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ABSTRACT 
 

Network slicing has emerged as a fundamental enabler for delivering diverse services with heterogeneous 
requirements in next-generation communication systems. However, most existing approaches focus on 
either bandwidth or computational resource allocation in isolation, often relying on centralized architectures 
that struggle with latency, scalability, and information privacy across distributed network components. This 
paper addresses this gap by proposing a novel distributed network slicing architecture that jointly optimizes 
bandwidth and compute resources. The core innovation is the introduction of a regional orchestrator (RO) a 
new control plane entity positioned between base stations (BSs) and cloud nodes to coordinate localized 
resource allocation while preserving system privacy and scalability. We develop a distributed resource 
allocation algorithm based on the splitting model (dra-SM) to efficiently manage joint resource distribution 
without centralized control. Simulation results show that our approach significantly reduces overall network 
latency by approximately 15%—compared to single-resource slicing, while also achieving faster 
convergence and service-specific latency guarantees. This work contributes a scalable, low-latency solution 
for real-world deployment of joint network slicing across decentralized infrastructures. 

Keywords: Data Slicing, Cloud, Network Slicing, Bandwidth Consideration, Resource Allocation. 
 
1. INTRODUCTION  
 

The general consensus is that 5G will involve 
much more than just an improvement in throughput 
and capacity, which are purely physical 
performance measurements. A significant shift 
away from the usual data-oriented design will be 
made in favor of an architecture that is service-
oriented and more flexible [1]. A single set of 
physical network resources may now be used to 
provide a broad variety of services, each with its 
own specific set of requirements thanks to the 
Service-Based Architecture (SBA) that the 3GPP 
has introduced [2]. The main idea is to integrate 
software-defined networking (SDN) with network 
functions virtualization (NFV) to virtualize network 
components into network functions, each of which 
is built of a functional building block that utilizes a 
separate network resource [3]. A network slice is a 
collection of network function sets may then be 
used to instantiate each type of service. The core of 
SBA has been viewed as network slicing, which can 
adapt to a variety of service requirements and 
application situations [4]. 

Cloud computing has lately been pushed as one 
of the major elements of 5G by both industry and 
standards organizations to enable new, 
computationally intensive applications open up 
fresh commercial opportunities and increase 
income. Cloud computing is an approach of 
offloading computationally intensive work that is 
located than UEs are positioned closer to 
massively-scale cloud data centers, which are often 
situated in faraway locations. Computerized clouds 
are made up of a lot of tiny computer servers, also 
known as cloud nodes [5]. Cloud computing service 
providers like Amazon and Microsoft can set up 
cloud computing networks. Mobile network 
operators (MNOs) can also deploy it into their 
network infrastructure. Network slicing, which 
makes use of both communication and computing 
resources, has recently generated a lot of interest 
[6]. Allowing each slice to be supported by both 
resources may improve the overall UE experience. 
Additionally, this can open the way for resource 
balancing across multiple network parts and for the 
creation of future services with demanding 
computational and latency specifications [7]. 



 Journal of Theoretical and Applied Information Technology 
31st July 2025. Vol.103. No.14 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
5355 

 

Motivated by the limitations of existing 
approaches, this study proposes a novel distributed 
framework designed to enable scalable and latency-
aware network slicing through joint coordination of 
bandwidth and computational resources. Unlike 
traditional solutions that rely on centralized control 
and complete system visibility, our architecture 
introduces a new control plane entity the Regional 
Orchestrator (RO) to facilitate localized decision-
making without the need to exchange sensitive 
information between base stations and cloud nodes. 
The study develops a distributed optimization 
algorithm based on the splitting model (dra-SM), 
allowing for efficient coordination across the 
system while preserving scalability and privacy. 
Simulation results demonstrate that the proposed 
method achieves approximately 15% improvement 
in overall network latency compared to models that 
manage only one type of resource. Additionally, the 
algorithm converges more rapidly than several 
conventional optimization methods, validating its 
effectiveness for real-world, latency-sensitive 
network scenarios. This work therefore contributes 
to the field by addressing critical challenges in 
distributed resource slicing, offering a practical and 
robust solution applicable to future communication 
systems such as 5G and 6G. 

The capacity to distribute resources across 
several network slices with different resources is 
great but it also comes with many additional 
difficulties. First, several service providers often 
handle various resources. As a result, it is typically 
difficult for them to exchange or share confidential 
information, such as the accessibility of resources 
and traffic patterns. Second, since the network 
infrastructure for cloud computing and 
communication may be dispersed over Wide scale, 
unacceptably long coordination lag periods and 
high communication overhead may occur from 
centralized coordination and administration [8]. 
Last but not least, each UE has the capacity to 
simultaneously request a range of services with a 
range of features offered by a range of resources. 
It's still unclear how to create the best algorithm for 
rapidly and reliably allocating diverse resource 
combinations to support many network slices [9]. 

This study analyzed distributed network slicing 
for network systems that consists of comprises an 
operational cloud computing network and a network 
of base stations (BSs) delivering wireless 
communication services and handling 
computationally demanding tasks. For the support 
of many network slices, we take into consideration 
the combined resource allocation of BSs' bandwidth 

and cloud nodes' computing power [10]. Our main 
goal is to lessen the total latency that ends UEs 
experience, which takes into account both queuing 
delay at cloud nodes and communication delay in 
wireless networks linking UEs and BSs. An 
algorithm for distributing resources has been put 
forth. The paper demonstrates how the suggested 
method may ensure adequate performance for every 
type of service it supports while reducing the 
network's overall average latency. The significance 
of this paper's contributions is outlined in the 
following: 

1)  To allow distributed network slicing in a large 
network, a new distributed framework based on 
regional orchestrator (RO) technology is being 
developed.  

2) The use of a distributed optimization 
algorithm based on the distributed resource 
allocation approach is based on the splitting model 
(dra-SM) has been proposed in order to distribute 
coordinate the resource allocation of both 
bandwidth of BSs and computational resources of 
nodes without the need for the exchange of any 
sensitive information between BSs and cloud nodes. 
We demonstrate that the suggested method can 
achieve global optimality at an O(1/t) pace.  

3) Various real-world scenarios have been 
offered for simulation and in-depth performance 
analysis. According to our findings, joint slicing, 
which makes use of both bandwidth and computing 
resources, versus network slicing with a single 
resource, lowers overall latency by around 15%. 

Existing network slicing approaches often rely on 
centralized architectures, single-resource allocation, 
and full information sharing making them 
unsuitable for distributed, large-scale, and privacy-
sensitive environments. This study fills that gap by 
introducing a distributed architecture with regional 
orchestrators and a dra-SM-based algorithm to 
jointly allocate bandwidth and compute resources, 
enabling low-latency, scalable, and privacy-
preserving network slicing. 

2. RELATED WORKS 

Data storage, processing, and other 
services are supported by the cloud computing 
paradigm, which offers a wide range of services to 
its clients. In fact, cloud providers supply all the 
resources required, allowing for pay-per-use 
internet access to the services supplied. In view of 
these facts, it would be essential to deploy the 
suggested services automatically and optimally can 
reduce expenses, raise QoS, or even boost service 
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reuse. In reality, while creating composite services, 
a carefully done mapping of previously optimizing 
the new offers requires the use of current services 
in a significant way [11]. 

The positioning of application components 
and data is referred to as the SaaS positioning 
Problem (SPP) in this context associated with them 
in a group of computing and storage servers, as an 
example of a service deployment issue. Numerous 
placement options are created by the various 
correlations of the resources that the servers have to 
give. Therefore, the best placement strategy is one 
that guarantees a given level of acceptable QoS and 
other criteria [12].  

The optimization of resource utilization is, 
in fact, the next issue to be considered after 
choosing from among the available servers. 
Because the placement method has a direct impact 
on that, it qualifies as a strategic combinatorial 
issue [13]. To maintain SaaS performance and 
needs fulfilment, restarting the SPP on the pre-
selected servers involves installing software and 
data components. SaaS may be provided in a 
composite format in order to satisfy these criteria. 
Both processing and storage servers are used to 
deliver three composite SaaSas. It should be noted 
that the third composite SaaS can only be made up 
of application components, which is how the 
deployed SaaS may be constructed. 

The main objective of the SaaS has been to 
decrease the total execution time (TET) majority of 
SPP work it has been seen when surveying the SPP 
works. Some of these initiatives have just focused 
on this goal, while others have taken into account 
additional goals like cost reduction and load 
balancing. Additionally, the limitations considered 
or even the optimization aims might be used to 
categorize previous works. In addition to these 
traits, it is possible to categorize earlier SPP 
techniques by application components or data 
chunks) that make up a SaaS [14]. 

The findings and goals of the researchers 
serve as the primary motivators for categorizing 
SaaS placement techniques. Actually, the majority 
of them have discussed the SPP from two 
perspectives. While some studies have interpreted 
software as a collection of application and data 
components analogous to the well-known 
component placement problem (CPP), as a group of 
software components, has been the perspective of 

others. The optimization goals are taken into 
consideration in our categorisation. While previous 
researchers have worked with provider-related 
constraints the researchers' main goal was to 
enhance the placement scheme by focusing on the 
customer-related limitations (such as cost and total 
execution time). These constraints included 
resource usage, load balancing, and inter-task 
communication [15][16]. 

Several prior studies have addressed 
aspects of resource allocation and service 
provisioning in cloud-enabled networks. Early 
works have focused on centralized cloud 
architectures and static resource provisioning, 
primarily targeting either computational offloading 
or bandwidth management. For example, SaaS 
positioning problems (SPP) have been tackled by 
optimizing application placement across distributed 
servers [11–14], emphasizing performance metrics 
like total execution time (TET), load balancing, and 
cost minimization. However, these studies typically 
neglect real-time service dynamics and the 
integration of both communication and compute 
resources. 

In the domain of network slicing, many 
approaches rely on centralized SDN controllers [6, 
8], which limit scalability and introduce high 
coordination delays—especially in geographically 
distributed infrastructures. Furthermore, while SDN 
and NFV technologies are central to 5G evolution, 
existing solutions often assume full knowledge 
sharing, an unrealistic assumption in multi-operator 
or privacy-sensitive environments. Other studies 
using heuristic or machine learning-based models 
for cloud resource allocation [2, 4, 5] provide 
improvements in energy efficiency and 
provisioning policies, but they are generally limited 
to single-layer resource management and lack 
support for joint optimization across layers 
communication plus compute. Moreover, security 
and privacy concerns in resource sharing are often 
overlooked. 

The gap is further reinforced by the lack of 
distributed frameworks capable of achieving low-
latency, joint resource slicing, and decentralized 
optimization under limited information conditions. 
These limitations form the foundation of the 
problem addressed in this study. 

This critique builds a logical path from the 
current literature to your work’s problem statement, 
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which is then addressed through your distributed 
RO architecture and dra-SM model. 

 
3. METHODOLOGY 

 
3.1 System model 

Fig 1 shows a network system with a 
collection of S = 1 nodes, a collection of S ={1…S} 
BSs, and a collection of F = {1…F} cloud nodes. 
Each BS in a cellular network within its designated 
service area offers services. Consider that each UE 
may only request a total of N distinct services. 
Assume that N = {1…N} represents the entirety of 
all supported services. We assume that BSs may 
communicate a specified amount of data for each 
type of service, referred to as a task unit, which 
cloud nodes may then handle.  For instance, a 
service that processes video or audio can make use 
of several data units to process and send each video 
or audio clip. Give each task unit of service type n a 
data size of d_n. A fixed bandwidth designated as s 
for all s∈S has been assigned to each BS, and each 
cloud node is capable of handling a maximum of 

µ_f task units per second for every f∈F.Assume 
that k_sn  ∼ P(λ_sn), where sn is the expected 
number of task units received and λ_sn is the 
Poisson distribution of the nth service task unit 
arrival rate at BS s. 

We take into account cooperative resource 
allocation for various network slices in this article. 
Using a technique called network slicing; Virtual 
Network Functions (VNFs) are created by 
virtualizing physical resources. Each VNF may be 
further broken into smaller components and placed 
in a shared software container in order to make the 
network functionality easily released and reused by 
numerous service instances. Slice units are the 
smallest building block that may be utilized in 
VNFs for network slices. There are several slice 
units that can make up a network slice. Slice units 
are separated from one another. Thus, the launch 
and dynamic scaling of each network slice may be 
done without disrupting other running services. 

 
 

 
Figure 1: Network slicing

 
4. System Model 

 
The goal of this study is to decrease 

service response times for each kind of service, 
which may result in queue delays at cloud nodes as 
well as communication delays for task unit transfer 
from user equipment to cloud nodes.  Let's start by 
thinking about the communication latency. It 
should be noted that in many real-world networks, 
UEs and BSs can link through wired or optical 

fibre, which often gives a far greater data rate than 
wireless connectivity. As a result, the paper use a 
standard setup and don't take into account the 
communication lag between BSs and cloud nodes. 
According to a commonly used setup, the 
communication latency for sending each unit of the 
work with a certain bandwidth 0≤ b_sn<β_s 
provided by BS s for service type n may be written 
as: 
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(1) 

Where wsn is the required transmission 
power to transmit the task units for service type n 
from the UEs to BS s and hsn is the channel gain 
between the BS and the corresponding UE for 
service type n. The term "σsn" refers to the volume 
of noise that is received at BS s. The pace at which 
cloud nodes can process data and at which tasks 
arrive can have an impact on the queueing latency 
at the cloud node. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2: Distributed network slicing 

 
Assume that  is the maximum amount 

of processing power that cloud nodes can devote to 
handling the nth kind of service that BS  provides 

to the connected UEs. We presumptively 
characterize the task units controlled by cloud 
nodes as  queuing under a regularly 
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employed configuration. We may depict the  
kind of service's queuing latency in the BSs' 
coverage area as: 

 
(2) 

 

When (1) and (2) are combined, the total service 

response time for the  service type provided by 
BS s may be shown as: 

 (3) 

3.3.1. Network slicing 

As was already indicated, the following 
two issues must be addressed in order to swiftly and 
reliably allocate resources across networks of 
computing and communication:  

1) Since physical resources can be widely dispersed 
across a wide area, unacceptably high latency and 
pointless communication overhead may be 
produced by a centralized resource management 
and control system. 

2) Different service providers may own the 
infrastructure for communication networks and 
cloud computing networks. As a result, neither of 
these systems can exchange proprietary 
information. 

Figure 3: Service layers for network slicing 

Adding other centralized SDN control 
plane frameworks to a distributed environment 
would not solve the aforementioned problems. In 
reality, several published studies have noted that 
SDN controllers have been created with a primary 
emphasis on establishing and sustaining 
connections across virtual mesh networks as well as 
controlling the routing of data traffics. Even in a 
mobile setting, it may be utilized to keep the 
network connected and keep the services running. 
To control the processing resources of cloud 
computing networks, however, it cannot be used. 
Additionally, OpenFlow is dependent on a central 
SDN controller to manage network resources and 
can only offer static paths to each SDN switch. 

This paper proposed a distributed network 
slicing architecture based on a novel control plane 
entity, RO, positioned between the communication 

network and cloud computing network, to enable 
the fine-grained control of resources across both 
network systems. The whole coverage area has 
been divided into a number of smaller sub-regions 
under this arrangement. A few close-by BSs and 
cloud nodes make up each of these sub-regions, and 
they may be quickly joined to one another through 
local wire line connections. In order to administer a 
set of VNFs made up of neighboring computing 
and communication resource units, RO may be 
installed in each sub-region. Only local VNFs 
inside each sub-region can be controlled and 
instantiated by a single RO for network slicing. 
Every time a UE asks a service task from a BS, the 
resource requests will be submitted by the BS to the 
RO. The RO will then communicate with the BS 
making the service request, neighbouring cloud 
nodes, and other ROs to build the necessary 
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network slices. Furthermore, the RO be in charge of 
BSs and cloud node path reservations and service 
traffic routing. If there are uneven traffic loads in 
two or more adjacent sub-regions, two or more ROs 
can cooperate and collaboratively alter their local 
VNF production and distribution rates. Fig 3 shows 
the illustration of our suggested architecture. 

The network slicing architecture 
developed by the 3GPP mandates that certain 
resources be set aside and allocated for various 
types of services that are provided to guarantee that 
resources are always accessible whenever a service 
request is made. The RO utilized in the 3GPP 
framework is examined. Service type  task units 
at BSs, each RO must provide the number of 
computing resources ( ) at cloud nodes and the 
amount of bandwidth ( ) that will be available.  
The paper has the following restrictions because the 
requested service instances will be supported using 
the resources that have been set aside throughout 
this period: 

 (4) 

 (5) 

 

This study's main focus is on resource 
allocation and network slicing over a predefined 
time period, where a group of local BSs' maximum 
bandwidth and a set quantity of local cloud nodes' 
processing power have been allotted for a group of 
supported types of services. The network slicing 
and dynamic resource allocation will be kept for 
later research.  We take into account the following 
restrictions: 

1) Bandwidth limitation: Limit the overall 
bandwidth provided to each BS to . To put it 
another way, BS  is not permitted to allocate more 
bandwidth overall than  to all pending service 
jobs. In general, the RO must set aside enough 
resources even without being aware of the exact 
number of task units that will be deployed in the 
future. However, the empirical probability 
distribution of the task arrival rate enables the RO 
to forecast the possible number of task units. 
Therefore, for the great majority of potential 
activities, the RO can dependably reserve adequate 
resources to support the performance-guaranteed 
services. The probability that fewer Type n service 
task units than a specified threshold arrived at BSs 
amount is how we establish the confidence level 

 denoted by the symbol 

. For instance, if 
, the RO wishes to hold back enough 

resources to confidently satisfy the requests of 
every UE. We can see that θ the task arrival rate 

 Cumulative Distribution Function (CDF) is 
identical to. This allows us to write 

, where  denotes 
the inverse function. Then we may limit the amount 
of bandwidth that BSs can provide a set  of all 
services that are supported kinds as follows. 

 
(6) 

 

The total amount of computational power 
γ that may be distributed to all cloud nodes in a 
subdivision is limited. The cumulative sum of 
allowed computer resources for the services cannot 
be higher than. The next computational resource 
limitation is as follows. 

 
(7) 

A maximum tolerated latency, denoted as 
, is also assumed for each supported kind of 

service so that we have , 
. Open-ended and adaptable 

architecture is what we advise. You might use it for 
network slicing that makes use of several resources 
spread out across a large geographic area. In this 
article, network slicing design is considered to 
maximize the RO. In order to dynamically 
distribute computing and bandwidth resources, the 
BSs and cloud nodes can work with the RO. In 
order to improve the following issue, we focus on 
creating a distributed technique. 

 
(8) 

 (9) 

 (10) 

 (11) 

3.3.2. Optimized network slicing 

As stated earlier, we must carefully choose 
the resources made available to each network slice 
if we want to reduce the total latency encountered 
by end UEs. The problem requires, even though 
this may result in unacceptable high latency and 
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communication overhead, that the appropriate 
amount of bandwidth and processing power for 
each type of service be jointly determined using 
global data such as the anticipated number of task 
units that will arrive and the computational capacity 
of each cloud node. We must build a distributed 
optimization algorithm with the following design 
objectives in order to address the aforementioned 
problems as well as the combined network slicing 
challenge: 

1) Distributed Optimization with Coordination: 
The proposed optimization strategy must be able to 
segment the overall issue into several smaller 
problems that can each be resolved by a BS using 
its local knowledge. In order to get at the global 
optimum resource allocation solution, the 
resolution of numerous sub-problems can then be 
coordinated through the RO.  

2) Privacy protection: It's feasible that BSs and 
cloud nodes won't want to exchange sensitive 
information, such as bandwidths, with one another 
anticipated arrival rates for task units, and 
processing capacity.  

3) Fast Convergence: Over time, changes might be 
made to the BSs and cloud nodes connected to each 
RO. Consequently, the algorithm must quickly 
arrive at the overall optimal solution. 

We provide distributed resource allocation 
approach based on the splitting model 
( )-based distributed optimization 
technique. is more suited to addressing 
issues with inequality-constrained optimization in a 
decentralized way as compared to conventional 
convex optimization methods. Furthermore, it is 
feasible to safeguard the sensitive data of BSs and 
cloud nodes thanks to the decomposition-
coordination process of . Sadly, issues 
with two blocks of variables are the limit for 
problems that can be handled by standard 

 procedures. In order to overcome 
problem, with the aforementioned goals, we offer a 
distributed  method with partial 
variable splitting known as distributed resource 
allocation. This approach splits the Lagrangian dual 
issue into  sub-problems, where each might be 
handled by a separate BS using its regional 
competence. The BSs will deliver their preliminary 
findings to the RO, who will compile them and 
offer coordinated input. 

To integrate the restrictions with the 
objective function, let's first take the same approach 
and introduce a collection of  indicator 

functions. Specifically, for constraints that can be 
separated across different BSs, we define 

 as the feasible set corresponding to BS  where 
 is the vector of bandwidth 

allocated by BS for each type of services and 
 is the vector of processing 

power allocated for each type of services connected 
to BS . If 

, then 
the  indicator functions are as follows: 

(12
) 

 

We may also create an indicator function  
for constraint that cannot be separated. 

 
(13) 

 

Where,  is the half-space denoted by the 
Eq. ,  

. By incorporating the 
previously mentioned indicator functions, IGs, and 
IG, the original joint network slicing issue with a 
set of inequality requirements may be changed into 
the following form without inequality restrictions. 

 
(14) 

 

Where, the newly added auxiliary variable 
and 

. The augmented 
Lagrangian is provided by: 

(15
) 

Where, the enhanced Lagrangian 
parameter is ρ and the dual variable is . So, we 
can demonstrate the resulting fact. 

Theorem 1: The given augmented Lagrangian is 
convex and somewhat separable among . 



 Journal of Theoretical and Applied Information Technology 
31st July 2025. Vol.103. No.14 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
5362 

 

Proof: Convex sets include the feasible set for 
issue and it's containing set , as well as set 

, half space , and their intersection. 
Convexity is established instantly by this. In 
addition, we demonstrate that  second 
derivative is always positive inside the feasible set 
of problems indicating that the function is convex. 
We can next demonstrate that  is 

convex by showing that summing maintains 
convexity. The augmented Lagrangian is rewritten 
in the following way to demonstrate that it is partly 
separable: 

(
1
6
) 

 

We can see from Eq. (12) that for 
may be partly 

separated over . The proof comes to an end here. 
The following is how we may transform issue into a 
two-block form. 

(1
7) 

(1
8) 

 
(1
9) 

Where,  is total iterations. We may break down 
Eq. (13) into several smaller issues using the partly 
separability of , which each BS may 
address using its local expertise. The following sub-
problem is resolved by each BS in particular. 

(20
) 

 

The point  is projected onto the half 
space  which is equal to saying: 

 
(21) 

 

 Here,  stands for the projection onto 
halfspace . In Approach 1, a thorough description 
of our suggested approach is provided. The 

combined network slicing issue has a global 
optimum solution and the suggested algorithm 
converges to it at a rate of . 

Proof: We suggested  algorithm's 
convergence feature closely resembles that of the 
conventional technique because the centralized 

update and the distributed subproblems 
presented are equivalent. Due to space restrictions, 
we have omitted the specifics from this section. 

Algorithm 1:  

Initialize: Every BS with initial variable  and 
RO selects variables  

Choose maximal iterations ; 

While do 

 Every BS performs simultaneously do: 

 Update  and perform RO; 

 Allocate bandwidth for all arrived task based on 

 

 After  are attained and RO do; 

 Revise variable  

 Update successive variable ; 

 If stopping criteria fulfils 

 Break; 

 End if 

 Transfer sub-vectors  and  to BS; 

  

  

3.3.3. Genetic Algorithm 

Since the 1980s, a family of evolutionary 
hill-climbing algorithms known as genetic 
algorithms (GAs) have been widely utilized on a 
range of search and optimization problems in the 
fields of engineering and operations research.  It 
has been demonstrated that they are effective in 
solving several challenging issues in these 
situations, large state spaces, a lack of state 
knowledge, and non-stationary environment. GA is 
inextricably coupled to a certain encoder, which 
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converts each viable tactic into a unique binary 
sequence (code) of a specific length. A haphazard 
collection of codebook sequences, or what is 
known as the initial population, is made at the 
initialization stage. Each potential approach is 
assessed to determine its fitness, or the importance 
of the desired target function.  New populations are 
then repeatedly created based on the preceding 
population's fitness ratings. Every iteration in a 
typical GA comprises of the following three phases 
in order: 

Reproduction: Depending on how well it performs 
at this stage, each unique approach from the 
previous population gets replicated into a new set. 
The repetition rate of the duplicated set's copies 
varies in direct proportion to the origin's fitness 
value in the preceding population. It is possible for 
the better candidates to expand through 
reproduction while the worst underperformers are 
eliminated since the size of the reproduced set is the 
same as that of the previous population.  

Crossover: All sequences in the replicated set are 
matched at random in this stage. A random 
subsequence swapping opportunity exists between 
each pair. This results in the creation of novel 
sequences at random, a situation where each "child" 
has the opportunity to mix and pick up advanced 
"genes" from its two "parents." Faster convergence 
to the optimum and higher likelihood of local 
convergence result from a higher possibility of 
swap (crossover rate).  

Mutation: Through the process of mutation, each 
candidate sequence has the potential to have one or 
more random components reversed which promotes 
exploring the codebook. A higher incidence of 
mutation or a higher number of mutated bits 
reduces the likelihood of local convergence while 
simultaneously making the convergence meander 
more, increasing the likelihood of wandering from 
the world's best.  

GAs provides model-free advantages and 
may be used online, just as the Q-Learning method. 
However, unlike the majority of reinforcement 
learning systems, GAs, like Q-Learning, put less 
emphasis on the reward value of each individual 
action and more emphasis on various overall 
strategy "fitness" values that have been quantified. 
Due to the fact that in some applications it might be 
challenging to choose the fitness function 
effectively, this is occasionally seen as a 
disadvantage of GAs. Another typical criticism of 
GAs is that it may be difficult to build the strategy 
encoder, particularly in situations where 

continuous-valued decisions must be taken. None 
of these flaws, however, have any relevance in the 
context of the present study because: 1) Fitness 
functions are available for end business KPIs such 
is the average network utility over the long period 
indicated. The NO only makes binary decisions in a 
finite state space, resulting in the inherent binary 
encoding of every strategy. 

3.3.4. GA Slicing Techniques 

Only if the network operators (NO) active 
slice set at the moment falls inside the area of 
freedom, can the NO make a free binary decision as 
was previously explained. In every other scenario, 
the NO must reject each incoming request for the 
formation of a new slice. We calculated the limited 
enumerable set known as the NO's area of 
discretion  as the initial stage in encoding slicing 
algorithms. To represent each slicing strategy by a 
unique -bit-long binary sequence and enable 
the enumeration of all possible slicing strategies in 
this codebook, we assigned the integer range 

. This mapping is displayed. 
Using the aforementioned code, we developed a 
cutting-edge genetic algorithm-based slicing 
approach optimizer. The following describes how 
this optimizer works in an online manner. 

a) Initialization  

A starting population  of possible 
tactics is present in the pre-generated codebook and 
is randomly picked by the NO to be kept in the 
background for "virtual" operation. In terms of 
actual functioning, the NO employs a randomly 

generated beginning strategy, . 

b) Fitness Evaluation  

At the start of each evolution term, the NO 
records its active slice set and creates an evolution 
term  that is greater than one (normalized to 
one operation period). As the network is running, 
the NO responds to each incoming tenant request in 
accordance with the slicing strategy it is presently 
using, while also making a "virtual" choice for each 
person in the background in accordance with every 
potential plan in the available population. The NO 
keeps track of the simulated utility for each and 
every suggested approach during each operations 
period. Every strategy's fitness in the current 
population  is assessed at the conclusion of the 

 evolution term as its produced or simulated 
average utility across the  operations periods: 
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(22
) 

 

c) Evolution  

The candidate in  with the highest fitness is 
initially chosen to update the strategy for use in the 
following evolution term: 

 
(23) 

 

The normalized fitness values, a 

reproduction  of  are then produced. 

in  is an arbitrary copy number. 

 

(24) 

 

Where,  is a low value to reduce 
inaccuracy in the unlikely event where 

. The components in  are then 
shuffled and coupled, with a chance for the 
crossover operation to be performed on each pair. 
After the crossover, each potential tactic in the new 
population is adopted through a certain number of 
rounds  of mutation, during which time there is a 
distinct possibility , that candidate's lone random 
bit strategy will be inverted. Using the resulting set 
of strategies, for virtual functioning in the 
following phase of progression, the population 

 is updated. 

1. Numerical results and discussion 

We built up a network system in Dublin 
with 285 BSs and 285 cloud nodes that can process 
three different types of services—text, audio, and 
video—are, to assess the efficacy of our suggested 
network slicing design. We simulate many 
scenarios to show the performance of our proposed 
distributed network slicing architecture three sites, 
ranging from urban cores to suburban areas, as 
shown in Fig 3. It is assumed that each BS has a 
30MHz bandwidth set aside for it and that nodes in 
the cloud can only handle 180 task units per 
second. We assume that the processing and 
bandwidth resources reserved by cloud nodes and 
BSs in the same area are equivalent. Slices of 
computing resources and bandwidth are two 

different network slicing situations that we compare 
respectively—each of which only makes use of one 
kind of resource with the combined slicing 
incorporating both the capacity of cloud nodes and 
the bandwidth of BSs. 

First, we assess how well Algorithm 1 
performs in terms of convergence. A comparison 
between the interior-point approach and the first 
algorithm we propose ( ) for various 
iteration counts is shown. Applications of the 
interior-point method in communication network 
systems are many. We can see that within the first 
few rounds, our suggested the first algorithm can 
approach the lowest latency with high precision.  
Compared to the interior-point approach, it can 
provide substantially quicker convergence 
performance. In all three of these types of places, 
we can see that the joint slicing architecture we've 
suggested outperforms existing network slicing 
architectures, demonstrating the broad geographical 
applicability of our design. Since the features of the 
three designs are the same across all areas, we only 
go into depth about the area 1. When each BS has a 
variable amount of bandwidth available, we fix the 
processing power allotted to each cloud node in Fig 
6 together with the value in order to assess the 
service response time. 

We can see that when the complete 
bandwidth is allocated, the service response time 
gets faster. Furthermore, we can see that bandwidth 
slicing works better when the bandwidth of BSs is 
limited, computational resource slicing is preferable 
to that. The slicing of computing resources' service 
response time, however, tends to reduce 
considerably more quickly than that of the 
bandwidth slicing when the bandwidth of each BS 
grows. This is so because we fixed the computing 
resource in our simulation. When each BS has a 
restricted bandwidth, as in this situation, 
communication delay predominates over total 
latency. Because of this, adopting bandwidth 
slicing to reduce communication latency may be 
more effective than boosting cloud nodes' 
computational power to reduce the time it takes for 
all services to react.  Overall latency will be 
dominated by the queuing delay after each BS has 
enough capacity. The slicing of computing 
resources will be more helpful in this situation to 
speed up the service response time. 

Each cloud node's assigned processing 
power was compared in three network slicing 
scenarios for the analysis of service response times, 
in Fig 6, We establish a fixed amount of bandwidth 
for each BS and value. We can see that when 
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processing power is set aside for each cloud node, 
the service response time gets faster. Similar to this, 
we see that bandwidth slicing performs worse than 
computational resource slicing when the computing 
resource of the cloud nodes is constrained. 
However, once each cloud node's computational 
capacity is reached, bandwidth slicing begins to 
slow down more quickly than the slicing of 
computing capacity. This is so that Fig 7 bandwidth 
will always be fixed. When a cloud node's 
processing capacity is constrained, the overall 
latency is dominated by the holding period. As each 
cloud node's processing power rises, 
communication latency starts to overtake other 
delays in terms of the overall length of time. 

For the purpose of examining the service 
response time at various values of  θ, we set the 
processing power and bandwidth allotted for each 
cloud node and BS. As we can see, the service 
response time gets θ faster as the business expands. 
this is because as it rises θ, there are more task units 
overall that BSs must convey. Due to the longer 
communication lag caused by this, the service 
response time will be longer. Furthermore, we see 
that θ the bandwidth slicing service response time 
increases much more gradually than the 
computational resource slicing the lengthening of 
service response times. This is due to we modify 
the processing capacity and bandwidth allowed for 
each BS and cloud node, respectively increases the 
number of task units for each service from θ each 
BS in this case. When little, each work unit is has 
access to enough bandwidth, and the queuing delay 
predominates in terms of total latency.  The 
bandwidth allotted to each work unit is constrained 
as increases θ, and communication delay will begin 
to predominate the total latency. 

4.1. Analysis with GA 

An NO with a one-dimensional 
normalized resource pool was taken into 
consideration in order to make a concise and 
persuasive presentation with minimal computing 
complexity: 

 (25) 

 

It accepts  as two 
separate slices. As a result, the resource cost vector 
is also one-dimensional and set to 

 for each slice type cn. Then, 
as shown in Tab 1, it is feasible to obtain a tiny 
decision-making space  with a size of 12 and a 

tiny resource-planning space  with a size of .  
According to this specification, there are 

 possible slicing techniques in total. 
We assumed that the two slice types' periodical 
utilities were equal to two and one, respectively, 
indicating that slice type 1 has a utility-efficient 
twice as high as slice type 2. We also established 

 utility generation operations periods as the 
length of an evolution term. We hypothesized that 
requests for slice production came in a Poisson 
manner where  is the number of requests that 
arrive over a certain operations time for each slice 
type  

(2
6) 

 

We believed that each slice of type in the 
interim was  had an exponentially 
distributed random lifespan (normalized to one 
operations period): 

(2
7) 

Three possibilities for services with 
different parameter settings  were 
developed for our simulations, as shown in Tab 1. 

 

Table 1 Resource feasibility 

 Element  Element 

[0,0], [0,1], [0,2], [0,3], 
[1,0] 

[1,1], [1,2], [2,0], [2,1], 
[3,0] 

 

[0,0,1], [0,0,2], [0,1,1], 
[0,1,2] 

[0,2,1], [0,2,2], [1,0,1], 
[1,0,2] 

[1,1,1], [1,1,2], [2,0,1], 
[2,0,2] 

 

Table 2 Model parameters 

Scenario     

1 0.6 2.1 2 11 

2 0.4 1 3 4 

3 1.1 0 3 6 

 

4.2. Efficiency Analysis 
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We created two genetic slicing strategy 
optimizers in simulation, one with a population size 
of 50 and the other with 10 viable strategies in each 
generation to show the efficacy of our suggested 
method. Starting with a resource pool that was 
completely idle and a random population of 
potential tactics, each optimizer completed 20 
generations of evolution. To achieve a speedy 
convergence, both genetic optimizers were 
programmed with a complete a round of mutations 
with a rate of mutations of α= 1 and a crossover 
rate of γ= 0.1 and a rate of  β= 1. For the Monte-
Carlo test, we ran this simulation 500 times while 
monitoring the average network utility over a long 
period as specified in Eq. (27).  By running the 
identical Monte-Carlo test 500 times in complete 
search, the global optimum out of all 4096 viable 
methods was found as a benchmark. Additionally, 
we evaluated three "naive" reference techniques to 
serve as benchmarks for performance comparison: 

• Greedy: accepting every request that comes in, 
provided that the resource pool can accommodate 
it.  

• Conservative: It makes logical to accept all 
requests for type 2 slices but refuse all requests for 
type 1 slices.  

• Opportunistic: accepting all type 1 slice requests 
but refusing all type 2 slice requests for two pieces. 
The results are shown in Fig 3. It is evident that 
both genetic optimizers began with low utility 
levels at first, but shortly (within 4 generations) 
converged to effective cutting techniques with 
competitive results. 

The genetic optimizers converged to a 
local maximum in the simulated progress, falling 
short of the global utility efficiency maximum. . 
Even so, both genetic optimizers beat the three 
static naïve reference techniques starting with the 
after considering 30 or 150 out of the 4096 options, 
or after the fourth generation of evolution, with 
long-term average network utilities above 90% in 
relation to the global optimum. Additionally, it can 
be seen that the two optimizers' convergence is 
boosted by an increase in population size by 
contrasting them with one another.  
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Figure 4: GA process 

4.3. Population 

The fact that GA allows for population 
evolution in each iteration, in addition to the best 
candidate, is a key component. The performance 
distribution of the 50 methods used by the genetic 
optimizer across numerous generations is depicted 
in Fig 4. It is possible to see considerable 
progression toward a set of general "good" 
strategies. This phenomenon highlights the ability 
of our genetic optimizer, when used in conjunction 
with other machine learning techniques, to produce 
training sets for both updating and initializing. 

GAs is well renowned for being resistant 
to non-stationary conditions. When discussing the 
optimization of a slicing method, this has to do with 
how resource requests and slice terminations 
behave in a statistically time-varying manner. To 
assess how well our genetic slicing strategy 
optimizer performed in these conditions, we ran a 
simulation across 60 generations of evolution, or 

360 operation periods.  For the first 20 generations 
of the strategy set, the scenario was set to 1, 
creating a global optimum approach that is 
identical. 

The scenario was changed to #2 for 
generations 21 to 40 and again to #3 for generations 
41 to 60. A genetic optimizer was employed in this 
instance, using parameters 

 and a population size of 
50. Comparisons were made between its 
performance and the three naive reference strategies 
mentioned previously as well as the strategy used in 
scenario 1 that is global optimum.  In Fig 4, the 
results and conclusions of 500 Monte-Carlo tests 
are shown. The genetic optimizer was able to 
respond swiftly to environmental changes and, as a 
result, maintained its high level of performance.  
The scenario-specified optimum, in contrast, 
performed poorly dynamically when the 
environment changed. Similarly, it became 
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discovered that the environment had a significant 
impact on how well all static reference schemes 
performed. 

Our genetic slicing technique optimizer 
was put to the test by being placed in a more 
complicated environment with slice scales that 
were substantially lower . In 
accordance with this standard, the NO has two 
spaces: a place for unrestricted choice D, 1122 
square feet; and a space for resource viability S, 
595 square feet.   This results in a staggering total 
of 1122 for the number of its conceivable slicing 
techniques. The utility efficiency scales were also 
adjusted to  and the 
service scenario parameters were set 
to . Then, 
using populations of 10 and 50, we tried two 
genetic optimizers  was 
the configuration for both optimizers. Once more, 
we employed the benchmark reference approaches 
"Greedy", "Conservative" and "Opportunistic" no 
world-wide ideal was considered since it would be 
computationally too expensive for those with poor 

local maximums to fully search for the optimum 
high. Both optimizers were able to fast converge 
within 10 generations, as shown in Fig 5, but only 
to get far worse local maxima than all reference 
techniques. 

A random strategy's usual separation from 
the global optimum, the size of the strategy space, 
the number of local maxima, and all grow as a 
function of strategy space size, which is the origin 
of these phenomena. As a result, there is an 
increased chance of local convergence. 
Furthermore, since the GA begins with a random 
population, it is quite easy for it to converge to a 
low level. To increase the beginning population and 
to lessen early convergences at regional maximum, 
one or more reference techniques can be included in 
order to help performance deviate from the 
benchmark level, the original population therefore 
achieving the first goal. A greater mutation rate or a 
lower crossover rate may be beneficial for the 
second. 

 

Figure 5: Generation vs. average network utility 
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Figure 6: Network utility vs. entire population 

Complexity: To prevent the random degeneration 
that may result from mutations, it is also a typical 
GA approach to protect one or more "elite" 
individuals from crossover and mutation operations 
in each generation and then immediately introduce 
them into the following generation. Since both 
optimizers' starting random populations explicitly 
include, the reference strategy "Greedy" we 
conducted the aforementioned simulation once 

more. Both optimizers were set up to protect the 
greatest member of each demographic generation 
and to have  Fig 5 to 
Fig 7 presents the outcomes. It is evident that the 
genetic optimizers either met or, at the very least, 
matched the benchmark using these little 
improvements where both optimizers attained 
convergence after six generations.  
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Figure 7: Generation vs. average network utility with reduced complexity 

For the time being, we can state that any 
specific static strategy will be defeated by our 
genetic optimizer, despite the fact that the time 
needed very slightly increases with the size of the 
problem space for convergence. Furthermore, it's 
crucial to keep in mind population growth will 
support convergence. Since our suggested strategy 

is easily parallelized for the temporal complexity of 
our technique is unaffected by the examination of 
many candidate strategies within the same 
generation, nor is it affected by population 
upscaling. As a result, it is incredibly scalable and 
suitable for challenging practical applications.   



 Journal of Theoretical and Applied Information Technology 
31st July 2025. Vol.103. No.14 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
5371 

 

Figure 8: Service response time comparison 

Figure 9: Bandwidth vs. Service response time (s) 
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Figure 10: PR of every BS 

Figure 11: Time evaluation of every service response time (s) 

To boost long-term network usefulness, 
we have introduced in this chapter a unique online 
genetic slicing approach optimizer. The suggested 
method has been put to the test using numerical 
simulations, and the results show a satisfying 
approximation to the global optimum, quick 
convergence, prompt adaptability to environmental 
changes, and high scalability (See Fig 8 to Fig 11). 
Furthermore, it doesn't require any prior 
understanding of the traffic or utility model. 

This study has certain drawbacks, even if 
the suggested distributed architecture and dra-SM-

based allocation model showed good performance 
in lowering latency and guaranteeing effective 
resource use.  First, idealized assumptions like 
static bandwidth and consistent processing power 
across nodes are assumed in the simulation 
environment, which might not accurately represent 
the variability observed in real-world deployments.  
Second, the study ignores dynamic or real-time 
adjustments in favor of concentrating on a set time 
range for resource allocation.  Third, security 
features like hostile node behavior or data leakage 
were overlooked even though privacy-preserving 
architecture was given top priority.  To further 
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improve the usefulness and resilience of the 
suggested system, further research should include 
adaptive, real-time optimization, more diverse node 
behavior, and more solid security frameworks. 

5. DIFFERENCES FROM PRIOR WORK 
AND STUDY ACHIEVEMENTS 

Unlike prior research, which 
predominantly focuses on centralized architectures 
and either communication or computational 
resource slicing in isolation, this study introduces a 
novel distributed network slicing framework that 
enables joint optimization of both bandwidth and 
compute resources. Previous approaches often 
assume full global knowledge and centralized 
control, leading to scalability issues, increased 
latency, and privacy concerns especially in wide-
area, multi-provider environments. 

 
In contrast, the paper proposed 

architecture leverages Regional Orchestrators 
(ROs) as intermediate control entities, enabling 
localized resource allocation without the need for 
sharing sensitive information between base stations 
and cloud nodes. Additionally, the use of a 
splitting-model-based optimization algorithm (dra-
SM) allows for distributed resource coordination 
with provable convergence and scalability. 

 
Through extensive simulation across 

diverse urban scenarios, the study demonstrates that 
the joint slicing method achieves approximately 
15% reduction in average service latency compared 
to single-resource slicing. It also converges 
significantly faster than traditional optimization 
methods, making it practical for real-time and 
large-scale deployments. These achievements 
directly address the limitations identified in the 
literature and fulfill the need for a distributed, 
privacy-preserving, and latency-aware network 
slicing solution in future 5G and 6G networks. 

 
6. PROBLEMS AND OPEN RESEARCH 

ISSUES 

Despite the promising results achieved by 
this study, several challenges and open research 
issues remain that warrant further investigation. 
First, the current work assumes a static allocation 
window and does not incorporate dynamic or real-
time resource adjustment mechanisms. In practical 
environments, network conditions and service 
demands are highly dynamic, necessitating the 
development of adaptive resource slicing strategies 
that can respond in real time to traffic fluctuations 
and user mobility. 

 

Second, while the use of Regional 
Orchestrators (ROs) enables decentralized control 
and privacy-preserving coordination, the study does 
not fully explore the security implications of 
distributed orchestration. Future research must 
investigate the resilience of ROs against malicious 
nodes, data tampering, and denial-of-service 
attacks, particularly in multi-operator scenarios. 

 

Third, the simulation environment was 
built on several simplifying assumptions regarding 
bandwidth uniformity, node capability, and service 
homogeneity. Real-world deployments are 
significantly more complex, with heterogeneous 
infrastructures and varying Quality of Service 
(QoS) requirements. Addressing these complexities 
will require multi-objective optimization models 
that can balance latency, throughput, energy 
consumption, and fairness. 

 

Fourth, while this study focused on 
minimizing average latency, other performance 
metrics such as jitter, reliability, and energy 
efficiency remain underexplored in the context of 
joint slicing. Integrating these dimensions into the 
optimization framework will further improve its 
applicability to ultra-reliable low-latency 
communications (URLLC) and other 6G use cases. 

 

Lastly, although the dra-SM algorithm 
showed faster convergence, there remains scope to 
enhance scalability and reduce computational 
overhead, especially in scenarios involving 
thousands of nodes. Research into lightweight 
distributed algorithms and edge-assisted 
intelligence may help scale such systems efficiently 
in large, complex environments. 

7. CONCLUSION 

For a system that combines a network of 
BSs that offers wireless communication services 
with a cloud computing network that manages 
computationally taxing tasks, this research goal is 
to investigate distributed network slicing. The core 
of the cutting-edge distributed system we propose is 
the regional orchestrator (RO), a unique control 
plane entity that may be positioned coordination 
and resource management of bandwidth and 
computational resources between BSs and nodes. 
To distribute coordinate the deployment of BS 
bandwidth and cloud node computing resources, 
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additionally, a method for allocating dispersed 
resources has been made available. According to 
the outcomes of our simulations, the suggested 
method can rapidly approach the global optimal 
solution. Additionally, the performance of the 
network's latency may be greatly increased by using 
the suggested distributed network slicing design in 
this paper. 

Beyond proposing a novel technical 
architecture, this study provides valuable insights 
for practitioners and researchers working on next-
generation network systems. Readers gain an 
understanding of how joint coordination of 
bandwidth and compute resources—facilitated by a 
distributed architecture with regional orchestrators 
can substantially reduce end-to-end latency in 
cloud-supported communication networks. The dra-
SM-based distributed optimization strategy shows 
that efficient resource slicing can be achieved 
without compromising privacy or requiring full 
global knowledge, which is critical in real-world, 
large-scale deployments. By demonstrating a ~15% 
latency reduction and faster convergence compared 
to traditional methods, this research not only 
addresses theoretical challenges in decentralized 
optimization, but also offers a practical, scalable 
framework applicable to 5G and future 6G 
networks. Ultimately, the reader walks away with a 
deeper comprehension of how fine-grained, 
regionally managed slicing techniques can enhance 
service delivery and QoS in highly dynamic 
network environments. 
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