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ABSTRACT 
 

Non-Alcoholic Fatty Liver Disease (NAFLD) has emerged as one of the most prevalent liver disorders 
globally, affecting nearly one-third of the population, with particularly high incidence rates in countries like 
the UK. Despite its widespread occurrence, accurate estimation of its prevalence remains a challenge. Early-
stage NAFLD, typically characterized by simple steatosis, can silently progress to more severe conditions 
such as non-alcoholic steatohepatitis (NASH), fibrosis, and cirrhosis if left untreated. This progression 
significantly compromises liver function and increases the risk of cardiovascular complications. However, 
current diagnostic methods, including magnetic resonance spectroscopy and ultrasound imaging, are often 
limited by cost, accessibility, and diagnostic specificity. Given the clinical urgency and the limitations of 
conventional diagnostics, this study addresses the critical need for an accessible and accurate method to detect 
early-stage liver disease—specifically, to predict NASH within the NAFLD spectrum. We propose a machine 
learning-based approach that leverages clinical and pathological data, including blood parameters and 
ultrasound-derived tissue characteristics, to support early detection. Using a dataset of 181 patients, we 
applied preprocessing techniques such as normalization and categorical encoding to prepare the data for 
modelling. Features such as integrated backscatter (IB), Q-factor, and homogeneity factor (HF) were 
extracted to quantify liver tissue characteristics. Support Vector Machine (SVM), chosen for its balance of 
simplicity and efficiency in handling high-dimensional datasets, was employed for classification and 
regression tasks. Experimental validation using Python-based implementations demonstrated the model's 
effectiveness, achieving an average accuracy of 89.95% across both clinical and imaging-derived datasets. 
This study underscores the potential of machine learning in improving early diagnosis of liver diseases and 
reducing their long-term clinical burden. 
Keywords: Fatty Liver Diseases, Non-Alcoholic Fatty Liver Diseases, NASH, SVM, Pathological 

Information, Machine Learning.  

1. INTRODUCTION 
 
Alcoholic Fatty Liver disease also affects people 
who do not take alcohol. It became a chronic disease 
affecting common people due to food habits and 
obesity. Fatty liver has emerged as a global health 
concern, characterized by the excess of fat that 
accumulates in the liver that is 10% greater than the 
weight of a normal liver. The failure of the liver to 
break down lipids is the cause of the excess deposit 
of fat and causes fatty liver disease (FLD). People 

with obesity, diabetes, or high triglycerides tend to 
have fatty liver. Even though this fatty liver will not 
harm anything at the earlier stage, it creates 
inflammation at the severe stage. They are also 
known as hepatic steatosis and steatosis liver 
disease (SLD) [1]. FLD is caused by factors such as 
fatty diets, ready-made foods, beverages, sedentary 
lifestyles, excessive alcohol consumption, and 
fructose metabolism. FLD caused by the 
consumption of alcohol develops alcoholic 
steatohepatitis. In the alternative scenario, Non-
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Alcoholic Fatty Liver Disease (NAFLD) is caused 
by inflammation in the liver, which affects mainly 
non-alcoholic persons. The earlier symptoms of 
NAFLD cannot be identified easily. In contrast, the 
symptoms of its severity level can be identified 
through weariness, weight loss, disorientation, and 
stomach discomfort if the condition worsens [2]. 
Fatty Liver Diseases (FLD) affect people who drink 
alcohol regularly, whereas Non-Alcoholic Fatty 
Liver (NAFLD) affects people who are not 
consuming alcohol. Whenever an alcoholic patient is 
undergoing a medical diagnosis, medical experts 
immediately take liver tests, not for non-alcoholic 
patients. This confusion increases the severity level 
of FLD for non-alcoholic patients and causes heart 
attacks and sudden deaths. The death ratio of 
NAFLD is increasing nowadays because of wrong 
diagnosis and not diagnosing livers and its dangerous 
conditions. Patients with advanced stages of NAFLD 
develop symptoms that include Esophageal varices, 
cirrhosis, and liver carcinoma [3]. As shown in 
Figure 1, NAFLD will transform into cirrhosis, 
which is one of the severe stages of fatty liver, 
leading to tissue damage, liver failure, and cancer if 
untreated [4]. Patients frequently find out about their 
fatty liver after testing for unrelated conditions. Fatty 
liver patients are generally middle-aged and 
overweight. The most frequent risk factors 
connected to fatty liver disease are overweight, with 
a 25–30 body mass index, obesity, higher 
triglyceride levels, and heart attacks.  

  
Figure 1: Morphological Difference Between Normal and 

Fatty Liver [4] 
NAFLD raises mortality and morbidity rates [5], 
which leads to economic loss, mainly in Western 
countries. It affects 25% of adults in the US and 
Europe and causes severe problems like NASH, 
fibrosis, cirrhosis, and even death. Worldwide, the 
prevalence of NAFLD is higher in South America 

(31%) and lower in Africa (14%), and there was a 
47.15% increase in cirrhosis death cases globally [6, 
7, 8]. Compared to women with NAFLD, men had a 
higher risk of this liver-related disease above 20 of 
their age [5]. Primary screening is needed to 
overcome this fatal disease, which can be identified 
using various diagnosis methods like medical 
images, scans, and blood tests. There are three main 
ways to diagnose non-alcoholic fatty liver disease 
(NAFLD) they are blood tests, which are used to 
detect inflammation in the liver, and several imaging 
tests (MRI, CT scan, and ultrasound) to visualize the 
liver, and classy testing (transient elastography) to 
measure stiffness in the fatty liver. However, 
ultrasound-based testing might not be as dependable 
in recognizing advanced liver diseases such as 
NASH and fibrosis [9]. The need for NAFLD 
screening is essential since there is a lack of effective 
treatment; if NAFLD remains undiagnosed, cirrhosis 
will double by 2030 [10,11]. These days, genetic 
algorithms are frequently used in robotics, image 
processing, machine learning, automatic control, and 
other fields. However, very little work has been done 
using these algorithms to process DNA datasets for 
diagnosing FLD. Liver disorders were diagnosed by 
combining an Artificial Immune System (AIS) with 
a Genetic Algorithm [12]. The AIS was a vital 
component of the system architecture, and a genetic 
algorithm was used in the learning process to deduce 
how the antigen and antibody population evolved. 
Thus, it is found that AIS and GA algorithms [12] 
are highly suitable for processing and diagnosing 
NAFLD data. One of the studies [14] proved that 
4,312 patients were affected by NASH from their 
overall data sample of 26,404 collected from the 
medical industry. They have used GWAS and 
SAIGE software tools to predict NASH.  
This remains a real and urgent problem because 
Non-Alcoholic Fatty Liver Disease (NAFLD) 
affects a significant portion of the global 
population—nearly one in three people—yet its 
early detection and accurate diagnosis are still major 
clinical challenges. The disease often progresses 
silently from benign fat accumulation to serious 
conditions like NASH, fibrosis, and cirrhosis, which 
can severely impair liver function and increase 
cardiovascular risk. Current diagnostic tools, such as 
magnetic resonance spectroscopy and ultrasound, 
are either too expensive, not widely accessible, or 
lack the specificity to distinguish disease stages 
effectively. As a result, many cases go undetected 
until the disease has significantly advanced, 
highlighting the critical need for affordable, non-
invasive, and accurate diagnostic approaches—such 
as the machine learning method proposed in this 
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study—to support early intervention and reduce 
long-term health burdens. 
In the earlier days of medical industries, various 
sequencing technologies were applied in 
metagenomics to provide sequencing fragments 
obtained from thousands of species of human gene 
patterns. Only by analyzing the human genomic data 
can it be very easy to identify the presence of FLDs. 
Predicting abnormal genes in metagenomics 
fragments is a crucial task and one of the most 
fundamental problems in metagenomics, and it 
provides less accuracy. The FLD and its severity 
levels can also be predicted using pathological data 
and are very easy to analyze without using complex 
algorithms.   

   
Figure-2. Proposed Model 

 
This paper aims to understand humans' pathological 
information and the various blood parameters used 
in the clinical traits to analyze and predict liver 
diseases. Still, there are very few tools available to 
diagnose the DNA dataset for predicting various 
tumor and cancer-based diseases, not for NASH. 
Thus, this paper aims to implement an SVM 
algorithm for NASH prediction from the 
pathological information obtained from the DNA 
and Liver Ultrasound dataset. The overall structure 
of this paper's proposed method is illustrated in 
Figure-2 and provides four different classes.  

a machine learning model using clinical and 
ultrasound-derived features can accurately predict 
NASH, offering a cost-effective alternative to 
current diagnostic methods. 

The prediction accuracy of NAFL disease detection 
is increased by contributing the following processes: 

 The proposed methodology of the paper is 
explained to understand the problem of 
fatty liver disease detection and its 
importance. It helps to design the proposed 
model for the FLD data.  

 It explained various factors of pathological 
data well, through which FLD can be 
identified.  

 The theoretical model of the SVM is 
explained figuratively with mathematical 
expressions.  

 SVM is implemented and experimented 
with the benchmark pathological dataset, 
and the prediction accuracy is verified. 

 The model's performance is evaluated by 
verifying the output in different aspects.  

 
2. LITERATURE SURVEY 
 
In this section, various earlier research work on fatty 
liver diseases is reviewed and discussed in detail. 
This research mainly defines the optimal model for 
diagnosing fatty liver diseases. Non-alcoholic is one 
of the common types of liver diseases. Most 
researchers have suggested many methods to detect 
NALD from the earlier stage. Some of the recent 
research works are discussed. AI-based techniques 
are widely used in the medical field to solve more 
problems [11]. In that sense, diagnosing fatty liver 
diseases is also achieved through AI-based models. 
It brought many changes in the healthcare sector in 
detecting diseases at an early stage. The AI-based 
technique is applied with invasive and non-invasive 
treatment techniques to diagnose fatty liver diseases 
accurately. Some of the most common AI-based 
models are logistic regression, random forest, 
XGBoost, and decision trees used for single data; the 
RNN model is used for sequential data, and the DNN 
model is used to learn the images and histology data. 
A machine learning-based approach was developed 
to detect fatty liver diseases [12-13]. Around 577 
patient records were taken as input samples to 
evaluate the model performance. Of these, 377 
patients are with FLD; the remaining records are 
healthy reports. These data are classified using 
proposed RB, NB, ANN, and LR algorithms. Then, 
the model's efficiency is evaluated using ROC and 
performance metrics. The model's accuracy is 
assessed by applying the 10-fold cross-validation 
with proposed approaches. The analysis results 
indicate that the proposed model [12] has achieved 
87.48, 82.65, 81.85, and 76.96 accuracy in the RF, 
NB, ANN, and LR models.  The ML-based approach 
proposed by the authors in [13] has achieved 76.30, 
74.10, and 64.90 accuracy, sensitivity, and 
specificity, respectively.  
A deep learning approach is developed and 
implemented to improve further the model's 
accuracy and processing speed [14]. Ultrasound-
based detection is one of the most common imaging 
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techniques for detecting FLD. To improve the model 
accuracy, the DL model is evaluated with TL models 
(CNN and VGG16). The analysis shows that the 
proposed model has achieved 90.6% accuracy in 
classifying fatty liver diseases. The efficiency of the 
deep learning model in detecting NAFLD is defined 
by comparing the uses of the DL model with three 
imaging techniques [15]. For this, 240 patients’ 
reports are taken, which include four categories of 
patient reports: normal, mild, moderate, and severe. 
This model has classified the input data with 0.958 
accuracy.  An extensive study is conducted to 
describe the bacterial metataxonomic signature in 
the NAFLD [16]. The study comprised cohort 
patients with NAFLD, as proven by a biopsy. The 
differences in the phenotypic features of the patients 
are studied. The patients suffered from moderate 
obesity. The changes in the microbial characteristics 
of the diseases are identified using DNA profiling—
the sample tissues of 116 patients with 47 
overweight and 50 morbidly obese patients.  The 
study showed that NAFLD patients had a diverse 
repertoire of DNA sequences.  
 Usually, ultrasound images are used to 
predict fatty liver diseases. However, the low-quality 
images make it difficult for radiologists to predict the 
disease. It is overcome with computer-aided 
diagnosis models that use ML and classification 
algorithms for categorizing the tissues.  The authors 
in [17] have used genetic algorithms to classify fatty 
liver disease automatically. It is a supervised 
learning algorithm trained using ultrasound liver 
images for better prediction. The proposed voting-
based classification model provided 95.71% 
accuracy, well above the J48 algorithm used for 
comparison. Big data effectively manages the large 
amount of fatty liver disease data available. A 
genetic algorithm is used to classify fatty liver 
disease data [18]. The physical examination records 
are analyzed using the proposed model and classified 
based on the tissue type. A genetic algorithm is 
usually used in classification, which involves more 
data and difficulty defining classes. Among the 
various methods used for NAFLD prediction, liver 
biopsy is the most considered, with sample errors 
that are difficult to interpret. So, a new non-invasive 
model is developed to predict NAFLD, using an 
intelligent scheme utilizing forward, Viterbi, and 
Baum-welch algorithms [19]. It provided better 
results in the prediction process compared to the 
biopsy. Classification algorithms like KNN, K-
Means, RF, SVM, and other models are also used to 
predict fatty liver disease. However, these 
algorithms provided poor results compared to the 
genetic algorithm [20]. Machine learning algorithms 

also classify the gut microbiome signature for 
predicting fatty liver diseases. This is done based on 
the insulin resistance studied by Kang et al. 2022, 
providing a better prediction result of 0.83% 
accuracy.   

When compared to literature: 
 Recent deep learning models using CNNs 

and VGG16 achieved higher accuracies 
(up to 95.71%) on larger datasets and with 
more complex architectures, particularly in 
imaging tasks ([17], [14]). 

 Other approaches, such as the genetic 
algorithm-based models, have shown 
robust classification results for fatty liver 
using ultrasound data, achieving even 
higher accuracies in some cases ([17], 
[20]). 

 Studies combining clinical data, imaging, 
and microbiome profiling (e.g., Kang et 
al., 2022) demonstrated holistic prediction 
strategies, achieving accuracies around 
83%, while capturing biological 
complexity not addressed in this work. 

 The deep learning models evaluated across 
imaging modalities ([15]) also 
outperformed traditional ML techniques, 
with reported accuracies as high as 0.958. 

Thus, while this study’s SVM-based approach offers 
a simpler and computationally efficient solution, it 
may be less effective than cutting-edge deep 
learning and hybrid approaches in terms of 
scalability and real-world application—particularly 
in image-rich or multi-modal data environments. 

3. LIMITATION AND MOTIVATION 
 
The prediction models proposed earlier for liver 
disease are based on statistical analysis and machine 
learning. Still, it should not be considered a 
substitute for professional prediction models for 
medical data diagnosis. A screening tool is used to 
help healthcare professionals detect fatty liver 
disease, but they need more accuracy and future help 
in evaluation. The output depended on the data 
quality and number of features used for disease 
prediction. Most models cannot provide good 
accuracy due to the impurity of raw data. This means 
the raw data has missing elements, wrong data, 
mismatched data, and others that affect the 
prediction accuracy and reliability of the 
performance. Also, the training process is inaccurate 
because the novel factors are unavailable in the past 
historical dataset used for training the model. Most 
models do not find the correlation between 
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individual features and liver diseases since each 
feature may cause the disease individually. Hence, 
this paper motivated to predict fatty liver disease by 
analyzing the performance parameters concerning 
individual and combined features, like IB, QF, HF, 
IB+QF, IB+HF, QF+HF, and IB+QF+HF using the 
SVM model.  
The Following are the Realtime Considerations for 
the Given Work. 

1. Limited Dataset Size: The study uses data 
from only 181 patients, which may not be 
sufficient for building a generalized or 
robust predictive model, especially when 
applied to diverse or larger populations. 

2. Lack of External Validation: The model 
was evaluated only on the internal dataset. 
Without external validation on independent 
or multi-center datasets, its real-world 
applicability remains uncertain. 

3. Feature Scope Constraints: While the 
model uses features like IB, Q-factor, and 
HF, it may overlook other influential 
clinical, genetic, or lifestyle factors that 
contribute to NAFLD progression. 

4. Model Selection Simplicity: Although 
SVM is efficient, it may not capture 
complex non-linear relationships as 
effectively as more advanced deep learning 
models (e.g., CNNs or ensemble 
techniques). 

5. Imaging Quality and Variability: 
Ultrasound-derived features are subject to 
image quality, operator variability, and 
machine differences, potentially affecting 
model consistency across settings. 

6. No Real-Time Clinical Integration: The 
abstract doesn’t address how the model can 
be integrated into clinical workflows or 
decision-support systems, limiting its 
immediate clinical utility. 

7. Potential Overfitting Risk: With high 
accuracy reported on a small dataset and no 
mention of robust cross-validation 
strategies (e.g., k-fold CV or 
bootstrapping), there is a risk of overfitting. 

These limitations suggest that while the study is a 
promising step toward early NAFLD detection using 
ML, further work is needed to validate, expand, and 
clinically integrate the model. 

4. PROBLEM STATEMENT 
 
Non-Alcoholic Fatty Liver Disease (NAFLD) is a 
growing health issue worldwide, affecting more 
people. Detecting and predicting the severity of 

NAFLD, especially its advanced form called non-
alcoholic steatohepatitis (NASH), is especially to 
prevent serious complications like liver failure and 
cirrhosis. However, traditional methods like imaging 
are not always accurate or easily available. Because 
of this, there is a need for a better way to predict 
these liver diseases using machine learning. 
This study focuses on developing a predictive model 
using the Support Vector Machine (SVM) algorithm. 
The model will analyze data from ultrasound scans 
of liver tissue, looking at factors like fat distribution 
using integrated backscatter (IB), Q-factor, and 
homogeneity factor (HF), along with clinical 
information from patients. The challenge is 
managing large amounts of data, converting it into 
useful features, and making sure the model gives 
accurate results. 
The SVM algorithm works by finding the best way 
to separate several types of data using a boundary 
called a hyperplane. In this case, it will use both 
clinical and tissue-related data to classify liver 
conditions like NAFLD and NASH. The goal is to 
create a reliable system that helps in early diagnosis 
and better treatment decisions. 
The SVM constructs a hyperplane (in a higher-
dimensional space if necessary) that maximizes the 
margin between the two classes. The objective is to 
find the hyperplane that minimizes classification 
error and maximizes the distance (margin) between 
the classes. This is given by the equation: 

𝑤 ⋅ 𝑥 + 𝑏 = 0 
Where, w is the weight vector, x is the feature vector, 
and b is the bias term. 
The SVM solves the optimization problem to 
maximize the margin while minimizing 
classification errors. The optimization problem can 
be formulated as: 

𝑚𝑖𝑛
𝑤, 𝑏

1

2
‖𝑤‖ଶ 

 
Subject to the constraint that for all training samples: 

𝒴௜(𝑤 ⋅ 𝑥௜ + 𝑏) ≥ 1, 𝑖 = 1,2, … , 𝑁 
where 𝒴௜ is the class label of the i-th sample (1 or -
1), and 𝑥௜ is the feature vector for the i-th sample. 
Since the data may not always be linearly separable, 
the kernel trick is used to map the data into a higher-
dimensional space where a linear hyperplane can be 
found. The kernel function K(xi,xj) computes the dot 
product of transformed feature vectors without 
explicitly transforming the data. Common kernel 
functions include: 

𝐾൫𝑥௜ , 𝑥௝൯ = ൫𝑥௜ ⋅ 𝑥௝ + 𝑐൯
ௗ

 

𝐾൫𝑥௜ , 𝑥௝൯ = 𝑒𝑥𝑝 ቀ−𝛾ฮ𝑥௜ − 𝑥௝ฮ
ଶ

ቁ 
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The goal is to minimize the following objective 
function for SVM with a kernel: 

𝑚𝑖𝑛
𝑤, 𝑏

1

2
‖𝑤‖ଶ + 𝐶 ෍ 𝜉௜

ே

௜ୀଵ

 

where ξi is the slack variable for each data point, and 
C is a regularization parameter that controls the 
trade-off between maximizing the margin and 
minimizing classification error. 
The performance of the model is evaluated using 
metrics such as accuracy, precision, recall, and F1-
score. The accuracy A of the model is defined as: 

𝐴 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 

The model achieves an average accuracy of 89.95% 
in predicting NAFLD and NASH, as confirmed 
through the experiment.  

5. METHODS AND MATERIALS 

The dataset is taken from pathological information 
of ultrasonic tissues of fatty liver diagnosis collected 
from patients in China. It is available in GitHub 
storage under the name “CGMH_gastro.xlsx.” It 
comprises 1765 rows and 35 columns of data 
elements about the patients. This paper trains and 
tests the input data using the Python 3.6.2 version. 
The overall training and testing process is performed 
in four steps, as discussed below. 
Step 1: Initially, the input data are classified as A 

and B and loaded for training and testing.  
Step 2: The ultrasonic characteristics of the train 

data parameter are set with intervals [0 and 
1]. Based on the scaled value of training 
data, the testing data scaled value is 
generated to avoid large values in the 
resultant.  

Step 3: C and Y are the parameters used to define 
the relationship between the noise tolerance 
and maximum margin and adjust the 
proposed model's complexity, respectively. 
Based on the parameter space value {C = 
2^−5, 2^−3, …, 2^15, γ = 2^−15, 2^−13, 
…, 2^3, degree = 1, 2, 3}, the SVM model 
is trained through LeaveOneOut (LOO) 
cross-validation technique with the help of 
optimal value generated by the grid search 
method.  

Step 4: The ROC and confusion matrix results are 
evaluated and plotted using test data to 
predict the final analysis result. This will 
increase the model's diagnostic accuracy.  

Excess fat accumulates and causes fatty liver 
disease, which should be controlled and removed 
through physical exercises, a good health diet, and 

other doctor-advised home remedies; it is prevalent 
in terminal liver diseases like cancer. Medical 
industries all over the world consider pathology to be 
a standard way of diagnosing fatty livers in the 
earlier days. However, non-invasive medical image 
processing methods are used instead of invasive 
methods because of their side effects and 
controversies. People prefer ultrasound for diagnosis 
due to safety, convenience, and price. While using 
ultrasound images, some limitations were found, 
such as some of the ultrasonic parameters not being 
opted for in many circumstances. Based on this, 
some parameters are extracted from the original 
ultrasound signal, representing the physical and 
tissue characteristics that help diagnose fatty liver 
diseases.  

 
Figure-3. Proposed Pipeline Data Analytics Process  

 

The Integrated backscatter (IB), the Q factor of the 
Hilbert-Huang transition (Q factor), and the 
Homogeneity factor (HF). The backscatter signal 
intensity is measured by IB, the frequency decay by 
Q, and the fat evenness is by HF. Analyzing single 
parameter and predicting NAFLD cannot provide 
accuracy and thus, the SVM algorithm is used for 
analyzing each and combination of all the parameters 
called features which overcomes the limitations and 
increase the true positive rate. From the dataset, two 
groups are created as A having 111 samples, and B 
having 75 samples and that are used for training and 
testing the SVM algorithms. Finally, a ground truth 
data with 10% steatosis is used to confirm the FLD. 
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From the experimental output, it is found that the 
parameters extracted can be able to determine the 
FLD with their respective performances. For 
improving the other performances than sensitivity, 
all the features are combined and used in the 
analysis. The accuracy of predicting fatty patients is 
86.49% and ROC is 89.29%. Analysing the 
combination of parameters can increase the 
versatility and accuracy of the SVM model and 
decrease the computational complexity. And it is 
proved that SVM is highly suitable and potential in 
fatty liver diagnosis. The overall data analysis 
process is illustrated in Figure-3. This paper's dataset 
is the pathological information obtained from 
ultrasound images and DNA data sequences for fatty 
liver patients. Several machine learning algorithms 
are available for medical data analytics and can be 
applied in the real-time medical industry concerning 
the nature of the dataset and its complexities. The 
Support Vector Machine algorithms can perform 
well with reduced computational and time 
complexities compared to all machine learning 
algorithms. Only the hyperplane in the search space 
can be increased based on the constraints. Thus, this 
paper implements a Support Vector Machine (SVM) 
algorithm for analyzing the pathological information 
of fatty liver disease patients' data. SVM can do 
processes using different mathematical models built 
into it. For example, it used 2D point classification 
using vector representation. For example, 𝑂𝐴ሬሬሬሬሬ⃗   
represents a vector that connects points O to A. The 
distance between two points, called norms, and the 
distance of the vector can be obtained using the 
formula: 

𝑥(𝑥ଵ, 𝑥ଶ, 𝑥ଷ) is expressed as ||x|| = ඥ𝑥ଵ
ଶ +  𝑥ଶ

ଶ +  𝑥ଷ
ଶ 

At the same time, the data moving direction is called 
vector direction and is obtained by the formula: 

𝑥(𝑥ଵ, 𝑥ଶ, 𝑥ଷ) is given as { 
௫భ

ห|௫|ห
 ,

௫మ

ห|௫|ห
 ,

௫య

ห|௫|ห
 } 

Two vectors (data points) can be extended into the 
same directions as represented as 

𝑢 . 𝑣 = |𝑢||𝑣| cos(𝜃) =  𝑥ଵ ×  𝑥ଵ +  𝑦ଵ ×  𝑦ଶ  
 𝑢 & 𝑣  are vectors, their dot product is evaluated as: 
(.) denotes the inner product, and 𝜃 represents the 
angle between 𝑢 and 𝑣. SVM uses hyperplanes to 
classify the data in the search space. It is called a 
hyper-line in 2D space, and it is called a 3D 
hyperplane. It divides the data into two classes. The 
data points x are represented using SVM is y, and it 
is expressed as:  

𝑦 = 𝑎 ∗ 𝑥 + 𝑏 
𝑎 ∗ 𝑥 + 𝑏 − 𝑦 = 0 

Given Vector 𝑋 = (𝑥, 𝑦) and 𝑊 = (𝑎, −1)  Hence, 
the vector equation of the hyperplane is 𝑊. 𝑋 + 𝑏 =

0. If the data points are not linear, they can be 
separated by  

𝑍 = 𝑋ଶ +  𝑌ଶ  
This ensures that a linear classifier can be applied to 
the data points. 

SVM is one of the robust machine learning models 
that can perform regression, outlier detection, and 
linear and non-linear classification over any alpha-
numeric dataset. It is used in various applications 
like the classification of text and images, pattern 
recognition, gene expression analysis, etc. It is 
adaptable and practical in multiple applications since 
it manages nonlinear association and high-
dimensional data using a customized number of 
hyperplanes to differentiate the classes based on the 
features. It is a supervised machine-learning model 
used for classification and regression processes. The 
novelty of SVM is to obtain optimal hyperplanes for 
differentiating data points in high-dimensional data. 
Each hyperplane is drawn between data points, and 
they try to get various classes based on the closest 
point as much as possible. Figure-4 shows the three 
different hyperplanes used for classifying the data 
points based on the distance values d1, d2, and d3. 
The closest data points are selected based on the 
closest distance-based data points.  

 
Figure-4. Support Vector Machine 

 
In the SVM model, the input feature vector X and 
class label Y are used to train the dataset and to 
perform binary classification with two labeled 
classes, +1 and -1. The hyperplane of the SVM 
model is evaluated using the equation. 

𝒘𝑻𝒙 + 𝒃 = 𝟎         (1) 
Here, W and b represented the average vector of the 
hyperplane and the distance between the hyperplane 
from the average vector to the origin. Then, using 
Equation (2), the distance between the decision 
boundary and the data point is evaluated.  

𝒅𝒊 =  
𝒘𝑻𝒙𝒊ା𝒃

‖𝒘‖
        (2) 
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Where ‖𝑤‖ defines the Euclidean norm value of 
the normal weight vector W. The Euclidean norm 
value for the linear SVM model is expressed as: 

𝒚ෝ =  ൜𝟏: 𝒘𝑻𝒙 + 𝒃 ≥ 𝟎
𝟐: 𝒘𝑻𝒙 + 𝒃 < 𝟎

 

The following expression is then applied to find the 
optimization result of the soft margin linear SVM 
model.  
𝐦𝐢𝐧𝐢𝐦𝐢𝐳𝐞

𝝎,𝒃

𝟏
𝟐

𝝎𝑻𝝎ା𝑪 ∑ 𝜻𝒎
𝒊ୀ𝟏 𝒊 subject to 𝒚𝒊(𝝎𝑻𝒙𝒊+b) 

≥ 1 ‒ 𝜻𝒊 and 𝜻𝒊 ≥ 𝟎 for i =1,2,3, … ,m 
 the optimized output obtained from the SVM is 
given in Y. The overall process of data analytics is 
shown in Figure-3.   

6. EXPERIMENTAL RESULTS AND 
DISCUSSION 

The proposed preprocessing method is experimented 
with Inter Pentium Core i7, 7th generation, 1TB 
HDD, 16GB RAM, and 2.36GHz processor speed. 
Python is installed with all essential libraries to 
enable the artificial intelligence algorithms with 
Kera’s model. To improve the diagnostic accuracy 
of the model, the input data are pre-processed using 
the filter. The data before and after applying the pre-
processing technique is visualized in Figure 1.  The 
X and Y axes represent the Integrated backscatter 
and homogeneity factors, respectively. Figure-4 (a) 
shows the scatter plot graph depicting the raw input 
data before preprocessing. Figure-4 (b) shows the 
after-pre-processing scatter plot result. The input 
FLD data are classified into four categories: Normal, 
Mild, Moderate, and Severe. It is classified based on 
the fat level present in the liver. If analyzed, fat levels 
<5%, 5-33%, 33-66%, or >66% are termed Normal, 
Mild, Moderate, or Severe, respectively. These 
different stages of the disease data in the input 
dataset are classified using various factors.  

 
Figure-5. Before and After Preprocessing Data 

Data Visualization 
 

The experiment is carried out by analyzing the best 
parameters as features, such as IB, HHT, and HF, to 
detect abnormalities in the fatty liver condition. The 
accuracy obtained from the experiment is evaluated 
by comparing the accuracy using individual features 
and combined features. Initially, IB, HHT, and HF 
factors are used individually to compute the 

sensitivity, specificity, and accuracy. Then, two 
eatures, IB and HHT, IB and HF, and vice versa, will 
be combined to verify the efficiency of sensitivity, 
specificity, and accuracy. For example, Figure-5 
illustrates the AUROC estimated concerning the 
individual and combined features. It shows that the 
AUROC value is high for all three features combined 
to identify fatty liver diseases. The overall AUROC 
values obtained using all the features and their 
combination are received within the range of 79.27% 
to 89.29%. Figure-6 illustrates the accuracy 
estimated concerning the individual and combined 
features. It shows that the accuracy value is high for 
all three features combined to identify fatty liver 
diseases. The overall accuracy values obtained using 
all three features and their combination are 68.92% 
to 86.49%.    

 
Figure-6. AUROC For Individual and Combination 

of Features 

 
Figure-7. Accuracy For Individual and 

Combination of Features 

 
Figure-8. LR+ For Individual and Combination of 

Features 
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Figure-8a. LR For Individual and Combination of 

Features 

 
Figure-9. NPV For Individual and Combination of 

Features 
Figure-7 illustrates the positive likelihood ratio 
(LR+) estimated concerning the individual and 
combined features. It shows that the positive 
likelihood ratio value (37.8%) for connecting 
features IB and Q-Factor is high in identifying fatty 
liver diseases. The overall positive likelihood ratio 
values obtained using all three features and their 
combination are 15.5% to 37.8%. Similarly, the 
negative likelihood ratio (45%) is high for only the 
Q-Factor feature in identifying fatty liver diseases. 
The overall negative likelihood ratio values obtained 
using all three features and their combination are 
11% to 45%, as shown in Figure-8. The NPV 
(Negatively Predicted Value) estimated concerning 
the individual and combined features is shown in 
Figure-9. The highest NPV value (75%) is obtained 
by combining all three features: IB, QF, and HF. The 
overall negative likelihood ratio values obtained 
using all three features and their combination are 
41.94% to 75%. Similarly, the PPV (Positively 
Predicted Value) is estimated concerning the 
individual and combined features, as shown in 
Figure-10. The highest PPV value (92.16%) is 
obtained by combining two features, IB and QF.  The 
overall PPV obtained using all three features and 
their combination is 82.81% to 92.16%.  

 
Figure-10. PPV For Individual and Combination of 

Features 

The sensitivity is calculated based on individual and 
combined features to verify the efficiency of FLD 
detection. Figure-11 shows the highest sensitivity, 
94.64%, obtained only by analyzing the dataset 
concerning HF features for FLD detection. 

igure-11. Sensitivity For Individual and Combination of 
Features 

 
Figure-12. Specificity For Individual and Combination of 

Features 

 
Figure-13(a). Disease Stage Classification w.r.t IB in 

Training 
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Figure-13(b). Disease Stage Classification w.r.t QF in 

Training 

 
Figure-13. Disease Stage Classification w.r.t HF in 

Training 

 
Figure-14(a). Disease Stage Classification w.r.t IB 

in Testing 

 
Figure-14(b). Disease Stage Classification w.r.t IB in 

Testing 

 
Figure-14(c). Disease Stage Classification w.r.t HF in 

Testing 

The overall sensitivity range obtained in the 
experiment is from 67.86% to 94.64%. The 
specificity is calculated based on individual and 
combined features to verify the efficiency of FLD 
detection. Figure-12 shows the highest sensitivity, 
77.78%, obtained by analyzing the dataset 
concerning IB and Q-Factor features for FLD 
detection. The overall specificity range obtained in 
the experiment is 38.89% to 77.78%. Figure-13 (a), 
(b), and (c) show the classification result of the input 
trained data through the IB factor, HTT Q factor, and 
Homogeneity factor, respectively. The classification 
result of the IB factor depicts that the input dataset 
has more severe data than the others. The HTT Q 
factor classified a maximum number of data as 
normal data. The homogeneity factor results show 
that most of the dataset’s input are predicted and 
classified as moderate stages.  Figure-14 (a), (b), and 
(c) depict the testing data classification result using 
three different factors, namely the IB factor, HTT Q 
factor, and Homogeneity factor, respectively. The 
classification result of the IB factor on testing data 
also classified most of the data as severe stage. The 
HTT Q factor classified a maximum number of data 
as normal data. The homogeneity factor results show 
that most of the dataset’s input are predicted and 
classified as severe stages.   

7. CONCLUSION 
 

Predicting abnormal genes in metagenomic 
fragments remains a significant and challenging task 
in the field of metagenomics, often yielding limited 
accuracy. In this study, a Support Vector Machine 
(SVM) algorithm is applied to analyse pathological 
data derived from ultrasound imaging of fatty liver 
patients in China. After preprocessing the data, the 
SVM model is used to classify disease stages—
normal, mild, moderate, and severe—based on 
quantitative tissue parameters such as integrated 
backscatter (IB), Q-factor, and homogeneity factor 
(HF), which reflect fat distribution and tissue 
behaviour. The SVM model demonstrates its 
versatility through regression, outlier detection, and 
both linear and non-linear classification on high-
dimensional data. Implemented using Python, the 
model achieved an average accuracy of 86.49% 
across the clinical and imaging datasets. Future work 
will explore the application of SVM to additional 
pathological and genomic datasets and compare its 
performance with other machine learning algorithms 
to assess its robustness and generalizability. 
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