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ABSTRACT 

 
Classical computational approaches are steadily improving in their ability to predict molecular properties 
based on their sequences or structure, which is essential in drug discovery, irrespective of its many 
challenges. The major challenge is to use computational approaches to identify the properties, such as 
toxicity, solubility, etc. (ADMET), of the drug targets without costing much time. Machine learning and 
deep learning methods are employed for predicting ADMET properties. The proposed approach combines 
quantum computing with machine learning for the binary task of toxicity prediction based on the SMILES 
data. This Quantum Machine Learning (QML) approach involves a novel five-step procedure that converts 
SMILES to their respective molecular fingerprints, which are in turn dimensionally reduced, consequently 
forming four qubits. These qubits are inputs to the QML models, such as the Quantum SVC (QSVC), 
Variational Quantum Circuits (VQC), and Quantum AutoEncoders (QAE). The models are trained and 
optimized by using different optimizers and then evaluated based on the accuracy metric. The QAE model 
outperformed the remaining model by achieving an accuracy of 99%. 
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1. INTRODUCTION 

In this era of computer-aided drug discovery, 
determining the side effects of drugs remains a 
major challenge, particularly because of the 
complexity of biological systems. Drug safety 
concerns are a major reason for the discontinuation 
of medication in the preoperative and postoperative 
periods [1]. In recent years, many clinical trials 
have failed, often due to unexpected toxicities. As 
such, a risk assessment tool has proven to be very 
useful, particularly in the preliminary phases of 
drug discovery, which helps in selecting 
compounds that minimize risk after drug testing. In 
this context, it is quite beneficial to employ 
machine learning models for toxicity classification 
across various toxicity databases. With the aid of 
chemical structural data, these models identify 
molecular patterns and predict biological properties, 
which makes early toxicity testing faster and more 
efficient. Recently, QML has shown a promising 
approach to enhance these predictions by aiding 
quantum computing's ability to process complex 

data patterns at high speed. Quantum computing 
excels in handling higher-dimensional features 
paces compared with classical computing, with 
quantum kernel functions being especially powerful 
in managing these spaces. For certain types of 
classification problems, quantum kernels have 
demonstrated the ability to speedup over their 
classical counterparts exponentially [2]. Several 
QML variants exist, including the QSVC, VQC, 
and quantum nearest neighbor (Qk-NN). The choice 
of classification depends on the type of data and the 
processing process [3]. 

QML demonstrates that quantum computing and 
machine learning can be successfully combined. In 
QML, there are four major classes out of which we 
use classical data sets that are converted to quantum 
states using quantum feature maps or quantum 
simulators. These quantum states are then processed 
using quantum circuits, and the outputs are fed into 
machine learning algorithms for both analysis and 
classification [4]. This hybrid approach uses the 



v

 Journal of Theoretical and Applied Information Technology 
31st July 2025. Vol.103. No.14 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
5272 

 

power of quantum and classical computers to solve 
problems more efficiently. 

2. PROPOSED METHODOLOGY 

A QML workflow was developed as a five-step 
model for toxicity prediction based on SMILES 
data. Initializing the procedure, SMILES strings are 
converted into molecular finger prints, a numerical 
representation of the molecule's structural features. 
Secondly, to reduce the complexity of molecular 
fingerprints, dimensionality reduction techniques, 
such as PCA, are employed. Third, quantum 
embedding, where the reduced data is encoded into 
a quantum state suitable for quantum processing. 
Fourth, the aforementioned data is processed using 
different QML models, such as QSVC, VQC, and 
QAE, to learn and predict toxicity. The final step 
involves testing the model and evaluating its 
performance. 

2.1. Preprocess the SMILES 

In this initial step, the RDK it package was used 
to create a molecular object from the SMILES data. 
Canonical SMILES strings were then generated 
from SMILES to standardize the atom order and 
ensure consistency. This process includes handling 
stereo chemistry and the use of lower-case notation 
to indicate aromacity, ring closure, hydrogen 
suppression, and different bond types. Additionally, 
tautomer sand resonance structures were considered 
to ensure uniform representation across different 
molecular forms. This step is crucial to maintain 
uniform length of arrays for SMILES strings  

2.2. Encoding 

Canonical SMILES strings are encoded into 
molecular finger prints, which are binary vectors 
generated to indicate whether certain molecular 
features or fragments are present in a molecule. 
Each feature is indicated by a binary digit (0 or 1) 
in the fingerprint. These fingerprints are directly 
related to the discovery and characterization of 
Quantitative Structure-Activity Relationship 
(QSAR) analysis [5]. In the proposed study, 
Morgan fingerprints and MACCS keys were 
considered. These are used based on the model 
efficiency of working with fingerprint data of 
particular type. 

2.3. Quantum Embeddings 

Quantum algorithms require embedding classical 
data into quantum states, which are representations 
of data in the quantum realm, often as a 
superposition of the basic states. Different methods 
of embedding quantum states include basic 

encoding, amplitude encoding, and angle encoding. 
In the proposed model, amplitude encoding and 
angle encoding are chosen based on the model's 
requirements. Amplitude encoding is used for two 
of three models and angle embedding for one 
model. The choice of encoding method impacts the 
efficiency and accuracy of quantum computations, 
depending on the nature of the dataset and the 
quantum circuit constraints. 

2.4. Quantum Model  

Quantum circuits are built by using universal 
quantum gates, which manipulate qubits and their 
states according to principles of quantum 
mechanics. These gates, including Pauli gates (X, 
Y, Z) and the Hadamard gate, are used to design 
quantum circuits adjusted to specific requirements 
[6-7]. Quantum   states can exist in superpositions, 
and measurements collapse these states into one of 
the basis states for each qubit, producing classical 
bits as the outputs. To develop a QML model, the 
designing and training involve selecting an 
appropriate quantum algorithm that matches the 
problem. Examples include Quantum Support 
Vector Machines (QSVM), which use quantum 
kernels to separate data in high-dimensional space, 
and Quantum Neural Networks (QNN), which 
mimic classical neural networks. To minimize the 
cost function, the training involves adjusting the 
parameters of a quantum circuit. During the 
quantum measurement phase, measurements are 
repeated multiple times to build a probability 
distribution, providing insights into quantum 
computation outcomes. 

2.5. Evaluation 

Finally, the model was evaluated by using 20% 
of the unseen data from the Clintox Dataset based 
on the accuracy metric. The evaluation results 
provided insights into the model's generalization 
capability in predicting toxicity. A comparison with 
baseline models demonstrated the effectiveness of 
the proposed approach. This step also examines the 
overfitting and underfitting of the models. To 
provide a thorough analysis, the model's 
performance was also evaluated using additional 
important metrics like precision, recall, and F1-
score. The results indicated that the proposed 
method outperformed traditional machine learning 
models in distinguishing toxic and non-toxic 
compounds. Furthermore, visualizing the model's 
predictions through confusion matrices helped in 
understanding misclassification patterns and areas 
for improvement. 
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3. PREPROCESSING SMILES 

Pre-processing of SMILES is essential for 
reducing redundancy and ensuring consistency. 
During pre-processing, the SMILES strings were 
canonicalized, standardized, and validated. They are 
then transformed into molecular fingerprints. The 
Molecular Fingerprints of a same length are used to 
train the models. 

3.1. Canonicalization of SMILES 

In this step, the SMILES strings are converted 
into a standardized and unique representation of the 
molecule. The canonical form of SMILES 
standardizes the order of atoms and uses lowercase 
notation to indicate aromacity, thereby ensuring a 
consistent structure. It also accurately preserves the 
stereochemistry [8]. The rules for canonicalization 
are as follows [9]: 

3.1.1. Atom ordering and Handling Stereo-
chemistry: Atoms in the molecule are consistently 
ordered based on their connectivity and atomic 
properties. A unique order is assigned to each atom 
to ensure that the SMILES string is generated in a 
consistent sequence. The stereochemistry (3D 
arrangement) of the molecule was preserved and 
encoded using standardized symbols. The canonical 
form ensures that stereo-centers are consistently 
represented. 

3.1.2. Aromaticity perception and Branching: 

Aromatic atoms and bonds are represented by 
lowercase letters and specific notations. 
Aromaticity must be detected and consistently 
applied across molecules. Ring Closures: Ring 
closures are consistently represented by assigning 
unique identifiers to atoms that close a ring. The 
same rings are always closed in the same order. 
Branches in the molecule are consistently ordered 
and are represented in parentheses in the SMILES 
string. 

3.1.3. Canonicalization Example: 

Consider the molecule 2-butanol. This molecule 
has the following two possible SMILES strings.  

 
i. SMILES 1: “CC(C)COH” →2−butanol 

ii. SMILES 2: “CC(O)C(C)C” →2−butanol 
After canonicalization, SMILES strings SMILES 

1 and SMILES 2 are converted to the canonical 
SMILES “CC(C)CO”. This unique representation is 
now consistent, ensuring that the molecule is 
identified in the same manner across different 
datasets or processing steps. 

3.2. Standardization and Validation of SMILES 

Standardization of SMILES includes steps such 
as removal of salts or solvents, neutralization, and 
handling of tautomeric forms. After these steps, the 
SMILES strings are converted into a consistent 
format that adheres to specific rules or conventions, 
ensuring that all molecules are uniformly 
represented [10]. This process helps in reducing 
redundancy in molecular datasets and improves the 
reliability of machine learning models that are 
trained on SMILES representations. Validation of 
SMILES was performed to ensure chemical 
validity, prevent errors in analysis, and maintain 
data quality control. Structural validation, 
stereochemistry validation, SMILES syntax 
validation, detection, and handling invalid SMILES 
are the steps involved in SMILES validation [11]. 

4. ENCODING SMILES 

4.1. SMILES conversion to Molecular-
Fingerprints 

In this step, smile strings, which are in textual 
form, are converted to molecular fingerprints, 
which are numerical vectors that capture the 
structural features of the molecule. Molecular 
Fingerprints: These fixed-length binary or integer 
vectors, where each bit or value represents the 
presence or absence of a particular substructure, 
atom pair, or pattern within a molecule. Different 
types of molecular fingerprints capture different 
aspects of a molecule’s structure [12]. Common 
types of fingerprints include the following: 

i. Topological fingerprints (e.g., Morgan or 
ECFP): Encodes atom connectivity. 

ii. Path-based finger prints (e.g., daylight): 
Encode paths for atoms and bonds. 

iii. MACCS keys: A set of predefined 
structural keys. 

There are various types of molecular fingerprints, 
each with its own strength, and are chosen 
according to specific requirements. For instance, 
organ fingerprints are frequently used in similarity 
search. In the proposed work, MACCS (Molecular 
ACCess System) key fingerprints are used due to 
their simplicity and interpretability. MACCS keys 
are a set of predefined structural fragments or 
features, typically 166. Each key corresponds to a 
specific chemical feature, such as the presence of a 
particular atom, bond type, or functional group [13]. 
For example, consider the case of benzene. The 
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MACCS key fingerprint for benzene was a binary 
vector with a length of 166. Each bit in this vector 
corresponds to a MACCS key. The conversion 
process is illustrated in Figure 1. 

 

Figure 1: SMILES conversion to Molecular Fingerprints 

In this example: 

i. Bit 6 → 1, indicating the presence of an 
aromatic ring. 

ii. Bit 8 –> 1 indicates the presence of a 
double bond. 

iii. Bit 151 − > 1, indicating the presence of a 
carbon atom. 

iv. Other bits would be zero if these particular 
features were not present in benzene. 

4.2. Normalization of MACCS Fingerprint 
Vectors 

Normalization is necessary when SMILES 
strings are embedded in the quantum states. It is 
important to obtain consistent data [14]. In the 
proposed model, the generated MACCS fingerprint 
vectors are normalized using vector normalization. 

Vector Normalization: 

i. The normalization step calculates the 
Euclidean norm of the MACCS fingerprint 
vector, which is essentially the square root 
of the sum of the squares of the vector 
elements. 

ii. For a binary vector, the norm is the square 
root of the sum of squares of the 1s in 
vector. Because the vector is binary, the 
sum of squares is simply the number of 
1’s. 

iii. After computing the norm, each element in 
the vector is divided by this norm to 
convert the binary vector into a vector of 
real numbers. The resulting normalized 
vector has a length of one, which ensures 
that all vectors are on the same scale [15]. 

After Normalization, normalized vectors of equal 
lengths are suitable for quantum circuits. 

4.3. Dimensionality Reduction 

In the proposed model, dimensionality reduction 
was applied to the normalized vectors using 
Principal Component Analysis (PCA), and the 
number of dimensions was reduced to four. 
Dimensionality reduction was used for the 
following purposes: 
4.3.1 Simplification 

MACCS fingerprints are 166-dimensional 
vectors, which can be complex and computationally 
expensive to process, especially when using 
quantum machine learning algorithms. 
4.3.2 Noise Reduction 

High-dimensional data can contain a lot of noise 
or irrelevant information that may not contribute 
significantly to the predictive power of the model. 
Reducing the number of dimensions can help filter 
out this noise. 

4.3.3 Working with Principal Component 
Analysis (PCA) 

PCA is a technique that reduces the 
dimensionality of data by identifying the principal 
components along which the variance of the data is 
maximized. It transforms the original features into 
principal components that are uncorrelated and 
ordered by the amount of variance explained [16]. 
PCA helps in extracting the most important features 
that capture the majority of the information in high-
dimensional data, while ignoring less important 
ones. In the proposed model PCA plays crucial role 
in reducing the number of dimensions of training 
data. 

4.3.4 Number of Dimensions 
Embedding data into quantum states requires the 

encoding of features in quantum circuits. The 
complexity of these circuits increases with an 
increase in the number of dimensions. Reducing to 
four dimensions simplifies the quantum circuit and 
makes the model more efficient and feasible for 
running on current quantum hardware. 

5. QUANTUM EMBEDDINGS 

To use quantum algorithms, classical data must 
be converted into quantum states. A quantum state 
is the representation of data in the quantum realm, 
often a superposition of basic states. Therefore, 
classical data are mapped to quantum states; this 
process is known as quantum embedding. Different 
types of quantum embedding provide various 
methods for representing and manipulating data 
within a quantum space. In this study, amplitude 
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and variational encoding were employed as 
quantum embeddings [17]. 

5.1. Amplitude Encoding 

The amplitude of quantum states refers to the 
coefficients of the basis in the quantum state vector. 
This determines the measurement of the 
probabilities of the quantum states in each basis 
state. Understanding and manipulating these 
amplitudes are fundamental for quantum 
computation and information processing. By 
encoding data into the amplitudes of quantum 
states, quantum computers can process multiple 
data points simultaneously, which is called quantum 
parallelism. This approach is well suited for these 
numerical vectors, which enables quantum 
computers and algorithms to process and learn 
molecular data efficiently [18]. 

5.1.1. Amplitude Encoding of SMILES 

To understand amplitude encoding, consider a 
simplified example in which SMILES strings have 
been preprocessed and converted into a numerical 
representation, such as a molecular fingerprint or a 
feature vector. In this case, a benzene molecule is 
used as an example, and its SMILES string is 
transformed into a 4-dimensional feature vector. 
The benzene SMILES is represented as a feature 
vector [0.5, 0.2, 0.3, 0.1]. The feature vector is 
normalized to ensure that the sum of the squares of 
its components equals 1, as required for the 
quantum states. The normalization of the vector is 
shown in equation (1) and (2). 

Normalized vector: 

𝑁𝑜𝑟𝑚 =  √0.52 + 0.22 + 0.32 + 0.12  

=  √0.25 + 0.04 + 0.09 + 0.01   

          =  √0.39  ≈  0.624              (1) 

The normalized vector becomes 

[0.5/0.624, 0.2/0.624  ,0.3/0.624, 0.1/
0.624]  ≈   [0.801, 0.321, 0.481, 0.16] 
                                                          (2) 

 
5.1.2. Encoding into Quantum State 

The normalized vector was then used to create a 
quantum state. In amplitude encoding, this vector is 
mapped directly onto the amplitudes of the quantum 
state as shown in equation (3). 

Quantum state:|𝜓⟩ =  0.801|00⟩ +  0.321|01⟩ +
 0.481|10⟩ +  0.160|11⟩              (3) 
 

Each amplitude corresponds to a possible 
quantum state of the qubits (e.g., |00⟩, |01⟩, |10⟩, 
|11⟩ for a 2-qubit system). 

5.2. Variational Encoding 

In variational encoding, a normalized vector is 
used as the input parameter for a quantum circuit. 
These parameters are tuned within a quantum 
algorithm, often using a variational quantum 
algorithm (VQA) to minimize the cost function 
related to the problem being solved. Considering 
the previous example of benzene, parameters from 
the normalized vector [0.801, 0.321, 0.481, 0.160] 
could be used as rotation angles in quantum gates 
(e.g., RX, RY, and RZ gates) within a quantum 
circuit. The quantum state encoding can be 
expressed as shown in equation (4). 

|ψ⟩= RY(0.801)• RZ(0.321)• RX(0.481)• 
RY(0.160)• |0⟩    (4) 

Where RY, RZ, and RX are the rotation gates 
applied to the initial state |0⟩. The quantum state 
was then processed using the quantum circuit, with 
the parameters adjusted during the training process 
to optimize the circuit’s performance for a specific 
task, such as classification or regression. 

5.3. ZZFeatureMap 

ZZFeatureMap is a type of quantum feature map 
used to encode classical data into quantum states 
using parameterized quantum circuits. Consider a 
benzene molecule as an example to understand how 
the feature map works. For a 4-dimensional feature 
vector, ZZFeatureMap is set as 

i. Feature Dimension: 4 
ii. Repetitions: 2 (The feature map was 

applied twice to increase expressivity). 
iii. Entanglement: linear (qubits are entangled 

in a linear chain). 
A normalized feature vector [0.801, 0.321, 0.481, 

0.160] was used to parallelize the rotations in the 
ZZFeatureMap. ZZFeatureMap applies 
parameterized rotations and entanglements to 
prepare a quantum state that encodes the feature 
vector. The quantum state after applying the 
ZZFeatureMap will be a superposition of the basis 
states, where the amplitudes are influenced by the 
encoded features, and the exact form of the 
quantum state will depend on the details of the 
feature map and the specific quantum circuit 
implementation. 
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6. QUANTUM MODELS 

Quantum models are advanced tools that use 
quantum computing for data analyses and machine 
learning. These models use quantum mechanical 
principles such as superposition and entanglement 
to handle complex problems more efficiently than 
classical models. VQC, QSVC, and QAE are 
quantum models that are trained and assessed using 
the ClinTox dataset. Each model and the model 
training process are covered in the following 
subsections. 

6.1. Implementation of VQC 
 

The five-step proposed framework for 
implementing VQC is covered in this subsection. 
Variational Circuits are designed by using different 
quantum gates as per the requirement. The choice 
of quantum gates and their arrangement plays a 
crucial role in optimizing the circuit's performance. 
Additionally, parameterized quantum circuits are 
trained using classical optimization techniques to 
minimize a predefined loss function and achieve 
better predictive accuracy. 

6.1.1. SMILES preprocessing: The SMILES 
strings are converted into a numerical 
representation, such as molecular fingerprints (e.g., 
MACCS keys). In this step, the chemical structure 
is converted into a form that can be processed using 
a quantum algorithm. A 166-bit fingerprint is 
generated for each SMILES string in this step. 

6.1.2. DataEncoding: Molecular fingerprints are 
then encoded into quantum states using a feature 
map. In this study, ZZFeatureMap was used to map 
the data into a quantum circuit. This feature map 
captures interactions between molecular features by 
applying entangling gates. The choice of 
ZZFeatureMap ensures that relevant molecular 
relationships are preserved while reducing the 
dimensionality of the input space. 

6.1.3. Variational Circuit: A parameterized 
quantum circuit is designed and applied to the 
quantum state, which might involve layers of 
quantum gates, such as rotations (RX, RY, RZ), and 
entanglement gates, such as CNOT [19]. The 
parameters of these gates were initially randomly 
set. For instance, consider equation (5): 

|𝜓⟩ =   𝑅𝑌(𝜃1) ·  𝑅𝑍(𝜃2) ·  𝑅𝑋(𝜃3) ·
                        𝐸𝑛𝑡𝑎𝑛𝑔𝑙𝑒𝑚𝑒𝑛𝑡 ·  |𝐸𝑛𝑐𝑜𝑑𝑒𝑑 𝑆𝑡𝑎𝑡𝑒⟩

                                     (5) 

An ansatz (a quantum circuit used in variational 
algorithms) is created using the real amplitudes 
circuit. The ansatz consists of multiple layers of 

rotation gates (RX and RY) and entanglement 
layers. In this code, the ansatz has three repetitions 
of these layers, making it capable of capturing the 
complex patterns in the data. 

6.1.4 Training the VQC: The VQC was trained 
using a labeled dataset of regular fingerprints (e.g., 
toxic vs. non-toxic compounds). A quantum circuit 
is executed, and the output is compared with the 
true labels. The classical optimizer adjusts the 
parameters to improve the classification accuracy. 
The variational parameters in the ansatz were 
optimized using the COBYLA optimizer. This 
optimizer iteratively adjusts parameters to minimize 
the objective function (classification error). 

6.1.5 Prediction: After training, the VQC can 
classify a new compound’s SMILES-derived 
fingerprint as toxic or non-toxic based on the output 
of the quantum circuit. The classification is 
performed by measuring the qubits and interpreting 
the probability distribution of the outcomes. The 
model’s performance is evaluated using standard 
metrics like accuracy, precision, recall, and F1-
score to ensure reliable predictions. 

6.2. Quantum Support Vector Classifier (QSVC) 

Support vector classifiers (SVC), which use 
quantum kernels, are known as QSVC. SVC is a 
supervised machine learning algorithm used for 
classification. This algorithm works by finding the 
optimal hyperplane that separates different classes 
in the feature space. To deal with nonlinear 
separable data, these algorithms use kernels, which 
transform them into higher-dimensional spaces 
where a linear separator can be found [20]. 
Classical SVC is computationally expensive in the 
case of high-dimensional feature spaces. By 
embedding data into quantum states, QSVC can 
accelerate the process of offending the optimal 
separator and handling high-dimensional spaces 
[21]. 

6.2.1. Classical SVM Foundation 
The aim is to determine the optimal hyperplane 

that maximizes the margin between two classes. 
Mathematically, it is formulated as shown in 
equation (6). 

𝑚𝑖𝑛{௪,௕}

1

2
|𝑤|ଶ

ଶ 

Subject to: 𝑦𝑖(𝑤 ∗  𝑥𝑖 +  𝑏) ≥  1, ∀𝑖 
                                          (6) 

 
where ‘w’is the weight vector, ’b’ is the bias, and 

xi is the feature vector. In cases where the data are 
not linearly separable, the SVM uses a kernel 
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function K(xi, xj) to implicitly map the data into a 
higher-dimensional space where it becomes linearly 
separable. 

6.2.2. Quantum Feature Map 
In QSVC, classical data are mapped into 

quantum states using a quantum feature map 
represented as ϕ(x). The quantum state |ϕ(x)⟩ 
encodes the classical feature vector x in the 
quantum state [22]. ZZFeatureMap is used to 
embed classical features into a quantum state. This 
feature map is parameterized and has an 
entanglement strategy specified as “linear” meaning 
that qubits are entangled in a linear configuration. 
reps=2 indicates that the feature map is repeated 
twice, allowing for a richer quantum representation 
of the data. 

6.2.3. Quantum Kernel Computation 
The quantum kernel is computed as the inner 

product of quantum states corresponding to 
different data points as shown in equation (7): 

𝐾ொ൫௫೔,௫ೕ൯ =  หൻ𝜙(𝑥௜), 𝜙൫𝑥௝൯ൿห
ଶ
                     (7) 

This method measures the similarity between 
data points in the quantum feature space. A 
quantum kernel, the FidelityQuantumKernel, was 
constructed using the ComputeUncompute fidelity 
method. This kernel measures the similarity 
between quantum states corresponding to different 
data points. The kernel is then used by QSVC to 
distinguish between different classes (e.g., toxic vs. 
non-toxic molecules) based on these quantum state 
similarities. 

6.2.4. Support Vector Classifier 
The QSVC then uses this quantum kernel instead 

of the classical kernel to perform classification [23]. 
The decision function of the kernel is shown in 
equation (8). 

𝑓(𝑥) =  𝑠𝑖𝑔𝑛൫∑ 𝛼௜𝑦௜𝐾ொ(௫೔,௫)
ே
{௜ୀଵ} +  𝑏൯       (8) 

Here, αi is the coefficient of the support vector 
and yi is the class label. The Figure 2 presented a 
pipeline for predicting toxic and non-toxic 
compounds using the VQC and QSVC models. 

6.3. Quantum Auto Encoders (QAE) 
Classical autoencoders are variants of 

ANNs used to learn from efficient data for feature 
extraction. Autoencoders consist of two major 
components: encoders and decoder. Encoders are 
used for dimensionality reduction of the input data, 
while decoders are used to reconstruct the original 
data from the encoded form. 

 

Figure 2. Pipeline for Toxicity Prediction using QSVC 
and VQC Models 

 
The main purpose of using autoencoders is to 

capture important features while minimizing 
information loss. QAE works similarly to classical 
autoencoders, the only difference is that a classical 
autoencoder works on classical bits, whereas a QAE 
works on qubits.QAE consist of two main 
components [24]: 

i. Encoder: By applying quantum gates, the 
encoder compresses the input quantum 
state into a small quantum state that 
preserves the most significant information 
while reducing its dimensionality. 

ii. Decoder: The decoder attempts to 
reconstruct the original quantum state 
from the compressed state to match the 
input as closely as possible 

6.3.1. Implementation of QAE 
The PennyLane library was used to implement 

the QAE. The quantum device was initialized using 
PennyLane’s default qubit simulator with four 
qubits. The SMILES strings were converted into 
MACCS fingerprints, which were binary vectors. 
These vectors were normalized to ensure that they 
fit the quantum framework. These normalized 
vectors were then encoded into quantum states 
using a parameterized quantum circuit. To increase 
the accuracy of the quantum autoencoder and 
reduce the reconstruction error, the circuit was 
optimized using a gradient-based optimizer. 

6.3.2. Quantum Embedding 
Normalized vectors are embedded into quantum 

states. In the proposed model Angular embedding 
was used to map the classical data to its quantum 
state space. Angular embedding is chosen because it 
allows direct and interpretable mapping of high-
dimensional classical inputs to their quantum states 
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efficiently. In this method, each classical data point 
is encoded into the angles of quantum gates, 
typically rotation gates (such as RX, RY, and or 
RZ) applied to the qubits in a quantum circuit. For 
example, if a feature vector x = [x1,x2,...,xn] exists, 
each feature xi can be encoded as a rotation angle 
for a qubit. The qubits are rotated by these angles, 
effectively embedding the classical data into a 
quantum state. 

6.3.3. Quantum Encoder 
This is designed to compress the quantum state to 

a lower-dimensional form, which involves several 
layers of quantum gates that entangle qubits to 
capture complex relations between features in 
quantum representation. After angle embedding, a 
series of entangling layers was applied using 
StronglyEntanglingLayers to compress the data. 
The output of the encoder is a set of expected 
values for the Pauli-Z operators on each qubit. The 
Pauli-Z operator is a quantum mechanical operator 
represented in the form of a matrix, and is one of 
the three Pauli matrices [25]. The Pauli-Z operator 
is defined as shown in equation (9) 

                        𝑍 =  ቂ
1 0
0 −1

ቃ                        (9) 

This operator acts on a single qubit, and its effect 
on the basis states |0⟩ and |1⟩ is as shown in 
equation (10): 

𝑍|0⟩  =  |0⟩ 

                        𝑍|1⟩  =  −|1⟩                   (10) 

The Pauli-Z operator flips the phase of the |1⟩ 
state while leaving the |0⟩ state unchanged. 

6.3.4. Quantum Decoder 
This is designed to reconstruct the quantum state 

from a lower dimensional form. Using the same 
AngleEmbedding and StronglyEntanglingLayers 
templates, the decoder circuit attempts to 
reconstruct the original data from the received 
encoded quantum states. An autoencoder function 
was used to tie the encoder and decoder together. 
By comparing the output quantum state with the 
initial input state, the loss function was created to 
quantify the reconstruction error. In order to reduce 
this error and improve the model's capacity to 
capture crucial features, the optimization process 
entailed adjusting the circuit parameters. In order to 
make sure the quantum autoencoder successfully 
learned to compress and reconstruct molecular 
fingerprints, several training iterations were 
conducted. 

 

6.3.5. Loss Function 
It used to measure the difference between the 

original and reconstructed outputs. It sums the 
Mean Squared Error (MSE) over all the training 
examples. A lower MSE value indicates that the 
model effectively captures the underlying patterns 
in the data. This metric helps in evaluating how 
well the autoencoder reduces dimensionality while 
maintaining the most important information. The 
model learns to produce reconstructions that closely 
resemble the original inputs by minimizing the 
MSE. To avoid overfitting and enhance the 
autoencoder's generalization, regularization 
techniques can also be used. Furthermore, 
monitoring the MSE over training epochs sheds 
light on the learning process's stability and 
convergence. 

6.3.6. Training 
Training is performed using the Broyden-

Fletcher-Goldfarb Shanno (BFGS) optimization 
method, which minimizes the loss function by 
updating the weights of the encoder and decoder. 
BFGS is an iterative optimization algorithm used to 
solve unconstrained optimization problems, where 
the goal is to minimize or maximize the objective 
function. After training, the model was evaluated on 
both training and test datasets to compute the 
reconstruction error.  

 
7. RESULTS 

In this work, QML algorithms were applied to 
the Clintox dataset, which contains SMILES 
representations of chemical compounds as input 
data and toxicity labels based on FDA approval and 
clinical trial results as target labels. QSVC, VQC, 
and QAE are quantum models used for the binary 
classification task of predicting toxicity. The QML 
models were trained to categorize toxic and non-
toxic compounds using SMILES as input. 
Evaluation Metrics to evaluate the performance of 
the QML models, several standard evaluation 
metrics, such as accuracy, precision, recall, and F1-
score, have been used. However, this study focuses 
primarily on accuracy.  

Training and testing accuracies are two distinct 
categories of accuracy that have been examined. 
The ability of the model to learn from the training 
set of data was measured based on its training 
accuracy. The testing accuracy measures the 
model’s ability to generalize the prediction results 
on unseen data. 

QSVC: The utilization of quantum kernels 
allows QSVC to take advantage of the quantum 
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states’ ability to encode higher-dimensional features 
in a more compact and entangled form, allowing for 
better separability of complex data. 
Results:  

i. Training accuracy: 0.95 or 95%  
ii. Testing accuracy: 0.94 or 94%  

Analysis: The QSVC’s performance on the 
training data suggests that the model has a solid 
understanding of the underlying data patterns. The 
small gap between the training and testing 
accuracies points to a relatively balanced model 
with minor overfitting. Testing accuracy 
demonstrated that the quantum kernel was able to 
effectively classify toxic and non-toxic compounds, 
but there were still a few misclassifications, 
indicating the potential for further improvement. 

VQC: The VQC model uses parameterized 
quantum circuits (PQCs) for classification. The 
model’s parameters are optimized to learn decision 
boundaries in a similar way to classical neural 
networks, but with quantum-enhanced capabilities. 
Figure 4 shows the objective function value against 
iterations during the training of the VQC. In the 
early iterations, the objective function increases 
slightly before decreasing. This suggests that the 
optimizer initially explored different parts of the 
parameter space, possibly encountering local 
maxima before converging to a better solution. The 
objective function showed notable oscillations 
between iterations 5 and 25. This could indicate that 
the optimizer is navigating a complex loss 
landscape with multiple local minima and maxima, 
causing fluctuations in the objective value. These 
oscillations are common in quantum variational 
circuits owing to the nonconvex nature of the 
optimization problem. After approximately the 25th 
iteration, the objective function starts to stabilize 
and exhibits smaller variations, hovering around a 
lower value. This suggests that VQC converges and 
fine-tunes its parameters 

 

Figure 4. VQC Objective Function Convergence 
over Iterations 

Results: 

i. Training accuracy: 0.94 or 94%  

ii. Testing accuracy: 0.93 or 93% 

Analysis: The VQC achieved a training accuracy 
of 94%, showing that it learns to classify the 
training examples with high precision. This 
accuracy reflects the ability of VQC to fit the 
training data well through its parameterized 
quantum circuits. The small reduction in accuracy 
from training to testing suggests that the VQC is 
effective in learning the classification task but may 
benefit from improvements in circuit design or 
optimization techniques to further improve the 
performance.   

QAE: The ability of the QAE to compress and 
encode information into a lower-dimensional latent 
space allows it to learn more efficiently and identify 
the most important features for toxicity 
classification.  

Results: 

i. Training accuracy: 0.99 or 99%  

ii.  Testing accuracy: 0.98 or 98%.  

Analysis: The high accuracy of QAE on both the 
training and test sets suggests that the model 
generalizes well and is highly effective at denoising 
and reconstructing molecular data. This result 
highlights the power of autoencoders in quantum 
machine learning, particularly for tasks involving 
complex data, such as molecular toxicity. The Table 
1 shows a comparison of the accuracies of QSVC, 
VQC, and QAE. The accuracies are the average 
performance achieved from two binary 
classification tasks of toxicity, with target labels for 
FDA-approved drugs and clinical trial outcomes 
considered separately. Among the models, the QAE 
per formed the best, achieving an accuracy of 98%. 

Table 1: Accuracies comparison of QML Algorithms for 
Toxicity Classification on the ClinTox Dataset 

Method Accuracy 

QSVC 0.94±0.01 

VQC 0.93±0.01 

QAE 0.98±0.005 

 

8. CONCLUSION 

The proposed framework introduces a structured 
approach for applying Quantum Machine Learning 
(QML) to SMILES data by leveraging specialized 
encoding techniques such as amplitude and 
variational encoding. These methods enable the 
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transformation of molecular data into quantum 
states, facilitating efficient quantum computation 
for toxicity prediction. By evaluating multiple QML 
algorithms—including Variational Quantum 
Classifiers (VQC), Quantum Support Vector 
Classifiers (QSVC), and Quantum Autoencoders 
(QAE)—the framework provides comparative 
insights into their predictive capabilities. This 
demonstrates the potential of quantum algorithms to 
enhance accuracy and uncover new patterns in 
molecular datasets, offering valuable contributions 
to computational drug discovery and materials 
science. 

While the framework successfully highlights the 
applicability of QML in chemistry, it also brings 
attention to current limitations in the field. The 
reliance on noisy intermediate-scale quantum 
(NISQ) devices and the computational overhead 
introduced by encoding methods can limit real-
world applicability at this stage. Additionally, 
performance evaluations conducted on simulators 
may not fully reflect behavior on actual quantum 
hardware. Despite these challenges, the work 
represents a promising step toward integrating 
quantum computing into molecular modeling and 
sets the stage for more scalable and hardware-
optimized solutions in the near future. 
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