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ABSTRACT

The industry that utilizes beach sand minerals containing titanium zirconium and other strategic elements
requires precise classification of mineral grains. The identification techniques commonly used today take
long periods to complete and need experts to interpret them while producing results that lack consistency. A
well-annotated MINET (Mineral Identification NETwork) dataset of high-resolution mineral grain images
serves this study to develop a powerful automated classification machine learning pipeline which addresses
previous limitations. The proposed framework uses both handcrafted texture color and shape features with
deep ResNet50 model features from extracted representations. These joint representations produce an
advanced system which improves the identification of intricate mineral formations. Our framework uses
XGBOOST as its classifier to show how features drawn from both handcrafted and deep learning extraction
boost automated petrography systems and strengthens MINET's position as a critical benchmark for mineral

recognition intelligence.
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1. INTRODUCTION

Matter  classification stands as a
fundamental  operational  procedure  across
geosciences and industrial uses as well as material
science. The classification of minerals through
Raman spectroscopy X-ray diffraction (XRD) and
chemical analysis becomes cumbersome because it
needs expert skills as well as laboratory equipment.
The methods require long durations while their
evaluation relies on human judgment and tend to
generate incorrect results.

Widespread adoption of machine learning
(ML) and computer vision for mineral classification
automation remains limited because existing
datasets fail to present accurate annotations of real-
world mineral diversity. A high-resolution image
collection of mineral grains named MINET
(Mineral Identification NETwork) Dataset [1]
provides geological samples from beach sand
alongside hydrothermal deposits and granitic rocks.
The collection includes labeled mineral samples
spanning numerous rock types including quartz and
muscovite and biotite with copper-bearing minerals

in order to serve as an essential tool for automatic
mineral identification system assessment.

Scientists in geosciences as well as
material science professionals and industrial
practitioners rely on mineral classification as a
basic operational requirement. The findings of this
study particularly the integration of handcrafted and
deep features into a unified framework—offer a
more robust and accurate classification approach.
These improvements can directly benefit
researchers developing automated mineral analysis
tools, professionals working with complex mineral
datasets, and industrial practitioners seeking
reliable, high-throughput classification solutions in
real-world applications.

The classification of minerals through
Raman spectroscopy X-ray diffraction (XRD) and
chemical analysis becomes cumbersome because it
needs expert skills as well as laboratory equipment.
The methods require long durations while their
evaluation relies on human judgment and tend to
generate incorrect results.

Extending mineral classification
automation with machine learning techniques faces
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challenges because researchers currently lack
accessible high-quality datasets containing labeled
mineral examples across natural environmental
deposition sites. A high-resolution image collection
of mineral grains named MINET (Mineral
Identification NETwork) Dataset [1] provides
geological samples from beach sand alongside
hydrothermal deposits and granitic rocks. The
collection includes labeled mineral samples
spanning numerous rock types including quartz and
muscovite and biotite with copper-bearing minerals
in order to serve as an essential tool for automatic
mineral identification system assessment.

Machine learning has become integral to
multiple domains including healthcare together
with law enforcement and transportation and
mining which allows automated intelligent
decisions [2—5]. Mineral grain identification stands
as an essential procedure throughout exploration as
well as environmental studies in the mining and
geoscience sector. The identification of grains
including pyrite and biotite and quartz used to
discover deposits depended primarily on manual
approaches done by mineralogist experts according
to literature [6, 7]. Traditional manual identification
requires extensive human effort which leads to
limitations in operational speed because of both
human weariness and operator mistakes according
to research published in [8]. A trained analyst can
check sixty grains per minute but they usually
record grain counts because area coverage stands
out as the critical element for proper classification
[9]. Neither Scanning Electron Microscopy (SEM)
nor its higher precision potential can address budget
constraints because its equipment costs $0.5 million
to $2 million excluding specialized operator
training [10]. The resistance to high-speed data
processing coupled with operational challenges in
the SEM workflow limits its capability to analyze
big datasets effectively.

The  methodology faces enhanced
limitations during environmental surveys together
with explorations to detect dangerous mineral
deposits in the environment. Detecting acid-
generating minerals along with heavy metal-bearing
grains containing arsenic or lead requires early-
stage survey identification and mitigation according
to [11, 12]. Sand containing reactive minerals
presents structural vulnerabilities to concrete
materials and other building components according
to [13, 14]. Explorations of potential diamond
deposits need the identification of indicator
minerals such as chromium-bearing pyrope and
diopside to determine proximity to actual ore
bodies according to researchers [15, 16].

Traditional methods for classifying and
counting mineral grains primarily rely on Scanning
Electron  Microscopes (SEM) and optical
microscopes. Optical microscopy remains the most
widely used technique for estimating mineral
abundance in sediments or milled rock. However,
this approach demands highly trained personnel to
identify and sort grains using specific properties
like polarized transmitted/reflected light and
morphological features. Although improvements
have been made in optical microscopy for grain
analysis, significant limitations persist—including
manual labor and subjectivity—highlighting the
need for a technical breakthrough in automation
[17-20].

To address this, automated SEM
techniques have emerged as viable alternatives.
Systems like QEMSCAN, TIMA-X, and MLA use
focused electron beams to scan samples, producing
high-resolution images while collecting elemental
data through techniques such as X-ray fluorescence
[21,22]. These systems offer grain-level insights on
composition, shape, and abundance. However,
methods like grain counting with electron
microprobes, while accurate, are time-consuming
and resource-intensive [23,24].

Alternative imaging approaches have also
been explored. For instance, Lin et al. [25]
proposed a workflow combining SEM and micro-
CT to analyze pore and grain-size distributions in
geological samples, such as Buff Berea and
Castlegate sandstones. Their study noted that SEM-
derived 2D distributions often showed bias toward
smaller grains. Other innovations include using
laser particle counters (e.g., Wenglor sensors) to
estimate grain size distributions. However, their
performance was limited to particles passing
through the sensor beam center, with size detection
between 210 um and 495 pum [26]. In a lower-cost
solution, Lee et al. [27] employed light microscopy
to capture grain shape profiles, showing that
metrics such as roundness, sphericity, circularity,
ModRatio, and aspect ratio were vital for shape-
based differentiation. With the advancement of

machine learning, computational methods are
increasingly being used across domains like
autonomous driving, medical imaging, and

precision agriculture [28-30], and these tools are
now being applied to environmental and geological
data processing.

In mineral grain classification, one of the
earliest machine learning applications was
presented by Maitre et al. [31], who used linear
iterative  clustering to segment grains via
superpixels and applied traditional classifiers,
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achieving 89% accuracy. Other unsupervised
methods, such as k-means clustering, were tested
on images captured using stereoscopic binocular
microscopes [32], though without comparison to
labeled ground truth. This limits their applicability
to mineral identification and confines them to
petrography. Further classification efforts using
Laser-Induced Breakdown Spectroscopy (LIBS)
analyzers achieved approximately 75% accuracy
but were focused solely on copper minerals
[33].Recent advancements have shown the
effectiveness of combining deep learning with
feature fusion and advanced classifiers. [34]
focused on handcrafted features such as GLCM and
LBP for thin section image classification using a
Random Forest classifier, attaining 81.35%
accuracy. Ahmed et al. [35] utilized fine-tuned
VGG16 deep features combined with an SVM
classifier, reporting 90.50% accuracy on the
MINERAL32 dataset. Jia et al. [36] used ResNet18
to classify SEM mineral images and achieved
91.25% accuracy using Softmax classification.
Zhang et al. [37] presented a multimodal fusion
model incorporating texture, spectral, and CNN
features with XGBoost, reaching 94.00% accuracy.
Wang et al.These studies confirm that combining
domain knowledge (handcrafted features) with
data-driven deep learning architectures can
significantly  enhance mineral classification
performance, especially when supported by robust
datasets and appropriate classifiers.

While existing techniques like QEMSCAN, MLA,

Figure 1: Architecture of the proposed framework

and LIBS provide detailed compositional data, they
remain inaccessible due to high costs, time
constraints, and operational complexity.
Furthermore, most research has focused on SEM-
acquired or microscopy images with limited
variability in mineral types and imaging conditions.
There is currently a lack of openly available
datasets that support both handcrafted and deep
learning-based feature extraction pipelines on
diverse mineral grain samples. The MINET dataset
fills this gap by offering annotated, multi-mineral
images with class imbalance and real-world
variability—conditions often seen in field data.

Existing research has primarily focused on
individual feature types when classifying minerals.
In contrast, our study introduces an innovative
approach by integrating both handcrafted and
hybrid features, aiming to provide a more refined
classification. This combination, as we propose,
allows for more accurate and comprehensive
mineral classification, offering an improvement
over existing methods.

In this study, we propose a robust hybrid
classification framework using MINET that
integrates handcrafted features (color, texture,
shape) with deep features extracted via a fine-tuned
ResNet50 model to enhance accuracy and
interpretability in mineral classification tasks.

2. METHODOLOGY
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The proposed framework integrates a hybrid feature
extraction strategy that combines handcrafted
features (texture, color, and shape) with deep
features extracted using ResNet50. After initial
preprocessing steps including data augmentation
and imbalance handling, the fused features undergo
SMOTE-based balancing and dimensionality
reduction via PCA before classification using an
optimized XGBoost model. The complete
architecture is illustrated in Figure 1.

2.1 Data Preprocessing
Dataset Description: This study utilizes the
MINET dataset, comprising 951 labeled RGB
images categorized into seven mineral classes:
biotite, bornite, chrysocolla, malachite, muscovite,
pyrite, and quartz. The dataset exhibits class
imbalance as shown in Figure 2, with class
distributions ranging from 68 samples iotite to 234
for malachite. Each image corresponds to a single
mineral grain, eliminating the need for image
segmentation or region-based separation. In
addition to image data, the dataset provides 33
tabular features per sample, representing spectral,
chemical, and textural properties relevant to
mineral classification.
2.1.1 Image Preprocessing and Augmentation
Preprocessing and augmentation
operations form the initial step of the proposed
pipeline, as illustrated in the Data Preprocessing
Module of Figure 1. To ensure compatibility with
the ResNet50 architecture, all images are resized to
224x224 pixels. Each image is converted into a
PyTorch tensor and normalized using the ImageNet
mean and standard deviation values: [0.485, 0.456,
0.406] and [0.229, 0.224, 0.225], respectively.
To enhance model generalizability and mitigate
overfitting, extensive data augmentation is applied.
Techniques such as random cropping, horizontal
and vertical flipping, affine transformations,
perspective distortion, and color jittering are used
to simulate variations in lighting, orientation, and
specimen appearance. As a result, the original
dataset size increased significantly—from 951 raw
images to a total of 4780 augmented images—
providing a richer and more diverse training set for
the classification models.

2.1.2 Class Imbalance Handling

The distribution of the minerals across
various classes depicted in Figure 2. To address the
skewed class distribution in the dataset, two
strategies are used. During CNN training, the
WeightedRandomSampler assigns higher sampling

probabilities to underrepresented classes, ensuring
that each mini-batch is more balanced. For
traditional machine learning tasks using the fused
feature set, the SMOTE (Synthetic Minority
Oversampling Technique) algorithm is applied to
synthetically generate new samples for minority
classes, thus promoting balanced learning across
the dataset.

Class Distril in d Dataset

EIL__

¢ ¢
& ¢ &
& ¢ &

&

1200

1000

2

Number of images
2
g

&
a8

8

°

&
»“s&
@f

@
&
o

Mineral Class.

Figure 2: Distribution of Minerals

2.2 Feature Extraction

Handcrafted and automated features have
been extracted from an equally distributed
preprocessed MINET mineral dataset as depicted in
the Figure 1 of feature extraction module for
classifying minerals.
2.2.1 Handcrafted Features

A suite of handcrafted features is extracted
to represent essential domain-specific
characteristics:
Color Features: Augmented images are converted
to HSV(Hue, Saturation, Value) color space, and
color histograms are computed to capture unique
visual patterns such as the bright green of malachite
or the golden hue of pyrite. Extracted HSV color
space for the first five samples of each mineral has
been depicted in Figure3.
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Figure 3: Line plots of HSV across all minerals

Texture Features: Gray-Level Co-occurrence
Matrix (GLCM) statistics such as contrast,
homogeneity, dissimilarity, and energy are

computed to describe the spatial relationships
between pixel intensities of minerals. Extracted
texture feature representation uses violin plots;
which are best in analyzing the distribution and
variability of these features across mineral samples.
This helped assess how well individual features
could distinguish between different mineral classes
and guided the feature selection process. The
distribution of texture features across mineral
samples shown in Figure 4.

Mineral Class
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biotite bornite

Mineral Class

Figure 4: GLCM contrast Texture Features of all
minerals

Shape Features: Using Canny edge detection and

Hu Moments, geometric descriptors such as
elongation, circularity, and irregularity are
extracted, providing additional cues for

differentiating grain morphology.
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Figure 5: Hu Moments distribution of all minerals

2.2.2 Deep Features via ResNetS0

The process begins by loading the
pretrained ResNet50 model and replacing its fully
connected (fc) layer to match the number of mineral
classes. The model's weights are fine-tuned on the
mineral dataset using a WeightedRandomSampler
to handle class imbalance.During training, the
model adjusts its internal filters to better recognize
mineral-specific features. The Adam optimizer with
weight decay is applied to prevent overfitting,
while the StepLR scheduler dynamically reduces
the learning rate to ensure smooth convergence.
The preprocessed image is passed through the
ResNet50 model (with the final classification layer
removed). The output is a feature vector of size
2048, which is the number of output features from
ResNet50's last convolutional layer. After training,
the feature extraction function processes each
image by passing it through the model's
convolutional layers.

The model generates deep feature
embeddings that represent the image's high-level
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patterns in a compact vector form. These feature
vectors serve as rich numerical representations
encapsulating the texture, shape, and color
information of minerals.

The UMAP projection of ResNet50-
extracted features reveals that instances of the same
class often form multiple compact sub-clusters
instead of a single large cluster. This indicates the
presence of intra-class variability, possibly due to
variations in texture, color, or lighting. The local
compactness of these groups shows that UMAP is
preserving neighborhood structure, while the spread
across the 2D space reflects diversity within each
mineral class. UMAP for automated features across
mineral samples is depicted in Figure 6.

Mineral

6 | '™ o biotite

| 4 o bomite
5 * o chrysocolla

o malachite
9 % ‘ muscovite
LN . pyrite

4 * quartz

Figure 6: UMAP representation of fused features across
mineral samples.

2.3 Hybrid Feature Extraction

To leverage both low-level domain
knowledge and high-level abstractions, handcrafted
features are concatenated with ResNet50-extracted
features, forming a unified hybrid feature vector.
This fusion combines interpretable color, texture,
and shape cues with learned deep patterns,
enhancing the model’s ability to recognize subtle
mineral differences.
Handcrafted features are particularly useful for
capturing fine-grained visual properties, while
ResNet50 features encode robust spatial and
structural information. Together, this approach
enables the model to generalize well across diverse
mineral types, even those with similar color or
texture.
2.4 Advanced Feature Processing

Feature processing techniques at an
advanced level are essential for improving feature
dataset quality and balance which directly leads to
better mineral classification models. SMOTE
(Synthetic Minority Oversampling Technique)
serves as the initial stage because it tackles class
imbalance problems by producing artificial
examples for minority mineral categories. The

technique generates additional samples for
underrepresented classes to enhance model
detection of scarce minerals while reducing its
preference toward dominant classes.

Following standardization, the balanced features
acquire mean values of zero accompanied by unit
variances. The learning process of the model should
receive equal contributions from every feature even
though color histogram features are usually larger
than texture features.

Principal Component Analysis (PCA) operates on
the feature set to decrease dimensions while
keeping 95% of data variance. Through PCA
redundant dimensions and unimportant features get
eliminated which enhances both the computational
processing speed and lowers overfitting potential.
The application of SMOTE standardization and
PCA transforms the multiple mineral feature sets
into a balanced collection of normalized compact
elements which yields better model accuracy
alongside faster training and enhanced generality
when classifying various mineral categories.

2.5 Classifier

The research implements XGBoost
classifier to analyze a combined feature group by
uniting handcrafted attributes and deep features
derived from ResNet50. XGBoost serves as the
chosen framework because it delivers reliable
performance with both high scalability and
decision-tree structure processing capabilities for
structured data sets. The ensemble-based structure
of XGBoost enables it to recognize complicated
feature relationships between the fused features
obtained from mineral grain images.

A hyperparameter optimization through
Optima framework aims to boost classification
results. The optimizer follows a systematic
procedure to find the best combination among key
parameters which include estimators and adept and
learning rate and subsample ratio and
colsample bytree. Different trials run by Optima
generate separate sets of proposed hyperparameters
before validating model accuracy against the
validation set. The trial with the highest accuracy
finds its place as the optimal configuration because
it strikes an equilibrium between learning
complexity and generalization.

The best chosen hyperparameters train the
model while splitting data through stratification for
testing purposes to ensure balanced class
distributions. The system's performance evaluation
depends on accuracy measurement coupled with
classification report results and confusion matrix
analysis. The hybrid model built from XGBoost
with optimized configuration surpasses individual
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features by displaying superior performance. The
model's performance benefits from this approach
which improves both classification precision and
overall robustness and evidence excellent
generalization effectiveness in various mineral
datasets.

3. RESULTS AND DISCUSSION

The evaluation of the hybrid framework
took place using the MINET dataset that contains
diverse mineral grain images across beach sands
commonly encountered mineral classes.  The
framework used XGBoost with Optuna parameter
adjustment for classifying the fused feature vector.
The approach is tested against models with
handcrafted features alone and deep features alone
as well as several state-of-the-art techniques
documented in literature.

3.1 Classification Performance

When using the XGBoost classifier alone
for handcrafted feature training the model achieved
an accuracy rate of 79.94%. This method possesses
effectiveness in identifying low-level traits
including texture and shape and color that help
mineral grain distinction however lacks deeper
semantic understanding. The ResNet50 deep
feature model by itself produced a 91.19% accuracy
level as it analyzes abstract patterns in mineral
structures through learned high-level
representations from convolutional layers.

By uniting handcrafted features with deep
features into a single hybrid representation the
overall model achieved better results during
classification. A XGBoost classifier obtained
97.44% peak accuracy by using the combined
features in its training. This performance exceeded
the results from separate models. The performance
gain demonstrates how handcrafted features work
best with deep features by combining both strong
pixel-level identification with semantic depth. Both
handcraft and deep features contribute to an
enhanced complete representation of mineral grains
which results in better discriminative abilities
across various classes. The assessment of
performance through accuracy and loss metrics can
be found in Figure 7 along with Figure 8.
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Figure 7: Bar plots of Performance metric
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Figure 8: Line Plot of Loss metric

In addition to accuracy, other performance metrics
were also evaluated, including precision, recall, and
Fl-score, which demonstrates for each class of
mineral. which remained consistently high across
most mineral classes. A detailed class-wise
evaluation revealed that minerals such as Quartz,
Pyrite, and Malachite were classified with near-
perfect precision and recall, owing to their
distinctive texture and color features. However,
confusion occurred between Muscovite and Biotite,
which exhibit similar flaky morphology and
grayscale textures. The hybrid model still managed
to reduce this confusion significantly compared to
standalone  models. Class-wise performance
analysis depicted in Table 1

Table 1: class-wise performance Analysis

Mineral ..
Classes precision recall fl-score
biotite 0.99 0.99 0.99
bornite 0.97 0.99 0.98
chrysocolla 0.97 0.96 0.96
malachite 0.98 0.97 0.97
muscovite 0.97 1 0.99
pyrite 0.98 0.99 0.98
quartz 0.98 0.97 0.98

To evaluate the effectiveness of the proposed
hybrid mineral classification framework, we
compared its performance against recent state-of-
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the-art approaches from the literature. Table 2
summarizes the classification accuracy achieved by
each method, along with the type of features used,
classifiers employed, and the datasets involved.

Table 2: Comparative Performance analysis with SOA
models

Stud Featur | Classi Acc
Ref. | y/ os fier Datase | urac
No. | Meth Used Used t y
od (%)
Thin
Wan Handcr Sectio
of afted Rand n 313
[34] il (GLC | om | Miner | °¢
2051 M+ | Forest al
LBP) Image
s
CNN
‘2‘;‘2 (VGG MINE | o
[35] al }6 SVM | RAL3 0'
2053 Fine- 2
tuned)
Custo
ResNet m
Jia et 18 SEM
[36] | al., (Deep S(;{Zm Miner 915'2
2022 | Featur al
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t
Zhan TZX;_UT Publiq
;377 | get | Spectr | XGB (;’l:‘arl“ 94.0
al., al + oost Datase 0
2023 | CNN :
Fusion
Prop
et | Horter| o
ewor | ResNet oost | MINE | 97.4
K 50 (Optu T 4
(Our | Fusion na)
s)
A substantial performance leap is

attainable through the proposed framework that
produces results at 97.44% accuracy above all other
assessment methods. The hybrid model introduced
here delivers substantially better performance than
individual feature methods by 3-5%. Analysis
using hybrid features demonstrate superior
performance than individual models since the
ResNetl18-based method in Jia et al., (2022)
delivered an accuracy of 91.25% and GLCM/LBP

feature models in Wang et al. (2021) provided
81.35% accuracy.

The combined approach in the proposed
hybrid framework produces better performance
than sole deep learning models by Ahmed et al.
(90.50%) and Zhang et al. (94.00%), since it
utilizes both handcrafted and ResNet50 deep
features. XGBoost implementation with Optuna
and L2 regularization and learning rate scheduling
and class balancing methods strengthens
generalization while preventing overfitting. The
fusion approach obtains low-level and abstract
patterns effectively which results in superior
accuracy and confirms the strength of integrated
features particularly for diverse datasets like
MINET.

The hybrid framework  proposal
outperforms previous benchmarks while confirming
how feature combination paired with XGBoost
classifiers drives mineral grain identification
performance. The analysis results show how joining
traditional handcrafted methods and modern deep
learning frameworks creates enhanced performance
capabilities for real-world mineral grain research.
The proposed framework achieves better
performance than every single-modal feature
method. The addition of multiple feature domains
resulted in an improvement level of over 3-5%
which showed better outcomes than single-modality
models based on either handcrafted or deep
approaches.

4. CONCLUSION AND FUTURE SCOPE

The proposed method uses components
from manual descriptors along with deep learning-
based features to develop an optimized framework
which improves mineral grain classification. The
proposed method using XGBoost classifier
obtained 97.44% classification accuracy when
working with the MINET dataset which provided
high-quality annotations. With the inclusion of
texture and color as well as shape and deep features
the system produces reliable high-level mineral
structure detection alongside low-level structural
identification for robust performance. The
presented findings show that machine learning's
capability to fasten mineral detection allows
scientists to save time while reducing their
dependency on lab technicians for expert analysis
of rocks and minerals.

The next research step should focus on
developing the classification framework to analyze
diverse mineral substances while integrating
hyperspectral or multispectral scanning capabilities
to obtain comprehensive spectral data. The trained
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model extends potential to identify minerals
directly through real-time image acquisition
systems in field environments. The combination of
advanced deep learning structures and explainable
Al techniques would enhance both model
interpretability and classification performance.
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