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ABSTRACT 

GhostFreak, a novel deep steganography framework designed to address the challenges inherent in print-
scan pipelines. Traditional steganographic approaches often struggle with the distortions introduced during 
the printing and scanning process, leading to significant degradation in the quality and recoverability of 
embedded data. To overcome these limitations, GhostFreak strategically leverages three distinct color 
spaces—RGB for digital displays, HSI for human visual perception, and CMYK for printing—to achieve 
robust and imperceptible data embedding while maintaining resilience against real-world distortions. 
Framework extends prior research on print-scan steganography by integrating a U-Net GAN architecture, 
which processes a concatenated tensor of multi-color representations alongside a secret code to generate a 
residual image. This approach ensures that the hidden information remains intact while preserving the 
quality of the Stego image. A key innovation of GhostFreak is its dynamically weighted loss function, 
which balances multiple loss components—secret loss, secret decay loss, LPIPS (perceptual similarity) 
loss, residual loss, and edge loss—to optimize the model's performance across different training phases. 
During initial training stages, the model prioritizes accurate encoding of the secret message, whereas in 
later stages, the emphasis shifts towards ensuring high-fidelity image reconstruction. We validate the 
effectiveness of Ghost Freak through comprehensive experiments on a large-scale image dataset, 
demonstrating that our method withstands the degradations introduced by print-scan operations. 
Comparative evaluations against prior steganographic approaches highlight significant improvements in 
terms of imperceptibility, robustness, and recoverability of the embedded data. The results indicate that 
GhostFreak is a promising advancement in deep steganography, offering a practical and resilient solution 
for secure data embedding in printed media. 
Keywords: Image Steganography, Deep Learning, Print-Scan, Color Spaces, U-Net GAN, Dynamic Loss 

Weighting, Error Correction. 

1. INTRODUCTION 

Steganography is the science of hiding 
information within innocuous-looking 
media, primarily for secure communication. 
Over the years, this field has evolved from 
rudimentary practices such as microdots and 
invisible ink to advanced digital methods. In 
particular, image steganography has gained 
prominence due to the ubiquity of visual 
media and its capacity to carry embedded 
data without raising suspicion. Modern 
advances, especially those leveraging deep 
learning, have enabled embedding schemes 
that are both imperceptible to the human eye 
and resilient to a range of transformations 
including compression, resizing, and more 
recently, the print-scan cycle. 
The goal of this study is to address a 
fundamental challenge in the field: 

maintaining the integrity of hidden 
information through real-world degradations 
introduced during the print-scan process, 
which many conventional steganographic 
models are unable to withstand. While most 
methods are tailored for digital-only media, 
they often fail when confronted with analog 
distortions such as ink bleeding, lighting 
variations, and scanning noise. 
 
To overcome this, we propose GhostFreak, a 
novel deep steganographic framework that 
combines multiple color space 
representations (RGB, HSI, CMYK) and a 
U-Net-based GAN architecture to robustly 
embed and recover hidden data even after 
physical transformations. This approach is 
further strengthened by a dynamically 
weighted loss function that evolves over the 
course of training, balancing perceptual 
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similarity, robustness, and fidelity. This 
work is primarily focused on short-message 
embedding (up to 100 bits) into natural 
images intended for printing and scanning. 
We assume that: 

● The encoder has access to RGB images and 
can compute their HSI and CMYK 
representations. 

● The decoder receives a digitally scanned 
image post-print, possibly affected by 
lighting noise, warping, and compression. 

● The goal is not only to embed messages 
invisibly but to maintain message 
recoverability under real-world distortions. 
The key novel contributions of this work 
include: 

● A multi-color space encoding strategy that 
exploits perceptual and print-specific 
advantages of RGB, HSI, and CMYK. 

● A dynamically weighted loss function that 
shifts emphasis from secret fidelity to visual 
quality throughout training. 

● A robust print-scan resilient steganographic 
model, validated against leading methods 
such as StegaStamp. 
By introducing a system that performs 
reliably across both digital and physical 
domains, GhostFreak sets a new benchmark 
for hybrid-media steganography. 

2. RELATED WORK 

Image steganography has progressed 
significantly, transitioning from elementary 
pixel-level manipulation techniques to 
sophisticated deep learning-driven 
frameworks. Below is a critical examination 
of key existing approaches categorized by 
their methodology, with an emphasis on 
their Plus, Minus, and Interesting (PMI) 
attributes. 
 
2.1. Least Significant Bit (LSB) Method 
LSB-based techniques are intuitive, 
computationally lightweight, and easy to 
implement. They manipulate the least 
significant bits of pixel values, ensuring 
minimal visual distortion [8]. 
Despite their simplicity, these methods are 
highly susceptible to image processing 
operations such as compression, scaling, and 
cropping. They also lack resistance to 
statistical steganalysis [6].  
LSB remains a foundational technique for 
educational purposes and has been used as a 

baseline in comparative studies due to its 
deterministic behavior [9]. 
 
2.2. DCT-Based Methods 
Discrete Cosine Transform (DCT)-based 
approaches operate in the frequency domain, 
making them more robust to compression 
and other lossy operations such as JPEG 
encoding [8]. 
These methods often compromise on 
payload capacity and require careful 
coefficient selection to maintain invisibility. 
Techniques like DCT form the basis of 
widely-used image formats (e.g., JPEG), 
making them compatible with many real-
world applications despite their limited 
embedding capacity.  
 
2.3. Deep Learning (DL) Approaches: 
DL-based methods, such as HiDDeN [10] 
and StegaStamp [1], have revolutionized the 
field by learning optimal embedding 
strategies from data, offering superior 
robustness and imperceptibility. Adversarial 
training setups further enhance their 
resilience against steganalysis [12]. 
Most of these models are trained and 
evaluated under digital-only distortions 
(e.g., cropping, JPEG compression), making 
them inadequate for scenarios involving 
analog noise such as print-scan degradation. 
These approaches often use auxiliary loss 
functions (e.g., perceptual similarity metrics 
like LPIPS [12]) to ensure that encoded 
images remain visually plausible. 
 
2.4. Print-Scan Method 
A niche but growing area, print-scan 
steganography addresses physical media 
degradation, a challenge largely ignored by 
conventional techniques. For example, Light 
Field Messaging (LFM) incorporates camera 
and lighting distortions during training to 
simulate real-world capture scenarios [11]. 
LFM's approach requires extensive datasets 
of manually captured images, making it 
time-intensive and resource-heavy. 
Moreover, most models in this category fail 
to generalize well to variations in print 
media quality or scanning conditions.The 
use of physical transformations as part of the 
training loop represents a significant shift in 
steganographic design philosophy and sets 
the stage for hybrid-media embedding 
frameworks. 
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2.5. Summary and Research Gap 
While numerous techniques aim to improve 
embedding capacity, visual quality, or 
resilience to digital attacks, few address the 
full print-scan pipeline with practical 
usability. Techniques like StegaStamp [1] 
offer partial robustness but leave noticeable 
perturbations in printed images. Others like 
LFM [11] improve robustness but lack 
scalability and efficiency. 
GhostFreak addresses this gap by: 

● Integrating multiple color spaces (RGB, 
HSI, CMYK) for enhanced perceptual 
alignment and print compatibility. 

● Employing a dynamically weighted loss 
function that evolves during training to 
balance fidelity and robustness. 

● Outperforming existing methods in both 
digital metrics and real-world (printed 
media) evaluations. 
These contributions position GhostFreak as 
a practical and scalable solution for robust, 
high-fidelity steganography in hybrid media 
settings. 

3. PROPOSED METHADOLOGY 

Despite significant progress in deep 
learning-based image steganography, robust 
message embedding that survives the print-
scan pipeline remains a critical and 
underexplored challenge. Most existing 
methods are optimized for digital distortions 
such as compression or cropping but fail 
when faced with analog distortions 
introduced by printing and scanning—such 
as color shifts, warping, uneven lighting, 
and scanning noise. These issues 
significantly degrade both the visual quality 
of stego images and the recoverability of 
hidden data. Moreover, conventional 
steganographic frameworks rely heavily on 
a single color space, typically RGB, which 
is ideal for digital displays but poorly 
aligned with human perception or print 
reproduction. These methods also employ 
static loss functions, leading to a rigid 
optimization process that fails to 
dynamically balance robustness and 
imperceptibility during training. 
To address these limitations, we introduce 
GhostFreak, a novel steganographic system 
that combines multi-color space encoding, a 
U-Net-based encoder-decoder architecture, 

and a dynamically weighted composite loss 
function. This integration enables reliable 
message embedding across both digital and 
physical domains. 

 
Figure 1. Architecture Of Unet GAN Model 

 
3.1. Research Objectives 
This study is guided by the following core 
objectives: 

● O1: Design a deep learning-based 
steganographic model that performs reliably 
in both digital and physical media, with 
special attention to print-scan robustness. 

● O2: Incorporate multi-color space encoding 
using RGB, HSI, and CMYK to enhance 
perceptual fidelity and media adaptability 
[3], [4], [5]. 

● O3: Introduce a dynamic loss-weighting 
strategy that adapts during training to 
balance secret recovery accuracy and visual 
imperceptibility [12]. 

● O4: Evaluate GhostFreak against state-of-
the-art approaches such as StegaStamp [1], 
using both quantitative metrics (PSNR, 
SSIM, LPIPS) and qualitative performance 
(artifact visibility and decoding after print-
scan). 
 
3.3. Research Hypothesis 
The study investigates the following 
hypotheses: 

● H1: Multi-color space training improves 
visual similarity and decoding robustness 
compared to single-space models. 

● H2: Dynamic loss weighting yields better 
trade-offs between imperceptibility and 
robustness than static approaches. 
H3: GhostFreak will show lower visible 
artifacts and comparable or superior 
decoding accuracy in printed images 
compared to existing methods. 

3.4. Architecture Overview 

GhostFreak has two components, the Image 
Generator and the Discriminator. The Image 
Generator comprises encoder-decoder 
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architecture.                                       
    
We refer to these encoder decoder 
components as the GhostFreakEncoder and 
the GhostFreakDecoder. 

● GhostFreakEncoder: The 
GhostFreakEncoder leverages a U-Net 
architecture, enabling the extraction of 
higher-order features and the generation of 
the required residual output, which matches 
the size of the input image (𝐼ோீ஻). The 
GhostFreakEncoder receives a concatenated 
input (𝐼௖௢௠௕௜௡௘ௗ) formed by the RGB image, 
its HSI and CMYK representations, and a 
randomly generated secret tensor (𝑆). It 
outputs a residual image (𝑅) such that the 
encoded image (𝐼௘௡௖  ) is given by: 

𝐼௖௢௠௕௜௡௘ௗ  =  𝐼ோீ஻  ⊕  𝐼ுௌூ  ⊕  𝐼஼ெ௒௄ ⊕ 𝑆 
𝑅 =  𝐺ℎ𝑜𝑠𝑡𝐹𝑟𝑒𝑎𝑘𝐸𝑛𝑐𝑜𝑑𝑒𝑟(𝐼௖௢௠௕௜௡௘ௗ) 
𝐼௘௡௖ = 𝐼ோீ஻ + 𝑅 

Note : (⊕) represents concatenation and 
(+) represents element-wise addition 

● GhostFreakDecoder: The 
GhostFreakDecoder processes a transformed 
version of (𝐼௘௡௖  ) (subjected to simulated 
print-scan distortions such as warping and 
uneven lighting) to recover the hidden secret 
(𝑆). 
 
The training process begins with the 
GhostFreakEncoder. First, a random RGB 
image is selected from the dataset. Using the 
formulas described earlier, an input 
(𝐼௖௢௠௕௜௡௘ௗ) is created and fed into the 
GhostFreakEncoder, which outputs a 
residual (𝑅). Next, the encoded image (𝐼௘௡௖) 
is generated using the same formulas. This 
encoded image (𝐼௘௡௖) is then modified to 
introduce print-scan distortions, such as 
JPEG compression, warping, uneven 
lighting, and blurring. The modified 
encoded image (𝐼௘௡௖

෢ ) is subsequently passed 
to the GhostFreakDecoder, which produces 
a secret tensor  (𝑆መ). The Total Loss 
(𝐿௧௢௧௔௟(𝑡)), as detailed in Section 3.3, is 
computed and backpropagated. 
Simultaneously, the Discriminator attempts 
to distinguish between the original RGB 
image (𝐼ோீ஻) and the encoded image (𝐼௘௡௖); 
a separate loss for the Discriminator is 
computed and backpropagated as well. This 
process is repeated for multiple iterations 
until the Total Loss (𝐿௧௢௧௔௟(𝑡)) converges. 
Figure 2. Represents the Training Procedure 
of the Ghost Freak Model. 

 
Figure 2: Overview Of Training Process 

 
3.5. Multi-Color Space Encoding 
GhostFreak leverages the complementary 
properties of three fundamental color spaces 
to ensure that our encoded images maintain 
high visual fidelity across both digital and 
print media. Rich Color Space (RGB): As 
baseline image data capturing image color 
essential elements. By separating bright 
channels from chromatic components, the 
Hue, Saturation, Intensity (HSI) color space 
is closer to human visual perception, and 
also allows applications to adjust 
perceptually meaningful aspects. You are 
being use to outputs in a single color but 
then finally, CMYK colorspace must be 
used to reproduce graphics on print outs 
with precision control and amount of ink for 
harmonious colors. 
To convert RGB into HSI color space, we 
use the following conversion formulas: 
 

𝐼 =
𝑅 + 𝐺 + 𝐵

3
 

𝑆 = 1 −  
𝑚𝑖𝑛 (𝑅, 𝐺, 𝐵)

𝐼
 

𝐻 =  ( 
1

2

(𝑅 − 𝐺) + (𝑅 − 𝐵)

ඥ(𝑅 − 𝐺)ଶ + (𝑅 − 𝐺)(𝐺 − 𝐵)
 ) 

 
Note: If  𝐼 = 0, then  𝑆 =  0  and if  𝐵 >  𝐺 
, then  𝐻 =  360° − 𝐻. 
 
To convert RGB to CMYK color space, we 
first normalize the RGB values, where the 
RGB values are in the range [0,1] and the 
use the below conversion formulas: 

𝐾 = 1 − 𝑚𝑎𝑥(𝑅, 𝐺, 𝐵) 
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𝐶 =
1 − 𝑅 − 𝐾

1 − 𝐾
 

𝑀 =
1 − 𝐺 − 𝐾

1 − 𝐾
 

𝑌 =
1 − 𝐵 − 𝐾

1 − 𝐾
 

Note: If 𝐾 = 1, then 𝐶 = 0, 𝑀 = 0, 𝑌 = 0. 

3.6. Loss Functions and Dynamic 
Weighting 

Our training objective is formulated as a 
weighted sum of several loss components 
that each target a specific aspect of the 
steganographic process. This dynamic loss 
formulation is essential to balance the 
competing goals of effective secret 
embedding, maintaining visual fidelity, and 
ensuring robust decoding despite print-scan 
distortions. The total loss at time(𝑡) is given 
by the below formula where each (𝜆) is 
dynamically adjusted over training: 
 

𝐿௧௢௧௔௟(𝑡) =  𝜆௦௘௖௥௘௧(𝑡)𝐿௦௘௖௥௘௧                    + 
𝜆௦௘௖௥௘௧ିௗ௘௖௔௬(𝑡)𝐿௦௘௖௥௘௧ିௗ௘௖௔௬ + 

                    𝜆௅௉ூ௉ௌ(𝑡)𝐿௅௉ூ௉ௌ                    + 
                    𝜆௥௘௦௜ௗ௨௔௟(𝑡)𝐿௥௘௦௜ௗ௨௔௟              + 

𝜆௘ௗ௚௘(𝑡)𝐿௘ௗ௚௘  
3.6.1. Secret Loss(𝐿௦௘௖௥௘௧) 
The secret loss is the primary objective 
during the initial training phase. It is 
computed as the cross-entropy between the 
true secret (𝑆) and the predicted secret (𝑆መ): 

𝐿௦௘௖௥௘௧ =  − ෍ ⬚

⬚

௝

𝑆௝𝑆መ௝ 

This loss ensures that the encoder-decoder 
pair focuses on embedding and accurately 
recovering the secret message. However, 
relying solely on this loss can lead the model 
to exploit shortcuts, which brings us to the 
concept of unwanted residuals. 
3.6.2. Secret Decay Loss(𝐿௦௘௖௥௘௧ିௗ௘௖௔௬) 
In early training, the model may converge to 
a suboptimal solution where the encoder 
produces a residual that, while sufficient to 
reduce the secret loss, does so by embedding 
patterns that are not robust or imperceptible. 
These patterns are termed unwanted 
residuals—they represent encoding artifacts 
that can be easily detected or may interfere 
with the visual quality of the image (as 
shown in Figure 3, Section 9). 
To counteract this, we introduce the secret 
decay loss, which penalizes the model for 

generating residuals that resemble these 
unwanted patterns. This is achieved by 
computing an exponential decay based on 
the LPIPS [12] distance between the 
produced residual (𝑅) and a reference 
(𝑅௨௡௪௔௡௧௘ௗ): 

𝐿௦௘௖௥௘௧ିௗ௘௖௔௬

=  −𝑘 ∙ 𝑒𝑥𝑝 (𝐿𝑃𝐼𝑃𝑆(𝑅,  𝑅௨௡௪௔௡௧௘ௗ)) 
 
where  (𝑘) is a scaling constant. This loss 
forces the network to abandon shortcuts that 
only satisfy the secret loss, encouraging a 
more robust and visually imperceptible 
embedding. 

 
Figure 3 Example of an unwanted residual 

3.6.3. LPIPS Loss(𝐿௅௉ூ௉ௌ) 

Also, it is important to keep the visual 
fidelity of the encoded image. For this we 
use the perceptually based metric LPIPS 
(Learned Perceptual Image Patch Similarity) 
[12], which measures perceptual similarity 
between images. We compute the LPIPS 
loss as the average of three contributions 
corresponding to different color spaces in 
our framework: 

𝐿௅௉ூ௉ௌ =  
1

3
ൣ𝐿𝑃𝐼𝑃𝑆൫𝐼ோீ஻ ,  𝐼௘௡௖,ோீ஻൯൧ + 

1

3
ൣ𝐿𝑃𝐼𝑃𝑆൫𝐼ுௌூ ,  𝐼௘௡௖,ுௌூ൯൧ + 

1

3
ൣ𝐿𝑃𝐼𝑃𝑆(𝐼஼ெ௒௄ ,  𝐼௘௡௖,஼ெ௒௄  )൧ 

 
●  𝐿𝑃𝐼𝑃𝑆൫𝐼ோீ஻ ,  𝐼௘௡௖,ோீ஻൯measures the 

perceptual difference in the RGB domain. 
●  𝐿𝑃𝐼𝑃𝑆൫𝐼ுௌூ ,  𝐼௘௡௖,ுௌூ൯ensures that the 

human perception-aligned HSI 
representation remains close to the original. 

●  𝐿𝑃𝐼𝑃𝑆(𝐼஼ெ௒௄ ,  𝐼௘௡௖,஼ெ௒௄  ) guarantees that 
the print-relevant CMYK features are 
preserved. 
 
This multi-space averaging is critical to 
maintain image quality across all media, 
ensuring that the alterations remain 
imperceptible to both human observers and 
printing devices. 
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3.6.4. Residual Loss(𝐿௥௘௦௜ௗ௨௔௟) 

A potential trivial solution for the encoder is 
to generate a near-zero residual (𝑅),which 
minimizes the LPIPS loss without 
effectively embedding any information. To 
prevent this, we include a residual loss 
defined as: 

𝐿௥௘௦௜ௗ௨௔௟ = 𝑒𝑥𝑝 (−𝛽 ∙  𝐿௅௉ூ௉ௌ) 
 
with 𝛽as a scaling parameter. This loss 
discourages the network from taking 
shortcuts by ensuring that the residual 
carries meaningful encoded information 
rather than converging to a zero tensor. 

3.6.5. Edge Loss(𝐿௘ௗ௚௘) 

Human vision is particularly sensitive to 
distortions in smooth regions. The edge loss 
is designed to guide the model to embed 
data preferentially in textured areas, where 
alterations are less perceptible. This is 
achieved by generating an edge mask (𝐺) 
via a Canny filter and subsequent Gaussian 
blurring: 

𝐸 = 𝐶𝑎𝑛𝑛𝑦(𝐼, 𝜎) 
𝐺 = 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛𝐵𝑙𝑢𝑟(𝐸, 𝑘𝑒𝑟𝑛𝑒𝑙 𝑠𝑖𝑧𝑒, 𝜎) 

and then computing: 

𝐿௘ௗ௚௘ =  
1

𝑁
෍ ⬚

ே

௜ୀଵ

[(1 − 𝐺௜)𝑅௜]
ଶ 

By weighting the residual loss more heavily 
in smooth regions (where 𝐺 is low), this loss 
ensures that the hidden information is 
embedded in parts of the image where it will 
remain visually inconspicuous. 

3.6.6. Dynamic Weighting Schedule 

The dynamic weighting of these loss 
components is a crucial innovation. During 
the initial 10% of the training steps (𝑡 <
0.1𝑇), the focus is solely on minimizing the 
secret and secret decay losses to guarantee 
that the secret is being accurately embedded. 
As training progresses         (𝑡 ≥ 0.1𝑇), the 
weights for LPIPS, residual, and edge losses 
are gradually increased. This shift directs the 
model to refine the encoding, enhancing 
visual fidelity and suppressing unwanted 
residuals while still maintaining decoding 
accuracy. 
 
This carefully orchestrated balance ensures 
that GhostFreak not only embeds the secret 
robustly but also produces an encoded image 

that is nearly indistinguishable from the 
original—a critical requirement for real-
world print-scan applications. 

4. EXPERIMENTAL SETUP 

4.1. Dataset and Training Protocol 

We utilized the MIRFLICKR-1M [2] dataset 
for its diverse real-world imagery. The 
model was trained for 140,000 iterations on 
images resized to 400×400 pixels. Each 
image carried a secret payload of 7 
characters (56 bits) or 100 bits when 
incorporating BCH-based error correction 
[13]. Data augmentation simulated print-
scan distortions (e.g., warping, blurring, 
uneven lighting) to ensure robust 
performance. Figure 4- represents the ways 
in which the input image is split into 
different models when passed to 
GhostFreakEncoder Architecture. The 
images shown are symbolic representations 
intended for conceptual understanding and 
do not depict actual data. Figure 3 represents 
the output of an unwanted residual. 

 

 
Figure 4: Input Tensor (𝐼௖௢௠௕௜௡௘ௗ) to 

GhostFreakEncoder Architecture. 

The images shown are symbolic 
representations intended for conceptual 
understanding and do not depict actual data. 

4.2. Evaluation Metrics 

To quantitatively assess performance, we 
employed the following metrics: 

● PSNR (Peak Signal-to-Noise Ratio) [14]: 

𝑃𝑆𝑁𝑅 = 10 ∙  (
𝑀𝐴𝑋ଶ

𝑀𝑆𝐸
) 
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where 𝑀𝐴𝑋 is the maximum pixel value and 
𝑀𝑆𝐸 is the mean squared error. 

● SSIM (Structural Similarity Index Measure) 
[15]: 

𝑆𝑆𝐼𝑀(𝑥, 𝑦)

=  
൫2𝜇௫𝜇௬ +  𝐶ଵ൯(2𝜎௫௬  +  𝐶ଶ)

൫𝜇௫
ଶ +  𝜇௬

ଶ +  𝐶ଵ൯(𝜎௫
ଶ +  𝜎௬

ଶ +  𝐶ଶ)
 

which evaluates perceptual similarity 
between images. 

● LPIPS (Learned Perceptual Image Patch 
Similarity): 
As defined earlier, LPIPS quantifies the 
perceptual difference between the original 
and encoded images. 

5. RESULTS 

We compared GhostFreak against the 
established StegaStamp method on a 
standard test set of 400×400 images with a 
100-bit payload (including BCH Error 
Correcting Codes). The performance of our 
model is summarized in Table 1. 

 
Table 1: Comparison Of PSNR, SSIM, And 
LPIPS Metrics Between Stegastamp And 
Ghostfreak, Averaged Over 600 Images. 

 

Metri
c 

Steg
aSta
mp 

Gh
ost
Fre
ak 

Percent
age 
Differen
ce 

PSN
R 
(dB) 
(↑) 

28.5
0 

30.
88 

+ 8.35% 

SSIM 
(↑) 

0.90
5 

0.8
98 

- 1.32% 

LPIP
S (↓) 

0.10
1 

0.0
98 

+ 2.97% 

 
While the numerical metrics are similar 
between the two models, the real advantage 
of GhostFreak is observed in practical 
applications. In printed form, GhostFreak 
exhibits significantly lesser visible 
perturbations compared to StegaStamp, 
while still maintaining sufficient decoding 
accuracy—often matching or surpassing that 
of StegaStamp. The residual images 
generated by the two models differ greatly; 

GhostFreak's residual is far less perceptible, 
making the encoding much less visible 
compared to the more nogticeable patterns 
produced by StegaStamp. 
 
5.1 Quantitative Evaluation 
Three metrics were used for numerical 
comparison: 

● PSNR: GhostFreak outperforms StegaStamp 
with an 8.35% higher PSNR, indicating 
better image fidelity after encoding. 

● SSIM: A slight drop (−1.32%) in SSIM 
suggests marginally less structural 
similarity—likely due to changes introduced 
by multi-color space transformations. 

● LPIPS: GhostFreak yields a lower LPIPS, 
suggesting improved perceptual quality, 
despite the drop in SSIM. 

5.2 Qualitative Evaluation 

In real-world settings, steganographic 
performance hinges not only on numerical 
metrics but on how well the encoded data 
survives physical transformations. We 
compared printed and re-scanned outputs for 
both models. 

● GhostFreak shows noticeably reduced visual 
artifacts after printing, producing stego 
images that appear more natural to the 
human eye. 

● Both models experience degradation in 
extreme lighting conditions, but GhostFreak 
maintains more stable decoding. 
The residuals generated by GhostFreak are 
less visually apparent, thanks to its dynamic 
edge-aware loss and color-space blending, 
making it better suited for physical 
steganography.These results are summarized 
in Table 2. 
 
Table 2: Qualitative Evaluation Of Visual Stealth 

And Print-Scan Robustness Ghostfreak And 
Stegastamp Trained With The Same 

Hyperparameters 
 
Aspect Stegas

tamp 
GhostF
reak  

Visible 
perturbations 
(print) 

Moder
ate 

Minimal 

Secret 
recoverability 

Consis
tent 

Consiste
nt 

Residual 
visibility 

High Low 
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6. DISCUSSIONS AND MODEL 
LIMITATIONS 

While GhostFreak demonstrates promising 
improvements in robustness and fidelity, 
certain limitations remain: 
 

● Payload Capacity:The current design 
supports embedding a 7-character (56-bit) 
message per image. Attempts to increase 
this capacity result in degraded encoding 
performance and higher training costs. 

● Computational Complexity: Training the 
model for 140,000 iterations on high-
resolution images necessitates significant 
computational resources. 

● Color Space Integration 
Complexity:Incorporating RGB, HSI, and 
CMYK into a single framework introduces 
additional design complexity, which may 
hinder scalability to higher resolutions or 
larger payloads. 

● Sensitivity to Extreme Distortions:Although 
our dynamic loss weighting strategy 
improves 
robustness, extreme print-scan artifacts may 
still impact decoding accuracy. 
 
Future research should focus on enhancing 
payload capacity, optimizing the training 
process, and refining the dynamic loss 
adjustments for varied operational 
conditions. 

7. CONCLUSION 

GhostFreak introduces a significant 
advancement in print-scan steganography by 
fusing the strengths of multiple perceptual 
and print-relevant color spaces (RGB, HSI, 
CMYK) with a dynamically weighted 
composite loss function. The proposed U-
Net GAN-based architecture, trained under 
an evolving objective regime, enables the 
model to embed secret messages with high 
fidelity while adapting to the complex 
degradations introduced during physical 
printing and scanning. This dynamic 
weighting strategy—shifting emphasis from 
secret accuracy to image realism over 
time—proves critical for maintaining 
robustness across diverse distortion 
conditions. 
 
Comparative evaluations with StegaStamp 
[1] reveal that although both models perform 

similarly on standard metrics like PSNR, 
SSIM, and LPIPS, GhostFreak demonstrates 
superior real-world resilience as 
demonstrated and summarized in table 3, 
which shows the visual difference between 
the traditional model and our model. 
Specifically, it produces significantly fewer 
visible perturbations in printed images and 
maintains equal or improved decoding 
accuracy. Additionally, the residuals 
generated by GhostFreak are less visually 
detectable, enhancing the steganographic 
covertness—an essential quality for practical 
deployments in document security, 
watermarking, and covert communication. 
Overall, this study establishes a reproducible 
and scalable methodology for robust 
steganographic encoding in hybrid media. It 
also lays the groundwork for future research 
into adaptive encoding techniques, higher 
payload capacity, and domain-specific 
optimization that can extend deep 
steganography to broader real-world 
applications. 
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Table 3: Visual Comparison Of Stegastamp And Ghostfreak Trained With The Same Hyper 
Parameters 

 StegaStamp GhostFreak 

Image Input  

 

 

 

Secret  
(7-character text) 

Meow!!! Meow!!! 

Residual 

  
Encoded Image  

 

 

 
Printed and 
Rescanned Encoded 
Image 

 

 

 

 

Extracted Secret from 
Printed Encoded 
Image 

Meow!!! Meow!!! 

 


