification, using a set
of if-then-else conditions for learning from data as
well as employing all features present in data for a
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series of decision-making. Multiple decision tree
(known as Random Forest) proves to occasionally
produce effective results. Random Forest provides
decisions trees, comprising the results for making
the final decision on the basis of the majority. In the
study done by [27], a Convolutional Neural
Network—Gated Recurrent Unit (CNN-GRU) was
introduced to foresee traffic speeds in the three lanes
as to the same road segment. Compared to Linear
Regression model, this method is said to have
yielded better results. A random-forest-based model
in a study by [28] was suggested, in which a
combination of Classification and Regression Trees,
called CART, was chosen for traffic congestion
prediction. The researchers utilized a number of
variables including weather conditions, time, road
quality and holiday in the model. The data is
classified by decision tree via learning simple
decision rules considering one or more input data.
Nevertheless, decision tree normally provides binary
results, being not suitable for foreseeing traffic
congestion.

DML is in fact the deep ANN, showing
several hidden layers on NN. When it comes to
discussing SML, there is only one hidden layer, yet
with several hidden layers in DML. Such hidden
layers, being units of nonlinear process units, are
applied for extracting features and transforming
data. Note that in DML, diverse traffic data may be
transformed into feature vectors or patterns in a
certain time limit [11]. As a result, DML enjoying
great strengths is the dominant method in TSP with
limited collection time horizon into patterns or
feature vectors. DML has just recently become
popular in studies involving predicting traffic
congestion. This section will discuss DML
algorithms applied in TSP. By way of example,
Convolutional neural network (CNN) can be said to
be one of the common DML algorithms in TSP,
having wide usages in processing images and
computer vision. CNN could process traffic data
effectively when taking traffic data as a time-space
(2D) matrix. The matrix with time-dimension
features is connected with traffic information of the
roads. In a timestamp among all roads, the matrix
with space-dimension features is linked with the
traffic flow information [29]. Therefore, the traffic
state variables as to roads may at certain timesteps
be foreseen by CNN. Following extracting the time-
space features in input data, one can predict traffic
state via a full connection layer. The study done by
[30] divulged that compared to the first matrix
dimension representing the temporal feature, the
second shows average traffic speed. In fact, the false-

positive rate as well as detection rate was adopted for
different dataset partitions. Nonetheless, we can
gauge traffic speed through only 3 levels in traffic
congestion. They include heavy traffic (0-20),
moderate traffic (20-40), and free flow traffic (>40),
respectively. Multiple convolutional operations are
used by [31] for designing multiscale traffic patterns
and temporal dependencies alike by means of video
surveillance data. In the paper, the definition of
congestion level is provided as the average travel
time for that segment at each timeslot, to be
compared with the prediction of PCNN congestion
level. Recurrent Neural Networks (RNNs), as
another significant algorithm in DML, may help to
learn Spatiotemporal features. As a result, it is
suggested to employ RNN as a DML prediction
model, where the output of the previous timestep
functions as the input in the next timestep.
Backpropagation through time is the basis of how
RNN learns, having an input layer and hidden layer
as well as output layer. The RNN with two variants
is known as LSTM and GRU. In study by [32], a
deep stacked bidirectional and unidirectional LSTM
named SBU-LSTM was suggested for predicting the
traffic speed by means of fixed-position sensors. In
spite of providing good accuracy performance for
speed prediction, SBU-LSTM fails to identify the
traffic congestion levels. [33] presented a Res-
RGNN  (Residual Recurrent Graph Neural
Networks) for predicting traffic speed including loop
detector data. Res-RGNN, as a hybrid algorithm of
GRU and Graph convolution, models the direct
relationships between historical and future time-
steps utilizing gating mechanism. Despite Res-
RGNN obtained good performance results, it is still
felt necessary to investigate the spatiotemporal
features learned by MRes-RGNN for finer
interpretability. In another study, a Speed Prediction
of Traffic Model Network (SPTMN) was proposed
based on both Graph Convolution Network (GCN)
and Temporal Convolution Network (TCN), where
loop detector data was applied to test the model [34].
In another study conducted by [29], traffic speed was
projected employing such various algorithms as
CNN, LSTM and GRU, where the predicted speed
was exercised to recognize the level of congestion.
They wused HMM-based map-matching to
approximate the average traffic speed as a pre-
processing step prior to forecast. It ought to be
pointed out that the LSTM model accomplished the
highest performance in which the best results for
window length of 8, MAE, RMSE and MSE include
1.45, 6.08 and 36.97, respectively. Research carried
out by [35] put forward a traffic congestion model
applying attention-based LSTM via fixed-position
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sensors, revealing how a specific traffic state is of
significance to the entire traffic flow and implying
further contextual association. Nonetheless, this
model fails to have desired results due to
emphasizing on traffic flow rather than speed
prediction, as an effective method for predicting
congestion. Gao et al. recommended a traffic
forecasting model that extracts traffic flow pattern
from five loop detectors, which is followed by
employing LSTM for prediction [5]. The method
proposed is formulated on relationship between flow
and speed in traffic flow theory, which is not in the
scope of the present study. Another study by [10]
described a model for traffic speed forecast,
generating the congestion level through LSTM,
utilizing loop detector data for experimentation as
well as applying RMSE to measure performance,
reaching 84-95%. The serous disadvantage is the
absence of numerical experiment to identify
congestion level; therefore, it just sufficed to present
visual congestion propagation. A study by [6]
proposed a deep learning model based on LSTM
networks for short-term traffic speed forecasting
using GPS-monitored data. Although the authors
mention tuning hyperparameters, details about the
optimization process are limited. Moreover, the
exact short-term prediction horizon used for the
implementation is not specified. D-LSTM (Long
Short-Term Memory with Dynamic Time Warping)
model was introduced for short-term road traffic
speed prediction [36] using GPS positioning data.
While the results achieved good performance details
about hyperparameter tuning and sensitivity analysis
are not explicitly discussed. A study by [3] presented
an attentive graph neural process AGNP method for
network-level short-term traffic speed prediction and
imputation. The approach combined the strengths of
Gaussian processes GPs and graph neural networks
GNNs. The performance results of LSTM in
comparison to proposed AGNP are 4.084 and 4.013
respectively. The accuracy of the proposed method
requires further improvement.

[2] addressed traffic speed forecasting
(TSF) using GPS probe data from registered
transport vehicles on parallel multilane roads using
enhanced LSTM algorithms (PSO-LSTM and GA-
LSTM). The accuracy of speed forecasting using
MAE reached 6.55, which implies the method
requires further improvements.

Despite advances in Al-based traffic speed
prediction, many existing models do not adequately
leverage simple, interpretable statistical features
such as speed variation patterns. Furthermore, most

works rely on structured sensor data (e.g., loop
detectors), while Floating Car Data (FCD) remains
underutilized due to sparsity issues. This study aims
to address these limitations by introducing a
contrast-based feature to improve learning from
FCD. There is limited research on the integration of
contrast measures within deep learning models such
as LSTM or GRU for traffic speed forecasting. No
known models have tested the statistical contrast
feature in neural network-based traffic applications,
particularly using FCD.

The proposed model in this paper aims to
provide an accurate LSTM based model using
Contrast measure and speed. Contrast measures have
never been utilized in Neural Network and Deep
learning models. Moreover, the author has improved
the Contrast measure formula in the present study.

3. MATERIALS & METHODS

3.1 Model Design

The present research aims to incorporate
Contrast measure into LSTM model to increase the
speed prediction accuracy, resulting in the LSTM-C
model, which is explained in section 3.3.
Subsequently, the level of congestion will be
identified} using the predicted speeds.

This study employs a comparative
experimental design, building upon methodologies
from earlier traffic prediction studies (e.g.,
Majumdar et al., 2021; Gao et al., 2022), and
enhances them with a novel feature (Contrast
measure) evaluated on the same dataset to ensure
consistent benchmarking. The proposed LSTM-C
model is compared with the work of Majumdar et al.
(2021) and Gao et al., (2022). Both models are tested
using the same FCD dataset, and their results are
presented. Meanwhile, in the following sections, it is
tried to elaborate the basics of the LSTM model,
Contrast measure, and the suggested LCTM-C
model.

3.1.1 The basic of LSTM model

The LSTM model falls under the RNN model, in
which the output of the previous timestep is
considered as the input in the next. How RNN learns
is based on backward propagation through time.
RNN can comprise three layers including input
layer, hidden layer, and output layer. The major
refinement in LSTM over RNN is to add gate
structure in the cells of hidden layer as shown in
Figure 2. In fact, each cell in the hidden layer enjoys
three gates viz input gate, forgetting gate, and output
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gate are incorporated. The input of the current
hidden layer is provided with the output produced in
the previous hidden layer and the recorded cellular
information as well as the input at the current
timestamp [12] (see Figure 2). The input information
will be logged selectively into the cell state through
the input gate. What is required in the cell is
forgetting certain state information by the forget
gate. The output gate plays a part in selecting the
output result in the hidden layer.

The LSTM layer provided in our model is made up
of 128 LSTM cells, applied to the model by [10] and
[5] as well.

h, A
€. Q) ) ¢
X ¥ , >
tanh
®
fr I’ C/ . |—>
a o tanh o
h Wb | wb wb | wb
-1
: A A4 A o

Figure 2: The structure of the hidden layer [29]

How to calculate the hidden layers is illustrated by
the equations below, where W is the weight matrix,
and b is the constant.

The forget gate is calculated as ft using Eq.
1, where a nonlinear activation function o, the output
of the hidden layer at t — 1 as o,_4, and the input at
time t as x, are used.

fe = U(Wf- [og—1, %] + bf) €Y
The input gate i, is represented in Eq. 2.
ip = oW [oe—1, %] + by) (2)

C is the candidate cell information at time t,
described by Eq. 3 and the tanh function is applied
as activation function.

Ce = tanh(W,.[0,_1, %] + b.) (3)
The cell information is described by Eq. 4 as c; at
time t.

¢ = fe.Cooq + 0. Gy 4)

The output gate is defined by Eq. 5 as h;.
he = o(W,.[0;—1, %] + b,) (5)

The final output is defined by Eq. 6 as o;.
0; = h. tanh(C,) (6)

3.1.2  Definition of contrast measure

The term Contrast can be seen in image processing
field to measure the intensity between two
consecutive pixels [37]. Calculating the Contrast
described by Eq. 8 [38] requires applying the Gray
Level Co-occurrence Matrix (GLCM), which
contains information as to how frequently the two
data points with gray level values cl, c2, and the
distance d might take place. The distance in an image
could characterize a pixel and its consecutive pixel
if d =1 or two pixels apart if d=2 [15]. This will be
followed by using the GLCM amount in Eq. 7,
calculating Contrast.

CON = Z (2 = c1)*acice (7
cl,c2
Where:

# of pairs at distance d with gray level(cy,c;)

®)

a =
clez total number of possible pairs

Contrast measure formula is improved in
this paper by removing power 2 from the Eq. 7. Eq.
9 is the improved Contrast formula which can
capture increases and decreases in traffic speed data
by employing positive and negative signs of GLCM.

CON = Z (¢ —€1)ac1c2 9

cl,c2

In the traffic context, cl and c2 suggest two
different speed vectors, of which the total occurrence
in each speed pair is determined by aclc2 in Eq. 8.

Let us provide an example to better
understand GLCM matrix. Figure 3 represents a
sequence of 9 traffic speeds S=[889 108 8 9 10
10], of which the total occurrence of the pair (8,8) in
the GLCM matrix is a8,8 = (0.25).

number of pairs at distance d with gray level(c,,c;) _

a =
88 total number of possible pairs
2
==0.25
8
2
ag’g = 5 = 0.25

The total Contrast for the sequence reads CON =
+0.75.
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Figure 3. GLCM matrix for a speed sequence [37]

3.1.3  Proposed LSTM-C model

The original idea of the LSTM-C is to incorporate
the contrast as a statistical measure in a deep learning
model to enhance accurate prediction. In the LSTM-
C model presented, contrast is connected to the
output in feedforward neural network for foreseeing
the speed. The LSTM-C structure is shown in Figure
4.

As can be seen from Figure 4, the concatenation
layer is added to the LSTM-C network to predict the
traffic speed. Algorithm 1 shows the main steps of
the proposed model.

Due to structural similarity between LSTM and
GRU, the author has concatenated the Contrast
measure in GRU as well in the implementation
section. However, the GRU algorithm formulas are
not discussed in this paper as it would make this
section too long.

Algorithm 1: Traffic Speed Prediction Using LSTM-C
Input: Raw FCD

Output: Speed Prediction

1. Data Pre-processing

Data cleaning, Filter Arterial Road, Parameter
Determination

Calculate average speed for every 15-min timeslot
2. Feature Extraction

Create GLCM matrix using Eq (8)

Develop Contrast feature Eq (9)

3. Set the parameter for the network

Set the value of the hidden unit

batch size

Max epoch value

Dropout value

L2 Regularisation value to improve the LSTM
network

4. Concatenate Contrast to LSTM

5 Obtain the network output

6 Train the model

7 Apply the fine-tuning strategy

8 Test the model

9 Obtain the prediction

10 Output the prediction report

Figure 4: LSTM-C Network Model

Following prediction steps, the relevant error is
reported by means of MAE (Mean Absolute Error)
and RMSE (Root Mean Square Error). Eventually,
the speeds predicted are utilized for identifying the
congestion levels in the corresponding segments as
per the traffic index and speed ranges in Table I. If
each predicted speed falls under the same category
of the actual speed, then the identification of the
congestion level based on the predicted speed will be
very precise. The overall model workflow is shown
in Figure 5.

Data Preprocessinj
e f LSTM-C Training.
LSTM-C Testing Prediction Error

Data Preparation Initial Paramete

Mean Abs: \ l z or (MAE)
Estimatior
LSTM c SD ed
LST™M opx imal
Par: ame(e s

Predict Speed

Combin LSTM with

erial
road data
Dets Time windos
Contrast
Contrast Model

f—>  Contrast Model

Traffic Congestion
Model

Predicted Traffic
Congestion

Figure 5. The overall model workflow

Prediction Error
—> —_—

4. MODEL IMPLEMENTATION

In this section, the findings are presented,
and the performances of the proposed model will be
discussed.

4.1 Test Environment

The proposed model is tested using Python
programming language in Google Colab which
provides a single 12GB NVIDIA Tesla T4 GPU.

4.2 Pre-processing

To predict the average traffic speed, the
proposed model is applied. This is followed by
considering the traffic conditions in arterial roads in
Beijing for 24 hours and dividing the time into 96
time slots at 15-min intervals. The average speed is
computed for each timeslot.

The speed limit on the Beijing arterials
being 120 km/h, the speed range is 0<v<120 km/h
yielding 120 different observations. This leads to
computational complexity. Consequently, the speed
was split into equally spaced ranges of 5 km/h to
bring down the observations and computational
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complexity. As shown in Table 1, observations
reduction into 24 different observations has been
provided. As an example, any speed between 25 and
30 km/h is shown by traffic index 6. This step is
performed on our LSTM-C model and the model
provided by [10] and [5] as well.

Table 1: Traffic Index and Speed Ranges

Traffic Speed Range Traffic Speed Range
Index (km/h) Index (km/h)

1 0<vgs 13 60<v<65

2 5<vg10 14 65<v<70

3 10<vg15 15 70<v<75

4 15<v<20 16 75<v<80

5 20<vg25 17 80<v<85

6 25<v<30 18 85<vg90

7 30<v35 19 90<vg95

8 35<vg40 20 95<vg 100
9 40<v4s 21 100<v<105
10 45<v<50 22 105<vg110
11 50<v55 23 110<v115
12 55<vg60 24 115<vg120

The taxi trajectory data in Beijing ring road during
November 2012 served as the FCD data, obtained
from 12,600 taxis. The features which were used for
the experiment include speed, latitude, longitude,
date and time. A sample of the dataset is shown in
Table 2.

The total number of segments, being 7128,
is lowered to 6926 following data filtering (Table 3).
This is followed by dividing the 6926 roads into two
parts for the sake of testing and training during
timeslots 28 to 38 and 28 to 42 to roll time window
of 8 and 12, respectively. The LSTM model
provided by [10] and [5] applied loop detector data;
and for comparing accuracy all models will be
implemented employing the same FCD, accordingly.

Table 3: Number of Test and Train Samples
Number of samples
Test
1386

Total
6,926

Train
5,540

4.2.1 Data of speed prediction in a road segment

In order to predict the speed of the next timestep in
a single road segment, a time series sliding window
is adopted to create overlapping sampling. As
demonstrated in Figure 6, the window size is 6,
which refers to the average speed of a road segment
in 6 timesteps (starting timeslot=85). These speeds
are used to predict the speed of the next timestep,

which is the traffic speed in the next 5 minutes. In
order to evaluate the traffic speed prediction method,
the FCD dataset is divided into test set (20% of
actual data) and train set (80% of actual data). The
rolling window size of 6 and 8 are demonstrated in
Figure 6. for two random road segments.

Rolling window size =6

-5 t4 3 -2 1 t t+1

S1 S2 S3 Sa Ss Se S7 S8 So S10

Rolling window size =8

-7 -6 -5 t-4 t-3 t-2 t-1 t t+1

S1 S2 S3 S4 Ss Se S7 Ss l So S10

Figure 6: A sample of time series data sliding window
(rolling window size of 6 and 8).

In time window size of 6, speed data of previous 6
timesteps are extracted (S_1 to S_6) to predict the
speed at next timestep (t+1), which is S_7. Similarly,
in time window size of 8 the speed data of previous
8 timesteps are extracted to predict the speed at the
next timestep. The same process is done for
timesteps 12, and 18.

Figure 7 illustrates the average speed of all road
segments in FCD (Beijing) from timeslot 73 (6:00
AM) to timeslot 181 (3:00 PM). It helps to depict the
pattern in traffic speed during a specific time.

gtk G
il

Timesiot

Figure 7: Average of traffic speed of all road segments in
FCD (Beijing) from timeslot 73 (6:00 AM) to timeslot
181 (3:00 PM)

The author further illustrates the average speed of
random 100 road segments between timeslot 73 to
181 (6:00 AM to 3:00 PM) in Figure 8. The dark red
colour indicates low speed traffic, while the green
colour indicates higher speed.
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Figure 8: A sample of traffic speed data of random 100

road segments between timeslot 73 to 181 (6:00 AM to

3:00 PM) in two FCD datasets (a) FCD of Beijing, (b)
FCD of Xuancheng

4.3 Hyperparameter

In order to obtain accurate predictions, it is
required to set up two types of parameters: (1)
Parameters for the input preparation, (2) hyper-
parameters for the model.

(1) Parameters for the input preparation
The parameters include time intervals such as 5
minutes, and 15 minutes. This study follows [29] and
set time intervals, which includes 30 minutes, 40
minutes, 1 hour, and 1 hour and 60 minutes, which
refers to rolling window size 6, 8, 12, and 18,
respectively.

(2) hyper-parameters for the model

The optimized Deep Learning-based structure is
determined by evaluating its performance to identify
the configuration which yields the least RMSE. In
this study, the decision to opt for an LSTM layer and
two FNN layers is based on the consideration that an
excessive increase in the number of layers can lead
to overfitting problems. To discover the optimized
structure, a range of scenarios is defined by varying
the number of hidden layers and the number of
neurons within each hidden layer. These scenarios
are presented in Table 4.

Table 4: Range of the parameters used to find optimal

parameters
Hyperparameter LSTM-C model
Optimiser Adam
Learning rate 0.001

Activation function ReLU in Feedforward NN layers

Linear activation in output layer

Dropout rate 0.2

Batch size 64

Hidden layer size 128

Epoch 100

Loss Mean squared error

L2 Regularization 0.08

In order to find the optimal optimizer, a grid
search analysis is conducted. The number of neurons
in the LSTM hidden layer is one of the following:
16,32, 64, 128, or 256. The following dense layer
(First FNN) has one of the number of neurons as 50
or 40, and the second dense layer (second FNN) has
a smaller number of neurons than the previous dense
layer. The optimized learning rate is one of the
following: 0.1, 0.01, 0.001, which are used in similar
studies.

For setting batch size, the best value is
found based on one of the following numbers: 32,
64, 128. Rectified Linear Unit (ReLU) is utilized as
the activation function in the training. ReLU is
widely used in ANN and DL applications. It does not
require significant computational resources and
straightforwardly produces the maximum value
between zero and the input value.

Following a series of trial-and-error
experiments, the optimal hyperparameters for the
models to converge were determined as follows: a
learning rate of 0.001, a batch size of 64, and 128,
50, and 30 neurons for each hidden layer,
respectively. The dropout rate is set to 100 epochs.
Moreover, to find a proper number of epochs early
stopping technique is used. Specifically, the stop
early strategy will terminate when the validation loss
increases in 5 consecutive epochs. In addition, L2
regularization is used to avoid the problem of over-
fitting.

The grid search is performed with various
optimizers (Table 5). According to the results of grid
search analysis, the RMSE of using RMSprop,
Adam, Adadelta, and Adagrad as optimizers on the
suggested Deep Neural Network structure are
presented in Table 4. Based on the analysis,
Adadelta and Adagrad have similar performance
with RMSE of 6.871, and 6.641, respectively. Since
Adam optimizer recorded the least RMSE, this study
used Adam optimizer for model development and
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evaluation. The optimal structure refers to the
specific number of neurons present in each hidden
layer (LSTM, FNN1, FNN2).

Table 5: Using different optimizers on the model. The
optimal structure refers to the number of neurons at each

layer.
Optimizer Name Optimal Structure RMSE (km/h)
RMSProp 32/40/30 7.473
Adam 128//50/30 4.98
Adadelta 64/50/20 6.871
Adagrad 64/50/30 6.641

The hyperparameters of the proposed
model are defined in Table 6.

4.4 Performance Measure

The model suggested is measured in terms
of performance employing MAE (Mean Absolute
Error), RMSE (Root Mean Square Error) and Mean
Square Error (MSE) and Mean Absolute Percentage
Error (MAPE). The aforementioned model is
weighed up with the model already presented by
[10]. Both models are exercised utilizing the same
FCD and 15-min time window.

The calculation formula for MAE is represented in
Eq. 10.

(10)

n
1
wa = (5)+ Db
) Dl
L

Where y; is the actual speed value for the it
road segment, X; is the value predicted for the i road
segment, and n is the total number as to the speed
values predicted. MAPE is calculated by Eq. 11.

MAPE =+ 3.

(Iactual—PredictedI
n

lactual| ) *100 (11)

The average deviation between the
predicted speeds and actual values is considered as
MAPE. In the same manner as MAE, the average
magnitude of error between predicted values and
actual values is calculated. Percentages being
simpler for people to understand MAE, MAPE
enjoys a clear interpretation as well. Meanwhile,
because of using absolute value, MAPE and MAE
are resistant to outliers’ effects. Eq. 12 describes the
calculation of the RMSE.

™ ,(Predicted — actual)?

RMSE = J =
n

(12)

On the basis of Eq. 12, RMSE is the square
root of the average in the squared differences
between the suggested speed value and the actual
one.

MSE, defined in Eq.13, determines the sum
of squared difference between actual values and
suggested ones.

n
1
MSE = . Z(Predicted —actual)?> (13)

12
5. RESULTS

The present paper attempts to predict the
traffic speed through the proposed LSTM-C model,
spotting the level of traffic congestion utilizing the
predicted speed. In the following section, the results
obtained from predicted speed will be reported.

5.1 Speed Prediction

For the sake of prediction, both the average
traffic speed and Contrast measure are provided by
the proposed model. Each day (24 hours) will be
divided into 96 timeslots starting 00:00 am and each
timeslot being 5-min. For LSTM-C sequence, the
lengths of rolling window size are set to three values
(i.e., 6,8, 12, and 18). When the rolling window size
is set to 6, the previous 6 timesteps (t-6... t) will be
utilized for predicting the subsequent timestep (t+1).
This is the case with the rolling time window if set
to 18 for foreseeing the following timestep (t+1)
employing the previous 18 timeslots (t-18, ..., t).
ACC measure in Table 7 refers to (100 — MAE).

Moreover, the proposed model is applied
to GRU (Gated Recurrent Unit) called GRU-C and
the results are compared to the other models in Table
7. The proposed LSTM C is believed to be
outperforming the LSTM model presented by [10]
and [5]. The results taken from all four models,
namely LSTM-C, GRU-C, LSTM [10], LSTM [5]
and GRU, are compared considering 6, 8, 12 and 18
rolling window size. In addition, GRU, like LSTM,
is an RNN-based model, of which the
implementation results are quite similar to LSTM.
Mean Absolute Error (MAE) for LSTM-C, GRU-C,
LSTM [10,5] and GRU are displayed as 3.303,
3.277,5.094, 4.918 and 5.199, respectively, with the
rolling window size, equaling to 6. As for the rolling
window size of 8, the MAE rises to some degree in
LSTM-C, GRU-C, LSTM [10], LSTM [5] and GRU
up to 3.614, 3.304, 5.308, 5.078 and 5.417,
respectively.  While the best performance
measurement refers to the rolling window size of 6,
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the results show that once rolling window size rises
to 12 and 18, LSTM-C outperforms GRU-C,
demonstrating the LSTM-C capability for predicting
longer rolling window size. The average of actual
and predicted traffic speed is sketched in Figure 9 for
LSTM-C, GRU-C, LSTM [10], LSTM [5] and GRU
models.

Speed Prediction using LSTM-C (rolling window size = 6) Speed Predictio
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significant, the speeds predicted show close
proximity to the actual speed, developing the
likelihood of putting the predicted speed in the exact
class as to the actual speed.

As stated by Table 9, the RMSE, MAE and
MSE of LSTM-C are equal to 0.534, 0.259 and
0.285, respectively, with the rolling window size
being 6. What is more, the congestion identification

w.. for greater rolling window sizes of 8,12 and 18 are

determined. Despite the slight rise in measurements

i as the rolling window size grows, the performance

of identifying congestion level is still high. By way
of example, the results obtained from RMSE, MSE
and MAE suggest 0.625, 0.391 and 0.347

" respectively for the rolling window size of 18.
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Figure 9: The average speed prediction for rolling
window size 6 for LSTM-C, LSTM [10], LSTM [5], GRU-
Cand GRU

As shown in Figure 9, the accuracy of
LSTM-C model for predicting the future speed
patterns is to a high degree and mostly identifies the
upcoming traffic speed correctly.

5.2. Propagation of Traffic Congestion

In the proposed LSTM-C model, the
average traffic speed is predicted accurately. This
stage aims to identify congestion level of traffic
based on the average predicted speed by the
proposed LSTM-C and will be compared with the
congestion level of the actual average traffic speed.
Table 8 shows the classification of traffic congestion
level in Beijing arterial roads.

Table 9 indicates the results for spotting the
congestion level of speeds (predicted as well as
actual). The LSTM-C model accuracy being

In addition, the speed prediction results
produced from LSTM model provided by [10] are
employed for identification of congestion level in
roads. The model accurately measured by the rolling

- * window of 6 includes 0.723, 0.522, 0. 0.451 for

RMSE, MSE and MAE, respectively. Concerning
rolling window of 18, the accuracy
measurements for RMSE, MSE and MAE represent
0.782, 0.611 and 0.482, respectively. The outcome
achieved from spotting congestion level vividly

‘ . divulges that the LSTM-C is particularly effective
detecting the level of congestion.

5.3. Speed prediction in a road segment

Figure 10 shows the comparison between
the real data (actual) and the predicted data of each
model. This comparison is formed on the road
segment number 1 and number 1000, considering the
rolling window size being 6, in which road segment
#1000 is specified by little changes in speed,
whereas segment #1 suggests large and frequent
speed fluctuations.
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Figure 10. Comparison of predicted speed and RMSE
between proposed model and benchmark

To predict the speed at the next timestep
(Rolling window size = 6), 6 timesteps are applied,
where the left part exhibits Road segment #1 with
large and frequent speed fluctuation. Yet, this is not
the case with the right part in that speed shows
relatively low changes when the road segment is
#1000.

5.4 Discussion

The study by [10] proposed single variable
(traffic speed) and multi variables (traffic speed and
vehicle headway) as features to their LSTM model.
They concluded that multivariate LSTM does not
add any significant contribution to adequately
predicting traffic speed compared to single variate
LSTM. However, in this study, concatenating
additional features to an LSTM-based model
improved the speed prediction, which shows the
relevancy of Contrast Measure and its effect in the
proposed model which helps the model to gain more
insights and improve the accuracy. Concatenating
the relevant features in the model can potentially
improve the accuracy of model, or it can introduce
more noise which leads to degrading the
performance of model. Therefore, this study
proposed and investigated the use of Contrast
Measure and based on the results, the proposed
Contrast Measure is able to help model’s ability to
learn meaningful patterns from changes (increasing
and decreasing) in speed.

This result directly addresses the research
objectives of improving accuracy through additional
feature engineering and enhancing performance
using FCD. Each major objective, including the use
of LSTM-C, integration of contrast measure, and
comparison with existing models, has shown to
positively impact the accuracy of predictions. The
proposed  model  consistently  outperforms
benchmarks across MAE, RMSE, and MAPE,
validating the study's hypoth Compared to the state-
of-the-art models in literature (LSTM, GRU, CNN-
GRU, AGNP, D-LSTM), LSTM-C offers a simpler
yet more interpretable framework while achieving
superior accuracy with limited input features. This
supports the notion that statistical enhancements like
contrast can offer performance gains without relying
on excessive data fusion.

This study focuses solely on short-term
speed prediction using historical traffic speed and
contrast features derived from FCD. External
influences such as weather, road blockages, and
driver behavior were not modeled. Moreover, the
model’s performance was tested only on Beijing
FCD, which may affect generalizability to other
cities or countries.

6. CONCLUSIONS AND FUTURE WORK

This paper presented an improved LSTM-
based model, called LSTM-C, to predict average
traffic speed in a 5-min time window using FCD in
Beijing. A total of 6926 road segments were used in
the experiment. The contrast measure was
incorporated into LSTM to enhance prediction
accuracy. In the traffic context, contrast captures
increases and decreases in speed using positive and
negative signs. MAE (Mean Absolute Error), RMSE
(Root Mean Square Error), and MSE (Mean Square
Error) were used to evaluate the performance of the
proposed model. Experimental results show that
LSTM-C achieves up to 96.697% accuracy (based
on MAE) with a rolling window size of 6,
demonstrating the strong potential of LSTM in
traffic prediction. Moreover, the model was also
applied to GRU (Gated Recurrent Unit), termed
GRU-C, achieving 96.723% accuracy for the same
window size. The speed prediction results were
compared with the LSTM model by [10], which
reached 94.906% under identical settings.
Furthermore, the predicted speed from LSTM-C was
used to identify congestion levels, achieving high
precision with MAE = 0.259 (rolling window = 6).
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The proposed method relies solely on
location, speed, and time. For future work, we plan
to enhance the analysis by integrating multi-source
traffic data. Given the volume of updates on social
media platforms, user-generated data—such as
weather conditions or reported congestion—can
improve accuracy. Additionally, incorporating road
network information, including speed limits, lane
closures, and other restrictions, could further refine
predictions. Another potential improvement is
exploring longer time intervals by combining LSTM
with generative models that simulate varied traffic
behavior over time.

This study marks the first known
integration of an improved contrast measure within
an LSTM-based traffic prediction model using FCD.
It shows that statistical contrast features can enhance
deep learning performance in traffic forecasting. The
model outperforms two established LSTM
benchmarks and proves applicable to GRU,
validating a novel feature engineering method to
address FCD limitations.

We also plan to integrate multi-source data,
including weather and social media content. Future
exploration may involve graph-based neural
networks and hybrid generative models to capture
longer time dependencies and contextual patterns.
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Table 2: The dataset input features
Vehicle ID | Date & Time Longitude Latitude Speed Direction | Status
426242 20121101051340 116.3610535 39.6585464 17 342 1
426242 20121101051430 116.3607025 39.6595154 25 166 1
426242 20121101051526 116.3611298 39.6567192 0 162 1
426242 20121101051621 116.3611298 39.6567574 6 342 1
Table 6: LSTM-C, LSTM, and GRU Hyperparameter
Hyperparameter LSTM-C LSTM GRU
Optimiser Adam Adam IAdam
Learning rate 0.001 0.001 0.001
Activation function ReLU in Feedforward NN |ReLU in Feedforward [ReLU in Feedforward
layers NN layers NN layers
Linear activation in output |Linear activation in Linear activation in
layer output layer output layer
Dropout rate 0.2 0.2 0.2
Batch size 64 64 64
Hidden layer size 128 128 128
Epoch 100 100 100
Loss Mean Squared Error Mean Squared Error ~ |Mean Squared Error
L2Regularization 0.08 0.08 0.08

Table 7: Performance comparison of the proposed LSTM-C model with LSTM [10], LSTM [5], GRU-C and GRU

Input units (rolling window)
6 8 12 18
MAE LSTM-C 3.303 3.614 3.489 4.075
GRU-C 3.277 3.304 3.631 4.238
GRU 5.199 5.417 5.094 6.086
LSTM [5] 4918 5.078 4.886 5.536
LSTM [10] 5.094 5.308 5.227 5.870
RMSE LSTM-C 4.92 5.614 5.118 5.810
GRU-C 4.869 5.044 5.319 6.112
GRU 7.218 8.240 7.441 8.686
LSTM [5] 7.014 7.641 7.144 7.932
LSTM [10] 7.11 8.008 7.512 8.427
MSE LSTM-C 24.227 31.515 26.192 33.759
GRU-C 23.709 25.442 28.291 37.352
GRU 52.098 67.891 55.371 75.440
LSTM [5] 49.194 58.387 51.044 62.911
LSTM [10] 50.545 64.129 56.424 71.006
MAPE LSTM-C 1.860 2.113 1.785 2.210
GRU-C 1.773 2.171 1.868 2.287
GRU 2.577 3.034 2.609 3.242
LSTM [5] 2.501 2.965 2.438 3.172
LSTM [10] 2.564 2.958 2.517 3.290
ACC LSTM-C 96.697 96.386 96.511 95.925
GRU-C 96.723 96.696 96.369 95.762
GRU 94.801 94.583 94.906 93.914
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Input units (rolling window)
6 8 12 18
LSTM [5] 95.082 94.922 95.114 94.464
LSTM [10] 94.906 94.692 94.773 94.13
Table 8: Classification of traffic congestion level in Beijing arterial roads [38]
. . Medium Severe
Grade Fast Smooth Light Congestion Congestion Congestion
Speed 5585 65<7 < 85 45<v < 65 25<v < 45 v <25
Table 9: Congestion level identification of the proposed model with LSTM model [10]
Input units
6 8 12 18

MAE LSTM-C 0.259 0.211 0.307 0.347

GRU-C 0.253 0.267 0.324 0.347

LSTM [10] 0.451 0.447 0.453 0.482
RMSE LSTM-C 0.534 0.475 0.586 0.625

GRU-C 0.527 0.547 0.602 0.629

LSTM [10] 0.723 0.765 0.743 0.782
MSE LSTM-C 0.285 0.225 0.343 0.391

GRU-C 0.278 0.299 0.324 0.396

LSTM [10] 0.522 0.585 0.552 0.611
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