
 Journal of Theoretical and Applied Information Technology
31st July 2025. Vol.103. No.14

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5354

LATENCY-AWARE NETWORK SLICING USING
DISTRIBUTED RESOURCE ALLOCATION AND REGIONAL

ORCHESTRATION

SAIF SAAD ALNUAIMI

Department of Cybersecurity Engineering, College of Information Engineering, Al-Nahrain University,

Jadriya, Baghdad, Iraq

E-mail: saif.alnuaimi@nahrainuniv.edu.iq

ABSTRACT

Network slicing has emerged as a fundamental enabler for delivering diverse services with heterogeneous
requirements in next-generation communication systems. However, most existing approaches focus on
either bandwidth or computational resource allocation in isolation, often relying on centralized architectures
that struggle with latency, scalability, and information privacy across distributed network components. This
paper addresses this gap by proposing a novel distributed network slicing architecture that jointly optimizes
bandwidth and compute resources. The core innovation is the introduction of a regional orchestrator (RO) a
new control plane entity positioned between base stations (BSs) and cloud nodes to coordinate localized
resource allocation while preserving system privacy and scalability. We develop a distributed resource
allocation algorithm based on the splitting model (dra-SM) to efficiently manage joint resource distribution
without centralized control. Simulation results show that our approach significantly reduces overall network
latency by approximately 15%—compared to single-resource slicing, while also achieving faster
convergence and service-specific latency guarantees. This work contributes a scalable, low-latency solution
for real-world deployment of joint network slicing across decentralized infrastructures.

Keywords: Data Slicing, Cloud, Network Slicing, Bandwidth Consideration, Resource Allocation.

1. INTRODUCTION

The general consensus is that 5G will involve
much more than just an improvement in throughput
and capacity, which are purely physical
performance measurements. A significant shift
away from the usual data-oriented design will be
made in favor of an architecture that is service-
oriented and more flexible [1]. A single set of
physical network resources may now be used to
provide a broad variety of services, each with its
own specific set of requirements thanks to the
Service-Based Architecture (SBA) that the 3GPP
has introduced [2]. The main idea is to integrate
software-defined networking (SDN) with network
functions virtualization (NFV) to virtualize network
components into network functions, each of which
is built of a functional building block that utilizes a
separate network resource [3]. A network slice is a
collection of network function sets may then be
used to instantiate each type of service. The core of
SBA has been viewed as network slicing, which can
adapt to a variety of service requirements and
application situations [4].

Cloud computing has lately been pushed as one
of the major elements of 5G by both industry and
standards organizations to enable new,
computationally intensive applications open up
fresh commercial opportunities and increase
income. Cloud computing is an approach of
offloading computationally intensive work that is
located than UEs are positioned closer to
massively-scale cloud data centers, which are often
situated in faraway locations. Computerized clouds
are made up of a lot of tiny computer servers, also
known as cloud nodes [5]. Cloud computing service
providers like Amazon and Microsoft can set up
cloud computing networks. Mobile network
operators (MNOs) can also deploy it into their
network infrastructure. Network slicing, which
makes use of both communication and computing
resources, has recently generated a lot of interest
[6]. Allowing each slice to be supported by both
resources may improve the overall UE experience.
Additionally, this can open the way for resource
balancing across multiple network parts and for the
creation of future services with demanding
computational and latency specifications [7].

 Journal of Theoretical and Applied Information Technology
31st July 2025. Vol.103. No.14

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5355

Motivated by the limitations of existing
approaches, this study proposes a novel distributed
framework designed to enable scalable and latency-
aware network slicing through joint coordination of
bandwidth and computational resources. Unlike
traditional solutions that rely on centralized control
and complete system visibility, our architecture
introduces a new control plane entity the Regional
Orchestrator (RO) to facilitate localized decision-
making without the need to exchange sensitive
information between base stations and cloud nodes.
The study develops a distributed optimization
algorithm based on the splitting model (dra-SM),
allowing for efficient coordination across the
system while preserving scalability and privacy.
Simulation results demonstrate that the proposed
method achieves approximately 15% improvement
in overall network latency compared to models that
manage only one type of resource. Additionally, the
algorithm converges more rapidly than several
conventional optimization methods, validating its
effectiveness for real-world, latency-sensitive
network scenarios. This work therefore contributes
to the field by addressing critical challenges in
distributed resource slicing, offering a practical and
robust solution applicable to future communication
systems such as 5G and 6G.

The capacity to distribute resources across
several network slices with different resources is
great but it also comes with many additional
difficulties. First, several service providers often
handle various resources. As a result, it is typically
difficult for them to exchange or share confidential
information, such as the accessibility of resources
and traffic patterns. Second, since the network
infrastructure for cloud computing and
communication may be dispersed over Wide scale,
unacceptably long coordination lag periods and
high communication overhead may occur from
centralized coordination and administration [8].
Last but not least, each UE has the capacity to
simultaneously request a range of services with a
range of features offered by a range of resources.
It's still unclear how to create the best algorithm for
rapidly and reliably allocating diverse resource
combinations to support many network slices [9].

This study analyzed distributed network slicing
for network systems that consists of comprises an
operational cloud computing network and a network
of base stations (BSs) delivering wireless
communication services and handling
computationally demanding tasks. For the support
of many network slices, we take into consideration
the combined resource allocation of BSs' bandwidth

and cloud nodes' computing power [10]. Our main
goal is to lessen the total latency that ends UEs
experience, which takes into account both queuing
delay at cloud nodes and communication delay in
wireless networks linking UEs and BSs. An
algorithm for distributing resources has been put
forth. The paper demonstrates how the suggested
method may ensure adequate performance for every
type of service it supports while reducing the
network's overall average latency. The significance
of this paper's contributions is outlined in the
following:

1) To allow distributed network slicing in a large
network, a new distributed framework based on
regional orchestrator (RO) technology is being
developed.

2) The use of a distributed optimization
algorithm based on the distributed resource
allocation approach is based on the splitting model
(dra-SM) has been proposed in order to distribute
coordinate the resource allocation of both
bandwidth of BSs and computational resources of
nodes without the need for the exchange of any
sensitive information between BSs and cloud nodes.
We demonstrate that the suggested method can
achieve global optimality at an O(1/t) pace.

3) Various real-world scenarios have been
offered for simulation and in-depth performance
analysis. According to our findings, joint slicing,
which makes use of both bandwidth and computing
resources, versus network slicing with a single
resource, lowers overall latency by around 15%.

Existing network slicing approaches often rely on
centralized architectures, single-resource allocation,
and full information sharing making them
unsuitable for distributed, large-scale, and privacy-
sensitive environments. This study fills that gap by
introducing a distributed architecture with regional
orchestrators and a dra-SM-based algorithm to
jointly allocate bandwidth and compute resources,
enabling low-latency, scalable, and privacy-
preserving network slicing.

2. RELATED WORKS

Data storage, processing, and other
services are supported by the cloud computing
paradigm, which offers a wide range of services to
its clients. In fact, cloud providers supply all the
resources required, allowing for pay-per-use
internet access to the services supplied. In view of
these facts, it would be essential to deploy the
suggested services automatically and optimally can
reduce expenses, raise QoS, or even boost service

 Journal of Theoretical and Applied Information Technology
31st July 2025. Vol.103. No.14

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5356

reuse. In reality, while creating composite services,
a carefully done mapping of previously optimizing
the new offers requires the use of current services
in a significant way [11].

The positioning of application components
and data is referred to as the SaaS positioning
Problem (SPP) in this context associated with them
in a group of computing and storage servers, as an
example of a service deployment issue. Numerous
placement options are created by the various
correlations of the resources that the servers have to
give. Therefore, the best placement strategy is one
that guarantees a given level of acceptable QoS and
other criteria [12].

The optimization of resource utilization is,
in fact, the next issue to be considered after
choosing from among the available servers.
Because the placement method has a direct impact
on that, it qualifies as a strategic combinatorial
issue [13]. To maintain SaaS performance and
needs fulfilment, restarting the SPP on the pre-
selected servers involves installing software and
data components. SaaS may be provided in a
composite format in order to satisfy these criteria.
Both processing and storage servers are used to
deliver three composite SaaSas. It should be noted
that the third composite SaaS can only be made up
of application components, which is how the
deployed SaaS may be constructed.

The main objective of the SaaS has been to
decrease the total execution time (TET) majority of
SPP work it has been seen when surveying the SPP
works. Some of these initiatives have just focused
on this goal, while others have taken into account
additional goals like cost reduction and load
balancing. Additionally, the limitations considered
or even the optimization aims might be used to
categorize previous works. In addition to these
traits, it is possible to categorize earlier SPP
techniques by application components or data
chunks) that make up a SaaS [14].

The findings and goals of the researchers
serve as the primary motivators for categorizing
SaaS placement techniques. Actually, the majority
of them have discussed the SPP from two
perspectives. While some studies have interpreted
software as a collection of application and data
components analogous to the well-known
component placement problem (CPP), as a group of
software components, has been the perspective of

others. The optimization goals are taken into
consideration in our categorisation. While previous
researchers have worked with provider-related
constraints the researchers' main goal was to
enhance the placement scheme by focusing on the
customer-related limitations (such as cost and total
execution time). These constraints included
resource usage, load balancing, and inter-task
communication [15][16].

Several prior studies have addressed
aspects of resource allocation and service
provisioning in cloud-enabled networks. Early
works have focused on centralized cloud
architectures and static resource provisioning,
primarily targeting either computational offloading
or bandwidth management. For example, SaaS
positioning problems (SPP) have been tackled by
optimizing application placement across distributed
servers [11–14], emphasizing performance metrics
like total execution time (TET), load balancing, and
cost minimization. However, these studies typically
neglect real-time service dynamics and the
integration of both communication and compute
resources.

In the domain of network slicing, many
approaches rely on centralized SDN controllers [6,
8], which limit scalability and introduce high
coordination delays—especially in geographically
distributed infrastructures. Furthermore, while SDN
and NFV technologies are central to 5G evolution,
existing solutions often assume full knowledge
sharing, an unrealistic assumption in multi-operator
or privacy-sensitive environments. Other studies
using heuristic or machine learning-based models
for cloud resource allocation [2, 4, 5] provide
improvements in energy efficiency and
provisioning policies, but they are generally limited
to single-layer resource management and lack
support for joint optimization across layers
communication plus compute. Moreover, security
and privacy concerns in resource sharing are often
overlooked.

The gap is further reinforced by the lack of
distributed frameworks capable of achieving low-
latency, joint resource slicing, and decentralized
optimization under limited information conditions.
These limitations form the foundation of the
problem addressed in this study.

This critique builds a logical path from the
current literature to your work’s problem statement,

 Journal of Theoretical and Applied Information Technology
31st July 2025. Vol.103. No.14

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5357

which is then addressed through your distributed
RO architecture and dra-SM model.

3. METHODOLOGY

3.1 System model

Fig 1 shows a network system with a
collection of S = 1 nodes, a collection of S ={1…S}
BSs, and a collection of F = {1…F} cloud nodes.
Each BS in a cellular network within its designated
service area offers services. Consider that each UE
may only request a total of N distinct services.
Assume that N = {1…N} represents the entirety of
all supported services. We assume that BSs may
communicate a specified amount of data for each
type of service, referred to as a task unit, which
cloud nodes may then handle. For instance, a
service that processes video or audio can make use
of several data units to process and send each video
or audio clip. Give each task unit of service type n a
data size of d_n. A fixed bandwidth designated as s
for all s∈S has been assigned to each BS, and each
cloud node is capable of handling a maximum of

µ_f task units per second for every f∈F.Assume
that k_sn ∼ P(λ_sn), where sn is the expected
number of task units received and λ_sn is the
Poisson distribution of the nth service task unit
arrival rate at BS s.

We take into account cooperative resource
allocation for various network slices in this article.
Using a technique called network slicing; Virtual
Network Functions (VNFs) are created by
virtualizing physical resources. Each VNF may be
further broken into smaller components and placed
in a shared software container in order to make the
network functionality easily released and reused by
numerous service instances. Slice units are the
smallest building block that may be utilized in
VNFs for network slices. There are several slice
units that can make up a network slice. Slice units
are separated from one another. Thus, the launch
and dynamic scaling of each network slice may be
done without disrupting other running services.

Figure 1: Network slicing

4. System Model

The goal of this study is to decrease

service response times for each kind of service,
which may result in queue delays at cloud nodes as
well as communication delays for task unit transfer
from user equipment to cloud nodes. Let's start by
thinking about the communication latency. It
should be noted that in many real-world networks,
UEs and BSs can link through wired or optical

fibre, which often gives a far greater data rate than
wireless connectivity. As a result, the paper use a
standard setup and don't take into account the
communication lag between BSs and cloud nodes.
According to a commonly used setup, the
communication latency for sending each unit of the
work with a certain bandwidth 0≤ b_sn<β_s
provided by BS s for service type n may be written
as:

 Journal of Theoretical and Applied Information Technology
31st July 2025. Vol.103. No.14

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5358

(1)

Where wsn is the required transmission
power to transmit the task units for service type n
from the UEs to BS s and hsn is the channel gain
between the BS and the corresponding UE for
service type n. The term "σsn" refers to the volume
of noise that is received at BS s. The pace at which
cloud nodes can process data and at which tasks
arrive can have an impact on the queueing latency
at the cloud node.

Figure 2: Distributed network slicing

Assume that is the maximum amount

of processing power that cloud nodes can devote to
handling the nth kind of service that BS provides

to the connected UEs. We presumptively
characterize the task units controlled by cloud
nodes as queuing under a regularly

 Journal of Theoretical and Applied Information Technology
31st July 2025. Vol.103. No.14

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5359

employed configuration. We may depict the
kind of service's queuing latency in the BSs'
coverage area as:

(2)

When (1) and (2) are combined, the total service

response time for the service type provided by
BS s may be shown as:

 (3)

3.3.1. Network slicing

As was already indicated, the following
two issues must be addressed in order to swiftly and
reliably allocate resources across networks of
computing and communication:

1) Since physical resources can be widely dispersed
across a wide area, unacceptably high latency and
pointless communication overhead may be
produced by a centralized resource management
and control system.

2) Different service providers may own the
infrastructure for communication networks and
cloud computing networks. As a result, neither of
these systems can exchange proprietary
information.

Figure 3: Service layers for network slicing

Adding other centralized SDN control
plane frameworks to a distributed environment
would not solve the aforementioned problems. In
reality, several published studies have noted that
SDN controllers have been created with a primary
emphasis on establishing and sustaining
connections across virtual mesh networks as well as
controlling the routing of data traffics. Even in a
mobile setting, it may be utilized to keep the
network connected and keep the services running.
To control the processing resources of cloud
computing networks, however, it cannot be used.
Additionally, OpenFlow is dependent on a central
SDN controller to manage network resources and
can only offer static paths to each SDN switch.

This paper proposed a distributed network
slicing architecture based on a novel control plane
entity, RO, positioned between the communication

network and cloud computing network, to enable
the fine-grained control of resources across both
network systems. The whole coverage area has
been divided into a number of smaller sub-regions
under this arrangement. A few close-by BSs and
cloud nodes make up each of these sub-regions, and
they may be quickly joined to one another through
local wire line connections. In order to administer a
set of VNFs made up of neighboring computing
and communication resource units, RO may be
installed in each sub-region. Only local VNFs
inside each sub-region can be controlled and
instantiated by a single RO for network slicing.
Every time a UE asks a service task from a BS, the
resource requests will be submitted by the BS to the
RO. The RO will then communicate with the BS
making the service request, neighbouring cloud
nodes, and other ROs to build the necessary

 Journal of Theoretical and Applied Information Technology
31st July 2025. Vol.103. No.14

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5360

network slices. Furthermore, the RO be in charge of
BSs and cloud node path reservations and service
traffic routing. If there are uneven traffic loads in
two or more adjacent sub-regions, two or more ROs
can cooperate and collaboratively alter their local
VNF production and distribution rates. Fig 3 shows
the illustration of our suggested architecture.

The network slicing architecture
developed by the 3GPP mandates that certain
resources be set aside and allocated for various
types of services that are provided to guarantee that
resources are always accessible whenever a service
request is made. The RO utilized in the 3GPP
framework is examined. Service type task units
at BSs, each RO must provide the number of
computing resources () at cloud nodes and the
amount of bandwidth () that will be available.
The paper has the following restrictions because the
requested service instances will be supported using
the resources that have been set aside throughout
this period:

 (4)

 (5)

This study's main focus is on resource
allocation and network slicing over a predefined
time period, where a group of local BSs' maximum
bandwidth and a set quantity of local cloud nodes'
processing power have been allotted for a group of
supported types of services. The network slicing
and dynamic resource allocation will be kept for
later research. We take into account the following
restrictions:

1) Bandwidth limitation: Limit the overall
bandwidth provided to each BS to . To put it
another way, BS is not permitted to allocate more
bandwidth overall than to all pending service
jobs. In general, the RO must set aside enough
resources even without being aware of the exact
number of task units that will be deployed in the
future. However, the empirical probability
distribution of the task arrival rate enables the RO
to forecast the possible number of task units.
Therefore, for the great majority of potential
activities, the RO can dependably reserve adequate
resources to support the performance-guaranteed
services. The probability that fewer Type n service
task units than a specified threshold arrived at BSs
amount is how we establish the confidence level

 denoted by the symbol

. For instance, if
, the RO wishes to hold back enough

resources to confidently satisfy the requests of
every UE. We can see that θ the task arrival rate

 Cumulative Distribution Function (CDF) is
identical to. This allows us to write

, where denotes
the inverse function. Then we may limit the amount
of bandwidth that BSs can provide a set of all
services that are supported kinds as follows.

(6)

The total amount of computational power
γ that may be distributed to all cloud nodes in a
subdivision is limited. The cumulative sum of
allowed computer resources for the services cannot
be higher than. The next computational resource
limitation is as follows.

(7)

A maximum tolerated latency, denoted as
, is also assumed for each supported kind of

service so that we have ,
. Open-ended and adaptable

architecture is what we advise. You might use it for
network slicing that makes use of several resources
spread out across a large geographic area. In this
article, network slicing design is considered to
maximize the RO. In order to dynamically
distribute computing and bandwidth resources, the
BSs and cloud nodes can work with the RO. In
order to improve the following issue, we focus on
creating a distributed technique.

(8)

 (9)

 (10)

 (11)

3.3.2. Optimized network slicing

As stated earlier, we must carefully choose
the resources made available to each network slice
if we want to reduce the total latency encountered
by end UEs. The problem requires, even though
this may result in unacceptable high latency and

 Journal of Theoretical and Applied Information Technology
31st July 2025. Vol.103. No.14

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5361

communication overhead, that the appropriate
amount of bandwidth and processing power for
each type of service be jointly determined using
global data such as the anticipated number of task
units that will arrive and the computational capacity
of each cloud node. We must build a distributed
optimization algorithm with the following design
objectives in order to address the aforementioned
problems as well as the combined network slicing
challenge:

1) Distributed Optimization with Coordination:
The proposed optimization strategy must be able to
segment the overall issue into several smaller
problems that can each be resolved by a BS using
its local knowledge. In order to get at the global
optimum resource allocation solution, the
resolution of numerous sub-problems can then be
coordinated through the RO.

2) Privacy protection: It's feasible that BSs and
cloud nodes won't want to exchange sensitive
information, such as bandwidths, with one another
anticipated arrival rates for task units, and
processing capacity.

3) Fast Convergence: Over time, changes might be
made to the BSs and cloud nodes connected to each
RO. Consequently, the algorithm must quickly
arrive at the overall optimal solution.

We provide distributed resource allocation
approach based on the splitting model
()-based distributed optimization
technique. is more suited to addressing
issues with inequality-constrained optimization in a
decentralized way as compared to conventional
convex optimization methods. Furthermore, it is
feasible to safeguard the sensitive data of BSs and
cloud nodes thanks to the decomposition-
coordination process of . Sadly, issues
with two blocks of variables are the limit for
problems that can be handled by standard

 procedures. In order to overcome
problem, with the aforementioned goals, we offer a
distributed method with partial
variable splitting known as distributed resource
allocation. This approach splits the Lagrangian dual
issue into sub-problems, where each might be
handled by a separate BS using its regional
competence. The BSs will deliver their preliminary
findings to the RO, who will compile them and
offer coordinated input.

To integrate the restrictions with the
objective function, let's first take the same approach
and introduce a collection of indicator

functions. Specifically, for constraints that can be
separated across different BSs, we define

 as the feasible set corresponding to BS where
 is the vector of bandwidth

allocated by BS for each type of services and
 is the vector of processing

power allocated for each type of services connected
to BS . If

, then
the indicator functions are as follows:

(12
)

We may also create an indicator function
for constraint that cannot be separated.

(13)

Where, is the half-space denoted by the
Eq. ,

. By incorporating the
previously mentioned indicator functions, IGs, and
IG, the original joint network slicing issue with a
set of inequality requirements may be changed into
the following form without inequality restrictions.

(14)

Where, the newly added auxiliary variable
and

. The augmented
Lagrangian is provided by:

(15
)

Where, the enhanced Lagrangian
parameter is ρ and the dual variable is . So, we
can demonstrate the resulting fact.

Theorem 1: The given augmented Lagrangian is
convex and somewhat separable among .

 Journal of Theoretical and Applied Information Technology
31st July 2025. Vol.103. No.14

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5362

Proof: Convex sets include the feasible set for
issue and it's containing set , as well as set

, half space , and their intersection.
Convexity is established instantly by this. In
addition, we demonstrate that second
derivative is always positive inside the feasible set
of problems indicating that the function is convex.
We can next demonstrate that is

convex by showing that summing maintains
convexity. The augmented Lagrangian is rewritten
in the following way to demonstrate that it is partly
separable:

(
1
6
)

We can see from Eq. (12) that for
may be partly

separated over . The proof comes to an end here.
The following is how we may transform issue into a
two-block form.

(1
7)

(1
8)

(1
9)

Where, is total iterations. We may break down
Eq. (13) into several smaller issues using the partly
separability of , which each BS may
address using its local expertise. The following sub-
problem is resolved by each BS in particular.

(20
)

The point is projected onto the half
space which is equal to saying:

(21)

 Here, stands for the projection onto
halfspace . In Approach 1, a thorough description
of our suggested approach is provided. The

combined network slicing issue has a global
optimum solution and the suggested algorithm
converges to it at a rate of .

Proof: We suggested algorithm's
convergence feature closely resembles that of the
conventional technique because the centralized

update and the distributed subproblems
presented are equivalent. Due to space restrictions,
we have omitted the specifics from this section.

Algorithm 1:

Initialize: Every BS with initial variable and
RO selects variables

Choose maximal iterations ;

While do

 Every BS performs simultaneously do:

 Update and perform RO;

 Allocate bandwidth for all arrived task based on

 After are attained and RO do;

 Revise variable

 Update successive variable ;

 If stopping criteria fulfils

 Break;

 End if

 Transfer sub-vectors and to BS;

3.3.3. Genetic Algorithm

Since the 1980s, a family of evolutionary
hill-climbing algorithms known as genetic
algorithms (GAs) have been widely utilized on a
range of search and optimization problems in the
fields of engineering and operations research. It
has been demonstrated that they are effective in
solving several challenging issues in these
situations, large state spaces, a lack of state
knowledge, and non-stationary environment. GA is
inextricably coupled to a certain encoder, which

 Journal of Theoretical and Applied Information Technology
31st July 2025. Vol.103. No.14

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5363

converts each viable tactic into a unique binary
sequence (code) of a specific length. A haphazard
collection of codebook sequences, or what is
known as the initial population, is made at the
initialization stage. Each potential approach is
assessed to determine its fitness, or the importance
of the desired target function. New populations are
then repeatedly created based on the preceding
population's fitness ratings. Every iteration in a
typical GA comprises of the following three phases
in order:

Reproduction: Depending on how well it performs
at this stage, each unique approach from the
previous population gets replicated into a new set.
The repetition rate of the duplicated set's copies
varies in direct proportion to the origin's fitness
value in the preceding population. It is possible for
the better candidates to expand through
reproduction while the worst underperformers are
eliminated since the size of the reproduced set is the
same as that of the previous population.

Crossover: All sequences in the replicated set are
matched at random in this stage. A random
subsequence swapping opportunity exists between
each pair. This results in the creation of novel
sequences at random, a situation where each "child"
has the opportunity to mix and pick up advanced
"genes" from its two "parents." Faster convergence
to the optimum and higher likelihood of local
convergence result from a higher possibility of
swap (crossover rate).

Mutation: Through the process of mutation, each
candidate sequence has the potential to have one or
more random components reversed which promotes
exploring the codebook. A higher incidence of
mutation or a higher number of mutated bits
reduces the likelihood of local convergence while
simultaneously making the convergence meander
more, increasing the likelihood of wandering from
the world's best.

GAs provides model-free advantages and
may be used online, just as the Q-Learning method.
However, unlike the majority of reinforcement
learning systems, GAs, like Q-Learning, put less
emphasis on the reward value of each individual
action and more emphasis on various overall
strategy "fitness" values that have been quantified.
Due to the fact that in some applications it might be
challenging to choose the fitness function
effectively, this is occasionally seen as a
disadvantage of GAs. Another typical criticism of
GAs is that it may be difficult to build the strategy
encoder, particularly in situations where

continuous-valued decisions must be taken. None
of these flaws, however, have any relevance in the
context of the present study because: 1) Fitness
functions are available for end business KPIs such
is the average network utility over the long period
indicated. The NO only makes binary decisions in a
finite state space, resulting in the inherent binary
encoding of every strategy.

3.3.4. GA Slicing Techniques

Only if the network operators (NO) active
slice set at the moment falls inside the area of
freedom, can the NO make a free binary decision as
was previously explained. In every other scenario,
the NO must reject each incoming request for the
formation of a new slice. We calculated the limited
enumerable set known as the NO's area of
discretion as the initial stage in encoding slicing
algorithms. To represent each slicing strategy by a
unique -bit-long binary sequence and enable
the enumeration of all possible slicing strategies in
this codebook, we assigned the integer range

. This mapping is displayed.
Using the aforementioned code, we developed a
cutting-edge genetic algorithm-based slicing
approach optimizer. The following describes how
this optimizer works in an online manner.

a) Initialization

A starting population of possible
tactics is present in the pre-generated codebook and
is randomly picked by the NO to be kept in the
background for "virtual" operation. In terms of
actual functioning, the NO employs a randomly

generated beginning strategy, .

b) Fitness Evaluation

At the start of each evolution term, the NO
records its active slice set and creates an evolution
term that is greater than one (normalized to
one operation period). As the network is running,
the NO responds to each incoming tenant request in
accordance with the slicing strategy it is presently
using, while also making a "virtual" choice for each
person in the background in accordance with every
potential plan in the available population. The NO
keeps track of the simulated utility for each and
every suggested approach during each operations
period. Every strategy's fitness in the current
population is assessed at the conclusion of the

 evolution term as its produced or simulated
average utility across the operations periods:

 Journal of Theoretical and Applied Information Technology
31st July 2025. Vol.103. No.14

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5364

(22
)

c) Evolution

The candidate in with the highest fitness is
initially chosen to update the strategy for use in the
following evolution term:

(23)

The normalized fitness values, a

reproduction of are then produced.

in is an arbitrary copy number.

(24)

Where, is a low value to reduce
inaccuracy in the unlikely event where

. The components in are then
shuffled and coupled, with a chance for the
crossover operation to be performed on each pair.
After the crossover, each potential tactic in the new
population is adopted through a certain number of
rounds of mutation, during which time there is a
distinct possibility , that candidate's lone random
bit strategy will be inverted. Using the resulting set
of strategies, for virtual functioning in the
following phase of progression, the population

 is updated.

1. Numerical results and discussion

We built up a network system in Dublin
with 285 BSs and 285 cloud nodes that can process
three different types of services—text, audio, and
video—are, to assess the efficacy of our suggested
network slicing design. We simulate many
scenarios to show the performance of our proposed
distributed network slicing architecture three sites,
ranging from urban cores to suburban areas, as
shown in Fig 3. It is assumed that each BS has a
30MHz bandwidth set aside for it and that nodes in
the cloud can only handle 180 task units per
second. We assume that the processing and
bandwidth resources reserved by cloud nodes and
BSs in the same area are equivalent. Slices of
computing resources and bandwidth are two

different network slicing situations that we compare
respectively—each of which only makes use of one
kind of resource with the combined slicing
incorporating both the capacity of cloud nodes and
the bandwidth of BSs.

First, we assess how well Algorithm 1
performs in terms of convergence. A comparison
between the interior-point approach and the first
algorithm we propose () for various
iteration counts is shown. Applications of the
interior-point method in communication network
systems are many. We can see that within the first
few rounds, our suggested the first algorithm can
approach the lowest latency with high precision.
Compared to the interior-point approach, it can
provide substantially quicker convergence
performance. In all three of these types of places,
we can see that the joint slicing architecture we've
suggested outperforms existing network slicing
architectures, demonstrating the broad geographical
applicability of our design. Since the features of the
three designs are the same across all areas, we only
go into depth about the area 1. When each BS has a
variable amount of bandwidth available, we fix the
processing power allotted to each cloud node in Fig
6 together with the value in order to assess the
service response time.

We can see that when the complete
bandwidth is allocated, the service response time
gets faster. Furthermore, we can see that bandwidth
slicing works better when the bandwidth of BSs is
limited, computational resource slicing is preferable
to that. The slicing of computing resources' service
response time, however, tends to reduce
considerably more quickly than that of the
bandwidth slicing when the bandwidth of each BS
grows. This is so because we fixed the computing
resource in our simulation. When each BS has a
restricted bandwidth, as in this situation,
communication delay predominates over total
latency. Because of this, adopting bandwidth
slicing to reduce communication latency may be
more effective than boosting cloud nodes'
computational power to reduce the time it takes for
all services to react. Overall latency will be
dominated by the queuing delay after each BS has
enough capacity. The slicing of computing
resources will be more helpful in this situation to
speed up the service response time.

Each cloud node's assigned processing
power was compared in three network slicing
scenarios for the analysis of service response times,
in Fig 6, We establish a fixed amount of bandwidth
for each BS and value. We can see that when

 Journal of Theoretical and Applied Information Technology
31st July 2025. Vol.103. No.14

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5365

processing power is set aside for each cloud node,
the service response time gets faster. Similar to this,
we see that bandwidth slicing performs worse than
computational resource slicing when the computing
resource of the cloud nodes is constrained.
However, once each cloud node's computational
capacity is reached, bandwidth slicing begins to
slow down more quickly than the slicing of
computing capacity. This is so that Fig 7 bandwidth
will always be fixed. When a cloud node's
processing capacity is constrained, the overall
latency is dominated by the holding period. As each
cloud node's processing power rises,
communication latency starts to overtake other
delays in terms of the overall length of time.

For the purpose of examining the service
response time at various values of θ, we set the
processing power and bandwidth allotted for each
cloud node and BS. As we can see, the service
response time gets θ faster as the business expands.
this is because as it rises θ, there are more task units
overall that BSs must convey. Due to the longer
communication lag caused by this, the service
response time will be longer. Furthermore, we see
that θ the bandwidth slicing service response time
increases much more gradually than the
computational resource slicing the lengthening of
service response times. This is due to we modify
the processing capacity and bandwidth allowed for
each BS and cloud node, respectively increases the
number of task units for each service from θ each
BS in this case. When little, each work unit is has
access to enough bandwidth, and the queuing delay
predominates in terms of total latency. The
bandwidth allotted to each work unit is constrained
as increases θ, and communication delay will begin
to predominate the total latency.

4.1. Analysis with GA

An NO with a one-dimensional
normalized resource pool was taken into
consideration in order to make a concise and
persuasive presentation with minimal computing
complexity:

 (25)

It accepts as two
separate slices. As a result, the resource cost vector
is also one-dimensional and set to

 for each slice type cn. Then,
as shown in Tab 1, it is feasible to obtain a tiny
decision-making space with a size of 12 and a

tiny resource-planning space with a size of .
According to this specification, there are

 possible slicing techniques in total.
We assumed that the two slice types' periodical
utilities were equal to two and one, respectively,
indicating that slice type 1 has a utility-efficient
twice as high as slice type 2. We also established

 utility generation operations periods as the
length of an evolution term. We hypothesized that
requests for slice production came in a Poisson
manner where is the number of requests that
arrive over a certain operations time for each slice
type

(2
6)

We believed that each slice of type in the
interim was had an exponentially
distributed random lifespan (normalized to one
operations period):

(2
7)

Three possibilities for services with
different parameter settings were
developed for our simulations, as shown in Tab 1.

Table 1 Resource feasibility

 Element Element

[0,0], [0,1], [0,2], [0,3],
[1,0]

[1,1], [1,2], [2,0], [2,1],
[3,0]

[0,0,1], [0,0,2], [0,1,1],
[0,1,2]

[0,2,1], [0,2,2], [1,0,1],
[1,0,2]

[1,1,1], [1,1,2], [2,0,1],
[2,0,2]

Table 2 Model parameters

Scenario

1 0.6 2.1 2 11

2 0.4 1 3 4

3 1.1 0 3 6

4.2. Efficiency Analysis

 Journal of Theoretical and Applied Information Technology
31st July 2025. Vol.103. No.14

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5366

We created two genetic slicing strategy
optimizers in simulation, one with a population size
of 50 and the other with 10 viable strategies in each
generation to show the efficacy of our suggested
method. Starting with a resource pool that was
completely idle and a random population of
potential tactics, each optimizer completed 20
generations of evolution. To achieve a speedy
convergence, both genetic optimizers were
programmed with a complete a round of mutations
with a rate of mutations of α= 1 and a crossover
rate of γ= 0.1 and a rate of β= 1. For the Monte-
Carlo test, we ran this simulation 500 times while
monitoring the average network utility over a long
period as specified in Eq. (27). By running the
identical Monte-Carlo test 500 times in complete
search, the global optimum out of all 4096 viable
methods was found as a benchmark. Additionally,
we evaluated three "naive" reference techniques to
serve as benchmarks for performance comparison:

• Greedy: accepting every request that comes in,
provided that the resource pool can accommodate
it.

• Conservative: It makes logical to accept all
requests for type 2 slices but refuse all requests for
type 1 slices.

• Opportunistic: accepting all type 1 slice requests
but refusing all type 2 slice requests for two pieces.
The results are shown in Fig 3. It is evident that
both genetic optimizers began with low utility
levels at first, but shortly (within 4 generations)
converged to effective cutting techniques with
competitive results.

The genetic optimizers converged to a
local maximum in the simulated progress, falling
short of the global utility efficiency maximum. .
Even so, both genetic optimizers beat the three
static naïve reference techniques starting with the
after considering 30 or 150 out of the 4096 options,
or after the fourth generation of evolution, with
long-term average network utilities above 90% in
relation to the global optimum. Additionally, it can
be seen that the two optimizers' convergence is
boosted by an increase in population size by
contrasting them with one another.

 Journal of Theoretical and Applied Information Technology
31st July 2025. Vol.103. No.14

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5367

Figure 4: GA process

4.3. Population

The fact that GA allows for population
evolution in each iteration, in addition to the best
candidate, is a key component. The performance
distribution of the 50 methods used by the genetic
optimizer across numerous generations is depicted
in Fig 4. It is possible to see considerable
progression toward a set of general "good"
strategies. This phenomenon highlights the ability
of our genetic optimizer, when used in conjunction
with other machine learning techniques, to produce
training sets for both updating and initializing.

GAs is well renowned for being resistant
to non-stationary conditions. When discussing the
optimization of a slicing method, this has to do with
how resource requests and slice terminations
behave in a statistically time-varying manner. To
assess how well our genetic slicing strategy
optimizer performed in these conditions, we ran a
simulation across 60 generations of evolution, or

360 operation periods. For the first 20 generations
of the strategy set, the scenario was set to 1,
creating a global optimum approach that is
identical.

The scenario was changed to #2 for
generations 21 to 40 and again to #3 for generations
41 to 60. A genetic optimizer was employed in this
instance, using parameters

 and a population size of
50. Comparisons were made between its
performance and the three naive reference strategies
mentioned previously as well as the strategy used in
scenario 1 that is global optimum. In Fig 4, the
results and conclusions of 500 Monte-Carlo tests
are shown. The genetic optimizer was able to
respond swiftly to environmental changes and, as a
result, maintained its high level of performance.
The scenario-specified optimum, in contrast,
performed poorly dynamically when the
environment changed. Similarly, it became

 Journal of Theoretical and Applied Information Technology
31st July 2025. Vol.103. No.14

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5368

discovered that the environment had a significant
impact on how well all static reference schemes
performed.

Our genetic slicing technique optimizer
was put to the test by being placed in a more
complicated environment with slice scales that
were substantially lower . In
accordance with this standard, the NO has two
spaces: a place for unrestricted choice D, 1122
square feet; and a space for resource viability S,
595 square feet. This results in a staggering total
of 1122 for the number of its conceivable slicing
techniques. The utility efficiency scales were also
adjusted to and the
service scenario parameters were set
to . Then,
using populations of 10 and 50, we tried two
genetic optimizers was
the configuration for both optimizers. Once more,
we employed the benchmark reference approaches
"Greedy", "Conservative" and "Opportunistic" no
world-wide ideal was considered since it would be
computationally too expensive for those with poor

local maximums to fully search for the optimum
high. Both optimizers were able to fast converge
within 10 generations, as shown in Fig 5, but only
to get far worse local maxima than all reference
techniques.

A random strategy's usual separation from
the global optimum, the size of the strategy space,
the number of local maxima, and all grow as a
function of strategy space size, which is the origin
of these phenomena. As a result, there is an
increased chance of local convergence.
Furthermore, since the GA begins with a random
population, it is quite easy for it to converge to a
low level. To increase the beginning population and
to lessen early convergences at regional maximum,
one or more reference techniques can be included in
order to help performance deviate from the
benchmark level, the original population therefore
achieving the first goal. A greater mutation rate or a
lower crossover rate may be beneficial for the
second.

Figure 5: Generation vs. average network utility

 Journal of Theoretical and Applied Information Technology
31st July 2025. Vol.103. No.14

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5369

Figure 6: Network utility vs. entire population

Complexity: To prevent the random degeneration
that may result from mutations, it is also a typical
GA approach to protect one or more "elite"
individuals from crossover and mutation operations
in each generation and then immediately introduce
them into the following generation. Since both
optimizers' starting random populations explicitly
include, the reference strategy "Greedy" we
conducted the aforementioned simulation once

more. Both optimizers were set up to protect the
greatest member of each demographic generation
and to have Fig 5 to
Fig 7 presents the outcomes. It is evident that the
genetic optimizers either met or, at the very least,
matched the benchmark using these little
improvements where both optimizers attained
convergence after six generations.

 Journal of Theoretical and Applied Information Technology
31st July 2025. Vol.103. No.14

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5370

Figure 7: Generation vs. average network utility with reduced complexity

For the time being, we can state that any
specific static strategy will be defeated by our
genetic optimizer, despite the fact that the time
needed very slightly increases with the size of the
problem space for convergence. Furthermore, it's
crucial to keep in mind population growth will
support convergence. Since our suggested strategy

is easily parallelized for the temporal complexity of
our technique is unaffected by the examination of
many candidate strategies within the same
generation, nor is it affected by population
upscaling. As a result, it is incredibly scalable and
suitable for challenging practical applications.

 Journal of Theoretical and Applied Information Technology
31st July 2025. Vol.103. No.14

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5371

Figure 8: Service response time comparison

Figure 9: Bandwidth vs. Service response time (s)

 Journal of Theoretical and Applied Information Technology
31st July 2025. Vol.103. No.14

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5372

Figure 10: PR of every BS

Figure 11: Time evaluation of every service response time (s)

To boost long-term network usefulness,
we have introduced in this chapter a unique online
genetic slicing approach optimizer. The suggested
method has been put to the test using numerical
simulations, and the results show a satisfying
approximation to the global optimum, quick
convergence, prompt adaptability to environmental
changes, and high scalability (See Fig 8 to Fig 11).
Furthermore, it doesn't require any prior
understanding of the traffic or utility model.

This study has certain drawbacks, even if
the suggested distributed architecture and dra-SM-

based allocation model showed good performance
in lowering latency and guaranteeing effective
resource use. First, idealized assumptions like
static bandwidth and consistent processing power
across nodes are assumed in the simulation
environment, which might not accurately represent
the variability observed in real-world deployments.
Second, the study ignores dynamic or real-time
adjustments in favor of concentrating on a set time
range for resource allocation. Third, security
features like hostile node behavior or data leakage
were overlooked even though privacy-preserving
architecture was given top priority. To further

 Journal of Theoretical and Applied Information Technology
31st July 2025. Vol.103. No.14

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5373

improve the usefulness and resilience of the
suggested system, further research should include
adaptive, real-time optimization, more diverse node
behavior, and more solid security frameworks.

5. DIFFERENCES FROM PRIOR WORK
AND STUDY ACHIEVEMENTS

Unlike prior research, which
predominantly focuses on centralized architectures
and either communication or computational
resource slicing in isolation, this study introduces a
novel distributed network slicing framework that
enables joint optimization of both bandwidth and
compute resources. Previous approaches often
assume full global knowledge and centralized
control, leading to scalability issues, increased
latency, and privacy concerns especially in wide-
area, multi-provider environments.

In contrast, the paper proposed

architecture leverages Regional Orchestrators
(ROs) as intermediate control entities, enabling
localized resource allocation without the need for
sharing sensitive information between base stations
and cloud nodes. Additionally, the use of a
splitting-model-based optimization algorithm (dra-
SM) allows for distributed resource coordination
with provable convergence and scalability.

Through extensive simulation across

diverse urban scenarios, the study demonstrates that
the joint slicing method achieves approximately
15% reduction in average service latency compared
to single-resource slicing. It also converges
significantly faster than traditional optimization
methods, making it practical for real-time and
large-scale deployments. These achievements
directly address the limitations identified in the
literature and fulfill the need for a distributed,
privacy-preserving, and latency-aware network
slicing solution in future 5G and 6G networks.

6. PROBLEMS AND OPEN RESEARCH

ISSUES

Despite the promising results achieved by
this study, several challenges and open research
issues remain that warrant further investigation.
First, the current work assumes a static allocation
window and does not incorporate dynamic or real-
time resource adjustment mechanisms. In practical
environments, network conditions and service
demands are highly dynamic, necessitating the
development of adaptive resource slicing strategies
that can respond in real time to traffic fluctuations
and user mobility.

Second, while the use of Regional
Orchestrators (ROs) enables decentralized control
and privacy-preserving coordination, the study does
not fully explore the security implications of
distributed orchestration. Future research must
investigate the resilience of ROs against malicious
nodes, data tampering, and denial-of-service
attacks, particularly in multi-operator scenarios.

Third, the simulation environment was
built on several simplifying assumptions regarding
bandwidth uniformity, node capability, and service
homogeneity. Real-world deployments are
significantly more complex, with heterogeneous
infrastructures and varying Quality of Service
(QoS) requirements. Addressing these complexities
will require multi-objective optimization models
that can balance latency, throughput, energy
consumption, and fairness.

Fourth, while this study focused on
minimizing average latency, other performance
metrics such as jitter, reliability, and energy
efficiency remain underexplored in the context of
joint slicing. Integrating these dimensions into the
optimization framework will further improve its
applicability to ultra-reliable low-latency
communications (URLLC) and other 6G use cases.

Lastly, although the dra-SM algorithm
showed faster convergence, there remains scope to
enhance scalability and reduce computational
overhead, especially in scenarios involving
thousands of nodes. Research into lightweight
distributed algorithms and edge-assisted
intelligence may help scale such systems efficiently
in large, complex environments.

7. CONCLUSION

For a system that combines a network of
BSs that offers wireless communication services
with a cloud computing network that manages
computationally taxing tasks, this research goal is
to investigate distributed network slicing. The core
of the cutting-edge distributed system we propose is
the regional orchestrator (RO), a unique control
plane entity that may be positioned coordination
and resource management of bandwidth and
computational resources between BSs and nodes.
To distribute coordinate the deployment of BS
bandwidth and cloud node computing resources,

 Journal of Theoretical and Applied Information Technology
31st July 2025. Vol.103. No.14

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5374

additionally, a method for allocating dispersed
resources has been made available. According to
the outcomes of our simulations, the suggested
method can rapidly approach the global optimal
solution. Additionally, the performance of the
network's latency may be greatly increased by using
the suggested distributed network slicing design in
this paper.

Beyond proposing a novel technical
architecture, this study provides valuable insights
for practitioners and researchers working on next-
generation network systems. Readers gain an
understanding of how joint coordination of
bandwidth and compute resources—facilitated by a
distributed architecture with regional orchestrators
can substantially reduce end-to-end latency in
cloud-supported communication networks. The dra-
SM-based distributed optimization strategy shows
that efficient resource slicing can be achieved
without compromising privacy or requiring full
global knowledge, which is critical in real-world,
large-scale deployments. By demonstrating a ~15%
latency reduction and faster convergence compared
to traditional methods, this research not only
addresses theoretical challenges in decentralized
optimization, but also offers a practical, scalable
framework applicable to 5G and future 6G
networks. Ultimately, the reader walks away with a
deeper comprehension of how fine-grained,
regionally managed slicing techniques can enhance
service delivery and QoS in highly dynamic
network environments.

REFERENCES

[1] Jyoti, A., Shrimali, M.: Dynamic
provisioning of resources based on load
balancing and service broker policy in
cloud computing. Cluster Comput., 1–19
(2019)

[2] Lin, J., Dai, Y. Chen, X, Wu, Y.: Resource
allocation of cloud application through
machine learning: a case study. In:
Proceedings of the International Conference
on Green Informatics ICGI IEEE, pp. 263–
268, August 2017

[3] Alsadie, D., Tari, Z., Alzahrani, E.J.,
Zomaya, A.Y.: Dynamic resource allocation
for an energy-efficient VM architecture for
cloud computing. In: Proceedings of the
Australasian Computer Science Week
Multiconference on ACSW 2018 ACM,
Brisband, Queensland, Australia, pp. 1–8,
January 2018

[4] Madni, S.H.H., Latiff, M.S.A., Coulibaly,
Y., Abdulhamid, S.M.: September, Recent

advancements in resource allocation
techniques for cloud computing
environment: a systematic review. Cluster
Comput. 3(20), 2489–2533 (2017)

[5] Pradhan, P., Behera, P.K., Ray, B.N.B.:
Modified Round Robin Algorithm for
Resource Allocation in Cloud Computing.
In: Proceedings of the International
Conference on Computational Modeling and
Security: Procedia Computer Science, no.
85, pp. 878–890 (2016)

[6] Kotsiantis, S.B., Zaharakis, I., Pintelas, P.:
Supervised machine learning: a review of
classification techniques. Emerging Artif.
Intell. Appl. Comput. Eng. 160, 3–24 (2007)

[7] Shao, Z., Jin, X., Jiang, W., Chen, M.,
Chiang, M.: Intra-data-center traffic
engineering with ensemble routing. In:
INFOCOM, 2013 Proceedings IEEE, pp.
2148–2156. IEEE (2013)

[8] Vik, K.-H., Halvorsen, P., Griwodz, C.:
Multicast tree diameter for dynamic
distributed interactive applications. In:
INFOCOM 2008. The 27th Conference on
Computer Communications IEEE. IEEE
(2008)

[9] Webb, S.D., Soh, S., Lau, W.: Enhanced
mirrored servers for network games. In:
Proceedings of the 6th ACM SIGCOMM
Workshop on Network and System Support
for Games, pp. 117–122. ACM (2007)

[10] Guo, J., Liu, F., Zeng, D., Lui, J.C., Jin, H.:
A cooperative game based allocation for
sharing data center networks. In:
INFOCOM, 2013 Proceedings IEEE, pp.
2139–2147. IEEE (2013)

[11] Xu, K., Zhang, Y., Shi, X., Wang, H., Wang,
Y., Shen, M.: Online combinatorial double
auction for mobile cloud computing markets.
In: Performance Computing and
Communications Conference (IPCCC), 2014
IEEE International, pp. 1–8. IEEE (2014)

[12] Seung, Y., Lam, T., Li, L.E., Woo, T.:
Cloudflex: seamless scaling of enterprise
applications into the cloud. In: INFOCOM,
2011 Proceedings IEEE, pp. 211–215. IEEE
(2011)

[13] Zaki, Y., Chen, J., Potsch, T., Ahmad, T.,
Subramanian, L.: Dissecting web latency in
ghana. In: Proceedings of the 2014
Conference on Internet Measurement
Conference, pp. 241–248. ACM (2014)

[14] Wang, H., Shea, R., Ma, X., Wang, F., Liu,
J.: On design and performance of cloud-
based distributed interactive applications. In:

 Journal of Theoretical and Applied Information Technology
31st July 2025. Vol.103. No.14

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5375

2014 IEEE 22nd International Conference on
Network Protocols (ICNP), pp. 37–46. IEEE
(2014)

[15] Pujol, E., Richter, P., Chandrasekaran, B.,
Smaragdakis, G., Feldmann, A., Maggs,
B.M., Ng, K.-C.: Back-office web traffic on
the Internet. In: Proceedings of the 2014
Conference on Internet Measurement
Conference, pp. 257–270. ACM (2014)

[16] Alnuaimi, S. S., Sundararajan, E. A. & Abd,
A. H. 2022. Data distribution optimization
over multi-cloud storage. Journal of
Theoretical and Applied Information
Technology 100(5).(2022)

