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ABSTRACT 
 

This paper introduces a thorough methodology for categorizing brain tumors using the BRATS dataset, 
utilizing sophisticated image processing and machine learning techniques. The technique commences by 
obtaining and adjusting brain scan images to a consistent size of 256x256 pixels by spline interpolation. The 
photos are subsequently transformed into grayscale using the luminosity approach, which simplifies the data 
while preserving crucial structural details. The Total Variation (TV) denoising technique is utilized to 
diminish noise and maintain essential characteristics, leading to the production of superior pre-processed 
photographs. The pre-processed images are subjected to segmentation using the DBSCAN (Density-Based 
Spatial Clustering of Applications with Noise) algorithm, which efficiently classifies data points into core 
points, border points, and noise. This segmentation process reveals discrete regions of interest within the 
brain scans. Afterwards, Haralick descriptors are utilized to extract features from the gray-level co-occurrence 
matrix (GLCM). These features include Contrast, Correlation, Energy, and Homogeneity. These 
characteristics offer a comprehensive representation of the texture and spatial connections within the 
photographs. Dimensionality reduction is accomplished by employing t-Distributed Stochastic Neighbor 
Embedding (t-SNE) to streamline the feature set while maintaining optimal performance. The classification 
task utilizes the LiquiCon-Net model, which combines Liquid Neural Networks (LNNs) and Convolutional 
Neural Networks (CNNs). The model integrates ResNet-50's high-level spatial features with the temporal 
information derived from the Liquid Time-Constant Network (LTCN). The fusion layer combines these 
features, and the ultimate classification is determined by a sequence of densely connected layers, which are 
then followed by a softmax function. The performance evaluation of the suggested model is carried out 
utilizing a confusion matrix, ROC plot, and measures such as accuracy, sensitivity, and specificity. The 
proposed model attains a precision of 99.42%, a selectivity of 99.62%, and a responsiveness of 99.81%. The 
results exhibit exceptional performance in comparison to current models, such as EfficientNets, Capsule 
Networks (CapsNet) + VGG19, and AlexNet + GoogleNet Ensemble. The thorough examination and 
impressive measurements highlight the efficiency of the suggested approach in precisely categorizing brain 
tumors, presenting substantial prospects for enhancing diagnostic precision in clinical environments. 

Keywords: Brain Tumors, Glioma, LNN, LTCN, Medical, Deep learning 
 
1. INTRODUCTION  
 

Brain tumors pose a substantial medical challenge 
due to their complexity and potential for serious 
health consequences [1-3]. They are some of the 
most dangerous types of cancer, affecting people of 
all ages. According to recent data, brain tumors 

account for roughly 1.4% of all malignancies and 
2.3% of all cancer-related deaths worldwide [4-8]. 
The incidence rate is higher in wealthy countries, 
with approximately 24 cases per 100,000 people 
annually. These figures emphasize the crucial need 
for effective diagnostic and therapeutic solutions to 
control this chronic condition [9]. 
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Brain tumors pose significant health hazards 
because they can impair important activities such as 
cognition, motor skills, and sensory perception [10-
13]. There are various types of brain tumors, which 
can be benign or malignant [14]. Meningiomas are 
benign tumors that grow slowly and are less prone to 
spread, but they can still cause serious health 
concerns due to their location [15]. Malignant 
tumors, such as gliomas and astrocytomas, are 
aggressive and can rapidly infect adjacent brain 
tissue, causing significant neurological deficits and 
lower survival rates. Metastatic brain tumors, which 
originate from other cancers in the body, complicate 
therapy and prognosis [16]. 

Brain tumors impose a significant burden on both 
patients and healthcare systems. Patients frequently 
have a reduction in quality of life as a result of 
physical and cognitive disabilities, demanding 
considerable medical care and support [17]. The 
economic burden is likewise enormous, with hefty 
expenses for treatment, rehabilitation, and long-term 
care. Early diagnosis of brain tumors is critical 
because it can dramatically enhance treatment 
outcomes and survival rates. Early diagnosis allows 
for timely management, which can prevent the tumor 
from progressing to an advanced stage, lowering the 
severity of health consequences and improving the 
overall prognosis. 

In this study, we present a unique methodology for 
classifying brain tumors that employs advanced 
image processing and machine learning techniques. 
We employ spline interpolation for picture scaling, 
luminosity-based grayscale conversion, Total 
Variation (TV) denoising, and DBSCAN 
segmentation to preprocess brain scan images. We 
use Haralick descriptors for feature extraction and t-
SNE for dimension reduction. The categorization is 
carried out using the LiquiCon-Net model, which 
combines ResNet-50 with LTCN resulting in high 
accuracy, specificity, and sensitivity.   

The problem area addressed in this research is the 
accurate detection and classification of brain tumors 
using medical imaging, a task that remains 
challenging due to complex tumor structures, image 
noise, and variability in tumor appearance across 
patients. Traditional diagnostic methods are time-
consuming and prone to human error, while many 
existing automated approaches struggle with 
precision and generalization. The proposed model, 
LiquiCon-Net, aims to enhance tumor detection by 
combining advanced image processing and machine 
learning techniques for improved segmentation and 
classification accuracy. 

This research focuses on the following key 
questions: 

 How can image preprocessing and 
enhancement improve brain tumor visibility 
and feature extraction? 

 What are the advantages of integrating 
LiquiCon-Net with machine learning for 
tumor classification? 

 How does the proposed model compare 
with existing techniques in terms of 
accuracy and efficiency? 

 Can the system support real-time medical 
diagnostics? 

 How adaptable is the model across diverse 
MRI datasets and tumor types? 

2.1 Contribution 
The study introduces a comprehensive 

image preprocessing workflow combining spline 
interpolation, luminosity-based grayscale 
conversion, Total Variation denoising, and 
DBSCAN segmentation to enhance image quality 
and highlight tumor regions effectively. 

The use of Haralick texture descriptors 
alongside t-SNE for dimensionality reduction 
enables rich and compact feature representations, 
improving classification performance. 

The LiquiCon-Net model uniquely 
integrates ResNet-50’s spatial feature extraction 
capabilities with Liquid Time-Constant Networks 
(LTCN) to capture both spatial and temporal 
information, resulting in superior tumor 
classification accuracy. 

The proposed approach achieves 
outstanding accuracy (99.42%), specificity 
(99.62%), and sensitivity (99.81%), outperforming 
well-known models like EfficientNets, CapsNet + 
VGG19, and AlexNet + GoogleNet ensembles on 
the BRATS dataset. 

By demonstrating exceptional precision 
and reliability, this methodology offers promising 
applications for improving brain tumor diagnosis 
and treatment planning in real-world clinical 
settings. 

This paper is structured as follows: Section 
2 includes a thorough review of previous research. 
Section 3 describes the Proposed System 
architecture and  the LiquiCon-Net model. Section 4 
summarizes the experimental findings, which 
include performance indicators and comparisons to 
existing models. Finally, Section 5 summarizes the 
Conclusion of the Work. 
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2. RELATED WORKS 
 

Accurate and early detection of brain tumors is 
critical for effective treatment planning and 
improving patient survival rates. Recent 
advancements in deep learning have significantly 
improved diagnostic performance; however, many 
existing approaches face key limitations that hinder 
their practical deployment. For example, [20] 
introduced a sequential CNN with high accuracy and 
specificity, but its computational burden makes it 
unsuitable for real-time or low-resource 
applications. Similarly, [21] employed 
EfficientNets, which offer excellent scalability and 
accuracy, but their intricate configuration process 
limits adaptability across diverse datasets without 
extensive re-tuning. 

To demonstrated a hybrid CapsNet-VGG19 model 
with high accuracy and sensitivity, yet the shallow 
depth of VGG19 increases the risk of overfitting [22] 
. The explored CRF-RNNs for segmentation, but 
their high memory demands and training complexity 
restrict usage in resource-constrained environments 
[23]. Ensemble methods, such as the one [24], 
showed impressive performance; however, 
combining simple architectures like AlexNet still 
requires more advanced models like GoogleNet for 
meaningful results. 

Optimization-integrated models like the CNN 
with Deer Hunting Optimization [25] offer enhanced 
parameter tuning but introduce complications due to 
the need for precise hyperparameter calibration. It 
used ConvNets effectively, although they are limited 
by gradient issues in sequential data processing [26]. 
The presented Nested U-Nets with attention 
mechanisms, achieving strong segmentation but at 
the cost of high resource usage [27]. 

Therefore, there is a strong need for a unified 
model such as LiquiCon-Net that integrates robust 
image processing and machine learning capabilities 
while minimizing computational complexity, 
ensuring accuracy, scalability, and real-time 
applicability. 

3. PROPOSED SYSTEM 
 

The diagram of proposed system in Figure 1 
depicts a full image analysis workflow that begins 
with image acquisition and preprocessing. This 
initial phase is followed by Grayscale Conversion, 
which reduces the image to a single channel for 
easier processing. The next step, Denoising with 
Total Variation (TV), seeks to reduce noise while 
retaining key features. DBSCAN segmentation is 

used to cluster similar parts in an image. After 
segmentation, Feature Extraction with Haralick 
Descriptors obtains texture-related data. These 
features are then decreased in dimensionality via t-
SNE, making the data more manageable for the next 
phase. LiquiCon-Net classifies processed picture 
data using a neural network. The final stage, 
Performance Evaluation, evaluates the model's 
effectiveness and ensures that the process fulfills the 
required accuracy and reliability standards. 

 

Figure 1: Proposed System Block Diagram 

The process commences by acquiring brain 
pictures from the BRATS dataset [18]. The photos 
are consistently scaled to a defined format of 
256x256 pixels using spline interpolation to 
maintain uniformity in later processing phases.  

𝐼௥௘௦௜௭௘ௗ(𝑥, 𝑦) = 𝑅(𝐼(𝑥, 𝑦), 256,256) (1) 

Once the images have been resized, they are 
transformed into grayscale using the luminosity 
technique. This method involves combining the red, 
green, and blue color channels with particular 
weights that correspond to the human eye's 
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sensitivity to these hues. The grayscale value 
𝐼௚௥௔௬  (𝑥, 𝑦) is computed as, 

𝐼௚௥௔௬(𝑥, 𝑦) = 0.21 ∙  𝐼௥௘௦௜௭௘ௗ(𝑥, 𝑦, 𝑅)

+  0.72 ∙  𝐼௥௘௦௜௭௘ௗ(𝑥, 𝑦, 𝐺)
+  0.07 ∙  𝐼௥௘௦௜௭௘ௗ(𝑥, 𝑦, 𝐵) 

(2) 

The grayscale conversion process reduces the 
image data by reducing it to a single channel.  

The technique of Total Variation (TV) denoising 
is utilized for improving the quality. TV denoising is 
a nonlinear method that efficiently lowers noise in 
images while maintaining the sharpness of edges and 
keeping key features. TV denoising is applied to the 
grayscale image  𝐼௚௥௔௬ . the TV denoising objective 
function  ℒ்௏ is defined as, 

ℒ்௏(𝐼ௗ௘௡௢௜௦௘ௗ)

=  ෍ ඨ൬
𝜕𝐼ௗ௘௡௢௜௦௘ௗ

𝜕𝑥
൰

ଶ

+ ൬
𝜕𝐼ௗ௘௡௢௜௦௘ௗ

𝜕𝑦
൰

ଶ

௫,௬

 
(3) 

minimizing this function with respect to the denoised 

image 𝐼ௗ௘௡௢௜௦௘ௗ gives 

𝐼ௗ௘௡௢௜௦௘ௗ = 𝑎𝑟𝑔𝑚𝑖𝑛 ቀฮ𝐼 −  𝐼௚௥௔௬ฮ
ଶ

ଶ

+ 𝜆ℒ்௏(𝐼)ቁ  
(4) 

The choice of the regularization parameter for this 
denoising process is based on the noise 
characteristics of the dataset. Subsequently, the 
DBSCAN algorithm is employed to partition the 
preprocessed pictures based on density and spatial 
clustering, while also accounting for noise. 

DBSCAN algorithm is applied to the denoised 
image  𝐼ௗ௘௡௢௜௦௘ௗ . DBSCAN parameters include 𝜖 
(epsilon) and 𝑀𝑖𝑛𝑃𝑡𝑠 (minimum samples). the 
algorithm classifies data points into core points, 
border points and noise. 

Core point condition, 

𝐶𝑜𝑟𝑒(𝑝) =  {𝑞 ∈ 𝐷 | ‖𝑝 − 𝑞‖  ≤ ∈ }  (5) 

Cluster formation, 

let  𝑁(𝑝) denote the neighbors of point 𝑝, 

𝑁(𝑝) =  {𝑞 ∈ 𝐷 | ‖𝑝 − 𝑞‖  ≤ ∈ }  (6) 

a point 𝑝 is a core point if |𝑁(𝑝)| ≥ 𝑀𝑖𝑛𝑃𝑡𝑠. 
clusters are formed by iteratively merging core 
points and their neighbors. 

This process leads to the creation of a segmented 
image where each cluster represents a unique region 
of interest. 

After the process of segmentation, Haralick 
descriptors are employed to extract features from the 
images. The descriptors derived from the GLCM 
encompass metrics such as contrast, correlation, 
energy, and homogeneity. These characteristics offer 
a comprehensive depiction of the texture and spatial 
connections within the photos.  

The GLCM 𝑃(𝑖, 𝑗)  is computed for each pixel pair 
(𝑖, 𝑗). 

 Contrast 

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 =  ෍(𝑖 − 𝑗)ଶ 𝑃(𝑖, 𝑗)

௜,௝

 (7) 

 Correlation 

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛

=  ෍
(𝑖 − 𝜇௜)൫𝑗 − 𝜇௝൯𝑃(𝑖, 𝑗)

𝜎௜𝜎௝
௜.௝

 (8) 

 Energy 

𝐸𝑛𝑒𝑟𝑔𝑦 =  ෍ 𝑃(𝑖, 𝑗)ଶ

௜,௝

 (9) 

 Homogeneity 

𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 =  ෍
𝑃(𝑖. 𝑗)

1 + |𝑖 − 𝑗|
௜,௝

 (10) 

In order to enhance the dimensionality of the 
feature data, the technique of t-SNE is utilized. t-
SNE is a technique that lowers the feature set to its 
most important components, making the model 
simpler without compromising its performance. 

This process is carried out on the feature vectors 
 𝐹 to a lower dimension  𝑑. 

High-Dimensional Similarity for high-
dimensional data points  𝑥௜   and  𝑥௝  

𝑝௜௝ =  

𝑒𝑥𝑝 ൭−
ฮ𝑥௜ − 𝑥௝ฮ

ଶ

2𝜎௜
ଶ ൱

∑ ൬−
‖𝑥௞ − 𝑥௟‖ଶ

2𝜎௞
ଶ ൰௞ஷ௟

 (11) 

Low-Dimensional Similarity for low-dimensional 
data points  𝑦௜   and  𝑦௝ 

𝑞௜௝ =  
ቀ1 + ฮ𝑦௜ − 𝑦௝ฮ

ଶ
ቁ

ିଵ

∑ (1 + ‖𝑦௞ − 𝑦௟‖ଶ)ିଵ
௞ஷ௟

 (12) 

 

KL Divergence Minimization 

ℒ௧ିௌோ =  ෍  𝑝௜௝ log
𝑝௜௝

𝑞௜௝
௜ஷ௝

 (13) 
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The LiquiCon-Net model is employed for 
classification, effectively integrating the benefits of 
LNNs and CNNs. The method commences with 
ResNet-50, a CNN tasked with extracting high-level 
spatial information from the input brain MRI data. 
These characteristics are subsequently merged with 
those obtained from the LTCN module, which is 
specifically designed to manage the temporal 
patterns of the data, capturing the variations in tumor 
characteristics as time progresses. 

Feature Extraction with ResNet-50 

Let  𝐹ோ௘௦ே௘௧  be the features extracted by ResNet-
50: 

𝐹ோ௘௦ே௘௧ = 𝑅𝑒𝑠𝑁𝑒𝑡 − 50(𝐼ௗ௘௡௢௜௦௘ௗ) (14) 

Temporal features with LTCN 

Let  𝐹௅்஼ே be the features extracted by the Liquid 
Time - Constant Network (LTCN): 

𝐹௅்஼ே = 𝐿𝑇𝐶𝑁 (𝐼ௗ௘௡௢௜௦௘ௗ) (15) 

The fusion layer combines the spatial and 
temporal data to create a unified representation. 
Following fusion, a series of densely linked layers 
amalgamates these characteristics to produce the 
ultimate classification outcome, which is decided by 
a softmax function. 

Feature fusion 

The fusion layer combines  𝐹ோ௘௦ே௘௧  and  𝐹௅்஼ே: 

𝐹௙௨௦௘ௗ =  𝐹ோ௘௦ே௘௧ ⊕  𝐹௅்஼ே (16) 

Dense Layers and Softmax Classification 

The fused features  𝐹௙௨௦௘ௗ  pass through dense 
layers 

𝐹ௗ௘௡௦௘ = 𝐷𝑒𝑛𝑠𝑒 (𝐹௙௨௦௘ௗ) (17) 

The final classification is determined by the 
softmax function: 

𝑦ො = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝐹ௗ௘௡௦௘) (18) 

The classification model's performance is 
assessed by employing a confusion matrix. Essential 
measurements such as accuracy, sensitivity (recall), 
and specificity are computed. Accuracy is a measure 
of the overall soundness of the model, sensitivity 
analyses its capacity to accurately identify positive 
cases, and specificity reviews its ability to accurately 
identify negative ones. This exhaustive performance 
analysis guarantees a deep comprehension of the 
model's efficacy and acts as a basis for subsequent 
fine-tuning and improvement.  

Confusion Matrix 

𝐶𝑀 =  ቂ
𝑇𝑃 𝐹𝑁
𝐹𝑃 𝑇𝑁

ቃ (19) 

Where, TP - True Positives, TN - True Negatives, 
FP - False Positives and FN - False negatives 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (20) 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (𝑅𝑒𝑐𝑎𝑙𝑙) =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (21) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (22) 

 

4.1 Proposed Model 

The name "LiquiCon-Net" signifies the 
model's focus on utilizing powerfulLNN and CNN 
to specifically detect and classify brain tumors. The 
name "Liqui" refers to the incorporation of Liquid 
Time-Constant Networks (LTCNs), which excel at 
capturing the temporal dynamics and alterations in 
sequential brain scans. The ability to perceive and 
analyze slight changes and advancement in tumor 
development is essential. The name "Con" refers to 
the utilization of ResNet-50, a robust deep 
architecture renowned for its ability to extract 
intricate features, for the purpose of examining 
spatial patterns in medical images. This combination 
effectively encompasses both the time-related and 
spatial aspects of brain tumor imaging, hence 
improving the precision and dependability of tumor 
identification and categorization. 

The design commences with the utilization 
of ResNet-50 as the CNN component. This 
component is responsible for processing input brain 
MRI scans and extracting high-level spatial data by 
means of its deep convolutional layers. This 
encompasses the convolutional base up to the global 
average pooling layer. The data obtained from 
ResNet-50 are subsequently combined with the 
features derived from the LTCN component. The 
LTCN is specifically engineered to handle the 
sequential or temporal components of the data, 
effectively capturing the dynamic changes in tumor 
features as they occur over time. The fusion layer 
integrates the spatial and temporal data into a 
cohesive representation. After the fusion process, a 
sequence of fully connected layers combines these 
features to create the ultimate classification output. 
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The output is decided by a softmax function, 
depending on the classification problem. 

 
3.1.1 Practical Implications and Industry 

Benefits 
 Improved Diagnostic Accuracy in Clinical 

Settings: The high precision, sensitivity, and 
specificity of the LiquiCon-Net model can 
significantly reduce diagnostic errors in brain 
tumor detection, enabling earlier and more 
reliable identification of tumor types. This can 
lead to timely interventions, better prognosis, 
and tailored treatment plans for patients. 

 Streamlined Radiological Workflows: By 
automating complex image preprocessing and 
classification steps with advanced algorithms, 
this approach can alleviate the workload on 
radiologists and medical professionals. Faster 
and more accurate analysis can improve patient 
throughput without compromising diagnostic 
quality. 

 Enhanced Decision Support Systems: 
Integration of this methodology into existing 
medical imaging platforms can serve as a 
powerful decision support tool. Clinicians can 
use model-generated insights alongside 
traditional assessments, increasing confidence 
in diagnosis and reducing subjectivity. 

 Cost and Resource Efficiency: Reducing the 
need for multiple imaging sessions or invasive 
diagnostic procedures, the system can 
contribute to lowering healthcare costs. 
Additionally, automation can help facilities 
with limited expert personnel maintain high 
diagnostic standards. 

 Facilitation of Personalized Treatment 
Planning: Detailed and precise tumor 
classification supports oncologists in devising 
personalized therapies based on tumor type and 
progression, ultimately improving patient 
outcomes and optimizing resource allocation in 
treatment delivery. 

 Research and Development Catalyst: The 
combination of innovative image processing 
techniques with hybrid neural networks 
presents a scalable framework that can be 
adapted or extended to other medical imaging 
challenges, fostering innovation within the 
healthcare AI industry.  

 
3.1.2 Open Issues and Future Challenges 
 

The model has been validated primarily on 
the BRATS dataset, which, although 

comprehensive, may not fully represent the 
heterogeneity of brain tumor images encountered in 
real-world clinical environments, including 
variations in imaging devices, protocols, and patient 
demographics. 

Further investigation is needed to assess 
how the model handles different types of noise, 
motion artifacts, or incomplete scans often present in 
practical medical imaging scenarios. 

While achieving high accuracy, the 
combined LiquiCon-Net architecture may require 
substantial computational resources, potentially 
limiting its usability in low-resource or time-
sensitive settings without optimized 
implementations. 

Deep learning models often act as “black 
boxes.” Enhancing model transparency and 
providing interpretable explanations of predictions 
are crucial for clinical acceptance and regulatory 
approval. 

The practical integration of the model into 
existing hospital systems, including interoperability 
with PACS (Picture Archiving and Communication 
System) and electronic health records, remains to be 
fully explored. 

Extending the model to incorporate 
longitudinal scans or multi-modal imaging data (e.g., 
MRI, PET) could further improve diagnostic 
accuracy but also presents technical and data 
integration challenges. 

LiquiCon-Net distinguishes itself from 
other models by using a unique fusion of LNNs and 
CNNs designed exclusively for the purpose of 
detecting and classifying brain tumors. Traditional 
convolutional neural networks (CNNs) are proficient 
at capturing spatial characteristics, but they often 
struggle to efficiently handle temporal dynamics. On 
the other hand, LNNs, specifically Liquid Time-
Constant Networks (LTCNs), are specifically 
created to represent temporal connections, which 
makes them well-suited for examining sequential 
medical imaging data. By combining these two 
methods, LiquiCon-Net is able to not only capture 
intricate spatial characteristics using ResNet-50, but 
also effectively handle changes over time and their 
development through the LTCN. This combination 
method improves the model's capacity to identify 
and categorize tumors with higher accuracy, 
enhancing diagnostic precision and perhaps resulting 
in improved patient outcomes. LiquiCon-Net is an 
innovative approach in medical image analysis that 
combines advanced methodologies. It outperforms 
existing methods that just rely on spatial or temporal 
variables alone.  
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Figure 2: Architecture of the LiquiCon-Net Model

4.2 Algorithm of the Proposed LiquiCon-Net 
Model 

This algorithm describes a sophisticated 
process for classifying brain MRI scans using spatial 
and temporal data. It starts with setting up a 
pretrained ResNet-50 network and a Liquid Neural 

Network (LTCN). Input photos are preprocessed to 
prepare them for feature extraction. ResNet-50 
captures high-level spatial information, whereas 
LTCN processes temporal data, which is then fused, 
classified, trained, evaluated, and predicted. Figure 2 
shows the LiquiCon-Net Model architecture. 

Table 1: Algorithm - LiquiCon-Net Model. 

Algorithm: LiquiCon-Net Model 
% Step 1: Initialize Model 
% Load Pretrained ResNet-50 
net = resnet50; % Load the ResNet-50 network 
 
% Initialize Liquid Neural Network (LTCN) 
% (Assuming LTCN is implemented or available as a function/class) 
ltcn = initializeLTCN(); % Replace with actual LTCN initialization 
 
% Step 2: Input Processing 
% Load and preprocess Brain MRI scans 
inputImage = imread('path_to_image'); % Read input image 
inputImage = imresize(inputImage, [224, 224]); % Resize to match ResNet-50 input size 
inputImage = double(inputImage) / 255; % Normalize pixel values 
 
% Step 3: CNN Component (ResNet-50) 
% Extract high-level spatial features using ResNet-50 
resnetFeatures = activations(net, inputImage, 'fc1000', 'OutputAs', 'rows'); 
 
% Step 4: LTCN Component 
% Process temporal data using LTCN 
% (Assuming you have a function to process temporal data) 
temporalFeatures = processLTCN(ltcn, temporalData); % Replace with actual LTCN processing function 
% Step 5: Feature Fusion 
% Concatenate spatial and temporal features 
fusedFeatures = [resnetFeatures, temporalFeatures]; 
% Step 6: Classification 
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% Define fully connected layers and softmax output 
layers = [ 
    fullyConnectedLayer(512) % Example layer size 
    reluLayer 
    fullyConnectedLayer(numClasses) % Number of output classes 
    softmaxLayer 
    classificationLayer]; 
% Create the network 
lgraph = layerGraph(layers); 
% Add any additional layers if necessary 
% Step 7: Training (if applicable) 
% Define training options 
options = trainingOptions('adam', ... 
    'MaxEpochs', 20, ... 
    'MiniBatchSize', 64, ... 
    'InitialLearnRate', 1e-4, ... 
    'Plots', 'training-progress'); 
% Train the model 
trainedNet = trainNetwork(fusedFeatures, labels, lgraph, options); 
% Step 8: Evaluation 
% Evaluate the model on validation/testing data 
predictions = classify(trainedNet, testData); 
accuracy = sum(predictions == testLabels) / numel(testLabels); 
% Step 9: Output 
% Predict classification labels for new input data 
newPrediction = classify(trainedNet, newInputData); 

disp(['Prediction: ', char(newPrediction)]); 

4. EXPERIMENTAL INVESTIGATIONS  
 

Figure 3 displays the original brain scan acquired 
from the BRATS dataset. This image is in its 
unprocessed state, capturing the precise details of the 
brain's structure and any anomalies that may be 
present. The first brain scan serves as the 
fundamental data for the following image processing 
stages, which are designed to detect and categorize 
brain cancers. 

 

Figure 3: MRI input of Brain 

 

Figure 4: Resized Image 

Figure 4 illustrates the resized image, which has 
undergone consistent scaling to a standardized size 
of 256x256 pixels using spline interpolation. 
Resizing is an essential procedure to guarantee 
uniformity among all photos, making it easier to 
process and analyze them consistently. Spline 
interpolation ensures the preservation of crucial 
structural features in images, so preparing them for 
subsequent processing. 
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Figure 5: Grayscale Conversion 

Figure 5 depicts the transformation of the resized 
image into grayscale. The conversion procedure 
involves reducing the visual data to a single channel 
by combining the red, green, and blue color channels 
using weights that are specifically chosen to match 
the sensitivity of the human eye. The grayscale value 
is calculated using the Luminosity Method method. 
Converting the data to grayscale simplifies it, 
facilitating easier processing while preserving 
crucial information regarding the structure of the 
brain. 

 

Figure 6: Denoised Image 

Figure 6 displays the image that has been denoised 
using Total Variation (TV) denoising. This method 
efficiently diminishes noise in the image while 
maintaining the clarity of edges and other 
characteristics. TV denoising is a non-linear 
technique that preserves crucial information and 
enhances the overall quality of images for analysis. 
The goal function L_TV (I_denoised) guarantees 
that the denoised image achieves minimal noise 
while preserving its structural integrity. 

The pre-processed image in Figure 7 is obtained 
by performing scaling, grayscale conversion, and TV 
denoising. The image is now prepared for the further 
stages of the approach, which involve segmentation 
and feature extraction. The pre-processing 
procedures guarantee that the image is of superior 
quality and uniform, establishing a strong basis for 
subsequent analysis. 

 

Figure 7: Pre-Processed Image 

 

Figure 8: DBSCAN based Segmented Image 

Figure 8 illustrates the segmented image acquired 
by the utilization of the DBSCAN technique. The 
algorithm categorizes data points and creates groups 
by repeatedly combining central points and their 
adjacent points. The segmented image enhances the 
identification and investigation of malignancies by 
highlighting specific regions of interest within the 
brain scan. 

4.1 Features Extracted 
Table 2 presents the retrieved 

characteristics from several brain tumor images, 
encompassing Glioma, Meningioma, Metastasis, 
and Astrocytoma. The retrieved characteristics are 
Contrast, Correlation, Energy, and Homogeneity. 
These features are obtained from Haralick 
descriptors via GLCM. As an example, Glioma has 
a contrast value of 0.481367 and an energy value of 
0.762845, which signifies notable variations in 
texture when compared to other forms of tumors. 
These characteristics offer a comprehensive 
representation of the texture and spatial connections 
within the images, which are crucial for precise 
classification. 

Figure 9 displays a figure that compares the 
features of several tumor kinds, visually 
demonstrating the differences in Contrast, 
Correlation, Energy, and Homogeneity. This 
comparison elucidates the unique attributes of each 
tumor type, facilitating the process of distinguishing 
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and categorizing them. The plot offers a distinct 
visual depiction of the variations in each feature 
across various forms of brain tumors. 

Table 2: Extracted Features 

Features Glioma Meningioma Metastasis Astrocytoma 
Contrast 0.481367 0.392178 0.301934 0.247532 

Correlation 0.152863 0.148975 0.145678 0.151243 

Energy 0.762845 0.652739 0.943128 0.635482 

Homogeneity 0.562954 0.482954 0.373954 0.329954 

 

 
Figure 9: Feature comparison plot among different tumor types 

 
4.2 Dataset Distribution 

The BRATS dataset has been 
systematically classified into numerous categories of 
brain tumors, such as Glioma, Meningioma, 
Metastasis, and Astrocytoma, in order to provide a 
thorough assessment of the model across diverse 
tumor types. The categories are subdivided into 
training, validation, and testing subsets, 
guaranteeing an equitable distribution of images. A 
total of 1241 photos are included, with 70% 
designated for training, 15% for validation, and 15% 
for testing. 

There is a total of 420 images in the Glioma 
category. Gliomas are neoplasms that develop in the 
brain and spinal cord, arising from glial cells. They 
are renowned for their combative disposition and can 

exhibit substantial variations in their conduct and 
reaction to therapy. In order to optimize the model 
training process, 294 photos, which accounts for 
70% of the total, are assigned to the training set. The 
remaining photographs are divided evenly between 
the validation and testing sets, with 63 images in 
each set, which accounts for 15% of the total number 
of images. This enables the model to acquire 
knowledge from a significant amount of training 
images while being assessed on an ample amount of 
validation and testing data to ensure its resilience 
and ability to apply to various scenarios. 

The Meningioma category consists of a 
total of 311 photos. Meningiomas are generally 
noncancerous growths that originate from the 
meninges. Gliomas are the predominant form of 
brain tumor and exhibit significant variability in 
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terms of size and symptoms. Using a proportionate 
distribution, 70% of the total number of photos, 
which is 218 images, are allocated for training. The 
validation set consists of 47 images, while the testing 
set consists of 46 images. Each set accounts for 15% 
of the overall dataset. This partitioning guarantees 
that the model is trained on a varied and inclusive 
collection of images, while the validation and testing 
sets offer a thorough evaluation. 

There is a total of 260 images in the 
Metastasis category. Metastatic brain cancers arise 
when cancer cells originating from a different 
location in the body migrate and establish 
themselves in the brain. These tumors frequently 
occur in several sites inside the brain, posing distinct 
obstacles for detection and therapy. Out of the total 
number, 182 images (70%) are assigned for training, 
39 images (15%) are allocated for validation, and 
another 39 images (15%) are set aside for testing. 

This systematic allocation enables efficient training, 
rigorous validation, and comprehensive testing of 
the model, hence guaranteeing its precision in 
detecting and categorizing Metastasis tumors. 

There is a total of 250 photos in the 
Astrocytoma category. Astrocytoma arise from 
astrocytes, a specific type of glial cell found in the 
brain. They can vary in severity, ranging from low-
grade, indolent tumors to high-grade, rapidly 
progressing ones. Gliomas are a prevalent form of 
brain tumor that can occur in both children and 
adults. The approach to treating gliomas depends on 
their grade. In order to preserve equilibrium, 175 
photos (70%) are allocated to the training set, 38 
images (15%) to the validation set, and 37 images 
(15%) to the testing set. This distribution guarantees 
that the model is provided with a comprehensive 
training set and sufficient validation and testing sets 
to appropriately assess its performance. 

Table 3: Overall Data Split for BRATS Dataset 

Tumor Category Training Images Validation Images Testing Images Total Images 

Glioma 294 63 63 420 

Meningioma 218 47 46 311 

Metastasis 182 39 39 260 

Astrocytoma 175 38 37 250 

Total 869 187 185 1241 
 

 
Figure 10: Pie Chart of Data Split 

The dataset split is provided in a systematic 
manner as shown in Table 3 and Fig. 10 to ensure 
that each tumor category is sufficiently represented 

in each subset. This approach enables thorough 
training, validation, and testing of the model on 
various brain tumor types, thereby improving the 
model's accuracy, resilience, and ability to be 
applied to other cases. By ensuring an equitable 
distribution of data for every step of the model 
development process, the model may efficiently 
acquire knowledge about the unique characteristics 
of each tumor type and achieve high accuracy when 
applied to new, unknown data. 

 
Figure 11 displays the confusion matrix, 

which offers a comprehensive study of the model's 
predictions compared to the actual classifications. It 
is an essential tool for assessing the performance of 
the model by comparing the projected classifications 
with the actual findings. The confusion matrix 
facilitates the comprehension of the model's 
accuracy, sensitivity, and specificity. 

 
Figure 12 depicts the ROC (Receiver 

Operating Characteristic) plot, which showcases the 
model's capacity to differentiate between different 
classes. The plot displays the sensitivity (true 
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positive rate) vs the fall-out (false positive rate), 
offering valuable information. 

 
Figure 11: Confusion Matrix 

 

 
Figure 12: ROC plot 

 

4.3 Metrics for Assessment 
Table 4 presents the accuracy values of 

several models together with their corresponding 
citation numbers. The suggested model obtains a 

precision rate of 99.42%, surpassing previous 
models such as EfficientNets (98.86%), Capsule 
Networks (CapsNet) + VGG19 (99%), and AlexNet 
+ GoogleNet Ensemble (99.45%). Figure 13 
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presents a visual representation of the accuracy 
comparison of the models, emphasizing the superior 
accuracy produced by the suggested model. This 

comparison illustrates the efficacy of the suggested 
model in precisely categorizing brain tumors. 

Table 4: Accuracy 

 Model and Citation Number Accuracy Value 

EfficientNets [21] 98.86% 

Capsule Networks (CapsNet) + VGG19 [22] 99% 

AlexNet + GoogleNet Ensemble [24] 99.45% 

CNN + Deer Hunting Optimization [25] 0.917 

Recurrent Networks + CNN (ConvNets) [26] 98.3% 

Proposed Model 99.42 % 

 

 
Figure 13: Accuracy comparison plot 

Table 5: Specificity 

Model and Citation Number Specificity Value 

Sequential CNN [20] 97% 

Capsule Networks (CapsNet) + VGG19 [22] 99% 

CRF-RNN [23] 93.8% 

AlexNet + GoogleNet Ensemble [24] 99.58% 

CNN + Deer Hunting Optimization [25] 91.9 % 

Proposed Model 99.62 % 

 
Table 5 displays the specificity values of 

several models, with the proposed model obtaining a 
specificity rate of 99.62%. Additional models in the 
study include of Sequential CNN with an accuracy 
of 97%, Capsule Networks (CapsNet) combined 
with VGG19 achieving 99% accuracy, and an 

ensemble of AlexNet and GoogleNet with an 
accuracy of 99.58%. The specificity comparison plot 
depicted in Figure 14 demonstrates the better 
specificity of the proposed model, highlighting its 
efficacy in accurately identifying negative situations 
and minimizing false positives. 
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Figure 14: Specificity comparison plot 

Table 6: Sensitivity 

Model and Citation Number Specificity Value 

Sequential CNN [20] 97% 

Capsule Networks (CapsNet) + VGG19 [22] 99% 

CRF-RNN [23] 93.8% 

AlexNet + GoogleNet Ensemble [24] 99.58% 

CNN + Deer Hunting Optimization [25] 91.9 % 

Proposed Model 99.62 % 

 

 
Figure 15: Sensitivity comparison plot

Table 6 displays the sensitivity values of 
different models, while the proposed model 

demonstrates a sensitivity of 99.81%. Additional 
models mentioned are EfficientNets with an 
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accuracy of 98.77%, Capsule Networks (CapsNet) 
combined with VGG19 achieving 98% accuracy, 
and an ensemble of AlexNet and GoogleNet with a 
remarkable accuracy of 99.75%. Figure 15 visually 
illustrates the significant sensitivity of the suggested 
model through a comparison plot. The model's high 
sensitivity ensures accurate identification of positive 
cases, avoiding false negatives and enabling reliable 
detection of brain tumors. 

 

5. CONCLUSION 
 

The proposed methodology for brain tumor 
classification using the BRATS dataset represents a 
significant advancement in the integration of 
sophisticated image processing and machine 
learning techniques. By carefully pre-processing 
images through spline interpolation, luminosity-
based grayscale conversion, Total Variation 
denoising, and DBSCAN segmentation, the 
approach successfully preserves critical structural 
information while minimizing noise. The use of 
Haralick descriptors for feature extraction combined 
with t-SNE for dimensionality reduction further 
refines the data, enabling more precise classification. 
The LiquiCon-Net model, which innovatively 
merges ResNet-50 with Liquid Time-Constant 
Networks, demonstrates outstanding results, 
achieving accuracy, specificity, and sensitivity all 
exceeding 99%, surpassing many existing state-of-
the-art models. While these findings are impressive 
and indicate strong potential for clinical application, 
several considerations warrant further attention. 
First, the model’s performance on the BRATS 
dataset, though promising, may not fully capture the 
variability and complexity of real-world clinical 
data, which often includes diverse imaging protocols 
and patient demographics. Additionally, the 
computational complexity and training time of the 
LiquiCon-Net could pose challenges for widespread 
adoption, particularly in resource-limited settings. 
Future research should focus on validating this 
methodology across multi-center datasets and 
exploring ways to optimize the model for faster, 
more efficient deployment. In my opinion, the study 
marks a meaningful step forward in brain tumor 
classification, blending advanced feature 
engineering with innovative neural network 
architectures. However, practical translation into 
clinical workflows will require rigorous external 
validation and consideration of usability factors. 
With these steps, such high-precision tools could 
revolutionize diagnostic accuracy and treatment 
planning, ultimately improving patient outcomes. 
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