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ABSTRACT 

The rapid proliferation of Internet of Things (IoT) devices has introduced significant challenges in network 
security, device management, and traffic monitoring. Accurate and automated IoT device iden- tification is 
critical for ensuring secure communication, anomaly detection, and enforcing access control policies. 
Traditional identification methods, relying on static rule-based approaches or shallow learning techniques, 
struggle with the increasing diversity and evolving communication patterns of IoT devices. In this study, 
we propose a novel deep learning-driven framework that leverages full packet data analysis to achieve 
robust and scalable IoT device identification. The framework integrates Convolutional Neu- ral Networks 
(CNNs) for spatial feature extraction and Long Short-Term Memory (LSTM) networks for temporal pattern 
learning, enabling it to effectively capture packet header structures, payload distributions, and sequential 
dependencies in IoT traffic. Additionally, dropout regularization is employed to enhance generalization 
and mitigate overfitting, ensuring resilience across heterogeneous IoT environments. The proposed method 
is evaluated using benchmark IoT datasets, including UNSW IoT-23 and NB-IoT, which demonstrate 
superior classification accuracy, scalability, and adaptability compared to existing approaches. Experimental 
results highlight the effectiveness of hybrid deep learning models in IoT security, achieving high precision 
and low false positive rates in device identification. This research underscores the potential of full packet 
data-driven deep learning approaches to fortify IoT network defenses and advance next- generation 
automated cybersecurity solutions. 
Keywords: Deep Learning,Full Packet Data Analysis,Convolutional Neural Networks (CNN),Long Short 

Term Memory (LSTM),Anomaly Detection 
 

1 INTRODUCTION 

 
The Internet of Things has revolutionized many in- 
dustries by connecting billions of devices that 
com- municate seamlessly. Smart homes, 
healthcare, in- dustrial automation, etc. now we all 
have IoT devices that are integral to modern 
systems. Although this proliferation of IoT 
devices is occurring quickly, the security of these 
networks is facing unprecedented challenges 
because IoT devices are not authorized and 
malicious actors are taking advantage of vulner- 
abilities in IoT ecosystems. A crucial first step in 
the secure and efficient management of IoT 
networks is, therefore, accurate identification of 
IoT devices. Cur- rent device identification 
techniques, e.g., traditional static rule approaches or 
shallow learning models, are challenged by the 
increasing variety of IoT devices with time-
varying communication patterns [1][2]. 
 
2 LITERATURE REVIEW 

With recent advances in deep learning, some 

promising solutions are emerging to mitigate the 
dif- ficulties associated with IoT device 
identification. Unlike most conventional methods, 
deep learning models can learn in a automatic 
manner intricate pat- terns and relationships from 
raw data, free from the need to acquire features by 
hand. Of these, mod- els that are hybrids between 
convolutional neural net- works (CNNs) and long-
short-term memory (LSTM) networks have been 
distinguished as having a strong performance in 
tasks that benefit from spatial and temporal 
learning features [3]. CNNs are good at detecting 
spatial patterns in data; LSTMs are good at 
modeling sequential dependencies; this works well 
for IoT traffic data, which has spatial and temporal 
aspects [4][5]. 
In this study, we seek to overcome the limitations of 
existing methods by using a deep learning-driven 
framework for IoT device identification that 
utilizes complete packet data. Unlike earlier efforts 
of merely statistical features or packet headers 
used to repre- sent network traffic, full packet data 
provides a more complete representation of 
network traffic. The pro- posed method captures 
HEADER and PAYLOAD in- formation to 
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differentiate between devices with sim- ilar 
communication patterns [6][7]. In addition, with 
the help of dropout, which is a regularization tech- 
nique, the generalization ability of the model is 
also 

improved, and it can avoid overfitting, thus 
achieving good performance for different data sets 
[8]. 
To validate the effectiveness of the proposed ap- 
proach, experiments were carried out on two 
bench- mark datasets: the UNSW IoT dataset [9] 
and the NB-IoT dataset [10]. These datasets cover 

various IoT devices and communication patterns, 
resulting in a strong evaluation framework. On the 
one hand, the results show that the CNN+LSTM 
network architec- ture paired with complete packet 
data and dropout be- comes a low False Positive 
Rate (FPR) and achieves high accuracy across 
various configurations. This shows the capability 
of leveraging deep learning tech- niques for IoT 
security to deal with key problems in the large-
scale identification of devices for practical 
purposes. 

 
Year Publication Methodology Key Findings Datasets 

Used 
Limitations 

2019 Liu et al. 
(2019) 

Introduced  a  hy- 
brid CNN-LSTM 
model for IoT 
device identifica- 
tion,   combining 
CNN’s spatial 
feature extraction 
and LSTM’s tem- 
poral   modeling 
capabilities. 

Demonstrated high accu- 
racy in identifying IoT 
devices by leveraging 
both spatial and temporal 
features of traffic. 

NSL-KDD; 
UNSW- 
NB15 

- Struggles with new 
or unseen devices. 
- Limited scalabil- 
ity in large IoT net- 
works. 

2020 Sharma et 
al. (2020) 

Proposed  a  deep 
learning model that 
uses full packet 
data for device 
identification, im- 
proving accuracy by 
utilizing both header 
and payload 
information. 

Improved accuracy by 
analyzing both header and 
payload; effective in 
identifying devices with 
complex communication 
patterns. 

UNSW IoT 
dataset 

- Computationally 
expensive. 
- May not generalize 
well in environments 
with noise. 

2020 Kwon et 
al. (2020) 

Used a CNN-based 
deep learning 
model to classify 
IoT devices based on 
raw packet data. 

Raw packet data pro- 
vided better classifi- 
cation accuracy than 
header-only data, 
improving device identi- 
fication. 

CICIDS 
2017; 
UNSW- 
NB15 

- Lack  of  robust- 
ness in adversarial or 
noisy network envi- 
ronments. 
- Inconsistent perfor- 
mance across differ- 
ent types of IoT de- 
vices. 
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Year Publication Methodology Key Findings Datasets 
Used 

Limitations 

2021 Wang et 
al. (2021) 

Incorporated   an 
attention mech- 
anism into deep 
learning models for 
focusing on critical 
features in IoT 
traffic. 

The  attention  mecha- 
nism allowed the model 
to better focus on impor- 
tant patterns, improving 
classification accuracy. 

IoT-23; CI- 
CIDS 2017 

- Attention mecha- 
nisms increase model 
complexity. 
- May require signifi- 
cant training data. 

2022 Zhao et al. 
(2022) 

Proposed an 
end-to-end re- 
inforcement 
learning-based 
model that dynam- 
ically  adjusts  its 
parameters for de- 
vice identification 
based on network 
conditions. 

The reinforcement learn- 
ing approach helped the 
model adapt to varying 
network conditions and 
improve robustness. 

IoT-23; CI- 
CIDS 2018 

- High training over- 
head. 
- Potential for over- 
fitting in highly vari- 
able networks. 

2023 Gupta et 
al. (2023) 

Developed a multi- 
modal deep learn- 
ing model, com- 
bining network traf- 
fic and device fin- 
gerprinting for im- 
proved accuracy. 

Combining multiple data 
sources reduced false 
positives and improved 
identification accuracy. 

UNSW 
IoT; CI- 
CIDS 
2017 

- Struggles with de- 
vices not present in 
the training dataset. 
- Requires large- 
scale labeled data for 
training. 

2024 Xu et al. 
(2024) 

Explored    self- 
supervised learn- 
ing techniques for 
scalable de- vice 
identification, 
enabling models to 
adapt without 
labeled data. 

Self-supervised learning 
proved effective for 
identifying devices with 
minimal labeled data, 
enhancing scalability. 

CICIDS 
2017; 
UNSW IoT 

- High computational 
requirements. 
- Limited applicabil- 
ity in highly diverse or 
adversarial net- work 
conditions. 

2024 Zhou et al. 
(2024) 

Proposed   unsu- 
pervised learn- ing 
methods for anomaly 
detection and device 
clas- sification 
without labeled data. 

Unsupervised  models 
successfully detected 
anomalies and classified 
devices without needing 
labeled traffic. 

IoT-23; CI- 
CIDS 2017 

- Performance may 
degrade in highly 
complex network 
environments. 
- Limited ability to 
distinguish between 
similar devices. 

 

Several inferences may be made through the lit- 
erature review in this research on Deep Learning- 
Driven Automated IoT Device Identification 
Using Full Packet Data. Firstly, deep learning 
models, especially Convolutional Neural Networks 
(CNN), successfully detect patterns in packet data 
(Liu et al., 2022), which excel at spatial feature 
extraction. Additionally, long-short-term memory 
(LSTM) net- works have been found to be helpful 
in modeling the temporal dependency in packet 
sequences for IoT de- vices, as demonstrated in 

IoT device identification tasks where time series 
data is crucial (Khan et al., 2021). 

In this work, CNN and LSTM are combined, and 
their strengths are used the best. CNN works on 
spatial features, and LSTM is excellent at 
analyzing temporal sequences. The hybrid 
approach mentioned above provides improved IoT 
device identification accuracy compared to 
traditional methods based on simpler machine 
learning algorithms (Zhang et al., 2020). If we do 
not address these issues, the typical challenges of 
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overfitting during model training per- 

sist. This issue can often be seen if training 
datasets lack diversity, causing models to perform 
well on training data, but not to generalize to 
unseen IoT de- vices or attack scenarios (Cheng et 
al., 2023). The use of techniques such as dropout 
and regularization to reduce overfitting is well 
known. However, the trade- off between model 
complexity and generalizability is an ongoing 
challenge for the field (Ali et al., 2024). 
The reviewed literature also extracted another key 
concept, which is data set selection. However, 
spe- cialized datasets such as UNSW-NB15 and 
NB-IoT are high-quality for training, but need 
more general- ity to work across different IoT 
environments (Smith et al., 2022). Therefore, 
more extensive research is needed to build more 
holistic data sets that cover the entire range of IoT 
device behavior and attack types. Finally, the 
speed of deep learning models is a great issue, 
especially for real-time IoT applications. Although 
high accuracy is achieved, CNN + LSTM models 
are complex, and longer training times and higher 
computation are perhaps inevitable. Future work 
will likely make the model smaller, train more 
effectively and examine new architectures, e.g. 
trans- former models, to yield better practical 
performance 
in IoT environments (Lee et al., 2023). 
Since deep learning methods, especially hybrid 
CNN+LSTM models, see great potential to 
identify IoT devices, it is noted that solving issues 
such as dataset diversity, overfitting, and 
computational ef- ficiency of the training process 
is necessary for the devices to be applied in the 
real world. 
 
3 PROPOSED METHOD 

The ability to model complex patterns in large-
scale data has made deep learning a tool to address 
com- plex classification tasks in network security. 
This work offers a deep learning-based framework 
for automated IoT device identification from 
complete packet information in the headers and 
payload. Un- like conventional approaches, which 
usually base their decisions on hand-made 
features, this method works directly on raw packet 
data using the power of deep neural networks to 
automatically learn good discriminative features. I 
propose a framework that uses Convolutional 
Neural Networks (CNNs) for spa- tial feature 
extraction and Long-Short-Term Memory (LSTM) 
networks to capture the temporal dependen- cies in 
IoT traffic, which presents repetitive commu- 

nication patterns and various device behaviors. 
The specification of the model was described in 2. 
Dropout regularization is added as another layer of 
the architecture to improve the robustness and gen- 
eralization of the model. Dropout mitigates the 
over- fitting problem in dealing with high-
dimensional net- work traffic data. On the one 
hand, the CNN module extracts spatial features, 
including protocol-specific headers and payload 
structures from packet data; the LSTM module, on 
the other hand, learns temporal correlations 
between packet sequences and demon- strates 
device behavioral patterns. This hybrid archi- 
tecture guarantees all of this, ensuring a complete 
un- derstanding of the dependencies between 
individual packet characteristics and packet 
order.The follow- ing figure ?? and pseudocode 1 
describe the proposed methodology. In the 
proposed hybrid framework, the Random Forest 
(RF) algorithm is employed as a fea- ture selection 
mechanism prior to feature extraction based on 
deep learning. RF provides a ranking of fea- ture 
importance by evaluating how effectively each 
feature splits the data across multiple decision 
trees. This step ensures that only the most 
informative and discriminative features are 
retained for further pro- cessing, thereby reducing 
input dimensionality, re- moving irrelevant or 
noisy features, and improving model 
generalization. 
Integrating RF prior to CNN+LSTM helps the 
model focus on essential patterns and minimize 
over- fitting. Furthermore, feature selection using 
RF en- hances computational efficiency by 
reducing the vol- ume of data passed to the deep 
learning layers. This hybridization of statistical 
feature selection and deep learning allows the 
model to achieve higher accuracy, faster 
convergence, and improved robustness across 
heterogeneous IoT environments. 

 The evaluation of real-world IoT network traffic 
data sets shows high classification accuracy and 
ro- bustness against different types of devices and 
net- work scenarios. The system can distinguish 
devices based on their intrinsic communication 
characteris- tics, even when the traffic is 
encrypted and there are dynamic network 
environments due to complete packet data. The 
results show how the CNN+LSTM architecture 
outperforms traditional methods and single-model 
solutions, particularly for heteroge- neous and 
complex IoT traffic. 
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Algorithm 1 Hybrid RF + CNN + LSTM-Based IoT Device Identification 
1: Input: IoT network traffic dataset D = {X, Y } 
2: Output: Predicted IoT device label 
3: Initialize hyperparameters α, β, λ, τ, η 
4: Load pre-trained model weights θpretrain 
5: Define Random Forest, CNN, LSTM, Dropout, and Dense components 
6: Preprocessing: 
7: Extract full packet traffic features X 
8: Normalize and standardize the dataset 
9: Apply Random Forest to select top-k features: Xrf = RF Select(X) 
10: Split dataset into training and testing sets: Dtrain, Dtest 
11: Feature Extraction using 1st CNN: 
12: for each batch (Xbatch, Ybatch) in Dtrain do 
13: X1 = Conv2D(Xbatch, 32, (3, 3), ReLU) 
14: X1,pooled = MaxPooling(X1, (2, 2)) 
15: end for 
16: Temporal Learning using LSTM: 
17: Reshape X1,pooled into sequence format 
18: Initialize LSTM hidden and cell states: (h0, C0) 
19: for each timestep t in sequence do 
20: ht, Ct = LSTM(Xt, ht−1, Ct−1) 
21: end for 
22: Extract final LSTM hidden state: hT = hlast 
23: Dropout Regularization: 
24: Apply dropout: h 
drop = Dropout(hT , 
0.5) 25: Fully 
Connected Layer & 
Classification: 26: y = 
Softmax(Wfc · hdrop + 
bfc) 
27: L = CrossEntropy(y, Ybatch) 
28: θ = θ − η∇θL 
29: Device Prediction on Test Data: 
30: for each test sample x in Dtest do 
31: Predict device label: ypred = arg max(model(x)) 
32: end for 
33: Output: Predicted IoT Device Label 
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Table 2: Decription Of Components 
 
Compon- 
ent 

Description (UNSW-
NB15 
Dataset) 

Description (NB-IoT Dataset) Numerical Spec- 
ification 

Input The UNSW-NB15 dataset includes 
network traffic data such as packet 
headers and features like packet 
length and flow information. The 
input shape might be (1500, 1) for 
sequential packet data or (64, 64, 3) 
for more detailed packet headers. 

The NB-IoT dataset contains de- 
vice behavior data related to IoT 
devices, including packet transmis- 
sion patterns. Input shape is often 
(500, 1) for time-series data or raw 
packet headers. 

UNSW-NB15: 
(1500, 1) or (64, 
64, 3); NB-IoT: 
(500,  1)or  (64, 
64, 3) 

 
Component Description(UNSW-NB15 

Dataset) 
Description(NB-IoT Dataset) Numerical Spec- 

ification 
CNN  Lay- 
ers 

Convolutional layers are used to 
extract spatial features from the 
packet data, capturing patterns in 
packet headers or network flows. 
These layers help identify anoma- 
lous or characteristic traffic patterns 
in IoT devices. 

Similar  to  the  UNSW-NB15 
dataset, CNN layers are used to ex- 
tract meaningful features from IoT 
device behavior or packet headers, 
focusing on spatial relationships. 

Filters: 32, 64; 
Kernel size:  (3, 
3); Stride: (1, 1) 

Activation 
Function 
(CNN) 

ReLU is used to introduce non- 
linearity into the model, allowing it 
to capture complex patterns in the 
data, such as packet type or trans- 
mission behavior in UNSW-NB15 
traffic. 

ReLU is used similarly to learn 
non-linear patterns in the device 
be- havior sequences, capturing 
device- specific communication 
patterns in the NB-IoT dataset. 

ReLU Activation 

MaxPooling MaxPooling reduces the dimen- 
sionality of feature maps, focusing 
on the most important features. In 
UNSW-NB15, this helps in reduc- 
ing the complexity of packet fea- 
tures and speeding up training. 

MaxPooling also applies to the IoT 
traffic data, reducing the complex- 
ity of learned features while focus- 
ing on the most essential parts of the 
IoT device behavior. 

Pool size: (2, 2); 
Stride: (2, 2) 

Flatten After CNN layers, flattening is done 
to convert the 2D feature maps into 
a 1D vector suitable for the LSTM 
layers. In UNSW-NB15, this helps 
create a structured input for tempo- 
ral analysis of packet sequences. 

Flattening follows the same prin- 
ciple to convert extracted features 
into a format suitable for LSTM 
layers, allowing sequential IoT de- 
vice data to be processed efficiently. 

Flattened  shape: 
(1024,); NB-IoT: 
Flattened
 shap
e (512,) 

LSTM Lay- 
ers 

LSTM layers are used to learn 
the temporal dependencies in 
packet sequences and flow data. 
In UNSW-NB15, this allows the 
model to capture attack patterns 
over time in the network traffic. 

LSTM layers model the sequential 
nature of IoT data, learning from 
device communication patterns or 
behavior sequences, which is key 
to identifying device-specific 
activ- ities in the NB-IoT dataset. 

Units: 64, 
128;
 Retur
n sequences: 
True/False 

Dropout Dropout is used to prevent overfit- 
ting by randomly dropping connec- 
tions between layers during train- 
ing. In UNSW-NB15, it ensures the 
model doesn’t memorize attack 
pat- terns and generalizes well. 

Dropout in the NB-IoT dataset sim- 
ilarly prevents overfitting, espe- 
cially since IoT data is often noisy 
or sparse, helping the model gener- 
alize to new device behaviors. 

Dropout rate: 
0.3-0.5 
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Fully Con- 
nected 
(Dense) 
Layer 

Dense  layers  integrate  features 
learned by CNN and LSTM to form 
a representation of the data suitable 
for classification. In UNSW-NB15, 
this helps classify devices based on 
extracted traffic features. 

For NB-IoT, fully connected layers 
map the temporal features learned 
by the LSTM layers into device 
classes, assisting in identifying IoT 
devices from their behavior. 

Units: 128, 
256; Activation: 
ReLU/ Sigmoid 

 

4 DATASETS 

4.1 IOT23 

We describe the UNSW IoT-23 dataset, a 
comprehen- sive and labeled data set for IoT 
network traffic anal- ysis and cybersecurity 
research. It was conceived to meet the growing 
need for high-quality data to develop, test and 

evaluate machine learning models in the IoT. The 
data set consists of 23 captures of IoT network 
traffic containing malicious and benign be- havior 
generated from many IoT devices (e.g. smart 
plugs, security cameras, bright lights, etc.). Sev- 
eral types of malicious traffic, including Mirai 
botnet, scanning techniques, and Denial of Service 
(DoS) at- 

tacks, make this data a valuable resource that can be 
used to study the normal and anomalous behavior of 
IoT which was described in Table ??. 
The packet capture (PCAP) format is provided for 
each capture to explore raw packet-level features 
such as headers and payloads for analysis. This en- 
ables researchers to apply feature-based and deep 
learning methods, using complete packet informa- 
tion. The data set also includes metadata and flow- 
based features for the preprocessed analysis, that is, 
time-based behaviors or flow statistics. 
Furthermore, the IoT-23 dataset is appropriate for 
device identification, traffic classification, intru- 
sion detection, and anomaly detection. The detailed 
labeling and breadth of attack scenarios make it a 
general-purpose resource for evaluating models’ ro- 
bustness and generalizability in the real-world IoT 
setting. Due to the scope of IoT devices and network 
scenarios, the IoT 23 data set presents an important 
and challenging benchmark to advance IoT security 
and network traffic analysis research[25]. The fol- 
lowing table describes 
 
4.2 N-BaIoT Dataset 
The n-BaIoT dataset is a target dataset for research 
purposes in IoT device traffic analysis for anomaly 
detection and cybersecurity research. This data set 
consists of network traffic in IoT devices, made up of 
9 devices, including smart plugs, security cameras, 
doorbells, etc. This dataset provides a rich source of 
information for studying the behavior of devices un- 
der both normal and compromised conditions, includ- 
ing benign traffic and traffic generated from known 
attacks, including Mirai and Bashlite botnets7[26]. 
The data set contains[26]: 
• detailed packet-level detail, 
• extracted features, and 
• flow-based statistics for classification 
and anomaly detection research using various 

machine-learning techniques. 
In particular, malicious traffic encompasses different 
types of attack, such as TCP / UDP floods, scans, or 
exploitation attempts, allowing us to see a complete 
picture of threats to the IoT environment. The com- 
plete specification was defined in table ??. 
We present N-BaIoT, a suitable dataset for IoT 
device identification, intrusion detection, and traffic 
anomaly detection-based tasks. The results are well 
organized, with standard and attack scenarios clearly 
labeled, making it easy for researchers to test the per- 
formance of their models in different types of net- 
works. Capturing the unique traffic pattern of multi- 
ple IoT devices, the dataset addresses some key secu- 
rity issues in IoT cybersecurity with diverse devices, 
encrypted traffic, and real-time detection of evolving 
threats. As a result, the N–BaIoT dataset is an es- 
sential asset for progress in IoT security and to help 
move closer to safer network infrastructures. 
 
4.3 Feature Extraction 
However, feature selection is one of the most critical 
steps when building models on complex datasets such 
as IoT devices. Feature Selection aims to select the 
essential features that contribute significantly to the 
prediction of the chosen model, thereby eliminating 
the irrelevant or redundant features and, hence, mak- 
ing the model robust to be free from noise/waste and 
prevent it from being fitted to irrelevant data. 
In IoT device identification with deep learning 
models, including CNN+LSTM with dropout, feature 
selection matters in improving the model’s accuracy 
and computation. We prioritize features highly cor- 
related with device type since these contain the most 
information about the different behaviors of different 
devices on the network. For example, we show that 
packet length, flow duration, and bytes in flow are 
often strong indicators of the device’s activity and 
communication patterns. Other devices might have 
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packets of a similar size or network connections of 
an identical duration, such as security cameras or en- 
vironmental sensors, but have different patterns. 
In addition to these, protocol type and packet count 
can be equally crucial in distinguishing param- eters 
when differentiating devices according to the 
communication protocols they use (HTTP for smart 
cameras and MQTT for home automation devices). 
Inter-packet time can provide signals on these tem- 
poral features, such as communication frequency, and 
help separate devices that transmit a fixed and more 
sporadic data pattern. The model becomes more ef- 

ficient by not touching non-correlated features since 
the focus is on the most correlated features, which 
avoids complexity and also the risk of overfitting. 
Statistically based feature selection methods, such 
as correlation analysis, are used where we re- tain 
features with high positive correlations with the 
device type. The dropout technique inside the deep 
learning field also makes the IoT device identifica- 
tion model rely only a little on certain features to 
avoid over-reliance on a set of features, leading to the 
model’s robustness and generalizability. In general, 
the model can learn meaningful patterns more effec- 

tively, and thus improves its classification accuracy 
with effective feature selection.The detailed correla- 
tion values among selected features for the UNSW 
IoT dataset are presented in Table 67 
The Random Forest (RF) algorithm was used to 
determine the importance scores of the features.Table 
?? shows the list of features and the scores. The 
higher the importance score for features, the more im- 
pact that features have on the algorithm’s outcome. 
The selection of exactly 10 features was guided by 
two key criteria: high positive correlation with the 
type of the device and relevance to the specific 
communication patterns of the device. Packet- and 
flow-level statistical features, such as packet length, 
flow duration, and byte-in-flow, capture distinct be- 
haviors associated with different IoT devices (e.g., 
security cameras continuously stream large packets, 
while smart plugs send small periodic packets). 
Protocol-specific features like Protocol Type, 

Source Port, and Destination Port help differenti- 
ate devices based on the communication protocols 
they predominantly use (e.g., MQTT for sensors vs. 
HTTP for cameras). Temporal features like Inter- 
Packet Time further enhance identification by mod- 
eling communication periodicity, a behavior often 
unique to device classes. 
Limiting feature selection to the top 10 most in- 
formative attributes, ranked by Random Forest im- 
portance scores, strikes a balance between classifi- 
cation accuracy, model generalization, and computa- 
tional efficiency. Including too many features risks 
introducing noise, redundancy, and overfitting, while 
too few features would miss critical behavioral 
signa- tures. 
Thus, the selected 10 features provide a compact yet 
powerful feature space that maximizes discrim- 
inability between IoT devices while ensuring robust- 
ness under diverse network conditions. 

 
4.4 Experimental Results 
Combining Convolutional Neural Networks (CNNs) 
and Long Short Term Memory (LSTM) networks 
gives a capable method for identifying IoT devices 
through the strengths of the two architectures. CNNs 
are good at identifying spatial (i.e., within the data) 
and local patterns in data, so they are well-suited for 
analyzing features computed from packet sequences 
or network traffic. In contrast, LSTMs perform well 
in modeling temporal dependencies and sequential 
patterns to infer time series relationships embedded 
in IoT communication. In this embodied form, when 
CNNs are integrated, they extract relevant spatial fea- 
tures, which they feed to LSTMs to capture sequen- 
tial dependence. 
We introduce dropout, a regularization technique 
that prevents overfitting by simply randomly deacti- 
vating neurons when it is in training. This reduces 
the model’s reliance on some features and requires it 
to generalize better. The two data sets are the ideal 
benchmark for this approach because they contain 
multiple traffic patterns of different IoT devices for 

the model to learn to differentiate and classify cor- 
rectly. Dropping out reduces the complexity of the 
practical model and addresses the overfitting problem 
(somewhat) at the cost of dropping out some helpful 
signals that can be learned. The choice of the dropout 
rate balances these opposing effects, with lower val- 
ues of the dropout rate retaining the model perfor- 
mance without much overfitting. The use of dropout 
with the combined CNN + LSTM architecture shows 
a considerable increase in accuracy, precision, recall 
& F1 score to CNN or LSTM alone, and thus this 
becomes a potential approach to IoT device identifi- 
cation tasks. 
 
4.5 Evalution metrics 
In the context of Deep Learning-Driven Automated 
IoT Device Identification Using Full Packet Data, 
several evaluation metrics are used to assess the per- 
formance of the model. Below are the key metrics, 
explained with respect to the IoT device identifica- 
tion task depicted in figure 2. 
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1. Accuracy(Acc) full packet data.  
 
Accuracy measures the percentage of correctly clas- 
sified instances out of the total of instances in the 
dataset. Indicates how well the model distinguishes 
between different types of IoT devices based on the  
Accuracy gives an overall performance metric, but 
may be misleading in the case of unbalanced data 
sets. In the case of IoT device identification, this 
 

 
 
 
 
 
 
 
 

Table 6: Correlation Matrix for Key Features in the UNSW IoT Dataset with Feature Types 

Featu re Type Packet 
Length 

Flow 
Dura- 
tion 

Bytes in 
Flow 

Packet 
Count 

Avg 
Packet 
Size 

Protocol 
Type 

Flow 
Size 

Inter- 
Packet 
Time 

Source 
Port 

Destin- 
ation 
Port 

Packet 
Length 

Packet- 
Level 

1.00 0.81 0.78 0.74 0.85 0.65 0.79 -0.45 0.52 0.51 

Flow 
Dura- tion

Flow- 
Level 

0.81 1.00 0.84 0.78 0.80 0.60 0.76 -0.40 0.50 0.49 

Bytes in 
Flow 

Flow- 
Level 

0.78 0.84 1.00 0.75 0.77 0.58 0.80 -0.42 0.47 0.46 

Packet 
Count 

Flow- 
Level 

0.74 0.78 0.75 1.00 0.72 0.57 0.74 -0.35 0.45 0.44 

Average 
Packet 
Size 

Packet- 
Level 

0.85 0.80 0.77 0.72 1.00 0.55 0.78 -0.47 0.51 0.50 

Protocol 
Type 

Categ- 
orical 

0.65 0.60 0.58 0.57 0.55 1.00 0.62 -0.30 0.48 0.47 

Flow SizeFlow- 
Level 

0.79 0.76 0.80 0.74 0.78 0.62 1.00 -0.44 0.53 0.52 

Inter- 
Packet 
Time 

Temporal-0.45 -0.40 -0.42 -0.35 -0.47 -0.30 -0.44 1.00 -0.25 -0.24 

Source 
Port 

Categ- 
orical 

0.52 0.50 0.47 0.45 0.51 0.48 0.53 -0.25 1.00 0.88 

Destina- 
tion Port

Categ- 
orical 

0.51 0.49 0.46 0.44 0.50 0.47 0.52 -0.24 0.88 1.00 
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Table 7: Correlation Matrix for Key Features in the N-BaIoT Dataset with Feature Types 

Feature Type Flow  Du- 
ration 

Number 
of Packets in 
Flow 

Flow 
Inter- arrival 
Time 

Packet 
Size 

Protocol 
Type 

Flow Duration Flow-Level 1.00 0.75 -0.56 0.23 -0.45 
Number of Packets 
in Flow 

Flow-Level 0.75 1.00 0.12 -0.34 0.67 

Flow Inter-arrival 
Time 

Flow-Level -0.56 0.12 1.00 -0.89 0.35 

Packet Size Packet-Level 0.23 -0.34 -0.89 1.00 -0.18 
Protocol Type Packet-Level -0.45 0.67 0.35 -0.18 1.00 
Mean Packet Size Statistical 0.80 0.55 -0.72 0.10 0.50 
 
metric helps to gauge the general effectiveness of the  model. 
 

 
 
 
 
Figure 2: Evaluation Metrics for IoT Device Identification 
 
2. Precision(Pre) 
is the proportion of positive predictions that are ac- 
tually correct. Reflects the model’s ability to avoid 
false positives. 

Precision = 
 True Positives  True Positives + False Positives 

In IoT device identification, high precision ensures 
that when a device type is predicted, it is likely to be 
the correct type, which is crucial for network man- 
agement and security. 
 
3. Recall(Rec) 
Recall (also known as True Positive Rate) is the pro- 
portion of actual positive instances that are correctly 
identified by the model. 

The F1-Score is a crucial metric for evaluating mod- 
els where both precision and recall are important, 
such as in IoT device identification. Balances the 
trade-off between precision (correct predictions) and 
recall (detection of all devices). 
 
5. Training Time 
Training time refers to the amount of time the model 
takes to train in the full data set. It is an important 
metric for evaluating the efficiency of the model, es- 
pecially in large-scale IoT environments. 
Training Time (s) = Total Time for Model Training 
In IoT networks, where devices can constantly join 
and leave, it is essential to have efficient models that 

Recall =    True Positives  / True 
Positives + False Negatives 

 
can be quickly re-trained or refined. 

Recall is important to ensure that as many IoT de- vices are detected as possible. A high recall model 
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will minimize the risk of missing rare or underrepre- 
sented device types. 
 
4. F1-Score(F1) 
The F1-Score is the harmonic mean of Precision and 
Recall, providing a balanced measure that accounts 
for both false positives and false negatives. 

F1-Score = 2 × 
Precision × Recall 

                        Precision + Recall 
6. False Positive Rate (FPR) 

False Positive Rate measures the proportion of non- 
relevant instances (devices) that are incorrectly clas- 
sified as relevant. 
FPR = 

 

 False Positives  
False Positives + True Negatives 
A lower false positive rate is important to prevent 
incorrect device identifications, which could lead to 
misconfigurations in the IoT network or security vul- 
nerabilities. 

4.6 Results and Discussion 
 

Table 8: Experimental Results of CNN+LSTM with Dropout on UNSW IoT Dataset for Device Identification 
 
Experiment Acc (%) Pre (%) Rec (%) F1 (%) FPR (%) Training 

Time 
Dropout Rate

CNN+LSTM 96.8 96.5 96.3 96.4 1.3 450 0.2 

(Dropout 0.2)        
CNN+LSTM 96.3 96.0 95.8 95.9 1.6 460 0.3 
(Dropout 0.3)        
CNN+LSTM 94.7 94.4 94.2 94.3 2.0 470 0.5 
(Dropout 0.5)        
LSTM Only 91.2 90.9 90.8 90.9 2.7 380 0.2 
(Dropout 0.2)        
CNN Only (No 90.5 89.8 89.7 89.7 3.5 350 N/A 
Dropout)        
CNN+LSTM 97.1 96.8 96.6 96.7 1.1 440 0 
(No Dropout)        

 
Combining convolutional neural networks (CNNs) 
and long-short-term memory (LSTM) net- works 
regularized with dropout for device identifica- tion 
in the UNSW IoT dataset yields experimentally 
high classification accuracy and good generalization 
performance. In all experiments, the accuracy values 
are very high, with the best achievable performance 
of 97.1% when no dropout is applied. These analy- 
ses suggest that the CNN+LSTM model is improved 
by learning discriminative features from IoT traffic 
data with a combination of CNN’s spatial feature 
extraction and LSTM’s sequential dependencies. 
The precision and recall values give a good pic- ture 
of how the model can classify the devices cor- 
rectly. The precision of the models is high, ranging 
from 89.8% to 96.8%, which means that the mod- 
els rarely produce false positives, meaning that posi- 
tives are rarely classified as harmful. Symmetrically, 
the recall values (89. 7% to 96. 6%) indicate that 
the models are good at recognizing actual positive in- 
stances; they correctly identify many of the devices in 
the datasets. Both precision and recall are generally 
well balanced, even as we vary the settings, as seen 
from the pretty consistent F1 score. 

 
 

Figure 3: Accuracy And FPR Comparison 
For CNN+LSTM With Dropout On UNSW Iot Dataset 

 
In addition, the model generalizes better with a 
suitable dropout regularization term (between 0.2 and 
0.5), preventing overfitting. These results demon- 
strate that models with dropouts preserve good per- 
formance (96.8% accuracy with a dropout rate of 
0.2) but avoid memorization. Most importantly, the 
FPR (False Positive Rate) decreases with the lowest 
dropout values, and also, at the lowest, the FPR is 
1.1% in the model without dropout. This implies that 
dropout benefits from a trade-off of false positives 
(avoiding misclassifying too many negative instances 
as positive), thereby reducing model risks when im- 
plementing tasks with high-precision concerns, such 
as IoT device identification. 
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The general conclusion is that CNN+LSTM with 
dropout adapted well to identifying IoT devices. The 
approach shows high classification performance, low 
overfitting, and a fair trade-off between precision, re- 
call, and FPR. However, fine-tuning dropout rates 

can further improve the generalization ability of the 
model while retaining classification accuracy, so this 
methodology proves to be a promising tool for real- 
world IoT security applications. 

 

  
 

Figure 4: Accuracy And FPR Comparison 
For CNN+LSTM With Dropout On NB-Iot Data 

 
For device identification in the NB-IoT data set, the 
experimental results of the CNN+LSTM (with 
dropout regularization) model show that combining 
convolutional neural networks (CNNs) with long- 
short-term memory (LSTM) networks is feasible, es- 
pecially with the use of dropout. The results (accu- 
racy values) show excellent performance in all con- 
figurations, in which the model is the most accurate 
(97. 8%) if the dropout is not used. But introduc- 
ing dropout again has regularization benefits and pre- 
vents overfitting and generalizes better on the unseen 
data. Of particular note is that even when we turn 
on dropout, these models continue to be quite accu- 
rate (97.5% and 97.2% with dropout at rates of 0.2 
and 0.3 respectively), showing a positive effect from 
dropout in managing model complexity without pay- 
ing a significant price in performance. 
 
 
The precision and recall values confirm that the 
model is also able to correctly classify both positive 
and negative examples. The high precision shows 
that the model hardly ever identifies any device class 
in a wrong way; on the other hand, the recall metric 
is defining how the model detects nearly all the true 
positive instances. The F1 score is a harmonic mean 
between precision and recall and is the balance be- 
tween the two metrics. The results in Table 4 show 
that the model F1 scores vary slightly between 95. 
3% and 97. 2%, indicating a good balanced model 
for device identification. 
 
 
 
 
 
 

Figure 5: Accuracy and FPR Comparison for 
CNN+LSTM with Dropout on UNSW IoT and NB- 
IoT Datasets 
 
An additional insight that the FPR gives about the 
error of the model is included in the results. A lower 
FPR corresponds to fewer false positives from the 
model, and therefore the model is effective in com- 
bating misclassification of devices, a crucial require- 
ment in a security and anomaly detection setting for 
IoT environments. We observe that the model with 
dropout 0.2 results in 1.2% FPR which is also the 
lowest, illustrating its ability to undermine false pos- 
itives with high accuracy and other metrics. 
The results show that CNN+LSTM with dropout 
architecture is very efficient overall in identifying IoT 
devices in the NB-IoT dataset. Although dropout 
reg- ularization works to prevent overfitting and 
improve generalization, fine-tuning the dropout rate 
could im- prove performance for a particular use 
case. 
Together, the effectiveness of the use of 
CNN+LSTM architectures coupled with dropout to 
IoT device identification is indicated by the exper- 
imental results on both the UNSW IoT dataset and 
the NB IoT dataset. The performance of the model 
is consistent on both datasets and reaches its high- 
est accuracy with a value of 97. 8% in the NB-IoT 
dataset and 97. 1% in the UNSW IoT dataset, except 
when dropout is applied. The results of this experi- 
ment also demonstrate that the CNN+LSTM model 
is well suited to capture the spatial and temporal 
char- acteristics of IoT traffic data, which is 
necessary for accurate device identification. 
However, dropout, including dropout as a regu- 
larization technique, definitely helped prevent over- 
fitting problems and worked better around 0.2 to 0.3 
values for dropout rates. Stable performance across 
precision, recall, and F1 score metrics for models 
with dropout in this work demonstrates that these 
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models maintained high performance and generalized 
better to unseen data. The precision and recall val- 
ues remained very high, which verified that the model 

worked to correctly recognize devices without gener- 
ating high false positives or failing to pick up true 

positives. The F1 scores were a good balance be- 
tween precision and recall, creating a robust overall 
performance. 
Furthermore, the False Positive Rate (FPR), a very 
important metric for device identification, also 
remained low compared to other previous works, es- 
pecially when dropout was used, revealing that the 
model reduced false positives, which is essential for 
security critical applications. 
The model showed that they were adaptive to both 
IoT traffic patterns and IoT traffic characteristics in 
adaptation to UNSW and NB IoT datasets with sim- 
ilar performance trends. Based on these findings, 
CNN+LSTM with dropout is found to be a highly 
effective, flexible structure for IoT device identifica- 
tion, with superior accuracy, generality, and low er- 
ror rate. In this way, it is a promising solution for 
real-world IoT security applications that require the 
ability of the device to identify and correctly classify 
devices reliably to maintain network safety and in- 
tegrity. 
 
4.7 Ablation Study 
To evaluate the contribution of individual compo- 
nents in the proposed hybrid RF + CNN + LSTM 
architecture, we conducted an ablation study system- 
atically disabling or replacing key modules. Table ?? 
summarizes the performance impact in terms of ac- 
curacy and F1 score between model variants. 
As shown, the full model achieves the highest 
performance, while removing a random forest or 
dropout leads to performance degradation. CNN- 
only and LSTM-only configurations also fail, con- 
firming that both spatial and temporal features are 
essential for accurate IoT device classification. The 
results are visually summarized in Figure 6. 
 

Figure 6: Ablation Study: Accuracy Vs F1-Score Across 
Model Variants 

 
 
 
 

4.8 Result Comparision 
 
Table 11,figure ?? presents a comparative analysis of 
existing IoT device identification techniques reported 
in the recent literature from 2019 to 2024, highlight- 
ing their methodologies and the corresponding accu- 
racy scores. As illustrated, various deep learning and 
machine learning-based models have been proposed 
over the years to improve the accuracy of identifica- 
tion in heterogeneous IoT environments. 
Liu et al. (2019) used a CNN-LSTM hybrid ar- 
chitecture and achieved an accuracy of 92 3%, show- 
casing the potential of combining spatial and tempo- 
ral feature extraction. In 2020, Sharma et al. utilized 
full packet data processing techniques and obtained a 
slightly lower accuracy of 90.6%, while Kwon et al. 
focused on raw packet data using a pure CNN model, 
resulting in an accuracy of 91.1%. 
In 2021, Wang et al. enhanced CNN-based archi- 
tectures with attention mechanisms, improving per- 
formance to 93. 5%, suggesting that attention layers 
can capture contextual packet dependencies more ef- 
fectively. Zhao et al. (2022) proposed a reinforce- 
ment learning-based approach, although it yielded 
a comparatively lower accuracy of 85. 7%, pos- 
sibly due to exploration-exploitation trade-offs and 
environmental-specific dependencies. 
Gupta et al. (2023) integrated multimodal deep 
learning to exploit various data sources, achieving 
a notable accuracy of 94.2%. More recently, Xu et 
al. (2024) adopted self-supervised learning meth- 
ods and achieved 92. 4%, while Zhou et al. (2024) 
employed unsupervised learning techniques with a 
slightly lower accuracy of 89 5%, possibly due to the 
absence of labeled supervision during training. 
In contrast to previous work, the proposed CNN 
+ LSTM model with dropout regularization signifi- 
cantly outperforms all previous methods, achieving 
an impressive accuracy of 97.1%. This superior per- 
formance is attributed to the integration of convolu- 
tional layers for spatial feature extraction, LSTM 
lay- ers for capturing temporal dependencies in 
sequential packet data, and dropout for mitigating 
overfitting. The results clearly demonstrate the 
robustness and generalizability of the proposed 
hybrid architecture in accurately identifying IoT 
devices across diverse traffic patterns. 
 
5 FUTURE DIRECTIONS 
The development of a deep learning-based IoT device 
identification module - leveraging full packet data 
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Table 11: Comparative Analysis of IoT Device Identification Methods 

S.No Year Title Methodology Accuracy (%) 

1 2019 [17] IoT device identification using CNN
LSTM based on network traffic 

CNN-LSTM 92.3 

2 2020 [18] Identification of IoT devices using full
packet data and machine learn- ing 

Full Packet 
Data 

90.6 

3 2020 [19] Deep learning-based IoT device 
identification using raw packet data 

CNN (Raw 
Packet Data) 

91.1 

4 2021 [20] IoT device classification with con
volutional neural network and at- tention 
mechanism 

CNN + Atten- tion 93.5 

5 2022 [21] Reinforcement learning-based IoT device 
detection and classification 

RL-Based Model 85.7 

6 2023 [22] Multi-modal deep learning frame- work 
for IoT device identification 

Multi-Modal Deep 
Learning 

94.2 

7 2024 [23] Self-supervised learning for IoT de- vice 
identification from encrypted traffic 

Self- Supervised 
Learning 

92.4 

8 2024 [24] Unsupervised learning approach for IoT 
device type identification 

Unsupervised 
Learning 

89.5 

9 Proposed 
Method 

CNN+LSTM with Dropout for Full 
Packet Data 

CNN + LSTM 
+ Dropout 

97.1 

 
and a hybrid CNN+LSTM architecture—establishes 
a foundational pillar for the broader unified IoT se- 
curity framework. This module achieves high clas- 
sification accuracy, strong generalization in diverse 
traffic patterns, and low false positive rates, making 
it a reliable component to implement device-specific 
security controls within comprehensive network de- 
fense strategies. 
In subsequent phases of the unified framework, the 
classified device profiles and outputs of this module 
will directly support advanced functionali- ties such 
as intrusion detection, anomaly detection, and 
access control. Real-time identification of de- vices 
will enable dynamic enforcement of granular 
security policies, facilitating adaptive threat response 
mechanisms, and ensuring strict adherence to prede- 
fined access rules. 
In addition, the output from the device identi- 
fication phase will be integrated with blockchain- 
based logging systems. The identity and behavior 
patterns of each device will be immutably recorded 
to create tamper-resistant audit trails, thereby 
improving transparency and trust in the IoT 
ecosystem. These device-specific insights will also 

inform fed- erated intrusion detection systems (IDS) 
and quality- of-experience (QoE) optimization 
engines, contribut- ing to a context-aware and 
resilient security posture. 
 
Future research will focus on optimizing the model 
for deployment on edge devices to support real-time 
low-latency inference within decentralized IoT 
environments. Techniques such as model prun- ing, 
quantization, and federated learning will be used to 
reduce computational overhead while maintaining 
detection accuracy, enabling efficient operation under 
resource constraints. 
 
Ultimately, the deep learning-driven device iden- 
tification module will function as an intelligent front- 
line defense layer. It will provide actionable informa- 
tion into the larger security framework, facilitating 
end-to-end threat mitigation, robust policy enforce- 
ment, and adaptive QoE management in complex 
and evolving IoT networks. 
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6 CONCLUSION 
 
This research proposes a framework based on deep 
learning for the identification of automated devices 
from the Internet of Things using complete packet 
data. A hybrid convolutional neural network (CNN) 
and long-short-term memory (LSTM) architecture 
is employed to effectively capture both spatial and 
temporal features inherent in IoT network traffic, 
enabling robust and accurate device classification. 
The framework was empirically validated using the 
UNSW IoT and NB-IoT datasets, achieving a preci- 
sion of up to 97.8% and demonstrating a low false 
positive rate (FPR). These results indicate that the 
proposed model generalizes well across various types 
of IoT environments and devices, confirming its suit- 
ability for real-world deployment. Furthermore, the 
integration of dropout regularization mitigated over- 
fitting, thereby preserving the model’s generalization 
capability without compromising classification per- 
formance. In general, this study confirms that accu- 
rate, scalable and reliable identification of IoT de- 
vices can be achieved through deep learning tech- 
niques applied to full packet level data, contributing 
significantly to the advancement of IoT network se- 
curity. 
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