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ABSTRACT 
 

Traffic congestion poses significant challenges to urban mobility and transportation infrastructure worldwide. 
Accurate prediction of traffic speed and timely identification of congestion levels are crucial for effective 
traffic management and planning. Owing to the widespread adoption of telecommunication technologies, 
various traffic datasets have become available, such as Floating Car Data (FCD), which collect real-time 
information from vehicles in transit, providing a rich and dynamic dataset for analyzing traffic speed. 
However, predicting traffic speed and identifying congestion levels using FCD remains challenging due to 
the complexities of traffic dynamics and the non-linear nature of traffic flow. In response, multiple solutions 
have been proposed using deep learning methods. This study addresses the persistent issue of FCD data 
sparsity and its limitations in providing consistent, accurate traffic speed predictions. The present work 
focuses on constructing an LSTM-based method, called LSTM-C, to predict traffic speed. In the proposed 
LSTM-C method, a new Contrast measure is introduced and incorporated to enhance the prediction of traffic 
speed across candidate road segments. The LSTM-C model demonstrates a significant improvement in both 
prediction accuracy and congestion level identification, outperforming existing models such as those by 
Majumdar et al. and Gao et al. Subsequently, traffic rules are applied to the predicted speeds to determine 
congestion levels for each segment. The experimental results demonstrate that the proposed model achieves 
a high level of accuracy, reaching up to 96.697%, which represents an improvement of 1.6% and 1.79% in 
accuracy compared to the two benchmark LSTM methods employed for speed prediction. 

Keywords: Traffic Speed Prediction, Short-Term Speed Prediction, The Long Short-Term Memory (LSTM), 
Deep Learning, Data-Driven Traffic Analysis  

 
1. INTRODUCTION  
 

Today, traffic congestion, as a modern 
phenomenon, has globally become a serious problem 
in many urban areas, influencing people’s lives 
economically, culturally, etc. Among problems 
caused by traffic congestion are people's mobility, 
timing, life quality as well as traffic planning 
systems and management. Such an issue is even 
becoming more critical owing to the growing 
numbers of vehicles, causing air pollution to be a 
serious problem in various corners of the world. 
Different organizations and institutions including 
governments and universities together with Research 
and Development (R&D) sectors have dealt with this 
issue, striving to alleviate the congestion problem 
through using technologies for monitoring and 
managing traffic [1]. Machine Learning methods 
play a key role in Data-driven traffic data analysis. It 
ought to be pointed out that all machine learning 

methods demand data for the purpose of training and 
testing the prediction models [2-6]. Affiliated 
organizations need to gather an excess of traffic data 
from different sources for analysis [7,8]. Various 
technologies such as video cameras, inductive loop 
detectors and other static sensors may be fitted in at 
certain fixed places on roads for detecting traffic 
state (e.g., flow velocity and traffic density) [9]. 
Whereas such devices provide sufficient and reliable 
traffic data to be used for managing traffic, these 
methods fail to cover all roads due to entailing a great 
amount of infrastructure deployment apart from high 
maintenance costs. Yet, it is suggested to employ 
Floating Car Data (FCD), which is a convenient and 
cost-effective method for collecting traffic data. 
There is no need to use any specific device since 
FCD offers good coverage across road networks. 
However, the limitation of FCD is data sparsity. 
Despite growing attention to FCD-based traffic 
analysis, many current models still underperform 
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due to their inability to fully capture abrupt or subtle 
shifts in traffic speed caused by dynamic, nonlinear 
flow behavior. This gap necessitates new solutions 
that enhance pattern recognition without relying on 
costly hardware-based data sources. Motivated by 
the significant economic and environmental 
challenges posed by traffic congestion in urban 
areas, and the limitations of FCD, this research 
intends to enhance traffic speed prediction using an 
improved LSTM-based algorithm (LSTM-C) to 
better manage congestion using FCD. 

This article aims to predict traffic states (in 
particular traffic speed as it has direct relationship 
with traffic congestion levels) of road segments 
using (FCD) of taxis in Beijing, China. Time window 
of 15-min is applied for the prediction horizon. It 
should be noted that the traffic speed will be 
predicted through using an improved LSTM (Long 
Short-Term Memory) algorithm. In the proposed 
method, Contrast measure formula is improved by 
the author and then it is incorporated in the LSTM 
(called LSTM-C) to enhance the traffic speed 
prediction. Afterwards, the predicted traffic speed 
will be employed for identifying traffic congestion 
level. The accuracy of the proposed method can be 
compared with the work of Majumdar et al., [10] and 
Gao et al. [5] as our benchmarks. These 
(benchmarks) models are re-run employing the same 
FCD and 15-min time window, given the accuracy 
of 94.906% and 95.082% respectively. The proposed 
method accuracy is up to 96.697%, proving LSTM 
strengths and potential in the traffic prediction field. 
The prediction of the average speed of the vehicles 
passing corresponding road segments could be of 
help for identifying traffic congestion. We 
hypothesize that incorporating an improved contrast 
measure into LSTM will enhance short-term traffic 
speed prediction accuracy using FCD data, and the 
research question is whether this integration 
significantly improves prediction accuracy 
compared to standard LSTM architectures. 

The contributions of this research are listed as 
follows: 

1. Employing the deep learning model on traffic 
state prediction. 

2. Introducing a new Contrast measure for 
capturing traffic speed changes more effectively 
(Contrast measure formula is improved by the 
author)  

3. Construction of a new speed prediction model 
called LSTM-C that concatenates Contrast measure 
in LSTM.  

4. Validating the proposed LSTM-C model  

5. Comparing the model with a latent LSTM 
model Majumdar et al. [10] and Gao et al., [5].  

6. Identifying the traffic congestion level on the 
basis of the predicted speed. 

The remainder (of the paper) is organized as 
follows: Section 2 reviews the related work on traffic 
seed prediction. Section 3 describes the model 
design. In Section 4, model implementation is 
discussed. This is followed by experimentation 
results in Section 5. Finally, Section 6 concludes the 
paper, suggesting the future research direction. 

 
2. RELATED WORK 
 

The leading idea in the present article is to 
propose an improved LSTM model called LSTM-C 
for predicting the average traffic speed. This will 
then be followed by identifying the level of 
congestion on the basis of the traffic congestion 
standard in Beijing. In accordance with research 
available, three main categories are considered to 
model traffic state prediction employing Artificial 
Intelligence (AI) with Probabilistic Reasoning, 
Shallow Machine Learning, and Deep Learning 
(DL) as shown in Figure 1 [11]. As the proposed 
method is built upon deep learning (DL), the existing 
literature predominantly emphasizes DL-related 
approaches. 

 
Figure 1: Classification of Artificial Intelligence 

techniques for traffic state prediction [11]. 

Probabilistic reasoning are approaches that 
involve the use of probability and logic to deal with 
uncertainty. Several relevant algorithms are used for 
predicting traffic state.  

The researchers have employed Fuzzy logic 
methods to predict traffic state in a number of studies 
[12-14]. Hidden Markov Model (HMM) is said to be 
the next algorithm category in probabilistic 
reasoning. As a model, Markov chain recognizes 
probabilities of sequences in state variables which is 
commonly used for modelling time-series data. 
HMM, applied in various studies, distinguishes 
traffic patterns in congestion prediction [13, 15]. A 
hybrid model composed of HMM and contrast 
measure was suggested to foresee traffic states in 
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roads. Whereas contrast measure may be used as a 
useful statistical technique for capturing traffic state 
variation, HMM’s generalization is believed not to 
be sufficiently strong. Gaussian processes (GPs), as 
another group of probabilistic reasoning models, are 
said to be flexible non-parametric models [16]. 
Meanwhile, GPs may be employed to model 
complex time-series. Three data sources including 
trajectory data and speed data as well as traffic-
related tweets were used in a study by [17] for 
predicting road traffic speed. Incorporating three 
sources of data seems to be interesting, whereas the 
model structure is relatively complex. The 
probability of traffic state distribution was presented 
in another study [18], applying EM algorithms for 
choosing variance parameters and mean of Gaussian 
distribution. Eventually, it is time for Bayesian 
network (BN), as another category of Probabilistic 
reasoning algorithms, directed graph models and 
capable of presenting conditional independencies 
among random variables. It should be pointed out 
that Graph Theory and Probability Theory are 
combined for building BN to direct key issues in 
engineering and applied mathematics [11,19]. In a 
study [20], BN is used to predict and detect traffic 
congestion, where three sources of data (i.e., Loop 
detector, incident data and weather information) 
were applied in the proposed method. 40 scenarios 
were presented on the basis of congestion occurrence 
probabilities. 

In Shallow Machine Learning (SLM) 
category of algorithm, which is composed of 
Traditional and basic ML algorithms, features 
cannot be extracted from the input, and therefore 
need to be defined beforehand. Once the feature 
extracted, model training may be used. ANNs, being 
a type of model for machine learning (ML), are 
relatively competitive to conventional regression 
and statistical models in terms of utility [21].  Owing 
to its ability for efficient forecasting and easy 
implementation, ANN is employed as one of the 
most frequently used algorithms in traffic state 
prediction. In various researchers, ANN-based 
algorithms such as Feedforward neural network 
(FNN), and Backpropagation neural network 
(BPNN) in traffic management were effectively 
applied. A method was suggested in [22] using 
BPNN for foreseeing traffic flow and obtaining the 
congestion grade judgment. The data generated 
based on SUMO traffic simulation data as well as the 
proposed congestion evaluation algorithm based on 
road occupancy (CRO) were compared considering 
three other evaluation methods including congestion 
evaluation based on mileage ratio of congestion 

(CMRC) along with road speed (CRS) and vehicle 
density (CVD). The results obtained divulged that 
the congestion degree of roadways was correctly 
expresses bearing less training cost with low 
processing time of real-time processing. In another 
study [23], a hybrid NN was proposed via bringing 
together an adaptive prediction algorithm (Adaptive 
RMSE) with BPNN. The data gathered in the present 
paper is based on real-time GPS data, updating the 
database, yet the data increment effect in the 
accuracy was not elaborated. One of the merits of 
applying ANN algorithms is that the data analysis is 
flexible and capable of handling multidimensional 
problems effectively. Each layer in the artificial 
neurons may be modified on the basis of input data. 
Enjoying flexible structures for capturing complex 
nonlinear behaviors, ANNS are believed to be 
effective in recognizing and modeling patterns for 
diversity of road types. However, for ANN to be 
increased in performance, large datasets are required 
to add complexity. Regression, as a statistical 
method used in data science and ML for different 
tasks including prediction, forecasting, and time 
series modeling, is employed to model the 
relationship between input and output numerical 
variables. Numerous types of regression including 
linear regression and logistic regression are at work. 
For predicting the traffic flow, such multiple 
machine learning algorithms as Linear Regression, 
Gradient Boosting as well as Random Forest, and 
two DL models were applied [24]. Having carried 
out on public dataset derived from induction loops, 
the algorithms obtained similar results, where Linear 
Regression had the lowest performance accuracy yet 
requiring less training time compared to other 
models. In spite of producing good results, the traffic 
flow prediction accuracy could possibly increase 
when using additional features. [25] suggested using 
a framework for foreseeing traffic congestion 
through exploring correlation among roadway 
congestion and energy usage. In a study of traffic 
speed prediction [26], the researchers integrated the 
spatiotemporal correlation, comparing linear 
regression model and LSTM model. The results 
revealed that the LSTM model outdid other models. 
Regression techniques are believed to have yielded 
favorable results in predicting time series problems 
including traffic forecasting and management. 
Linear time series are effective, yet normally failing 
to elaborate certain data aspects. Hence, such models 
do not seem to be reliable for nonlinear datasets. As 
a supervised learning method, decision tree is 
applied for prediction and classification, using a set 
of if-then-else conditions for learning from data as 
well as employing all features present in data for a 
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series of decision-making. Multiple decision tree 
(known as Random Forest) proves to occasionally 
produce effective results. Random Forest provides 
decisions trees, comprising the results for making 
the final decision on the basis of the majority. In the 
study done by [27], a Convolutional Neural 
Network–Gated Recurrent Unit (CNN-GRU) was 
introduced to foresee traffic speeds in the three lanes 
as to the same road segment. Compared to Linear 
Regression model, this method is said to have 
yielded better results. A random-forest-based model 
in a study by [28] was suggested, in which a 
combination of Classification and Regression Trees, 
called CART, was chosen for traffic congestion 
prediction. The researchers utilized a number of 
variables including weather conditions, time, road 
quality and holiday in the model. The data is 
classified by decision tree via learning simple 
decision rules considering one or more input data. 
Nevertheless, decision tree normally provides binary 
results, being not suitable for foreseeing traffic 
congestion. 

DML is in fact the deep ANN, showing 
several hidden layers on NN. When it comes to 
discussing SML, there is only one hidden layer, yet 
with several hidden layers in DML. Such hidden 
layers, being units of nonlinear process units, are 
applied for extracting features and transforming 
data. Note that in DML, diverse traffic data may be 
transformed into feature vectors or patterns in a 
certain time limit [11]. As a result, DML enjoying 
great strengths is the dominant method in TSP with 
limited collection time horizon into patterns or 
feature vectors. DML has just recently become 
popular in studies involving predicting traffic 
congestion. This section will discuss DML 
algorithms applied in TSP.  By way of example, 
Convolutional neural network (CNN) can be said to 
be one of the common DML algorithms in TSP, 
having wide usages in processing images and 
computer vision. CNN could process traffic data 
effectively when taking traffic data as a time-space 
(2D) matrix. The matrix with time-dimension 
features is connected with traffic information of the 
roads. In a timestamp among all roads, the matrix 
with space-dimension features is linked with the 
traffic flow information [29]. Therefore, the traffic 
state variables as to roads may at certain timesteps 
be foreseen by CNN. Following extracting the time-
space features in input data, one can predict traffic 
state via a full connection layer. The study done by 
[30] divulged that compared to the first matrix 
dimension representing the temporal feature, the 
second shows average traffic speed. In fact, the false-

positive rate as well as detection rate was adopted for 
different dataset partitions. Nonetheless, we can 
gauge traffic speed through only 3 levels in traffic 
congestion. They include heavy traffic (0-20), 
moderate traffic (20-40), and free flow traffic (>40), 
respectively. Multiple convolutional operations are 
used by [31] for designing multiscale traffic patterns 
and temporal dependencies alike by means of video 
surveillance data. In the paper, the definition of 
congestion level is provided as the average travel 
time for that segment at each timeslot, to be 
compared with the prediction of PCNN congestion 
level. Recurrent Neural Networks (RNNs), as 
another significant algorithm in DML, may help to 
learn Spatiotemporal features. As a result, it is 
suggested to employ RNN as a DML prediction 
model, where the output of the previous timestep 
functions as the input in the next timestep. 
Backpropagation through time is the basis of how 
RNN learns, having an input layer and hidden layer 
as well as output layer. The RNN with two variants 
is known as LSTM and GRU. In study by [32], a 
deep stacked bidirectional and unidirectional LSTM 
named SBU-LSTM was suggested for predicting the 
traffic speed by means of fixed-position sensors. In 
spite of providing good accuracy performance for 
speed prediction, SBU-LSTM fails to identify the 
traffic congestion levels. [33] presented a Res-
RGNN (Residual Recurrent Graph Neural 
Networks) for predicting traffic speed including loop 
detector data. Res-RGNN, as a hybrid algorithm of 
GRU and Graph convolution, models the direct 
relationships between historical and future time-
steps utilizing gating mechanism. Despite Res-
RGNN obtained good performance results, it is still 
felt necessary to investigate the spatiotemporal 
features learned by MRes-RGNN for finer 
interpretability. In another study, a Speed Prediction 
of Traffic Model Network (SPTMN) was proposed 
based on both Graph Convolution Network (GCN) 
and Temporal Convolution Network (TCN), where 
loop detector data was applied to test the model [34]. 
In another study conducted by [29], traffic speed was 
projected employing such various algorithms as 
CNN, LSTM and GRU, where the predicted speed 
was exercised to recognize the level of congestion. 
They used HMM-based map-matching to 
approximate the average traffic speed as a pre-
processing step prior to forecast. It ought to be 
pointed out that the LSTM model accomplished the 
highest performance in which the best results for 
window length of 8, MAE, RMSE and MSE include 
1.45, 6.08 and 36.97, respectively. Research carried 
out by [35] put forward a traffic congestion model 
applying attention-based LSTM via fixed-position 
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sensors, revealing how a specific traffic state is of 
significance to the entire traffic flow and implying 
further contextual association. Nonetheless, this 
model fails to have desired results due to 
emphasizing on traffic flow rather than speed 
prediction, as an effective method for predicting 
congestion. Gao et al. recommended a traffic 
forecasting model that extracts traffic flow pattern 
from five loop detectors, which is followed by 
employing LSTM for prediction [5]. The method 
proposed is formulated on relationship between flow 
and speed in traffic flow theory, which is not in the 
scope of the present study.  Another study by [10] 
described a model for traffic speed forecast, 
generating the congestion level through LSTM, 
utilizing loop detector data for experimentation as 
well as applying RMSE to measure performance, 
reaching 84–95%. The serous disadvantage is the 
absence of numerical experiment to identify 
congestion level; therefore, it just sufficed to present 
visual congestion propagation. A study by [6] 
proposed a deep learning model based on LSTM 
networks for short-term traffic speed forecasting 
using GPS-monitored data. Although the authors 
mention tuning hyperparameters, details about the 
optimization process are limited. Moreover, the 
exact short-term prediction horizon used for the 
implementation is not specified. D-LSTM (Long 
Short-Term Memory with Dynamic Time Warping) 
model was introduced for short-term road traffic 
speed prediction [36] using GPS positioning data. 
While the results achieved good performance details 
about hyperparameter tuning and sensitivity analysis 
are not explicitly discussed. A study by [3] presented 
an attentive graph neural process AGNP method for 
network-level short-term traffic speed prediction and 
imputation. The approach combined the strengths of 
Gaussian processes GPs and graph neural networks 
GNNs. The performance results of LSTM in 
comparison to proposed AGNP are 4.084 and 4.013 
respectively. The accuracy of the proposed method 
requires further improvement.  

[2] addressed traffic speed forecasting 
(TSF) using GPS probe data from registered 
transport vehicles on parallel multilane roads using 
enhanced LSTM algorithms (PSO-LSTM and GA-
LSTM). The accuracy of speed forecasting using 
MAE reached 6.55, which implies the method 
requires further improvements.  

Despite advances in AI-based traffic speed 
prediction, many existing models do not adequately 
leverage simple, interpretable statistical features 
such as speed variation patterns. Furthermore, most 

works rely on structured sensor data (e.g., loop 
detectors), while Floating Car Data (FCD) remains 
underutilized due to sparsity issues. This study aims 
to address these limitations by introducing a 
contrast-based feature to improve learning from 
FCD. There is limited research on the integration of 
contrast measures within deep learning models such 
as LSTM or GRU for traffic speed forecasting. No 
known models have tested the statistical contrast 
feature in neural network-based traffic applications, 
particularly using FCD. 

The proposed model in this paper aims to 
provide an accurate LSTM based model using 
Contrast measure and speed. Contrast measures have 
never been utilized in Neural Network and Deep 
learning models. Moreover, the author has improved 
the Contrast measure formula in the present study. 

 
3. MATERIALS & METHODS 
 
3.1 Model Design 

The present research aims to incorporate 
Contrast measure into LSTM model to increase the 
speed prediction accuracy, resulting in the LSTM-C 
model, which is explained in section 3.3. 
Subsequently, the level of congestion will be 
identified} using the predicted speeds. 

This study employs a comparative 
experimental design, building upon methodologies 
from earlier traffic prediction studies (e.g., 
Majumdar et al., 2021; Gao et al., 2022), and 
enhances them with a novel feature (Contrast 
measure) evaluated on the same dataset to ensure 
consistent benchmarking. The proposed LSTM-C 
model is compared with the work of Majumdar et al. 
(2021) and Gao et al., (2022). Both models are tested 
using the same FCD dataset, and their results are 
presented. Meanwhile, in the following sections, it is 
tried to elaborate the basics of the LSTM model, 
Contrast measure, and the suggested LCTM-C 
model. 
3.1.1 The basic of LSTM model 

The LSTM model falls under the RNN model, in 
which the output of the previous timestep is 
considered as the input in the next. How RNN learns 
is based on backward propagation through time. 
RNN can comprise three layers including input 
layer, hidden layer, and output layer. The major 
refinement in LSTM over RNN is to add gate 
structure in the cells of hidden layer as shown in 
Figure 2. In fact, each cell in the hidden layer enjoys 
three gates viz input gate, forgetting gate, and output 
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gate are incorporated. The input of the current 
hidden layer is provided with the output produced in 
the previous hidden layer and the recorded cellular 
information as well as the input at the current 
timestamp [12] (see Figure 2). The input information 
will be logged selectively into the cell state through 
the input gate. What is required in the cell is 
forgetting certain state information by the forget 
gate. The output gate plays a part in selecting the 
output result in the hidden layer.   

The LSTM layer provided in our model is made up 
of 128 LSTM cells, applied to the model by [10] and 
[5] as well. 

 
Figure 2: The structure of the hidden layer [29] 

 
 

How to calculate the hidden layers is illustrated by 
the equations below, where W is the weight matrix, 
and b is the constant.  

The forget gate is calculated as ft using Eq. 
1, where a nonlinear activation function 𝜎, the output 
of the hidden layer at t – 1 as 𝑜௧ିଵ, and the input at 
time t as 𝑥௧ are used.  

𝑓௧ = 𝜎൫𝑊௙ . [𝑜௧ିଵ, 𝑥௧] + 𝑏௙൯  (1) 
The input gate 𝑖௧ is represented in Eq. 2. 

𝑖௧ = 𝜎(𝑊௜ . [𝑜௧ିଵ, 𝑥௧] + 𝑏௜) (2) 
Ĉ is the candidate cell information at time t, 

described by Eq. 3 and the tanh function is applied 
as activation function.  

𝐶መ௧ =  𝑡𝑎𝑛ℎ(𝑊௖ . [𝑜௧ିଵ, 𝑥௧] + 𝑏௖) (3) 
The cell information is described by Eq. 4 as 𝑐௧  at 
time t. 

𝑐௧ = 𝑓௧ . 𝐶௧ିଵ + 𝑖௧ . 𝐶መ௧ (4) 
The output gate is defined by Eq. 5 as ℎ௧. 

ℎ௧ = 𝜎(𝑊௢. [𝑜௧ିଵ, 𝑥௧] + 𝑏௢) (5) 
The final output is defined by Eq. 6 as 𝑜௧.  

𝑜௧ = ℎ௧ . 𝑡𝑎𝑛ℎ(𝐶௧)  (6) 
 

3.1.2 Definition of contrast measure 
The term Contrast can be seen in image processing 
field to measure the intensity between two 
consecutive pixels [37]. Calculating the Contrast 
described by Eq. 8 [38] requires applying the Gray 
Level Co-occurrence Matrix (GLCM), which 
contains information as to how frequently the two 
data points with gray level values c1, c2, and the 
distance d might take place. The distance in an image 
could characterize a pixel and its consecutive pixel 
if d =1 or two pixels apart if d=2 [15]. This will be 
followed by using the GLCM amount in Eq. 7, 
calculating Contrast. 
 

𝐶𝑂𝑁 = ෍ (

ୡଵ,ୡଶ

𝑐ଶ − 𝑐ଵ)ଶ𝑎௖ଵ௖ଶ (7) 

Where:  

𝑎௖ଵ௖ଶ =  
# 𝑜𝑓 𝑝𝑎𝑖𝑟𝑠 𝑎𝑡 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑑 𝑤𝑖𝑡ℎ 𝑔𝑟𝑎𝑦 𝑙𝑒𝑣𝑒𝑙(𝑐ଵ, 𝑐ଶ)

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑝𝑎𝑖𝑟𝑠
 (8) 

Contrast measure formula is improved in 
this paper by removing power 2 from the Eq. 7. Eq. 
9 is the improved Contrast formula which can 
capture increases and decreases in traffic speed data 
by employing positive and negative signs of GLCM. 

𝐶𝑂𝑁 = ෍ (

ୡଵ,ୡଶ

𝑐ଶ − 𝑐ଵ)𝑎௖ଵ௖ଶ  (9) 

In the traffic context, c1 and c2 suggest two 
different speed vectors, of which the total occurrence 
in each speed pair is determined by ac1c2 in Eq. 8.  

Let us provide an example to better 
understand GLCM matrix. Figure 3 represents a 
sequence of 9 traffic speeds S = [8 8 9 10 8 8 9 10 
10], of which the total occurrence of the pair (8,8) in 
the GLCM matrix is a8,8 = (0.25).  

𝑎଼,଼ =  
௡௨௠௕௘௥ ௢௙ ௣௔௜௥௦ ௔௧ ௗ௜௦௧௔௡௖௘ ௗ ௪௜௧௛ ௚௥௔௬ ௟௘௩௘௟(௖భ,௖మ)

௧௢௧௔௟ ௡௨௠௕௘௥ ௢௙ ௣௢௦௦௜௕௟௘ ௣௔௜௥௦
=

 
ଶ

଼
= 0.25  

𝑎଼,଼ =  
2

8
= 0.25 

The total Contrast for the sequence reads CON = 
+0.75. 
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Figure 3. GLCM matrix for a speed sequence [37]  

 
3.1.3 Proposed LSTM-C model 
The original idea of the LSTM-C is to incorporate 
the contrast as a statistical measure in a deep learning 
model to enhance accurate prediction. In the LSTM-
C model presented, contrast is connected to the 
output in feedforward neural network for foreseeing 
the speed. The LSTM-C structure is shown in Figure 
4. 

 
As can be seen from Figure 4, the concatenation 
layer is added to the LSTM-C network to predict the 
traffic speed. Algorithm 1 shows the main steps of 
the proposed model. 
 
Due to structural similarity between LSTM and 
GRU, the author has concatenated the Contrast 
measure in GRU as well in the implementation 
section. However, the GRU algorithm formulas are 
not discussed in this paper as it would make this 
section too long.  

 
Algorithm 1: Traffic Speed Prediction Using LSTM-C 
Input: Raw FCD  
Output: Speed Prediction  
1. Data Pre-processing 
Data cleaning, Filter Arterial Road, Parameter 
Determination 
Calculate average speed for every 15-min timeslot 
2. Feature Extraction  
Create GLCM matrix using Eq (8) 
Develop Contrast feature Eq (9) 
3. Set the parameter for the network 
Set the value of the hidden unit 
batch size 
Max epoch value 
Dropout value 
L2 Regularisation value to improve the LSTM 
network  
4. Concatenate Contrast to LSTM 
5 Obtain the network output 
6 Train the model 
7 Apply the fine-tuning strategy 
8 Test the model  
9 Obtain the prediction 

10 Output the prediction report 

Figure 4: LSTM-C Network Model 

Following prediction steps, the relevant error is 
reported by means of MAE (Mean Absolute Error) 
and RMSE (Root Mean Square Error). Eventually, 
the speeds predicted are utilized for identifying the 
congestion levels in the corresponding segments as 
per the traffic index and speed ranges in Table I. If 
each predicted speed falls under the same category 
of the actual speed, then the identification of the 
congestion level based on the predicted speed will be 
very precise. The overall model workflow is shown 
in Figure 5. 

Figure 5. The overall model workflow 

4. MODEL IMPLEMENTATION  

In this section, the findings are presented, 
and the performances of the proposed model will be 
discussed. 

 
4.1 Test Environment  

The proposed model is tested using Python 
programming language in Google Colab which 
provides a single 12GB NVIDIA Tesla T4 GPU.  

4.2 Pre-processing 

To predict the average traffic speed, the 
proposed model is applied. This is followed by 
considering the traffic conditions in arterial roads in 
Beijing for 24 hours and dividing the time into 96 
time slots at 15-min intervals. The average speed is 
computed for each timeslot. 

The speed limit on the Beijing arterials 
being 120 km/h, the speed range is 0<v⩽120 km/h 
yielding 120 different observations. This leads to 
computational complexity. Consequently, the speed 
was split into equally spaced ranges of 5 km/h to 
bring down the observations and computational 
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complexity. As shown in Table 1, observations 
reduction into 24 different observations has been 
provided. As an example, any speed between 25 and 
30 km/h is shown by traffic index 6. This step is 
performed on our LSTM-C model and the model 
provided by [10] and [5] as well. 

Table 1: Traffic Index and Speed Ranges 

Traffic 
Index 

Speed Range 
(km/h) 

Traffic 
Index 

Speed Range 
(km/h) 

1 0<v⩽5 13 60<v⩽65 

2 5<v⩽10 14 65<v⩽70 

3 10<v⩽15 15 70<v⩽75 

4 15<v⩽20 16 75<v⩽80 

5 20<v⩽25 17 80<v⩽85 
6 25<v⩽30 18 85<v⩽90 
7 30<v⩽35 19 90<v⩽95 

8 35<v⩽40 20 95<v⩽100 

9 40<v⩽45 21 100<v⩽105 
10 45<v⩽50 22 105<v⩽110 

11 50<v⩽55 23 110<v⩽115 
12 55<v⩽60 24 115<v⩽120 

The taxi trajectory data in Beijing ring road during 
November 2012 served as the FCD data, obtained 
from 12,600 taxis. The features which were used for 
the experiment include speed, latitude, longitude, 
date and time. A sample of the dataset is shown in 
Table 2.  

The total number of segments, being 7128, 
is lowered to 6926 following data filtering (Table 3). 
This is followed by dividing the 6926 roads into two 
parts for the sake of testing and training during 
timeslots 28 to 38 and 28 to 42 to roll time window 
of 8 and 12, respectively. The LSTM model 
provided by [10] and [5] applied loop detector data; 
and for comparing accuracy all models will be 
implemented employing the same FCD, accordingly.    

Table 3: Number of Test and Train Samples 

Number of samples 

Test Train Total  

1386 5,540 6,926 

4.2.1 Data of speed prediction in a road segment 

In order to predict the speed of the next timestep in 
a single road segment, a time series sliding window 
is adopted to create overlapping sampling. As 
demonstrated in Figure 6, the window size is 6, 
which refers to the average speed of a road segment 
in 6 timesteps (starting timeslot=85). These speeds 
are used to predict the speed of the next timestep, 

which is the traffic speed in the next 5 minutes. In 
order to evaluate the traffic speed prediction method, 
the FCD dataset is divided into test set (20% of 
actual data) and train set (80% of actual data). The 
rolling window size of 6 and 8 are demonstrated in 
Figure 6. for two random road segments. 

 
Figure 6: A sample of time series data sliding window 

(rolling window size of 6 and 8).  

In time window size of 6, speed data of previous 6 
timesteps are extracted (S_1 to S_6) to predict the 
speed at next timestep (t+1), which is S_7. Similarly, 
in time window size of 8 the speed data of previous 
8 timesteps are extracted to predict the speed at the 
next timestep. The same process is done for 
timesteps 12, and 18. 

Figure 7 illustrates the average speed of all road 
segments in FCD (Beijing) from timeslot 73 (6:00 
AM) to timeslot 181 (3:00 PM). It helps to depict the 
pattern in traffic speed during a specific time. 

 

Figure 7: Average of traffic speed of all road segments in 
FCD (Beijing) from timeslot 73 (6:00 AM) to timeslot 

181 (3:00 PM) 

The author further illustrates the average speed of 
random 100 road segments between timeslot 73 to 
181 (6:00 AM to 3:00 PM) in Figure 8. The dark red 
colour indicates low speed traffic, while the green 
colour indicates higher speed.  
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Figure 8: A sample of traffic speed data of random 100 
road segments between timeslot 73 to 181 (6:00 AM to 
3:00 PM) in two FCD datasets (a) FCD of Beijing, (b) 

FCD of Xuancheng 

4.3 Hyperparameter 

In order to obtain accurate predictions, it is 
required to set up two types of parameters: (1) 
Parameters for the input preparation, (2) hyper-
parameters for the model. 
 

(1) Parameters for the input preparation 
The parameters include time intervals such as 5 
minutes, and 15 minutes. This study follows [29] and 
set time intervals, which includes 30 minutes, 40 
minutes, 1 hour, and 1 hour and 60 minutes, which 
refers to rolling window size 6, 8, 12, and 18, 
respectively. 
 

(2) hyper-parameters for the model 
The optimized Deep Learning-based structure is 
determined by evaluating its performance to identify 
the configuration which yields the least RMSE. In 
this study, the decision to opt for an LSTM layer and 
two FNN layers is based on the consideration that an 
excessive increase in the number of layers can lead 
to overfitting problems. To discover the optimized 
structure, a range of scenarios is defined by varying 
the number of hidden layers and the number of 
neurons within each hidden layer. These scenarios 
are presented in Table 4. 

Table 4: Range of the parameters used to find optimal 
parameters 

Hyperparameter LSTM-C model 
Optimiser Adam 
Learning rate 0.001 
Activation function ReLU in Feedforward NN layers 

Linear activation in output layer 
Dropout rate 0.2 
Batch size 64 
Hidden layer size 128 
Epoch 100 
Loss 
L2 Regularization 

Mean squared error 
0.08 

 
In order to find the optimal optimizer, a grid 

search analysis is conducted. The number of neurons 
in the LSTM hidden layer is one of the following: 
16,32, 64, 128, or 256. The following dense layer 
(First FNN) has one of the number of neurons as 50 
or 40, and the second dense layer (second FNN) has 
a smaller number of neurons than the previous dense 
layer. The optimized learning rate is one of the 
following: 0.1, 0.01, 0.001, which are used in similar 
studies. 
 

For setting batch size, the best value is 
found based on one of the following numbers: 32, 
64, 128. Rectified Linear Unit (ReLU) is utilized as 
the activation function in the training. ReLU is 
widely used in ANN and DL applications. It does not 
require significant computational resources and 
straightforwardly produces the maximum value 
between zero and the input value. 
 

Following a series of trial-and-error 
experiments, the optimal hyperparameters for the 
models to converge were determined as follows: a 
learning rate of 0.001, a batch size of 64, and 128, 
50, and 30 neurons for each hidden layer, 
respectively. The dropout rate is set to 100 epochs. 
Moreover, to find a proper number of epochs early 
stopping technique is used. Specifically, the stop 
early strategy will terminate when the validation loss 
increases in 5 consecutive epochs. In addition, L2 
regularization is used to avoid the problem of over-
fitting. 
 

The grid search is performed with various 
optimizers (Table 5). According to the results of grid 
search analysis, the RMSE of using RMSprop, 
Adam, Adadelta, and Adagrad as optimizers on the 
suggested Deep Neural Network structure are 
presented in Table 4. Based on the analysis, 
Adadelta and Adagrad have similar performance 
with RMSE of 6.871, and 6.641, respectively. Since 
Adam optimizer recorded the least RMSE, this study 
used Adam optimizer for model development and 
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evaluation. The optimal structure refers to the 
specific number of neurons present in each hidden 
layer (LSTM, FNN1, FNN2). 

Table 5: Using different optimizers on the model. The 
optimal structure refers to the number of neurons at each 

layer. 

Optimizer Name Optimal Structure RMSE (km/h) 
RMSProp 32/40/30 7.473 
Adam 128//50/30 4.98 
Adadelta 64/50/20 6.871 
Adagrad 64/50/30 6.641 

 
The hyperparameters of the proposed 

model are defined in Table 6.  

4.4 Performance Measure  

 
The model suggested is measured in terms 

of performance employing MAE (Mean Absolute 
Error), RMSE (Root Mean Square Error) and Mean 
Square Error (MSE) and Mean Absolute Percentage 
Error (MAPE). The aforementioned model is 
weighed up with the model already presented by 
[10]. Both models are exercised utilizing the same 
FCD and 15-min time window.  
The calculation formula for MAE is represented in 
Eq. 10. 

 𝑀𝐴𝐸 =  ൬
1

𝑛
൰ ∗ ෍|𝑦௜  –  𝑥௜|

௡

௜

 (10) 

Where yi is the actual speed value for the ith 
road segment, xi is the value predicted for the ith road 
segment, and n is the total number as to the speed 
values predicted. MAPE is calculated by Eq. 11. 

𝑀𝐴𝑃𝐸 =
ଵ

௡
∗ Σ ቀ

|௔௖௧௨௔௟ି௉௥௘ௗ௜௖௧௘ௗ|

|௔௖௧௨௔௟|
ቁ ∗ 100 (11)      

The average deviation between the 
predicted speeds and actual values is considered as 
MAPE. In the same manner as MAE, the average 
magnitude of error between predicted values and 
actual values is calculated. Percentages being 
simpler for people to understand MAE, MAPE 
enjoys a clear interpretation as well. Meanwhile, 
because of using absolute value, MAPE and MAE 
are resistant to outliers’ effects. Eq. 12 describes the 
calculation of the RMSE.  

 

𝑅𝑀𝑆𝐸 = ඨ
∑ (𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑎𝑐𝑡𝑢𝑎𝑙)ଶ௡

௜ୀଵ

𝑛
  (12) 

 
On the basis of Eq. 12, RMSE is the square 

root of the average in the squared differences 
between the suggested speed value and the actual 
one. 

MSE, defined in Eq.13, determines the sum 
of squared difference between actual values and 
suggested ones.  

𝑀𝑆𝐸 =
1

𝑛
∗ ෍(𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑎𝑐𝑡𝑢𝑎𝑙)ଶ 

௡

௜

(13) 

5. RESULTS 

The present paper attempts to predict the 
traffic speed through the proposed LSTM-C model, 
spotting the level of traffic congestion utilizing the 
predicted speed. In the following section, the results 
obtained from predicted speed will be reported.  

5.1 Speed Prediction  

For the sake of prediction, both the average 
traffic speed and Contrast measure are provided by 
the proposed model. Each day (24 hours) will be 
divided into 96 timeslots starting 00:00 am and each 
timeslot being 5-min. For LSTM-C sequence, the 
lengths of rolling window size are set to three values 
(i.e., 6, 8, 12, and 18). When the rolling window size 
is set to 6, the previous 6 timesteps (t-6… t) will be 
utilized for predicting the subsequent timestep (t+1). 
This is the case with the rolling time window if set 
to 18 for foreseeing the following timestep (t+1) 
employing the previous 18 timeslots (t-18, …, t). 
ACC measure in Table 7 refers to (100 – MAE). 

 Moreover, the proposed model is applied 
to GRU (Gated Recurrent Unit) called GRU-C and 
the results are compared to the other models in Table 
7. The proposed LSTM_C is believed to be 
outperforming the LSTM model presented by [10] 
and [5]. The results taken from all four models, 
namely LSTM-C, GRU-C, LSTM [10], LSTM [5] 
and GRU, are compared considering 6, 8, 12 and 18 
rolling window size. In addition, GRU, like LSTM, 
is an RNN-based model, of which the 
implementation results are quite similar to LSTM. 
Mean Absolute Error (MAE) for LSTM-C, GRU-C, 
LSTM [10,5] and GRU are displayed as 3.303, 
3.277, 5.094, 4.918 and 5.199, respectively, with the 
rolling window size, equaling to 6. As for the rolling 
window size of 8, the MAE rises to some degree in 
LSTM-C, GRU-C, LSTM [10], LSTM [5] and GRU 
up to 3.614, 3.304, 5.308, 5.078 and 5.417, 
respectively. While the best performance 
measurement refers to the rolling window size of 6, 
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the results show that once rolling window size rises 
to 12 and 18, LSTM-C outperforms GRU-C, 
demonstrating the LSTM-C capability for predicting 
longer rolling window size. The average of actual 
and predicted traffic speed is sketched in Figure 9 for 
LSTM-C, GRU-C, LSTM [10], LSTM [5] and GRU 
models. 

 

Figure 9: The average speed prediction for rolling 
window size 6 for LSTM-C, LSTM [10], LSTM [5], GRU-

C and GRU 

As shown in Figure 9, the accuracy of 
LSTM-C model for predicting the future speed 
patterns is to a high degree and mostly identifies the 
upcoming traffic speed correctly.  

5.2. Propagation of Traffic Congestion  

In the proposed LSTM-C model, the 
average traffic speed is predicted accurately. This 
stage aims to identify congestion level of traffic 
based on the average predicted speed by the 
proposed LSTM-C and will be compared with the 
congestion level of the actual average traffic speed. 
Table 8 shows the classification of traffic congestion 
level in Beijing arterial roads.  

Table 9 indicates the results for spotting the 
congestion level of speeds (predicted as well as 
actual). The LSTM-C model accuracy being 

significant, the speeds predicted show close 
proximity to the actual speed, developing the 
likelihood of putting the predicted speed in the exact 
class as to the actual speed. 

As stated by Table 9, the RMSE, MAE and 
MSE of LSTM-C are equal to 0.534, 0.259 and 
0.285, respectively, with the rolling window size 
being 6. What is more, the congestion identification 
for greater rolling window sizes of 8,12 and 18 are 
determined. Despite the slight rise in measurements 
as the rolling window size grows, the performance 
of identifying congestion level is still high. By way 
of example, the results obtained from RMSE, MSE 
and MAE suggest 0.625, 0.391 and 0.347 
respectively for the rolling window size of 18.  

In addition, the speed prediction results 
produced from LSTM model provided by [10] are 
employed for identification of congestion level in 
roads. The model accurately measured by the rolling 
window of 6 includes 0.723, 0.522, 0. 0.451 for 
RMSE, MSE and MAE, respectively. Concerning 
the rolling window of 18, the accuracy 
measurements for RMSE, MSE and MAE represent 
0.782, 0.611 and 0.482, respectively. The outcome 
achieved from spotting congestion level vividly 
divulges that the LSTM-C is particularly effective 
detecting the level of congestion.  

5.3. Speed prediction in a road segment 

Figure 10 shows the comparison between 
the real data (actual) and the predicted data of each 
model. This comparison is formed on the road 
segment number 1 and number 1000, considering the 
rolling window size being 6, in which road segment 
#1000 is specified by little changes in speed, 
whereas segment #1 suggests large and frequent 
speed fluctuations. 
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Figure 10. Comparison of predicted speed and RMSE 
between proposed model and benchmark 

To predict the speed at the next timestep 
(Rolling window size = 6), 6 timesteps are applied, 
where the left part exhibits Road segment #1 with 
large and frequent speed fluctuation. Yet, this is not 
the case with the right part in that speed shows 
relatively low changes when the road segment is 
#1000. 

5.4 Discussion 

The study by [10] proposed single variable 
(traffic speed) and multi variables (traffic speed and 
vehicle headway) as features to their LSTM model. 
They concluded that multivariate LSTM does not 
add any significant contribution to adequately 
predicting traffic speed compared to single variate 
LSTM. However, in this study, concatenating 
additional features to an LSTM-based model 
improved the speed prediction, which shows the 
relevancy of Contrast Measure and its effect in the 
proposed model which helps the model to gain more 
insights and improve the accuracy. Concatenating 
the relevant features in the model can potentially 
improve the accuracy of model, or it can introduce 
more noise which leads to degrading the 
performance of model. Therefore, this study 
proposed and investigated the use of Contrast 
Measure and based on the results, the proposed 
Contrast Measure is able to help model’s ability to 
learn meaningful patterns from changes (increasing 
and decreasing) in speed. 

This result directly addresses the research 
objectives of improving accuracy through additional 
feature engineering and enhancing performance 
using FCD. Each major objective, including the use 
of LSTM-C, integration of contrast measure, and 
comparison with existing models, has shown to 
positively impact the accuracy of predictions. The 
proposed model consistently outperforms 
benchmarks across MAE, RMSE, and MAPE, 
validating the study's hypoth Compared to the state-
of-the-art models in literature (LSTM, GRU, CNN-
GRU, AGNP, D-LSTM), LSTM-C offers a simpler 
yet more interpretable framework while achieving 
superior accuracy with limited input features. This 
supports the notion that statistical enhancements like 
contrast can offer performance gains without relying 
on excessive data fusion. 

This study focuses solely on short-term 
speed prediction using historical traffic speed and 
contrast features derived from FCD. External 
influences such as weather, road blockages, and 
driver behavior were not modeled. Moreover, the 
model’s performance was tested only on Beijing 
FCD, which may affect generalizability to other 
cities or countries. 

6. CONCLUSIONS AND FUTURE WORK 

This paper presented an improved LSTM-
based model, called LSTM-C, to predict average 
traffic speed in a 5-min time window using FCD in 
Beijing. A total of 6926 road segments were used in 
the experiment. The contrast measure was 
incorporated into LSTM to enhance prediction 
accuracy. In the traffic context, contrast captures 
increases and decreases in speed using positive and 
negative signs. MAE (Mean Absolute Error), RMSE 
(Root Mean Square Error), and MSE (Mean Square 
Error) were used to evaluate the performance of the 
proposed model. Experimental results show that 
LSTM-C achieves up to 96.697% accuracy (based 
on MAE) with a rolling window size of 6, 
demonstrating the strong potential of LSTM in 
traffic prediction. Moreover, the model was also 
applied to GRU (Gated Recurrent Unit), termed 
GRU-C, achieving 96.723% accuracy for the same 
window size. The speed prediction results were 
compared with the LSTM model by [10], which 
reached 94.906% under identical settings. 
Furthermore, the predicted speed from LSTM-C was 
used to identify congestion levels, achieving high 
precision with MAE = 0.259 (rolling window = 6). 
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The proposed method relies solely on 
location, speed, and time. For future work, we plan 
to enhance the analysis by integrating multi-source 
traffic data. Given the volume of updates on social 
media platforms, user-generated data—such as 
weather conditions or reported congestion—can 
improve accuracy. Additionally, incorporating road 
network information, including speed limits, lane 
closures, and other restrictions, could further refine 
predictions. Another potential improvement is 
exploring longer time intervals by combining LSTM 
with generative models that simulate varied traffic 
behavior over time. 

This study marks the first known 
integration of an improved contrast measure within 
an LSTM-based traffic prediction model using FCD. 
It shows that statistical contrast features can enhance 
deep learning performance in traffic forecasting. The 
model outperforms two established LSTM 
benchmarks and proves applicable to GRU, 
validating a novel feature engineering method to 
address FCD limitations. 

We also plan to integrate multi-source data, 
including weather and social media content. Future 
exploration may involve graph-based neural 
networks and hybrid generative models to capture 
longer time dependencies and contextual patterns. 
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Table 2: The dataset input features 

Vehicle ID Date & Time Longitude Latitude Speed Direction Status 

426242 20121101051340 116.3610535 39.6585464 17 342 1 

426242 20121101051430 116.3607025 39.6595154 25 166 1 

426242 20121101051526 116.3611298 39.6567192 0 162 1 

426242 20121101051621 116.3611298 39.6567574 6 342 1 

 
 

Table 6: LSTM-C, LSTM, and GRU Hyperparameter 
Hyperparameter LSTM-C  LSTM GRU 

Optimiser Adam Adam Adam 
Learning rate 0.001 0.001 0.001 
Activation function ReLU in Feedforward NN 

layers 
Linear activation in output 
layer 

ReLU in Feedforward 
NN layers 
Linear activation in 
output layer 

ReLU in Feedforward 
NN layers 
Linear activation in 
output layer 

Dropout rate 0.2 0.2 0.2 

Batch size 64 64 64 
Hidden layer size 128 128 128 

Epoch 100 100 100 
Loss Mean Squared Error Mean Squared Error Mean Squared Error 
L2Regularization 0.08 0.08 0.08 

  Table 7: Performance comparison of the proposed LSTM-C model with LSTM [10], LSTM [5], GRU-C and GRU 
 

 Input units (rolling window) 
  6 8 12 18 
MAE LSTM-C 3.303 3.614 3.489 4.075 
 GRU-C 3.277 3.304 3.631 4.238 
 GRU 5.199 5.417 5.094 6.086 
 LSTM [5] 4.918 5.078 4.886 5.536 
 LSTM [10] 5.094 5.308 5.227 5.870 
RMSE LSTM-C 4.92 5.614 5.118 5.810 
 GRU-C 4.869 5.044 5.319 6.112 
 GRU   7.218 8.240 7.441 8.686 
 LSTM [5] 7.014 7.641 7.144 7.932 
 LSTM [10] 7.11 8.008 7.512 8.427 
MSE LSTM-C 24.227 31.515 26.192 33.759 
 GRU-C 23.709 25.442 28.291 37.352 
 GRU   52.098 67.891 55.371 75.440 
 LSTM [5] 49.194 58.387 51.044 62.911 
 LSTM [10] 50.545 64.129 56.424 71.006 
MAPE LSTM-C 1.860 2.113 1.785 2.210 
 GRU-C 1.773 2.171 1.868 2.287 
 GRU   2.577 3.034 2.609 3.242 
 LSTM [5] 2.501 2.965 2.438 3.172 
 LSTM [10] 2.564 2.958 2.517 3.290 
ACC LSTM-C 96.697 96.386 96.511 95.925 
 GRU-C 96.723 96.696 96.369 95.762 
 GRU   94.801 94.583 94.906 93.914 
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 Input units (rolling window) 

  6 8 12 18 
 LSTM [5] 95.082 94.922 95.114 94.464 
 LSTM [10] 94.906 94.692 94.773 94.13 

 
Table 8: Classification of traffic congestion level in Beijing arterial roads [38] 

Grade Fast Smooth Light Congestion 
Medium 

Congestion 
Severe 

Congestion 

Speed 𝑣̅>85 65<𝑣̅ ≤ 85 
45<𝑣̅ ≤ 65 

 
25<𝑣̅ ≤ 45 

 
𝑣̅ ≤ 25 

 
 

Table 9: Congestion level identification of the proposed model with LSTM model [10] 

  Input units 
  6 8  12 18 
MAE LSTM-C 0.259 0.211  0.307 0.347 
 GRU-C 0.253 0.267  0.324 0.347 
 LSTM [10] 0.451 0.447  0.453 0.482 

RMSE LSTM-C 0.534 0.475  0.586 0.625 
 GRU-C 0.527 0.547  0.602 0.629 
 LSTM [10]  0.723 0.765  0.743 0.782 

MSE LSTM-C 0.285 0.225  0.343 0.391 
 GRU-C 0.278 0.299  0.324 0.396 
 LSTM [10] 0.522 0.585  0.552 0.611 

 

 
 
 
 
 


