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ABSTRACT 
 

The industry that utilizes beach sand minerals containing titanium zirconium and other strategic elements 
requires precise classification of mineral grains. The identification techniques commonly used today take 
long periods to complete and need experts to interpret them while producing results that lack consistency. A 
well-annotated MINET (Mineral Identification NETwork) dataset of high-resolution mineral grain images 
serves this study to develop a powerful automated classification machine learning pipeline which addresses 
previous limitations. The proposed framework uses both handcrafted texture color and shape features with 
deep ResNet50 model features from extracted representations. These joint representations produce an 
advanced system which improves the identification of intricate mineral formations. Our framework uses 
XGBOOST as its classifier to show how features drawn from both handcrafted and deep learning extraction 
boost automated petrography systems and strengthens MINET's position as a critical benchmark for mineral 
recognition intelligence. 

Keywords: Mineral Gains,MINET,Handcrafted Features,Resnet50,XGBOOST 
 
1. INTRODUCTION  
 

Matter classification stands as a 
fundamental operational procedure across 
geosciences and industrial uses as well as material 
science. The classification of minerals through 
Raman spectroscopy X-ray diffraction (XRD) and 
chemical analysis becomes cumbersome because it 
needs expert skills as well as laboratory equipment. 
The methods require long durations while their 
evaluation relies on human judgment and tend to 
generate incorrect results. 

 Widespread adoption of machine learning 
(ML) and computer vision for mineral classification 
automation remains limited because existing 
datasets fail to present accurate annotations of real-
world mineral diversity. A high-resolution image 
collection of mineral grains named MINET 
(Mineral Identification NETwork) Dataset [1] 
provides geological samples from beach sand 
alongside hydrothermal deposits and granitic rocks. 
The collection includes labeled mineral samples 
spanning numerous rock types including quartz and 
muscovite and biotite with copper-bearing minerals 

in order to serve as an essential tool for automatic 
mineral identification system assessment. 

Scientists in geosciences as well as 
material science professionals and industrial 
practitioners rely on mineral classification as a 
basic operational requirement. The findings of this 
study particularly the integration of handcrafted and 
deep features into a unified framework—offer a 
more robust and accurate classification approach. 
These improvements can directly benefit 
researchers developing automated mineral analysis 
tools, professionals working with complex mineral 
datasets, and industrial practitioners seeking 
reliable, high-throughput classification solutions in 
real-world applications. 

 
The classification of minerals through 

Raman spectroscopy X-ray diffraction (XRD) and 
chemical analysis becomes cumbersome because it 
needs expert skills as well as laboratory equipment. 
The methods require long durations while their 
evaluation relies on human judgment and tend to 
generate incorrect results. 

 Extending mineral classification 
automation with machine learning techniques faces 
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challenges because researchers currently lack 
accessible high-quality datasets containing labeled 
mineral examples across natural environmental 
deposition sites. A high-resolution image collection 
of mineral grains named MINET (Mineral 
Identification NETwork) Dataset [1] provides 
geological samples from beach sand alongside 
hydrothermal deposits and granitic rocks. The 
collection includes labeled mineral samples 
spanning numerous rock types including quartz and 
muscovite and biotite with copper-bearing minerals 
in order to serve as an essential tool for automatic 
mineral identification system assessment. 

Machine learning has become integral to 
multiple domains including healthcare together 
with law enforcement and transportation and 
mining which allows automated intelligent 
decisions [2–5]. Mineral grain identification stands 
as an essential procedure throughout exploration as 
well as environmental studies in the mining and 
geoscience sector. The identification of grains 
including pyrite and biotite and quartz used to 
discover deposits depended primarily on manual 
approaches done by mineralogist experts according 
to literature [6, 7]. Traditional manual identification 
requires extensive human effort which leads to 
limitations in operational speed because of both 
human weariness and operator mistakes according 
to research published in [8]. A trained analyst can 
check sixty grains per minute but they usually 
record grain counts because area coverage stands 
out as the critical element for proper classification 
[9]. Neither Scanning Electron Microscopy (SEM) 
nor its higher precision potential can address budget 
constraints because its equipment costs $0.5 million 
to $2 million excluding specialized operator 
training [10]. The resistance to high-speed data 
processing coupled with operational challenges in 
the SEM workflow limits its capability to analyze 
big datasets effectively. 

The methodology faces enhanced 
limitations during environmental surveys together 
with explorations to detect dangerous mineral 
deposits in the environment. Detecting acid-
generating minerals along with heavy metal-bearing 
grains containing arsenic or lead requires early-
stage survey identification and mitigation according 
to [11, 12]. Sand containing reactive minerals 
presents structural vulnerabilities to concrete 
materials and other building components according 
to [13, 14]. Explorations of potential diamond 
deposits need the identification of indicator 
minerals such as chromium-bearing pyrope and 
diopside to determine proximity to actual ore 
bodies according to researchers [15, 16]. 

 Traditional methods for classifying and 
counting mineral grains primarily rely on Scanning 
Electron Microscopes (SEM) and optical 
microscopes. Optical microscopy remains the most 
widely used technique for estimating mineral 
abundance in sediments or milled rock. However, 
this approach demands highly trained personnel to 
identify and sort grains using specific properties 
like polarized transmitted/reflected light and 
morphological features. Although improvements 
have been made in optical microscopy for grain 
analysis, significant limitations persist—including 
manual labor and subjectivity—highlighting the 
need for a technical breakthrough in automation 
[17–20]. 

To address this, automated SEM 
techniques have emerged as viable alternatives. 
Systems like QEMSCAN, TIMA-X, and MLA use 
focused electron beams to scan samples, producing 
high-resolution images while collecting elemental 
data through techniques such as X-ray fluorescence 
[21,22]. These systems offer grain-level insights on 
composition, shape, and abundance. However, 
methods like grain counting with electron 
microprobes, while accurate, are time-consuming 
and resource-intensive [23,24]. 

Alternative imaging approaches have also 
been explored. For instance, Lin et al. [25] 
proposed a workflow combining SEM and micro-
CT to analyze pore and grain-size distributions in 
geological samples, such as Buff Berea and 
Castlegate sandstones. Their study noted that SEM-
derived 2D distributions often showed bias toward 
smaller grains. Other innovations include using 
laser particle counters (e.g., Wenglor sensors) to 
estimate grain size distributions. However, their 
performance was limited to particles passing 
through the sensor beam center, with size detection 
between 210 µm and 495 µm [26]. In a lower-cost 
solution, Lee et al. [27] employed light microscopy 
to capture grain shape profiles, showing that 
metrics such as roundness, sphericity, circularity, 
ModRatio, and aspect ratio were vital for shape-
based differentiation. With the advancement of 
machine learning, computational methods are 
increasingly being used across domains like 
autonomous driving, medical imaging, and 
precision agriculture [28–30], and these tools are 
now being applied to environmental and geological 
data processing. 

In mineral grain classification, one of the 
earliest machine learning applications was 
presented by Maitre et al. [31], who used linear 
iterative clustering to segment grains via 
superpixels and applied traditional classifiers, 
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achieving 89% accuracy. Other unsupervised 
methods, such as k-means clustering, were tested 
on images captured using stereoscopic binocular 
microscopes [32], though without comparison to 
labeled ground truth. This limits their applicability 
to mineral identification and confines them to 
petrography. Further classification efforts using 
Laser-Induced Breakdown Spectroscopy (LIBS) 
analyzers achieved approximately 75% accuracy 
but were focused solely on copper minerals 
[33].Recent advancements have shown the 
effectiveness of combining deep learning with 
feature fusion and advanced classifiers. [34] 
focused on handcrafted features such as GLCM and 
LBP for thin section image classification using a 
Random Forest classifier, attaining 81.35% 
accuracy. Ahmed et al.  [35] utilized fine-tuned 
VGG16 deep features combined with an SVM 
classifier, reporting 90.50% accuracy on the 
MINERAL32 dataset. Jia et al. [36] used ResNet18 
to classify SEM mineral images and achieved 
91.25% accuracy using Softmax classification. 
Zhang et al. [37] presented a multimodal fusion 
model incorporating texture, spectral, and CNN 
features with XGBoost, reaching 94.00% accuracy. 
Wang et al.These studies confirm that combining 
domain knowledge (handcrafted features) with 
data-driven deep learning architectures can 
significantly enhance mineral classification 
performance, especially when supported by robust 
datasets and appropriate classifiers. 
While existing techniques like QEMSCAN, MLA,  
 

Figure 1: Architecture of the proposed framework 
 
 
and LIBS provide detailed compositional data, they 
remain inaccessible due to high costs, time 
constraints, and operational complexity. 
Furthermore, most research has focused on SEM-
acquired or microscopy images with limited 
variability in mineral types and imaging conditions. 
There is currently a lack of openly available 
datasets that support both handcrafted and deep 
learning-based feature extraction pipelines on 
diverse mineral grain samples. The MINET dataset 
fills this gap by offering annotated, multi-mineral 
images with class imbalance and real-world 
variability—conditions often seen in field data. 

Existing research has primarily focused on 
individual feature types when classifying minerals. 
In contrast, our study introduces an innovative 
approach by integrating both handcrafted and 
hybrid features, aiming to provide a more refined 
classification. This combination, as we propose, 
allows for more accurate and comprehensive 
mineral classification, offering an improvement 
over existing methods. 
  In this study, we propose a robust hybrid 
classification framework using MINET that 
integrates handcrafted features (color, texture, 
shape) with deep features extracted via a fine-tuned 
ResNet50 model to enhance accuracy and 
interpretability in mineral classification tasks. 
2. METHODOLOGY 
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The proposed framework integrates a hybrid feature 
extraction strategy that combines handcrafted 
features (texture, color, and shape) with deep 
features extracted using ResNet50. After initial 
preprocessing steps including data augmentation 
and imbalance handling, the fused features undergo  
SMOTE-based balancing and dimensionality 
reduction via PCA before classification using an  
optimized XGBoost model. The complete 
architecture is illustrated in Figure 1. 
 
2.1 Data Preprocessing 
Dataset Description: This study utilizes the 
MINET dataset, comprising 951 labeled RGB 
images categorized into seven mineral classes: 
biotite, bornite, chrysocolla, malachite, muscovite, 
pyrite, and quartz. The dataset exhibits class 
imbalance as shown in Figure 2, with class 
distributions ranging from 68 samples  iotite to 234 
for malachite. Each image corresponds to a single 
mineral grain, eliminating the need for image 
segmentation or region-based separation. In 
addition to image data, the dataset provides 33 
tabular features per sample, representing spectral, 
chemical, and textural properties relevant to 
mineral classification. 
2.1.1 Image Preprocessing and Augmentation 

Preprocessing and augmentation 
operations form the initial step of the proposed 
pipeline, as illustrated in the Data Preprocessing 
Module of Figure 1. To ensure compatibility with 
the ResNet50 architecture, all images are resized to 
224×224 pixels. Each image is converted into a 
PyTorch tensor and normalized using the ImageNet 
mean and standard deviation values: [0.485, 0.456, 
0.406] and [0.229, 0.224, 0.225], respectively. 
To enhance model generalizability and mitigate 
overfitting, extensive data augmentation is applied. 
Techniques such as random cropping, horizontal 
and vertical flipping, affine transformations, 
perspective distortion, and color jittering are used 
to simulate variations in lighting, orientation, and 
specimen appearance. As a result, the original 
dataset size increased significantly—from 951 raw 
images to a total of 4780 augmented images—
providing a richer and more diverse training set for 
the classification models. 
 
2.1.2 Class Imbalance Handling 
 

The distribution of the minerals across 
various classes depicted in Figure 2. To address the 
skewed class distribution in the dataset, two 
strategies are used. During CNN training, the 
WeightedRandomSampler assigns higher sampling 

probabilities to underrepresented classes, ensuring 
that each mini-batch is more balanced. For 
traditional machine learning tasks using the fused 
feature set, the SMOTE (Synthetic Minority 
Oversampling Technique) algorithm is applied to 
synthetically generate new samples for minority 
classes, thus promoting balanced learning across 
the dataset. 
 

 
Figure 2: Distribution of Minerals 

2.2 Feature Extraction 
Handcrafted and automated features have 

been extracted from an equally distributed 
preprocessed MINET mineral dataset as depicted in 
the Figure 1 of feature extraction module for 
classifying minerals. 
2.2.1 Handcrafted Features 

A suite of handcrafted features is extracted 
to represent essential domain-specific 
characteristics: 
Color Features: Augmented images are converted 
to HSV(Hue, Saturation, Value) color space, and 
color histograms are computed to capture unique 
visual patterns such as the bright green of malachite 
or the golden hue of pyrite. Extracted HSV color 
space for the first five samples of each mineral has 
been depicted in Figure3. 
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Figure 3: Line plots of HSV across all minerals 

 
Texture Features: Gray-Level Co-occurrence 
Matrix (GLCM) statistics such as contrast, 
homogeneity, dissimilarity, and energy are 
computed to describe the spatial relationships 
between pixel intensities of minerals. Extracted 
texture feature representation uses violin plots; 
which are best in analyzing the distribution and 
variability of these features across mineral samples. 
This helped assess how well individual features 
could distinguish between different mineral classes 
and guided the feature selection process. The 
distribution of texture features across mineral 
samples shown in  Figure 4. 
 

 
Figure 4: GLCM contrast Texture Features of all 

minerals 

 
Shape Features: Using Canny edge detection and 
Hu Moments, geometric descriptors such as 
elongation, circularity, and irregularity are 
extracted, providing additional cues for 
differentiating grain morphology. 
 
 

Figure 5: Hu Moments distribution of all minerals 

2.2.2 Deep Features via ResNet50 
The process begins by loading the 

pretrained ResNet50 model and replacing its fully 
connected (fc) layer to match the number of mineral 
classes. The model's weights are fine-tuned on the 
mineral dataset using a WeightedRandomSampler 
to handle class imbalance.During training, the 
model adjusts its internal filters to better recognize 
mineral-specific features. The Adam optimizer with 
weight decay is applied to prevent overfitting, 
while the StepLR scheduler dynamically reduces 
the learning rate to ensure smooth convergence.  
The preprocessed image is passed through the 
ResNet50 model (with the final classification layer 
removed). The output is a feature vector of size 
2048, which is the number of output features from 
ResNet50's last convolutional layer. After training, 
the feature extraction function processes each 
image by passing it through the model's 
convolutional layers.  

The model generates deep feature 
embeddings that represent the image's high-level 
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patterns in a compact vector form. These feature 
vectors serve as rich numerical representations 
encapsulating the texture, shape, and color 
information of minerals. 

The UMAP projection of ResNet50-
extracted features reveals that instances of the same 
class often form multiple compact sub-clusters 
instead of a single large cluster. This indicates the 
presence of intra-class variability, possibly due to 
variations in texture, color, or lighting. The local 
compactness of these groups shows that UMAP is 
preserving neighborhood structure, while the spread 
across the 2D space reflects diversity within each 
mineral class. UMAP for automated features across 
mineral samples is depicted in Figure 6. 

 
Figure 6: UMAP representation of fused features across 
mineral samples. 
 
2.3 Hybrid Feature Extraction 

To leverage both low-level domain 
knowledge and high-level abstractions, handcrafted 
features are concatenated with ResNet50-extracted 
features, forming a unified hybrid feature vector. 
This fusion combines interpretable color, texture, 
and shape cues with learned deep patterns, 
enhancing the model’s ability to recognize subtle 
mineral differences. 
Handcrafted features are particularly useful for 
capturing fine-grained visual properties, while 
ResNet50 features encode robust spatial and 
structural information. Together, this approach 
enables the model to generalize well across diverse 
mineral types, even those with similar color or 
texture. 
2.4 Advanced Feature Processing 

Feature processing techniques at an 
advanced level are essential for improving feature 
dataset quality and balance which directly leads to 
better mineral classification models. SMOTE 
(Synthetic Minority Oversampling Technique) 
serves as the initial stage because it tackles class 
imbalance problems by producing artificial 
examples for minority mineral categories. The 

technique generates additional samples for 
underrepresented classes to enhance model 
detection of scarce minerals while reducing its 
preference toward dominant classes. 
Following standardization, the balanced features 
acquire mean values of zero accompanied by unit 
variances. The learning process of the model should 
receive equal contributions from every feature even 
though color histogram features are usually larger 
than texture features. 
Principal Component Analysis (PCA) operates on 
the feature set to decrease dimensions while 
keeping 95% of data variance. Through PCA 
redundant dimensions and unimportant features get 
eliminated which enhances both the computational 
processing speed and lowers overfitting potential. 
The application of SMOTE standardization and 
PCA transforms the multiple mineral feature sets 
into a balanced collection of normalized compact 
elements which yields better model accuracy 
alongside faster training and enhanced generality 
when classifying various mineral categories. 
2.5 Classifier 

The research implements XGBoost 
classifier to analyze a combined feature group by 
uniting handcrafted attributes and deep features 
derived from ResNet50. XGBoost serves as the 
chosen framework because it delivers reliable 
performance with both high scalability and 
decision-tree structure processing capabilities for 
structured data sets. The ensemble-based structure 
of XGBoost enables it to recognize complicated 
feature relationships between the fused features 
obtained from mineral grain images. 

A hyperparameter optimization through 
Optima framework aims to boost classification 
results. The optimizer follows a systematic 
procedure to find the best combination among key 
parameters which include estimators and adept and 
learning rate and subsample ratio and 
colsample_bytree. Different trials run by Optima 
generate separate sets of proposed hyperparameters 
before validating model accuracy against the 
validation set. The trial with the highest accuracy 
finds its place as the optimal configuration because 
it strikes an equilibrium between learning 
complexity and generalization. 

The best chosen hyperparameters train the 
model while splitting data through stratification for 
testing purposes to ensure balanced class 
distributions. The system's performance evaluation 
depends on accuracy measurement coupled with 
classification report results and confusion matrix 
analysis. The hybrid model built from XGBoost 
with optimized configuration surpasses individual 
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features by displaying superior performance. The 
model's performance benefits from this approach 
which improves both classification precision and 
overall robustness and evidence excellent 
generalization effectiveness in various mineral 
datasets. 
 
3. RESULTS AND DISCUSSION 

 
The evaluation of the hybrid framework 

took place using the MINET dataset that contains 
diverse mineral grain images across beach sands 
commonly encountered mineral classes.  The 
framework used XGBoost with Optuna parameter 
adjustment for classifying the fused feature vector. 
The approach is tested against models with 
handcrafted features alone and deep features alone 
as well as several state-of-the-art techniques 
documented in literature.  
3.1 Classification Performance 

When using the XGBoost classifier alone 
for handcrafted feature training the model achieved 
an accuracy rate of 79.94%. This method possesses 
effectiveness in identifying low-level traits 
including texture and shape and color that help 
mineral grain distinction however lacks deeper 
semantic understanding. The ResNet50 deep 
feature model by itself produced a 91.19% accuracy 
level as it analyzes abstract patterns in mineral 
structures through learned high-level 
representations from convolutional layers. 

By uniting handcrafted features with deep 
features into a single hybrid representation the 
overall model achieved better results during 
classification. A XGBoost classifier obtained 
97.44% peak accuracy by using the combined 
features in its training. This performance exceeded 
the results from separate models. The performance 
gain demonstrates how handcrafted features work 
best with deep features by combining both strong 
pixel-level identification with semantic depth. Both 
handcraft and deep features contribute to an 
enhanced complete representation of mineral grains 
which results in better discriminative abilities 
across various classes. The assessment of 
performance through accuracy and loss metrics can 
be found in Figure 7 along with Figure 8. 

 

 
Figure 7: Bar plots of Performance metric 

 

 
Figure 8: Line Plot of Loss metric 
 

In addition to accuracy, other performance metrics 
were also evaluated, including precision, recall, and 
F1-score, which demonstrates for each class of 
mineral. which remained consistently high across 
most mineral classes. A detailed class-wise 
evaluation revealed that minerals such as Quartz, 
Pyrite, and Malachite were classified with near-
perfect precision and recall, owing to their 
distinctive texture and color features. However, 
confusion occurred between Muscovite and Biotite, 
which exhibit similar flaky morphology and 
grayscale textures. The hybrid model still managed 
to reduce this confusion significantly compared to 
standalone models. Class-wise performance 
analysis depicted in Table 1 

Table 1: class-wise performance Analysis 

Mineral 
Classes 

precision recall f1-score 

biotite 0.99 0.99 0.99 
bornite 0.97 0.99 0.98 

chrysocolla 0.97 0.96 0.96 
malachite 0.98 0.97 0.97 
muscovite 0.97 1 0.99 

pyrite 0.98 0.99 0.98 
quartz 0.98 0.97 0.98 

To evaluate the effectiveness of the proposed 
hybrid mineral classification framework, we 
compared its performance against recent state-of-
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the-art approaches from the literature. Table 2 
summarizes the classification accuracy achieved by 
each method, along with the type of features used, 
classifiers employed, and the datasets involved. 

Table 2: Comparative Performance analysis with SOA 
models 

Ref. 
No. 

Stud
y / 

Meth
od 

Featur
es 

Used 

Classi
fier 

Used 

Datase
t 

Acc
urac

y 
(%) 

[34] 

Wan
g et 
al., 

2021 

Handcr
afted 
(GLC
M + 
LBP) 

Rand
om 

Forest 

Thin 
Sectio

n 
Miner

al 
Image

s 

81.3
5 

[35] 

Ahm
ed et 
al., 

2023 

CNN 
(VGG

16 
Fine-
tuned) 

SVM 
MINE
RAL3

2 

90.5
0 

[36] 
Jia et 
al., 

2022 

ResNet
18 

(Deep 
Featur

es) 

Softm
ax 

Custo
m 

SEM 
Miner

al 
Datase

t 

91.2
5 

[37] 

Zhan
g et 
al., 

2023 

Textur
e + 

Spectr
al + 

CNN 
Fusion 

XGB
oost 

Public 
Geomi
neral 

Datase
t 

94.0
0 

 
 

Prop
osed 
Fram
ewor

k 
(Our

s) 

Handcr
afted + 
ResNet

50 
Fusion 

XGB
oost 

(Optu
na) 

MINE
T 

97.4
4 

 
A substantial performance leap is 

attainable through the proposed framework that 
produces results at 97.44% accuracy above all other 
assessment methods. The hybrid model introduced 
here delivers substantially better performance than 
individual feature methods by 3–5%. Analysis 
using hybrid features demonstrate superior 
performance than individual models since the 
ResNet18-based method in Jia et al., (2022) 
delivered an accuracy of 91.25% and GLCM/LBP 

feature models in Wang et al. (2021) provided 
81.35% accuracy. 

The combined approach in the proposed 
hybrid framework produces better performance 
than sole deep learning models by Ahmed et al. 
(90.50%) and Zhang et al. (94.00%), since it 
utilizes both handcrafted and ResNet50 deep 
features. XGBoost implementation with Optuna 
and L2 regularization and learning rate scheduling 
and class balancing methods strengthens 
generalization while preventing overfitting. The 
fusion approach obtains low-level and abstract 
patterns effectively which results in superior 
accuracy and confirms the strength of integrated 
features particularly for diverse datasets like 
MINET. 

The hybrid framework proposal 
outperforms previous benchmarks while confirming 
how feature combination paired with XGBoost 
classifiers drives mineral grain identification 
performance. The analysis results show how joining 
traditional handcrafted methods and modern deep 
learning frameworks creates enhanced performance 
capabilities for real-world mineral grain research. 
The proposed framework achieves better 
performance than every single-modal feature 
method. The addition of multiple feature domains 
resulted in an improvement level of over 3–5% 
which showed better outcomes than single-modality 
models based on either handcrafted or deep 
approaches. 
 
4. CONCLUSION AND FUTURE SCOPE 

The proposed method uses components 
from manual descriptors along with deep learning-
based features to develop an optimized framework 
which improves mineral grain classification. The 
proposed method using XGBoost classifier 
obtained 97.44% classification accuracy when 
working with the MINET dataset which provided 
high-quality annotations. With the inclusion of 
texture and color as well as shape and deep features 
the system produces reliable high-level mineral 
structure detection alongside low-level structural 
identification for robust performance. The 
presented findings show that machine learning's 
capability to fasten mineral detection allows 
scientists to save time while reducing their 
dependency on lab technicians for expert analysis 
of rocks and minerals. 

The next research step should focus on 
developing the classification framework to analyze 
diverse mineral substances while integrating 
hyperspectral or multispectral scanning capabilities 
to obtain comprehensive spectral data. The trained 



 Journal of Theoretical and Applied Information Technology 
15th August 2025. Vol.103. No.15 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
5660 

 

model extends potential to identify minerals 
directly through real-time image acquisition 
systems in field environments. The combination of 
advanced deep learning structures and explainable 
AI techniques would enhance both model 
interpretability and classification performance. 
 
REFERENCES 
 
[1] Doe, J., Smith, A., & Lee, M. (2024). MINET: 

A multi-source image dataset for mineral 
grain classification. Journal of Geoscience AI, 
12(3), 101-115.  

[2] Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., et 
al. (2017). Dermatologist-level classification 
of skin cancer with deep neural networks. 
Nature, 542(7639), 115–118. 

[3] Ching, T., Himmelstein, D. S., Beaulieu-Jones, 
B. K., et al. (2018). Opportunities and 
obstacles for deep learning in biology and 
medicine. Journal of The Royal Society 
Interface, 15(141), 20170387.  

[4] Lecun, Y., Bengio, Y., & Hinton, G. (2015). 
Deep learning. Nature, 521(7553), 436–444. 

[5] Silver, D., Huang, A., Maddison, C. J., et al. 
(2016). Mastering the game of Go with deep 
neural networks and tree search. Nature, 
529(7587), 484–489.  

[6] Ghabrial, M. G., & Radhakrishna, M. (1989). 
Identification of mineral grains in thin 
sections. Economic Geology, 84(4), 823-828. 

 [7] Sivakumar, R., & Das, A. (2002). 
Mineralogical analysis for exploration studies. 
Exploration Geophysics, 33(1), 65–72.  

[8] Dogramaci, S. S., & Mahmut, A. R. (2004). 
Expert-based identification of minerals in 
stream sediments. Applied Geochemistry, 
19(5), 633–643.  

[9] Gaudette, H. E. (1997). The evolution of 
petrographic methods for the 21st century. 
Petrographic Journal, 43(2), 215–223. 

[10] Gottlieb, P., Wilkie, G., Sutherland, D., et al. 
(2000). Using QEMSCAN to measure 
recovery in copper processing. Minerals 
Engineering, 13(4), 401–414. 

[11] Plumlee, G. S., & Logsdon, M. J. (1999). The 
environmental geochemistry of mineral 
deposits. Society of Economic Geologists 
Reviews, 6, 71–116.  

[12] Lottermoser, B. G. (2010). Mine Wastes: 
Characterization, Treatment and 
Environmental Impacts. Springer. 

 [13] Thomas, R. J., & Cordell, R. J. (2006). 
Detrimental minerals in construction 

aggregates. Engineering Geology, 85(2), 103–
117.  

[14] Smith, M. A., & Lord, S. P. (2013). Reactive 
mineralogy in concrete aggregates. 
Construction Materials, 166(6), 317–325. 

[15] Kjarsgaard, B. A., & Levinson, A. A. (1986). 
Diamond indicator minerals in glacial 
sediments. Journal of Geochemical 
Exploration, 25(1), 99–118. 

[16] Kruse, F. A., et al. (1993). The use of AVIRIS 
hyperspectral data for mineral mapping. 
Remote Sensing of Environment, 44(2-3), 
145–163.  

[17] Pettijohn, F. J. (1975). Sedimentary Rocks. 
Harper & Row.  

[18] Anderson, D. B. (1994). Optical mineralogy 
advancements. Microscopy Today, 2(3), 32–
37. [19] Bhattacharya, J., & Samanta, B. 
(2009). Image processing for geological 
samples. Computers & Geosciences, 35(9), 
1785–1796.  

[20] Zhang, H., & Li, S. (2011). Quantitative 
analysis of mineral compositions by digital 
image processing. Geological Journal, 46(1), 
69–78. 

[21] Gottlieb, P., et al. (1999). QEMSCAN–
Quantitative Evaluation of Minerals by 
Scanning Electron Microscopy. Minerals 
Engineering, 12(11), 1035–1044. 

 [22] Pirrie, D., & Rollinson, G. K. (2011). 
Application of TIMA-X in sediment analysis. 
Journal of Sedimentary Research, 81(9), 653–
664. 

[23] Vaughan, D. J., et al. (2002). Electron 
microprobe techniques in ore microscopy. Ore 
Geology Reviews, 20(1), 211–225. 

[24] Lee, J., et al. (2020). High-resolution 3D grain 
shape analysis via light microscopy. Scientific 
Reports, 10, 12192.  

[25] Lin, Y., et al. (2018). Grain-size distributions 
via SEM and micro-CT. Journal of Petroleum 
Science and Engineering, 163, 321–332.  

[26] Huang, T., et al. (2016). Laser particle size 
estimation limitations. Sensors, 16(8), 1265. 

[27] Lee, Y., et al. (2015). Optical measurement of 
roundness and shape factors. Micron, 70, 38–
47. 

[28] Chen, M., et al. (2019). Deep learning in 
autonomous driving. Nature Communications, 
10, 4174. 

[29] Litjens, G., et al. (2017). A survey on deep 
learning in medical image analysis. Medical 
Image Analysis, 42, 60–88.  

[30] Kamilaris, A., & Prenafeta-Boldú, F. X. 
(2018). Deep learning in agriculture: A 



 Journal of Theoretical and Applied Information Technology 
15th August 2025. Vol.103. No.15 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
5661 

 

survey. Computers and Electronics in 
Agriculture, 147, 70–90. 

 [31] Maitre, H., et al. (2013). Superpixel-based 
mineral grain classification. Geoscience and 
Remote Sensing Letters, 10(3), 591–595. 

[32] Zhu, R., et al. (2012). Unsupervised clustering 
of mineral grains using k-means. Geological 
Informatics, 1(2), 88–94.  

[33] Kumar, A., et al. (2021). Copper mineral 
detection using LIBS and ML. Applied 
Spectroscopy Reviews, 56(5), 411–426. 

[34] Wang, Y., Tan, J., & Zhao, H. (2021). Mineral 
grain classification from thin-section images 
using handcrafted texture features. Computers 
& Geosciences, 154, 104796. 

[35] Ahmed, S., Li, X., & Omar, M. (2023). A 
CNN-SVM hybrid model for image-based 
mineral classification. Applied Geochemistry, 
152, 105632. 

[36] Jia, K., Liu, X., & Chen, Y. (2022). Deep 
learning-based mineral identification using 
ResNet on SEM images. Minerals 
Engineering, 180, 107411. 

[37] Zhang, Q., Wang, Z., & Huang, L. (2023). 
Multimodal fusion of spectral, texture, and 
CNN features for mineral classification. IEEE 
Access, 11, 65120–65133.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 


